
A virtual creatures model for studies in artificial evolution

Thomas Miconi
School of Computer Science
University of Birmingham

Birmingham B15 2TT
United Kingdom

t.miconi@cs.bham.ac.uk

Alastair Channon
School of Computer Science
University of Birmingham

Birmingham B15 2TT
United Kingdom

a.d.channon@cs.bham.ac.uk

Abstract-
We present the results of our replication of Karl

Sims’ work on the evolution of artificial creatures in a
physically realistic 3D environment. We used standard
McCulloch-Pitts neurons instead of a more complex set
of ad hoc neurons, which we believe makes our model
a more general tool for future experiments in artificial
(co-)evolution. We provide a detailed description of our
model and freely accessible source code. We describe
our results both qualitatively and quantitatively, includ-
ing an analysis of some evolved neural controllers. To
the best of our knowledge, our work is the first repli-
cation of Sims’ efforts to achieve results comparable to
Sims’ in efficiency and complexity, with standard neu-
rons and realistic Newtonian physics.

1 Introduction

1.1 Motivation

Experiments involving autonomous articulated structures
(“creatures”) in a physically realistic 3D environment can
be an important experimental tool for artificial evolution.
First, the challenge presented by their very complexity of-
fers a stark contrast with more usual test problems such
as function optimisation, and is arguably closer to what an
evolutionary algorithm would be confronted with in many
real-world applications (especially in the field of intelli-
gent robotics). Second, the realism of situated, embodied
creatures allows these creatures toconstructtheir own be-
haviours, as opposed to choosing from a pre-defined reper-
toire of behaviours through action selection mechanisms or
acting on a few parameters (e.g. wheel speeds) for pre-
defined behaviours. Because the morphologies and con-
trollers of the creatures evolve simultaneously, evolution
can not only select or modify pre-existing behaviours de-
fined by the user: it can constructnovelbehaviours and fea-
tures as it progresses. For example, in many predator-prey
experiments, co-evolving individuals can only act on the
speed of their displacements. It is conceivable that, by using
a physically realistic environment and allowing evolution to
control not only parameters, but complete morphologies and
behaviours of evolving creatures, a wealth of new possibil-
ities would be created (such as allowing the prey to defend
or protect itself). The freedom of creating new features and
behaviours, besides opening new avenues of exploration in
evolution and co-evolution, may prove a decisive advantage
in the quest for open-ended evolution: the perpetual inven-

tion of novel behaviours within a given population1

We are therefore interested in building a very specific
type of system: a physically realistic 3D environment in
which articulated creature can evolve towards potentially ar-
bitrary levels of complexity2. We add the requirement that
this system must be powerful enough to allow for reliable,
consistent success, at least for simple tasks such as locomo-
tion. Finally we want to do this with very general archi-
tecture, without any ad hoc machinery to favour a specific
type of behaviour. To the best of our knowledge, the closest
thing to such a system so far has been Karl Sims’ model of
evolving creatures.

1.2 Related work

It has now been more than a decade since Karl Sims pre-
sented the results of his experiments on the evolution of vir-
tual creatures in a three-dimensional (3D), physically realis-
tic environment [12, 11]. Taylor & Massey have attempted
to replicate this work [15], but we believe it is fair to say that
by visual inspection, their results do not compare favourably
to Sims’ (or to ours). While any such appreciation nec-
essarily contains a subjective component, in section 6, we
attempt to identify more objective factors for evaluating ef-
ficiency in mobile creatures.

While there has been a significant amount of work in
projects related to the simulation of 3D creatures, most of it
has concentrated on specific areas of research such as devel-
opmental systems or modular robotics. For example, Bon-
gard & Pfeifer [1] used such a system to build a model of
genetic regulation in development, based on genetic regu-
latory networks. The study of these regulation networks,
and the emergence of modularity in the resulting phenotype,
was the central subject of this work. The resulting creatures
were rather limited in their behaviours and did not exhibit
the efficiency and nature-like aspect of Sims’ - which is un-
surprising since neither efficiency nor natural aspect were
objectives of this study.

