
An Improved System for Artificial Creatures Evolution

Thomas Miconi1 and Alastair Channon1
1University of Birmingham, Edgbaston B152TT, Birmingham, UK

t.miconi@cs.bham.ac.uk

Abstract

We present our complete reimplementation of Karl Sims’
system for evolving and coevolving autonomous creatures
in a physically realistic three-dimensional (3D) environment.
Creatures are articulated structures composed of rigid blocks
and controlled by embedded neural networks. The main dif-
ferences with Sims are, first, the use of standard McCulloch-
Pitts neurons (instead of a set of ad hoc, complex func-
tional neurons) and, second, an improved genetic encoding
and developmental system (allowing fine-grained control of
neural connections in duplicated morphological features, and
replication-exaptation processes).

This paper expands upon a previous version of our system
(Miconi and Channon, 2005) which implemented a subset
of features present in Sims’ system, and dealt with simple
evolutionary experiments based on external fitness functions
only: the present paper extends the feature set proposed by
Sims, and describes the results of experiments based on the
‘box-grabbing’ coevolutionary task introduced by Sims. We
provide a detailed description of our model and freely acces-
sible source code. We describe some of our results, includ-
ing an analysis of evolved neural controllers. To the best of
our knowledge, our work is the first replication of Sims’ ef-
forts to achieve results comparable to Sims’ in efficiency and
complexity, with standard neurons and realistic Newtonian
physics.

Introduction
This paper describes a platform for the evolution of au-
tonomous articulated structures (“creatures”) in a physically
realistic 3D environment. This platform is by and large
based on the model introduced by Sims (Sims, 1994b; Sims,
1994a), with modifications.

While evolving artificial creatures can be an interesting
and useful endeavour in itself (e.g. in relation to robotics, es-
pecially modular robotics (Mesot, 2004)), our primary mo-
tivation in implementing such a platform is to create a su-
perior experimental tool for the study of artificial evolution
and, most importantly, coevolution. Physical embodiment,
free morphologies and arbitrary behaviours open a practi-
cally limitless range of possibilities for evolution to explore
for any particular problem. This richness is particularly im-
portant in coevolution, where the fitness landscape is deter-

mined, at least in part, by the features of the evolving in-
dividuals themselves. In this context, the flexibility of arti-
ficial creatures provides a fertile ground for complex adap-
tations and counter-adaptations, with the additional benefit
that these adaptations are often intuitively interpretable by
visual inspection.

We are therefore interested in building a very specific
type of system: a physically realistic 3D environment in
which articulated creature can evolve towards potentially ar-
bitrary levels of complexity1. We add the requirement that
this system must be powerful enough to allow for reliable,
consistent success: the evolutionary system must be flexible
enough to allow competent behaviours to emerge routinely.
Finally, we want to do this with a very general architecture,
without any ad hoc machinery to favour a specific type of
behaviour. To the best of our knowledge, the closest thing to
such a system so far has been Karl Sims’ model of evolving
creatures.

Since the publication of Sims’ seminal papers, several
authors have described virtual creatures systems. However
these systems differed from Sims’ in several aspects, often
by simplifying the physics drastically (e.g. the Framsticks
system (Komosinski, 2000)), or by concentrating their at-
tention towards a specific aspect of creature evolution (with
less emphasis on evolutionary performance), or both. For
example, (Bongard and Pfeifer, 2001) constructed and stud-
ied a nature-inspired developmental system based on genetic
regulatory networks. (Ray, 2000) evolved creatures inter-
actively for aesthetic merit. (Hornby and Pollack, 2001)
introduced a grammar-based generative system for ‘stick-
figure’ creatures with simplified physics. Direct replications
of Sims’ work have been scarce and usually incomplete (e.g.
(Taylor and Massey, 2001))2.

1Note that we arenotasserting that evolution will mechanically
impose an increase in complexity.

