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Abstract- tion of novel behaviours within a given populatfon
We present the results of our replication of Karl We are therefore interested in building a very specific

Sims’ work on the evolution of artificial creatures in a  type of system: a physically realistic 3D environment in
physically realistic 3D environment. We used standard which articulated creature can evolve towards potentially ar-
McCulloch-Pitts neurons instead of a more complex set bitrary levels of complexit§. We add the requirement that
of ad hoc neurons, which we believe makes our model this system must be powerful enough to allow for reliable,
a more general tool for future experiments in artificial consistent success, at least for simple tasks such as locomo-
(co-)evolution. We provide a detailed description of our tion. Finally we want to do this with very general archi-
model and freely accessible source code. We describetecture, without any ad hoc machinery to favour a specific
our results both qualitatively and quantitatively, includ-  type of behaviour. To the best of our knowledge, the closest
ing an analysis of some evolved neural controllers. To thing to such a system so far has been Karl Sims’ model of
the best of our knowledge, our work is the first repli- evolving creatures.

cation of Sims’ efforts to achieve results comparable to

Sims’ in efficiency and complexity, with standard neu- 1.2 Related work

rons and realistic Newtonian physics. . .
Phy It has now been more than a decade since Karl Sims pre-

) sented the results of his experiments on the evolution of vir-
1 Introduction tual creatures in a three-dimensional (3D), physically realis-
tic environment [12, 11]. Taylor & Massey have attempted
to replicate this work [15], but we believe it is fair to say that
Experiments involving autonomous articulated structurelsy visual inspection, their results do not compare favourably
(“creatures”) in a physically realistic 3D environment carto Sims’ (or to ours). While any such appreciation nec-
be an important experimental tool for artificial evolution.essarily contains a subjective component, in section 6, we
First, the challenge presented by their very complexity ofattempt to identify more objective factors for evaluating ef-
fers a stark contrast with more usual test problems suditiency in mobile creatures.
as function optimisation, and is arguably closer to what an While there has been a significant amount of work in
evolutionary algorithm would be confronted with in manyprojects related to the simulation of 3D creatures, most of it
real-world applications (especially in the field of intelli- has concentrated on specific areas of research such as devel-
gent robotics). Second, the realism of situated, embodiegpmental systems or modular robotics. For example, Bon-
creatures allows these creaturestmstructtheir own be- gard & Pfeifer [1] used such a system to build a model of
haviours, as opposed to choosing from a pre-defined repgenetic regulation in development, based on genetic regu-
toire of behaviours through action selection mechanisms &@tory networks. The study of these regulation networks,
acting on a few parameters (e.g. wheel speeds) for prend the emergence of modularity in the resulting phenotype,
defined behaviours. Because the morphologies and comas the central subject of this work. The resulting creatures
trollers of the creatures evolve simultaneously, evolutiowere rather limited in their behaviours and did not exhibit
can not only select or modify pre-existing behaviours dethe efficiency and nature-like aspect of Sims’ - which is un-
fined by the user: it can construnbvelbehaviours and fea- surprising since neither efficiency nor natural aspect were
tures as it progresses. For example, in many predator-preljectives of this study.
experiments, co-evolving individuals can only act on the Hornby & Pollack [3] offered a more computational
speed of their displacements. It is conceivable that, by usingodel, in which development was directed by the applica-
a physically realistic environment and allowing evolution tdion of a genetic grammar based on L-systems. The system
control not only parameters, but complete morphologies andvolved creatures made of sticks arranged in complex 3D
behaviours of evolving creatures, a wealth of new possibishapes. The author reported a significant improvement by
ities would be created (such as allowing the prey to defengsing their developmental method instead of purely declara-
or protect itself). The freedom of creating new features and
behaviours, besides opening new avenues of exploration inClearly other conditilons may be necessary‘for _opening evolution in
evolution and co-evolution, may prove a decisive advanta@@‘:h a way, such as the introduction of co-evolution in the system.

. . - 2 i i i i i
in the quest for open-ended evolution: the perpetual inven- in’i?;;gaim%;r;giﬁisem”g that evolution will mechanically impose

1.1 Motivation




tive genomes. Their success came at the price of a severewgth respect to Sims’:
striction on the physics engine, which assumes that the sim- o Our creatures are controlled by standard neural net-
ulation is stable at each timestep, thereby preventing any dy- works, based on classical McCulloch & Pitts neurons

hamic behaviour such as running or jumping. The same can  with sigmoid or radial activation functions. While
be said of the GOLEM project [7], in which creatures made Sims’ approach was entirely justified given the semi-

of rigid cylinders were first evolved in simulation, then built nal aspect of his work, we believe that using standard
in the real world using 3D printing. neurons provides a higher level of generality to our
Applications to modular robotics were also reported. model.