Hornby & Pollack [3] offered a more computational
model, in which development was directed by the applica-
tion of a genetic grammar based on L-systems. The system
involved creatures made of sticks arranged in complex 3D
shapes. The author reported a significant improvement by
using their developmental method instead of purely declara-

1Clearly other conditions may be necessary for opening evolution in
such a way, such as the introduction of co-evolution in the system.

2Note that we arenotasserting that evolution will mechanically impose
an increase in complexity.

tive genomes. Their success came at the price of a severe re-
striction on the physics engine, which assumes that the sim-
ulation is stable at each timestep, thereby preventing any dy-
namic behaviour such as running or jumping. The same can
be said of the GOLEM project [7], in which creatures made
of rigid cylinders were first evolved in simulation, then built
in the real world using 3D printing.

Applications to modular robotics were also reported.
Marbach and Ijspeert [8] and Mesot [9] simulated modu-
lar robotics systems, in which identical elementary modules
were assembled into larger robots. In these two systems, ei-
ther the controllers or the morphology (or both) were strictly
constrained, with controllers being typically reduced to cou-
pled oscillators.

Framsticks [6] is perhaps the most successful example
of artificial evolution in a 3D environment. Framsticks in-
volves creatures made of flexible sticks, connected by joints
and controlled with neural network based on functional neu-
rons. These creatures are controlled by neural networks,
with special neurons. Framsticks emphasises interactivity
between the world and the user, and the quality of the soft-
ware and the ease with which experiments can be set up has
attracted a significant community of users worldwide. From
our viewpoint, the main drawback of Framsticks is that the
(simplified) physics, as well as the shape of agents, may
limit the possibilities of interaction between these agents.

Besides physics simplification, another common feature
in the simulation of 3D creatures is the widespread use of
high-level, ad hoc elements in the controllers. Sims’ crea-
tures, in particular, were controlled by functional networks,
including arithmetic functions, tunable oscillators and logic
operators (among others) as elementary building blocks.
This represents a significant amount ofa priori knowledge
given to the system. Sims [12] acknowledged the ad hoc
aspect of this choice in which, in his own words, led “a
creature’s brain [to] resemble a dataflow computer program
more than a typical neural network”. Hornby & Pollack [3]
and Framsticks [6], among others, also resort to high-level
functions such as oscillators3. High-level, ad hoc elements
have the obvious advantage of facilitating the emergence of
certain types of behaviours, especially with regard to loco-
motion; however this may come at the expense of general-
ity. We believe that using simple McCulloch & Pitts neu-
ron may provide more freedom to the system in the type of
behaviours it generates. At any rate, it would reduce the
amount of a priori knowledge in the system, and thus offer
a higher evolutionary challenge.

1.3 The system

In this article we describe our own model for the evolu-
tion of artificial creatures in a physically realistic 3D en-
vironment. This model is broadly similar to Sims’, but with
important differences. Our work brings three contributions

3Oscillators in general are ubiquitous in physics and biology, and might
be argued to be fundamental elements in their own right; however the type
of oscillators referred to here are high-level oscillating ‘neurons’, with a
tunable frequency calculated by temporal integration of inputs, arguably a
high-level mechanism.

with respect to Sims’:
• Our creatures are controlled by standard neural net-

works, based on classical McCulloch & Pitts neurons
with sigmoid or radial activation functions. While
Sims’ approach was entirely justified given the semi-
nal aspect of his work, we believe that using standard
neurons provides a higher level of generality to our
model.

• We provide a complete description of our system, as
well as the original source code. In the course of our
description, we also point out some issues with Sims’
model which, unless they are addressed, might hinder
its application to more complex experiments. The
lack of information on crucial aspects of Sims’ sys-
tem has been an obstacle to replication. The program
described in this paper is freely available under the
terms of the GNU General Public License (GPL) at
http://www.cs.bham.ac.uk/˜txm/creatures/

together with video samples.

• We present experiments performed with this model
with both qualitative and quantitative results, in con-
trast to a purely qualitative, screenshot-based account
as found in e.g. Sims [12], Taylor & Massey [15],
Marbach [8] and others. We also describe and anal-
yse the neural networks of two evolved creatures.