2A more detailed review of the field can be found in (Miconi
and Channon, 2005)

The system
In this article we describe our own model for the evolution of
artificial creatures in a physically realistic 3D environment.
This model is broadly similar to Sims’, but with important
differences. Our work brings three contributions with re-
spect to Sims’:

1. Our creatures are controlled by standard neural networks,
based on classical McCulloch & Pitts neurons with sig-
moid or radial activation functions. This is in contrast
with the ad hoc functional neurons used by Sims. While
Sims’ approach was entirely justified given the seminal
aspect of his work, we believe that using standard neu-
rons provides a higher level of generality to our model:
creatures cannot rely on complex neurons to generate be-
haviours, they must build these behaviours ‘from scratch’
(including simple, vital behaviours such as oscillations).

2. We introduce extensions to the genetic-developmental
system described by Sims. First, we address a prob-
lem not mentioned by Sims: structures which are repli-
cated by the developmental system, either through sym-
metry (reflection) or through recursion (segmentation),
initially possess identical neural information and thus
cannot be independently controlled or provide distinct
information to ancestor limbs. We solve this problem
by adding genetic flags which control the actual wiring.
Second, we make it possible for developmental dupli-
cations of genetic nodes to be transcribed back into the
genome, creating several (initially similar) genetic nodes
which may then evolve independently, in analogy with the
duplication-exaptation process found in Nature.

3. We provide a complete description of our system,
as well as the original source code. The lack of
information on crucial aspects of Sims’ system has
been an obstacle to replication. The program de-
scribed in this paper is freely available under the
terms of the GNU General Public License (GPL) at
http://www.cs.bham.ac.uk/˜txm/creatures/ to-
gether with video samples.

An early version of our platform was described in a previ-
ous paper (Miconi and Channon, 2005). This early version
implemented a subset of the features described by Sims: in
particular, recursive replication of limbs (which allows for
segmentation of body plans) was not possible. Furthermore
only simple experiments based on external, hand-defined fit-
ness functions were reported. The present paper extends the
feature set proposed by Sims, and describes the results of ex-
periments based on the ‘box-grabbing’ coevolutionary task
introduced by Sims.

Creature morphology
In the following sections we provide a broad description of
our system, stressing both similarities and differences with

0

1a

2

1b

2

0

1b

1a

A S

A S

A S

Figure 1: Organisation of a fictional creature pictured in the
bottom-right corner. Limb 0 has no sensor (S) or actuator (A).
Limb 1 is reflected into two symmetric limbs 1a and 1b, which
share the same morphologic and neural information.

Sims’ model. In order to facilitate comparisons, our de-
scription deliberately follows the same organisation as Sims
(Sims, 1994b), section by section. Note that many of the ba-
sic features described in these sections can also be found in
our previous paper (Miconi and Channon, 2005).

As in Sims’ model, the creatures are branching structures
composed of rigid 3D blocks. The blocks (or “limbs”) are
connected to their parent limb by a hinge joint - except for
the first, “root” limb which has no parent. The genetic spec-
ification of a creature is given as a graph of nodes. Each
of these nodes contain morphologic and neural information
about one limb. Each node is responsible for storing the
description of its limb’s physical connection with its par-
ent node’s limb, removing the need for connections to carry
their own information, as is the case in Sims’ model.

The morphologic information in each genetic node spec-
ifies the dimensionsof the limb (i.e. width, length and
height), theorientationof this limb with regard to its par-
ent (in the form of two parameters indicating polar angles
with the xz and thexy planes, i.e. longitude and latitude,
in the frame of reference of the parent limb; these two pa-
rameters are discrete multiples ofπ/8), theaxial direction
of the hinge joint which may be either horizontal or vertical
(i.e. aligned either with they or with thez axis of the limb),
and a boolean flag forreflectionwhich governs symmetric
replication along thexz plane of its parent (see section on
Genome Expression). A limb also containsneural informa-
tion, as described in the next section.