Marbach and ljspeert [8] and Mesot [9] simulated modu-
lar robotics systems, in which identical elementary modules
were assembled into larger robots. In these two systems, ei-
ther the controllers or the morphology (or both) were strictly
constrained, with controllers being typically reduced to cou-
pled oscillators.

e We provide a complete description of our system, as
well as the original source code. In the course of our
description, we also point out some issues with Sims’
model which, unless they are addressed, might hinder
its application to more complex experiments. The

; . lack of information on crucial aspects of Sims’ sys-
Framsticks [6] is perhaps the most successful example tem has been an obstacle to replication. The program
of artificial evolution in a 3D environment. Framsticks in- described in this paper is freely available under the

volves creatures.made of flexible sticks, connecte.d by joints terms of the GNU General Public License (GPL) at
and controlled with neural network based on functional neu-
rons. These creatures are controlled by neural networks,
with special neurons. Framsticks emphasises interactivity
between the world and the user, and the quality of the soft-
ware and the ease with which experiments can be set up has
attracted a significant community of users worldwide. From
our viewpoint, the main drawback of Framsticks is that the
(simplified) physics, as well as the shape of agents, may
limit the possibilities of interaction between these agents.

Besides physics simplification, another common feature
in the simulation of 3D creatures is the widespread use & Creature morphology
high-level, ad hoc elements in the controllers. Sims’ crea-

tures, in particular, were controlled by functional networks!" the following sections we provide a broad description of

including arithmetic functions, tunable oscillators and logi@U" System, stressing both similarities and differences with

operators (among others) as elementary building blocks!Ms’ model. In order to facilitate comparisons, our de-
This represents a significant amountaopriori knowledge scription deliberately follows the same organisation as Sims

given to the system. Sims [12] acknowledged the ad hdd2l, section by section. At the end of this paper, we provide
aspect of this choice in which, in his own words, led “a® table which summarises the important numerical constants
creature’s brain [to] resemble a dataflow computer prograk€d for our experiments (see Table 1). .

more than a typical neural network”. Hormby & Pollack [3]  ASiN Sims’model, the creatures are branching structures
and Framsticks [6], among others, also resort to high-ley&PMPosed of rigid 3D blocks. The blocks (or "limbs") are
functions such as oscillatdrsHigh-level, ad hoc elements CONNected to their parent limb by a hinge joint - except for
have the obvious advantage of facilitating the emergence B}€ first, “root” limb which has no parent. The genetic spec-
certain types of behaviours, especially with regard to locdfication of a creature is given as a graph of nodes. Each
motion; however this may come at the expense of generéﬂf these nodes contain morphologic and neural information
ity. We believe that using simple McCulloch & Pitts ney-about one limb. In contrast with Sims’ model, our genetic
ron may provide more freedom to the system in the type ¢aPh may not contain any loop, including self-loops. Each
behaviours it generates. At any rate, it would reduce thiaode is responsible for storing the description of its limb’s

amount of a priori knowledge in the system, and thus offdphysical connection with its parent node’s limb, removing
a higher evolutionary challenge. the need for connections to carry their own information, as

is the case in Sims’ model.

The morphologic information in each genetic node spec-
ifies the dimensionsof the limb (i.e. width, length and
In this article we describe our own model for the evoluheight), theorientationof this limb with regard to its par-
tion of artificial creatures in a physically realistic 3D en-ent (in the form of two parameters indicating polar angles
vironment. This model is broadly similar to Sims’, but withwith the zz and thexy planes, i.e. longitude and latitude,
important differences. Our work brings three contributiongn the frame of reference of the parent limb; these two pa-
rameters are discrete multiples©f8), the axial direction

30scillators in general are ubiquitous in physics and biology, and mightf the hinge joint which may be either horizontal or vertical
be argued to be fundamental elements in their own right; however the ty[(f:e aligned either with thg or with thez axis of the Iimb)
of oscillators referred to here are high-level oscillating ‘neurons’, with @~ . . :

d a boolean flag faeflectionwhich governs symmetric

tunable frequency calculated by temporal integration of inputs, arguablyacln ot : .
high-level mechanism. replication along the:z plane of its parent (see section 4.1).

http://www.cs.bham.ac.uk/“txm/creatures/
together with video samples.

e We present experiments performed with this model
with both qualitative and quantitative results, in con-
trast to a purely qualitative, screenshot-based account
as found in e.g. Sims [12], Taylor & Massey [15],
Marbach [8] and others. We also describe and anal-
yse the neural networks of two evolved creatures.