2 Creature morphology

In the following sections we provide a broad description of
our system, stressing both similarities and differences with
Sims’ model. In order to facilitate comparisons, our de-
scription deliberately follows the same organisation as Sims
[12], section by section. At the end of this paper, we provide
a table which summarises the important numerical constants
used for our experiments (see Table 1).

As in Sims’ model, the creatures are branching structures
composed of rigid 3D blocks. The blocks (or “limbs”) are
connected to their parent limb by a hinge joint - except for
the first, “root” limb which has no parent. The genetic spec-
ification of a creature is given as a graph of nodes. Each
of these nodes contain morphologic and neural information
about one limb. In contrast with Sims’ model, our genetic
graph may not contain any loop, including self-loops. Each
node is responsible for storing the description of its limb’s
physical connection with its parent node’s limb, removing
the need for connections to carry their own information, as
is the case in Sims’ model.

The morphologic information in each genetic node spec-
ifies the dimensionsof the limb (i.e. width, length and
height), theorientationof this limb with regard to its par-
ent (in the form of two parameters indicating polar angles
with thexz and thexy planes, i.e. longitude and latitude,
in the frame of reference of the parent limb; these two pa-
rameters are discrete multiples ofπ/8), theaxial direction
of the hinge joint which may be either horizontal or vertical
(i.e. aligned either with they or with thez axis of the limb),
and a boolean flag forreflectionwhich governs symmetric
replication along thexz plane of its parent (see section 4.1).

0

1a

2

1b

2

0

1b

1a

A S

A S

A S

Figure 1: Organisation of a fictional creature pictured in the
bottom-right corner. Limb 0 has no sensor (S) or actuator
(A). Limb 1 is reflected into two symmetric limbs 1a and 1b,
which share the same morphologic and neural information.

A limb also containsneural information, as described in the
next section.

3 Creature control and neural organisation

Our creatures are controlled by neural networks. As in
Sims’ model, each limb contains a set of neurons. Genetic
information about a given neuron specifies theactivation
functionfor this neuron, a threshold/bias parameterθ taken
in the [−3/2, 3/2] range, and connection information. The
activation function may be either a sigmoid (1

1+exp−(σ+θ)) or
the hyperbolic tangenttanh(σ+θ) whereσ is the weighted
sum of inputs (the difference between sigmoid and tanh is
that the first has values in[0, 1] while the latter has values
in [−1, 1]). Connection information specifies, for each con-
nection, the source of this connection (i.e. the neuron whose
output is received through this connection) and a weight in
the[−1, 1] range. Neurons can only be connected with other
neurons from adjacent limbs, or from the root limb. Each
neuron may receive a variable number of connections, up to
a maximum value (3 in the present experiments).

The most important difference with Sims’ model lies
in the choice of standard neurons with traditional activa-
tion functions, in contrast to Sims’ large set of functions
(including arithmetic operations and oscillators). An im-
portant consequence of this simpler set of functions is that
there is no trivial way for evolution to generate oscillators
or other cyclic forms of behaviour, which are necessary for
any sustained locomotion to take place. Such behaviours
have to emerge out of the interaction between several neu-
rons, assembled together under the guidance of evolution. A
more practical consequence is that in our model, each neu-
ron may have an arbitrary number of inputs (up to a maxi-
mum value), by contrast to Sims’ neurons which had a fixed
number of inputs, dependent on their function.

3.1 Sensors and actuators

Sensor neurons and actuator neurons are handled specially.
The only type of sensor neuron used in the present experi-
ments is a proprioceptive neuron, which measures the cur-
rent angle formed by the hinge joint to which this neuron’s

limb is attached, scaled within the[−1, 1] range. Actua-
tor neurons command the movement of each limb, that is,
its rotation around its joint. Their inputs are defined sim-
ilarly as other neurons, but their activation function is al-
ways a scaled hyperbolic tangent of the formMaxSpeed ∗
tanh(σ + threshold), whereMaxSpeed is a system con-
stant. In our model, sensor neurons do not receive any con-
nection from any other neuron, and no neuron may receive a
connection from an actuator neuron. Sensors and actuators
are, respectively, pure sources and pure sinks of data.