Creature control and neural organisation
Our creatures are controlled by neural networks. As in Sims’
model, each limb contains a set of neurons. Genetic infor-
mation about a given neuron specifies theactivation func-
tion for this neuron, a threshold/bias parameterθ taken in
the [−1,1] range, and connection information. The activa-
tion function may be either a sigmoid (1

1+exp−(σ+θ)) or the

hyperbolic tangent tanh(σ+θ) whereσ is the weighted sum

of inputs (the difference between sigmoid and tanh is that
the first has values in[0,1] while the latter has values in
[−1,1]). Connection information specifies, for each connec-
tion, the source of this connection (i.e. the neuron whose
output is received through this connection) and a weight in
the[−1,1] range. Neurons can only be connected with other
neurons from adjacent limbs, or from the root limb. Each
neuron may receive a variable number of connections, up to
a maximum value (3 in the present experiments).

The most important difference with Sims’ model lies in
the choice of standard neurons with traditional activation
functions, in contrast to Sims’ large set of functions (in-
cluding arithmetic operations and oscillators). An important
consequence of this simpler set of functions is that there is
no trivial way for evolution to generate oscillators or other
cyclic forms of behaviour, which are necessary for any sus-
tained locomotion to take place. Such behaviours have to
emerge out of the interaction between several neurons, as-
sembled together under the guidance of evolution. A more
practical consequence is that in our model, each neuron may
have an arbitrary number of inputs (up to a maximum value),
by contrast to Sims’ neurons which had a fixed number of
inputs, dependent on their function.

Sensors and actuators

Sensor neurons and actuator neurons are handled specially.
In these experiments two types of sensors are used: propri-
oceptors and external sensors. Proprioceptive neurons mea-
sure the current angle formed by the hinge joint to which this
neuron’s limb is attached, scaled within the[−1,1] range.
External sensors come in two types, which measure thex-
distance of the limb containing the sensor to either the trunk
of an opponent, or to an inert box. Anx-distance is the dis-
tance between the centre of mass of the limb and the centre
of mass of the object, along thex-axis of the frame of refer-
ence of the limb in which the sensor exists (i.e. thex com-
ponent, in the frame of reference of this limb, of the vector
joining the centre of this limb to that of the detected ob-
ject). The outputs of external sensors are squashed through
a tanh function. Actuator neurons command the movement
of limbs, that is, the desired angular velocity around their
joint. Their inputs are defined similarly as other neurons,
but their activation function is always a scaled hyperbolic
tangent of the formMaxSpeed∗ tanh(σ), whereMaxSpeed
is a system constant. In our model, sensor neurons do not re-
ceive any connection from any other neuron, and no neuron
may receive a connection from an actuator neuron. Sensors
and actuators are, respectively, pure sources and pure sinks
of data.

A difference with Sims’ model is that an actuator does
not specify a force or a torque, but adesired angular veloc-
ity. The physics simulator implements a motor at each joint,
which will constantly attempt to reach the desired speed,
with the constraint that the total torque it exerts cannot be

larger than a specified maximum. This maximum is a sys-
tem constant. This mechanism corresponds to a very simple
model of servomotors.

Each limb has exactly one actuator and one propriocep-
tor. It may have other neurons, including external sensors,
within a maximum number (in the current experiments the
maximum number of neurons for each limb in addition to
the actuator and the proprioceptor is 2). Note that while
each limb has a sensor and an actuator, there is no require-
ment that they should receive or send connections from or
to other neurons: connections are established in a random
manner and no connection toward these special neurons is
explicitly enforced. Thus each limb is free to use its sensor
and actuator, or not, depending on how its network evolves.
This is equivalent to Sims’ model.

Expression of the Genome: the Developmental
System

When a creature is to be generated from its genotype, a sim-
ple developmental system translates the genotype into a cor-
responding phenotype, and may introduce additional com-
plexity if the genetic information dictates it. Our system uses
developmental features similar to those introduced by Sims
(bilateral symmetry and segmental replication). To fully ex-
ploit these features, we introduce control flags which en-
force fine-grained control of the neural connections in repli-
cated limbs. We also introduce a new mutation operator, re-
cursion unrolling, which allows developmental replications
to be transcribed back into the genome.

Reflection
Symmetry in our model is implemented somewhat differ-
ently than in Sims’. In our model, each genetic node (corre-
sponding to a limb) may possess a “reflection” flag, which
means that when this node is read and the corresponding
limb attached to its parent, a symmetric copy of this limb
will also be created. Any further sub-limbs will similarly
be duplicated in a symmetric fashion, which leads to the
appearance of bilaterally symmetric branches. Our present
design allows for only one type of symmetry, namely sym-
metry along the parent’sxz plane. When a given limb is
randomly generated, its reflection flag is set with probability
Pre f (for this paper,Pre f = 0.25).

Symmetric replication introduces information flow issues.
When a limb is duplicated by reflection, all genetic infor-
mation is duplicated in the process, including neural infor-
mation. A consequence of this duplication is thata given
limb cannot distinguish information it sends to, or receives
from, either of its symmetric sub-limbs. Because neurons
from both symmetric sub-limbs share the same connection
information, they will receive identical connections (and in-
formation) from the same neurons in the parent. Similarly,
any connection that the sub-limbs send to the parent will
point to the same neuron in the parent, and information from

both sub-limbs will be merged at that point. Thus, although
both limbs may behave in different manners due to their sep-
arate inner neural networks (which may react independently
to different sensor information), they will not be able to send
distinct information to the parent, or to receive distinct in-
formation from it. Sims does not mention this problem, or
document his solution to it, in his papers.

We address this problem in the following way: every con-
nection has a specialRe f typeflag, which can take one of
three values: Original, Symmetric, or Both. When a connec-
tion (as specified by the genome) originates from a neuron
that exists in a reflected limb, then the actual connection in
the resulting creature will be connected either to the origi-
nal version of the limb, or to its symmetric copy, or to both,
depending on the value of itsRe f typeflag. If Re f typeis
‘Both’, then this connection will carry the average of the
outputs of the two neurons.

Similarly, if neurons from the two instances of a reflected
limb carry a connection originating from their common an-
cestral limb, theRe f typeflag is used to determine the ac-
tual wiring, that is, whether only the original instance, or the
symmetric copy, or both, will receive input from the parent
limb.

Segmentation

In Sims’ model, a loop in the genetic graph corresponds to
a set of limbs which is repeated a certain number of times.
Connections between limbs specify a recursive limit, which
is the maximum number of times this connection should be
followed when in a recursive cycle. Some connections may
also be marked as “terminal”, meaning that they will only
be applied when the recursive limit is reached, thus allow-
ing for specific “tailing” structures at the end of repeated se-
quences. This, in essence, is a simple and effective model of
segmentation, that is, the repetition of homologous modules
arranged sequentially, as apparent in many animals (verte-
brates, arthropods, anellidae, etc.).

We import this feature in our model, with the restriction
that only self-loops are allowed: a loop can only exist be-
tween a node and itself. No other loops within the graph can
exist. This allows for bio-inspired segmentation (repetition
of similar segments), while preventing the appearance of ex-
travagant body plans (such as, say, a human body in which
the thumb would contain a “loop” to the thorax).

Segmentation brings in the same information flow issues
as were discussed above about symmetry. Imagine that a
certain node has a recursive loop to itself, inducing its repli-
cation into similar segments. How can we allow for commu-
nication between segments ? In the genome, the information
about a connection specifies the genetic node (and the neu-
ron within this node) from which this connection originates.
But when a connection refers to the same node as the one
within which it exists, and the node is recursively replicated,
we must decide which instance of the node is actually re-

ferred to (so that connections could occur within the same
limb, between one limb and its recursive predecessor, or be-
tween one limb and its recursive successor).

We address this issue in the same manner as with sym-
metry. Each connection also carries aRectypeflag, com-
manding its behaviour under recursion, which can take any
of three values: Dad, Son, or Same. If a connection for a
given neuron originates from the same genetic node as that
in which the neuron exists, and this neuron is recursively
duplicated, then the value ofRectypedetermine the actual
wiring of this connection: the value ‘Dad’ indicates that this
connection should go from one instance to its predecessor in
the recursion (so obviously it will not exist in the first, ‘origi-
nal’ instance); the value ‘Son’ indicates that this connection
should go from one instance to its successor in the recur-
sion (so it will not exist in the last, ‘terminal’ instance). The
value ‘Same’ indicates that this connection should be under-
stood to originate from the same instance and will therefore
be present in all instances.