A difference with Sims’ model is that an actuator does
not specify a force or a torque, but adesired speed. The
physics simulator implements a motor at each joint, which
will constantly attempt to reach the desired speed, with the
constraint that the total torque it exerts cannot be larger than
a specified maximum. This maximum is a system constant.
This mechanism corresponds to a very simple model of ser-
vomotors.

Note that while each limb has a sensor and an actuator,
there is no requirement that they should receive or send con-
nections from or to other neurons: connections are estab-
lished in a random manner and no connection toward these
special neurons is explicitly enforced. Thus each limb is
free to use its sensor and actuator, or not, depending on how
its network evolves. This is equivalent to Sims’ model.

4 Combining morphology and control: expres-
sion of the genome

The creatures are constructed according to the information
contained in the genetic nodes. A simple developmental
system translates the genotype into a corresponding pheno-
type, and may introduce additional complexity if the genetic
information dictates it.

A developmental system corresponds to the introduction
of a bias in the search space: while the total number of dif-
ferent individuals accessible with a given N-bits genome is
obviously bounded by2N in any case, using a developmen-
tal system will allow the system to obtain different (usu-
ally more complex) creatures, at the expense of making oth-
ers impossible. Quite often raw, declarative genomes de-
scribe a compact search space of very similar creatures, and
the developmental system has the effect of “stretching” the
search space, creating a globally wider, but sparser, range
of possibilities. Developmental systems must of course be
chosen with care so that the newly obtainable individuals
can be expected to perform globally better than the “sacri-
ficed” ones. A common feature of developmental systems
is a stress on modularity and replication, with the expec-
tation that non-linear interactions between similar elements
may bring interesting behaviours with minimal additional
information; Hornby and Pollack [3], for example, provide
noticeable examples of modularity introduced by a develop-
mental system4. Our system uses only one developmental

4Developmental systems in artificial evolution have been used for a rel-
atively long time, but rigorous analysis of their effects and implications
has only recently started to attract interest. Stanley and Miikkulainen [14]
provide an enlightening review and discussion of developmental systems

feature, adapted from Sims: bilateral symmetry.

4.1 Reflection

Symmetry in our model is implemented somewhat differ-
ently than in Sims’. In our model, each genetic node (corre-
sponding to a limb) may possess a “reflection” flag, which
means that when this node is read and the corresponding
limb attached to its parent, a symmetric copy of this limb
will also be created. Any further sub-limbs will similarly
be duplicated in a symmetric fashion, which leads to the
appearance of bilaterally symmetric branches. Our present
design allows for only one type of symmetry, namely sym-
metry along the parent’sxz plane. When a given limb is
randomly generated, its reflection flag is set with probabil-
ity Pref (for this paper,Pref = 0.1).

4.2 A limitation of symmetry

Symmetry in Sims’ model (and in ours, under its current im-
plementation) has a limitation which is not discussed in his
papers. When a limb is duplicated by reflection, all genetic
information is duplicated in the process, including neural in-
formation. A consequence of this duplication is thata given
limb cannot distinguish information it sends to, or receive
from, either of its symmetric sub-limbs. Because neurons
from both symmetric sub-limbs share the same connection
information, they will receive identical connections (and in-
formation) from the same neurons in the parent. Similarly,
any connection that the sub-limbs send to the parent will
point to the same neuron in the parent, and information from
both sub-limbs will be merged at that point. Thus, although
both limbs may behave in different manners due to their dis-
tinct inner neural networks, they will not be able to send dis-
tinct information to the parent, or to receive distinct infor-
mation from it. While several solutions to this problem may
be considered (e.g. assigning input from symmetric limbs
to symmetric neurons within the parent’s array, and assign-
ing input from the parent to symmetric neurons within the
arrays of the two symmetric limbs), for the present task, we
decided that such refinements would be unnecessary.

4.3 Absence of segmentation

In Sims’ model, a loop in the genetic graph corresponds to
a set of limbs which is repeated a certain number of times.
This, in essence, is a simple and effective model ofseg-
mentation, that is, the repetition of homologous modules
arranged sequentially, as apparent in many animals (ver-
tebrates, arthropods, anellidae, etc.). Because our genetic
graphs are organised in a tree hierarchy (i.e. no loops are
allowed within the graph), this feature of Sims’ model is
not present in our system in its current implementation. By
preventing loops in our genetic graphs, we thus remove one
“trick” from our evolutionary toolbox. However our results
indicate that this particular feature is not necessary for the
reliable emergence of meaningful and efficient behaviours.

in artificial evolution.