Recursion Unrolling
A common source of novelty in Nature is the duplication-
exaptation process: one part is duplicated in two, originally
identical elements, then the features of these elements di-
verge and assume different roles. The versatility of arthro-
pod appendages is a striking example of these mechanisms.
Our system allows for similar duplication-exaptation pat-
terns indirectly, through a mutation operator called recursion
unrolling: a recursive cycle (one genetic node which speci-
fies its own recursive replication during development) isun-
rolled in the genome, that is, it is developed as it would be
in a final body, and the resulting limbs are transcribed back
into as many new, independent genetic nodes. Originally
these new nodes are almost identical (except for neural con-
nections within themselves and between each other, which
depend on the flags described in the previous section), but
from now on they can evolve independently. This method
may be in opposition with the central dogma of genetics (in-
formation flows from the genotype to the phenotype), but is
not Lamarckian: it is a macro-mutation which occurs ran-
domly, without using selective information, thus respecting
the Darwinian mechanism of ‘blind’ mutations. This mech-
anism is not present in Sims’ system.

Creature evolution
Genetic operators
We use three genetic operators, similar to those used by
Sims, plus one addition.

Crossoveris performed by simply aligning the genetic
nodes of both parents in two rows, then building a new list
of genetic nodes by concatenating the left part of one parent
with the right part of the other.

Grafting corresponds to the removal of a branch (i.e. a
limb and all its sub-limbs), and its replacement by a branch

Figure 2: Creatures from four different runs. In the first run, a two-armed ‘centipede’ creature tries to wrestle the box from a massive
creature which uses its mass to pin it down (the centipede uses both segmental and symmetric duplication of limbs). In the second picture
the left creature uses horizontal wiggling to crawl forward, while the right creature uses ample vertical sinusoidal movement from its ’tail’ to
propel itself against the ground. In the third picture one creature has just knocked the ball away, using the constant rotatory movement from
its right ‘arm’ (the left arm is fixed, a clear example of differential neural control over two duplicated limbs); but the other creature, using its
accordion-like segmented appendages, will eventually displace it and interpose itself between its opponent and the cube. In the fourth picture,
the creature uses a sinusoidal crawling movement from its tail to move past the cube, and relies on its sensor to turn around it, thereby cutting
off its opponent.

taken from another individual. Connectivity information is
adapted and maintained: the neurons of the trunk establish
the same connections with the new branch as they had with
the old one, and similarly the new branch has the same con-
nection with its new trunk as it had with its previous trunk.

Picking corresponds to simply taking a branch from a
given individual and copying it in the genome of another
individual, without removing any material. This is our only
addition to Sims’ genetic operators, but it seems to have an
impact on the continuous appearance of complex features.

Mutation occurs by modifying each parameter of the
genome with a certain probabilityPmut (in this paper,Pmut =
0.04). The mutation operator proceeds in a sequential man-
ner. First, with probabilityPmut, a random limb may be
deleted from the genome (with the restriction that no crea-
ture may have less than two limbs). Then a new randomly
generated limb (with randomly generated neural informa-
tion) may be created. Then, a recursive cycle may be un-
rolled (if there is a recursion in the genome). Then each
slot in the neural array may be “flipped” (i.e. empty slots
are filled with a new neuron with randomly assigned con-

nections, existing neurons are deleted). Each interneuron
may be turned into a sensor, and vice versa (proprioceptors
and actuators are fixed for all creatures). Each sensor neu-
ron can change types (i.e. from sensing the box to sensing
the opponent and vice versa). Then, the threshold value of
each existing neuron may be modified through gaussian per-
turbation (standard deviation 0.4) within the[−1,1] torus.
The output function may be changed. Each connection of
every existing neuron may be “flipped”, i.e. created (and
randomly assigned) if it is unassigned, or deleted otherwise.
The weight of each existing connection may then be mod-
ified through gaussian perturbation (standard deviation 0.4)
within the [−1,1] torus. The source of each connection (i.e.
the neuron from which it originates) may be randomly reas-
signed. Finally, with probabilityPmut, morphological infor-
mation for each node is mutated. Morphological mutation
performs one randomly selected operation out of seven pos-
sibilities: reassigning a given limb to a different “ancestor”
limb (which amounts to moving a whole branch along the or-
ganism), randomly assigning a new length, width or height
to the limb, modifying either of its orientation angles (possi-

ble orientations are discrete multiples ofπ/4; mutation oc-
curs by choosing a new value within the range[−π/2,π/2]
around the current value), switching the orientation of its
joint (horizontal or vertical), and flipping its “reflection”
flag. Again, each of these modifications is applied with
probabilityPmut for each parameter.

Experiments and Results
The task being considered is the “box-grabbing” contest de-
scribed in (Sims, 1994a). Two creatures compete to gain
control of a cubic box. At the beginning of each contest, the
box is placed at the centre of the environment. Both com-
peting creatures are placed on opposite sides of the box, at
a certain distance from it. As in Sims, creatures are pushed
behind a diagonal plane slanted by 45 degrees so they cannot
gain an undue advantage by their height. Both creatures are
then left to act for a given period of time. At the end of the
evaluation period, the score for each creature is determined
in the following way: if one creature is at distanced1 from
the box (as defined by the distance between the centre of the
creatures’ closest limb to the box, and the centre of the box)
and the other at distanced2, then the former creature’s score
is d1−d2, while the latter’s isd2−d1. Creatures have four
kinds of sensors, measuring thex andy distances of either
the opponent or the box, within the frame of reference of the
limb in which the sensor exists.

The evolutionary algorithm that we use is a “3-strikes-
out” algorithm, a simple steady-state genetic algorithm for
coevolution of our devising. The simplest description of this
algorithm, in a one-population, symmetric competition con-
text, is as follows: run competitions between randomly cho-
sen individuals, keep track of each individual’s victories and
defeats, and replace any individual that has accumulated 3
defeats. Our preferred reproduction strategy, which we use
in the present experiments, is simply to replace the removed
individual with either a heavily mutated copy of itself, or a
heavily mutated copy of the individual by which it has just
been defeated, or some form of recombination between both.

When the problem involves two genetically separate pop-
ulations (say,A and B), ‘victories’ and ‘defeats’ must oc-
cur between fellow members of the same population (even
though simulated competitions still occur between members
of different populations). Victory or defeat is determined by
comparing the results of two individuals against one single
opponent of the other population. This involves two simu-
lated competitions; however, the result of one of these com-
petitions is used in the next round (when two individuals of
the other population are compared), so each new comparison
requires the simulation of just one new competition.

Our experiments involved two populations of 100 individ-
uals each. Interactions between two individuals were simu-
lated over 15000 timesteps, each timestep corresponding to
0.01 second of simulated time. Some examples can be seen
in Fig. 2. Others are available at the URL mentioned in the

introduction of this paper.
From visual inspection it is clear that our system managed

to come up with diverse solutions to the problem. Loco-
motive behaviours emerged rather easily. A locomotive be-
haviour requires some sort of cyclic, oscillating movement,
which in turn implies some coordination between proprio-
ceptors and actuators (Miconi and Channon, 2005). Addi-
tionally, sensorimotor coordination was observed, for exam-
ple the creature in the third picture of Fig. 2 can adjust its
trajectory depending on the position of the box.

Comparing these results to those obtained by Sims is not
easy for several reasons. First, Sims apparently used far
fewer interactions (100 generations with two populations of
100 individuals, which is much less than the1̃00K evalu-
ations used in the present experiment). Furthermore Sims
used complex neurons which automatically provided be-
haviours such as oscillations ‘for free’. Restrictions imposed
by Sims on the morphology of creatures (maximum numbers
of genes, of blocks, etc.) are unknown.