5 Creature evolution

5.1 Genetic operators

We use three genetic operators, broadly similar to those
used by Sims.Crossoveris performed by simply aligning
the genetic nodes of both parents in two rows, then build-
ing a new list of genetic nodes by concatenating the left part
of one parent with the right part of the other.Grafting cor-
responds to the removal of a branch (i.e. a limb and all
its sub-limbs), and its replacement by a branch taken from
another individual. Connectivity information is adapted and
maintained: the neurons of the trunk establish the same con-
nections with the new branch as they had with the old one,
and similarly the new branch has the same connection with
its new trunk as it had with its previous trunk.

Mutation occurs by modifying each parameter of the
genome with a certain probabilityPmut (in this paper,
Pmut = 0.04). The mutation operator proceeds in a se-
quential manner. First, with probabilityPmut, a random
limb may be deleted (along with its sub-limbs) from the
creature (with the restriction that no creature may have less
than two limbs). Then a new randomly generated limb
(with randomly generated neural information) may be cre-
ated. Then, each slots in the neural array may be “flipped”
(i.e. empty slots are filled with a new neuron with randomly
assigned connections, existing neurons are deleted). Then,
the threshold value of each existing neuron may be modi-
fied by a random amount between -0.33 and 0.33 (threshold
values are taken from the[−3/2, 3/2] torus). The output
function may be changed. Each connection of every exist-
ing neuron may be “flipped”, i.e. created (and randomly as-
signed) if it is unassigned, or deleted otherwise. The weight
of each existing connection may then be modified by a ran-
dom amount between -0.33 and +0.33 (weight values are
taken from the[−1, 1] torus). The source of each connection
(i.e. the neuron from which it originates) may be randomly
reassigned. Finally, with probabilityPmut, morphological
information for each node is mutated. Morphological muta-
tion performs one randomly selected operation out of seven
possibilities: reassigning a given limb to a different “ances-
tor” limb (which amounts to moving a whole branch along
the organism), randomly assigning a new length, width or
height to the limb, modifying either of its orientation an-
gles (possible orientations are discrete multiples ofπ/4;
mutation occurs by choosing a new value within the range
[−π/2, π/2] around the current value), switching the ori-
entation of its joint (horizontal or vertical), and flipping its
“reflection” flag. Again, each of these modifications is ap-
plied with probabilityPmut for each parameter.

5.2 The evolutionary algorithm

We chose to use a simple steady-state genetic algorithm
(SSGA, as described in e.g. Mitchell [10]) with “triple tour-
nament” selection. After a whole population of individuals
is randomly generated, and each individual is evaluated, the
algorithm goes through the following cycle:

1. Three individuals are randomly selected, and ordered

according to their score: let us call them A, B and C,
where A has the highest score and C has the lowest.

2. C is deleted and replaced with a newly created off-
spring. This offspring may be created in one of three
ways, with equal probability:

- Crossover between A and B, followed by applica-
tion of the mutation operator.

- Grafting between A and B (A providing the trunk, B
the new branch), followed by application of the mu-
tation operator.

- Four sequential applications of the mutation opera-
tor to A - this corresponds to Sims’ asexual reproduc-
tion.

If the resulting offspring is non-viable (i.e. two non-
adjacent limbs intersect, or the developed phenotype
contains too many limbs), this step is repeated as of-
ten as necessary until a viable creature is produced.

3. The resulting offspring is evaluated, and the cycle
starts again from step 1.

Evaluation simply occurs by letting the creature move
for a fixed period of time, and measuring the distance it has
covered in thex direction. In order to penalise trivial, inele-
gant behaviours (such as an animat simply falling down and
using its sheer length to obtain a good score), actual eval-
uation only starts after1/8 of the total evaluation time has
elapsed.

6 Results and interpretation

6.1 Description of results

Our experiments involved populations of 500 individuals,
which were evaluated for 10000 timesteps, each timestep
corresponding to 0.01 second of simulated time. Fig. 2 de-
scribes the progression of the best individual in each of 15
different runs, over 500000 cycles (each cycle correspond-
ing to one reproduction and one evaluation). Each curve
plots the score of the current best individual in this particu-
lar run after a given number of evaluation-reproduction cy-
cles.

From this data it is clear that in this system, the prob-
ability of basic success (i.e. the probability that a given
run manages to come up with an efficient locomotive be-
haviour at all) is high, although not one. Only one run fails
to produce any interesting behaviour. Another one starts to
progress very late in the course of evolution, and when the
experiment ends the resulting behaviour is still clearly sub-
optimal. Note that in this work, the main defining criterion
for deciding whether a creature exhibits an efficient loco-
motive behaviour is the presence of cyclical or at least os-
cillatory propulsive movement, without which no sustained
locomotion can take place: in the absence of any oscillation,
all limbs simply revolve around their joints until they either
stop moving or reach the angular limit of their joints, and
no further movement occurs. The distinction between limb-
level oscillation and creature-level cycle is emphasised in
the following section.

A visible feature of these curves is that those that sta-
bilise do so on noticeably different values. This is re-
lated to the fact that creatures converge towards different
behaviours, which may be divided into several categories:
“Crawlers” use two symmetric limbs to propel themselves
forward by direct contact with the ground, “snakes” undu-
late in a coordinated way to obtain efficient locomotion,
“bouncers” use very quick oscillations at one or several
joints and exploit the resulting momentum to jump forward,
etc.

Several variants of these behaviours exist. The most im-
portant feature is proper exploitation of dynamics: the most
efficient creatures are able to remain in a constantly dy-
namic, unstable state, in other words, they are constantly
“jumping”. Jumping can be obtained by direct propulsion
and/or exploitation of inertia and momentum.

Another feature of these curves is that they mostly share
the same general shape, divided in three domains: an initial
low regime, a rapid increase in performance, and a stabili-
sation at a high plateau (though there is much variety in the
length of each phase). This corresponds to actual phases
in the evolution of creatures. The initial low regime cor-
responds to creatures that cannot perform any locomotion
at all: they do not have any oscillating or cyclical move-
ment, and stop moving after a short time when all joints
have reached their angular limits. The increase in perfor-
mance starts with the discovery of a first oscillatory mech-
anism which allows for locomotion of some sort. After a
short phase of experimentation, the population tends to set-
tle fairly early on a specific type of creature (which hap-
pens to crudely implement one of the behaviours mentioned
above). From there on, evolution essentially optimises this
particular plan. When the resulting creature has been thor-
oughly optimised, leaving little room for further progress,
the curve stabilises on a plateau, corresponding to the max-
imum fitness of this creature.

6.2 Optimisation and efficiency

An interesting aspect of these creatures is their high degree
of optimisation. Movements of limbs around joints are both
ample and well-coordinated. The movement is not only
oscillatory, butcyclical (i.e. the complete organism goes
through a cycle with identical initial and final configura-
tion), and this cycle is often synchronised with the displace-
ment of the creature: for example, “bouncers”’ movements
are tuned so that the propelling part of the body performs
exactly a full cycle during the time of a full jump, which en-
sures sustained, efficient locomotion. The coordination of
movements ensures that a high proportion of motile activ-
ity in the creature is transformed into overall forward mo-
tion: there is no dispendious “jittering” (disordered activity
which incidentally results in slow overall locomotion due
to asymmetry in the distribution of movements) or “para-
site” movement (movements that do not contribute to the
overall motion of the creature, or even contradict and hin-
der it). This leads to a criterion for efficiency which can be
evaluated by comparing the speed and activity of individ-
ual limb displacements with the overall velocity of the crea-

Figure 2:Left: Performance of the best individual, in 15 different runs. The average over the 15 runs is shown shown as a thicker light
line. Right: A typical run, divided into three phases - see text for details

Figure 3: Four creatures from four different runs: a simple crawler, a “snake”, a tailed crawler and a bouncer.

ture: if individual limbs move significantly faster than the
whole creature (as is often observed in “jittering” creatures),
the conversion of general activity into overall locomotion is
poor, and hence the creature can be called inefficient. To be
successful, a creature must be both active (sustained, ample
motion must be observed in individual limbs) and efficient
(this local activity must be efficiently converted into overall
locomotion through the global organisation and coordina-
tion of movement).