The diversity of morphological plans is reflected in the
neural controllers. Figure 3 describes the functional sub-
networks of two creatures. The network on the left corre-
sponds to one appendage of a crawling creature (the other
appendage, being a symmetric replication, contains a similar
network). It is easy to notice the feedback loop between the
proprioceptors and actuators of limbs 1 and 2, leading to an
oscillating movement of the corresponding joint which pro-
pels the creature forward. Other, small-weight connections
originating from sensors lead to a folding of the appendage
in the direction of the box.

The network on the right, however, is more complicated.
It describes the functional subnetwork of the “encircling”
creature shown in Fig. 2. The basic core of the neural con-
troller is easily isolated: the “feedback cascade” in limbs
2, 3 and 4 provides the coordinated sinusoidal movement
which propels the creature forward (limbs 2, 3 and 4 are
a recursive replication sequence which corresponds to the
segmented motile appendage of the creature). The sensor in
limb 1 influences the shape of the creature in order to change
the direction of motion depending on the relative position of
the box.

However the behaviour of the creature is also dependent
on all other connections and neurons, even though their ex-
act function is difficult to isolate individually. Collectively,
they ensure that the creature assumes the right shape and
posture (and maintains them) to follow the desired trajec-
tory. This occurs through coordination of activities which
are tuned to the morphology of the creature (mass and orien-
tation of limbs, etc) in order to skew the trajectory correctly.
Experimental lesions in this network reduce the efficiency
of the creature in various ways, which range from a slow-
down to a loss of trajectory. Several other connections were
present in the network (including between the neurons de-
picted) but were found to have no impact on the behaviour

Figure 3: Functional subnetworks extracted from the neural networks of two creatures. The network on the left is taken from one of the
accordion-shaped appendages of the creature seen in the third picture of Fig. 2. The network on the right is taken from the “encircling”
creature seen in the fourth picture of Fig. 2. Thickness of lines is proportional to connection weight. See text for details.

of the creature. All in all, it appears that an intricate col-
lection of characters (neurons, connections, shapes of limbs)
with no obvious individual effect, collectively provide a use-
ful and reliable function - a good example of evolutionary
“bricolage” (tinkering).

Acknowledgements
This research is now being funded by the School of Computer Sci-
ence at the University of Birmingham, and was previously funded
by the Intelligent Systems Group in the Department of Electronic
and Computer Engineering at the University of Portsmouth, under
the direction of Dr David Brown.

References
Bongard, J. C. and Pfeifer, R. (2001). Repeated structure and

dissociation of genotypic and phenotypic complexity in
artificial ontogeny. In (Spector et al., 2001), pages 829–
836.

Hornby, G. S. and Pollack, J. B. (2001). Body-brain co-
evolution using L-systems as a generative encoding. In
(Spector et al., 2001), pages 868–875.

Komosinski, M. (2000). The world of framsticks: simula-
tion, evolution, interaction. InProcs of 2nd Interna-
tional Conference on Virtual Worlds (VW2000), Paris,
pages 214–224. Springer-Verlag (LNAI 1834).

Mesot, B. (2004). Self-organisation of locomotion in mod-
ular robots: A case study. Master’s thesis, EPFL, Lau-
sanne.

Miconi, T. and Channon, A. (2005). A virtual creatures
model for studies in artificial evolution. InIEEE
Congress on Evolutionary Computation (CEC 2005).

Ray, T. S. (2000). Aesthetically evolved virtual pets. In
Maley, C. C. and Boudreau, E., editors,Artificial Life 7
Workshop Procs, pages 158–161.

Sims, K. (1994a). Evolving 3d morphology and behavior by
competition. In Brooks, R. and Maes, P., editors,Procs
4th Intl Works on Synthesis and Simulation of Living
Systems (ALIFE IV), pages 28–39. MIT Press.

Sims, K. (1994b). Evolving virtual creatures. InSIGGRAPH
94, pages 15–22. ACM Press.

Spector, L., Goodman, E. D., Wu, A., and Langdon, W. B.,
editors (2001). Procs GECCO 2001. Morgan Kauf-
mann.

Taylor, T. and Massey, C. (2001). Recent developments in
the evolution of morphologies and controllers for phys-
ically simulated creatures.Artificial Life, 7(1):77–87.