The efficient use of symmetry completes the impression
of optimisation and, we believe, gives a natural “touch” to
our creatures (there is a strong temptation to classify bilater-
ally symmetric, cyclically mobile, propulsive appendices as
“arms” or “legs”). We believe that this degree of optimisa-
tion, also apparent in Sims’ results, is a distinctive feature of
our work with comparison to other replications of Sims’ ex-
periments. We encourage readers to consult video samples
(available at the URL specified in section 1.3) to observe
evolved creatures in action.

6.3 Neural network analysis

Through observation of values and artificial “lesions” (sup-
pression of selected neurons in order to determine which
neurons have an influence on the behaviour of the creature),
we can determine the functional parts of the neural network
of any creature. Fig. 4 represents the functional part of the
neural network (as obtained by observation of values and
artificial lesions) for two simple creatures: respectively, one
arm of the simple crawler and the “snake” shown in Fig.
3. In these two cases, the “root” limb did not participate in
the functional network, which makes the structure clearer.
For each neuron, the activation function is shown with the
threshold represented as a constant bias to the sum of inputs
x. In the first case, both actuators spontaneously start with
a negative speed, because of their negative bias; however
cross-connections between the lower and upper limbs mean
that the upper limb will strongly tend to have an angular
velocity opposed to the current value of the joint between
these two limbs, while the lower limb will tend to have
an angular velocity positively correlated with the angle be-
tween the upper limb and the trunk. The overall result is that
both limbs move in opposite directions, and in phase oppo-
sition. Because the joint orientations are respectively ver-
tical and horizontal, the upper limb will alternatively lower
and raise the “arm”, and the lower limb will act as a “foot”
which will oscillate orthogonally to this arm, in the direc-
tion of the movement of the creature. The foot will reach
its highest speed backward (resp. forward) when the arm
will be in its lowest (resp. highest) position, notwithstand-
ing shifts induced by damping and thresholds. The connec-
tions with the interneuron are not necessary for locomotion
to occur, but stabilise the creature in the initial phase of the
evaluation.

Similar considerations apply to the second creature. The
snake-like oscillations occur through a cascade of cross-
connections between the sensors and actuators of different
limbs. The lowest limb, having a speed positively correlated
with the angle between its parent and its grandparent, with-

Simulation constants

Max. number of neurons
per limb

6

Max. number of connec-
tions per neuron

3

Initial proportion of as-
signed connections

75 %

Max. number of genes 7
Max. number of limbs (af-
ter development)

11

Activation functions 1
1+e−3x , tanh(2x)

Joint angle range [−3π/4, 3π/4]

Range of connection
weights

[−1, 1]

Range of neuron thresholds [−3/2, 3/2]

Pref (see text, section 4.1) 0.1
Pmut (see text, section 5.1) 0.04
Max. force applicable by
each motor

4 N

Max. angular speed at each
joint

4 rad / s

Actual mass of a limb of di-
mensions(x, y, z)

0.8 ∗ tanh(x ∗ y ∗ z)

Physics engine parameters

Step size 0.01 s
ERP 0.015
CFM 0.01

Table 1: Simulation constants

out bias, acts as a “whiptail” which amplifies the undulation
at this extremity of the creature. These two creatures ex-
emplify successful joint evolution between morphology and
neural information (both connection weights and thresh-
olds).

7 Future work

While evolving creatures for simple tasks such as locomo-
tion is interesting in itself and may have applications in re-
lated fields such as evolutionary robotics, we intend to use
this model for further evolutionary experiments involving
more complex tasks and co-evolution. Our first objective is
to complete replication of Sims’ results by implementing a
co-evolutionary, “box grabbing” task [11]. A longer term
objective would be to study more complex tasks, such as
physical fight.

The neural organisation of our creatures also opens in-
teresting routes for investigation in other domains. Our net-
works offer similarities with Kauffman’s Random Boolean
Networks (RBN) [5]: our neurons specify theirincoming
connections, and the number of incoming connections for
each neuron may either be specified a priori (correspond-
ing to theK constant of a RBN), or left under evolutionary
control. It would be interesting to see whether Kauffman’s
results on RBN apply to our networks as well, especially re-
garding the presence of a phase transition between a chaotic
and a frozen regime, at which a transitory regime exhibits
properties which make the system suitable for dynamic op-

The output of any angle sensor is the current value
of the angle between this limb and its parent, scaled
within the [−1; 1] range.

tanh(x − 0.10)

tanh(x − 0.12)

ACTUATORS

CRAWLER (left arm, root limb not shown) SNAKE (root limb not shown)

tanh(x − 0.43)

tanh(x − 0.83)

tanh(x + 0.0)

tanh(x + 0.43)

ACTUATORS
ANGLE SENSORS INTERNEURONS

tanh(x + 0.95)

ANGLE SENSORS

Connection with positive weight

Connection with negative weight

Figure 4: Functional subnets extracted from the neural networks of two creatures shown in Fig. 3. See text for details.

eration and evolution.

Acknowledgements

This research is now being funded by the School of Computer Sci-
ence at the University of Birmingham, and was previously funded
by the Intelligent Systems Group in the Department of Electronic
and Computer Engineering at the University of Portsmouth, under
the direction of David Brown.

Bibliography

[1] J. C. Bongard and R. Pfeifer. Repeated structure and
dissociation of genotypic and phenotypic complexity
in artificial ontogeny. In Spector et al. [13], pages 829–
836.

[2] F. Gruau. Automatic definition of modular neural net-
works. Adaptive Behavior, 3(2):151–183, 1995.

[3] G. S. Hornby and J. B. Pollack. Body-brain co-
evolution using L-systems as a generative encoding.
In Spector et al. [13], pages 868–875.

[4] A. J. Ijspeert, J. Hallam, and D. Willshaw. From lam-
preys to salamanders: evolving neural controllers for
swimming and walking. In R. Pfeifer, B. Blumberg, J.-
A. Meyer, and S. Wilson, editors,Proceedings of the
Fifth Conference on the Simulation of Adaptive Behav-
ior (SAB ’98), pages 390–399. MIT Press, 1998.

[5] S. Kauffman.The Origins of Order. Oxford University
Press, 1993.

[6] M. Komosinski. The world of framsticks: simulation,
evolution, interaction. InProceedings of 2nd Interna-
tional Conference on Virtual Worlds (VW2000), Paris,
pages 214–224. Springer-Verlag (LNAI 1834), 2000.

[7] H. Lipson and J. Pollack. Automatic design and man-
ufacture of artificial lifeforms.Nature, 406:974–978,
2000. GOLEM.

[8] D. Marbach and A. Ijspeert. Co-evolution of configu-
ration and control for homogenous modular robots. In
F. G. et al., editor,Proceedings of the Eighth Confer-
ence on Intelligent Autonomous Systems (IAS8), pages
712–719. IOS Press, 2004.

[9] B. Mesot. Self-organisation of locomotion in modu-
lar robots: A case study. Master’s thesis, EPFL, Lau-
sanne, feb 2004.

[10] M. Mitchell. An introduction to genetic algorithms.
The MIT Press, 1996.

[11] K. Sims. Evolving 3d morphology and behavior by
competition. InALife IV : Proceedings of the 4th
Conference on Artificial Life, pages 28–39. MIT Press,
1994.

[12] K. Sims. Evolving virtual creatures. InSIGGRAPH
94, pages 15–22. ACM Press, 1994.

[13] L. Spector, E. D. Goodman, A. Wu, and W. B. Lang-
don, editors. Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001).
Morgan Kaufmann, 2001.

[14] K. O. Stanley and R. Miikkulainen. A taxonomy for
artificial embryogeny. Artificial Life, 9(2):93–130,
2003.

[15] T. Taylor and C. Massey. Recent developments in the
evolution of morphologies and controllers for physi-
cally simulated creatures.Artificial Life, 7(1):77–87,
2001.