1.3 The system




2 its rotation around its joint. Their inputs are defined sim-
ilarly as other neurons, but their activation function is al-

q limb is attached, scaled within tHe-1,1] range. Actua-
[] L] \{\E@ tor neurons command the movement of each limb, that is,

12 ways a scaled hyperbolic tangent of the fakfiux Speed *
A tanh(o + threshold), whereM axSpeed is a system con-
N stant. In our model, sensor neurons do not receive any con-
n nection from any other neuron, and no neuron may receive a

1b
] P connection from an actuator neuron. Sensors and actuators
are, respectively, pure sources and pure sinks of data.
A difference with Sims’ model is that an actuator does
Figure 1: Organisation of a fictional creature pictured in th80t specify a force or a torque, butdesired speed The -
bottom-right corner. Limb 0 has no sensor (S) or actuatdysics simulator implements a motor at each joint, which

(A). Limb 1 is reflected into two symmetric limbs 1a and 1bWill constantly attempt to reach the desired speed, with the

which share the same morphologic and neural informatiorfonstraint that the total torque it exerts cannot be larger than
a specified maximum. This maximum is a system constant.

This mechanism corresponds to a very simple model of ser-
A limb also containgeural information as described in the vomotors.

next section. Note that while each limb has a sensor and an actuator,
there is no requirement that they should receive or send con-
3 Creature control and neural organisation nections from or to other neurons: connections are estab-

lished in a random manner and no connection toward these
Our creatures are controlled by neural networks. As ispecial neurons is explicitly enforced. Thus each limb is
Sims’ model, each limb contains a set of neurons. Genetftee to use its sensor and actuator, or not, depending on how
information about a given neuron specifies dmivation its network evolves. This is equivalent to Sims’ model.
functionfor this neuron, a threshold/bias parametéaken

in the[—3/2,3/2] range, and connection information. The4 Combining morphology and control: expres-
activation furycnon may be either a&gmmﬁm) or sion of the genome
the hyperbolic tangentinh(o + 6) whereo is the weighted
sum of inputs (the difference between sigmoid and tanh fBhe creatures are constructed according to the information
that the first has values i, 1] while the latter has values contained in the genetic nodes. A simple developmental
in [-1,1]). Connection information specifies, for each consystem translates the genotype into a corresponding pheno-
nection, the source of this connection (i.e. the neuron whoggpe, and may introduce additional complexity if the genetic
output is received through this connection) and a weight iimformation dictates it.
the[—1, 1] range. Neurons can only be connected with other A developmental system corresponds to the introduction
neurons from adjacent limbs, or from the root limb. Eaclof a bias in the search space: while the total number of dif-
neuron may receive a variable number of connections, up terent individuals accessible with a given N-bits genome is
a maximum value (3 in the present experiments). obviously bounded bg” in any case, using a developmen-
The most important difference with Sims’ model liestal system will allow the system to obtain different (usu-
in the choice of standard neurons with traditional activaally more complex) creatures, at the expense of making oth-
tion functions, in contrast to Sims’ large set of functionsrs impossible. Quite often raw, declarative genomes de-
(including arithmetic operations and oscillators). An im-scribe a compact search space of very similar creatures, and
portant consequence of this simpler set of functions is théie developmental system has the effect of “stretching” the
there is no trivial way for evolution to generate oscillatorssearch space, creating a globally wider, but sparser, range
or other cyclic forms of behaviour, which are necessary fasf possibilities. Developmental systems must of course be
any sustained locomotion to take place. Such behavioughosen with care so that the newly obtainable individuals
have to emerge out of the interaction between several negan be expected to perform globally better than the “sacri-
rons, assembled together under the guidance of evolution.fised” ones. A common feature of developmental systems
more practical consequence is that in our model, each neg-a stress on modularity and replication, with the expec-
ron may have an arbitrary number of inputs (up to a maxkation that non-linear interactions between similar elements
mum value), by contrast to Sims’ neurons which had a fixeghay bring interesting behaviours with minimal additional

number of inputs, dependent on their function. information; Hornby and Pollack [3], for example, provide
noticeable examples of modularity introduced by a develop-
3.1 Sensors and actuators mental systerh Our system uses only one developmental

Sensor neurons and actuator neurons are handled specially, o .

. . ““Developmental systems in artificial evolution have been used for arel-
The only type of sensor neuron used in the present expekkely long time, but rigorous analysis of their effects and implications
ments is a proprioceptive neuron, which measures the cuias only recently started to attract interest. Stanley and Miikkulainen [14]
rent angle formed by the hinge joint to which this neuron’grovide an enlightening review and discussion of developmental systems



feature, adapted from Sims: bilateral symmetry. 5 Creature evolution
4.1 Reflection 5.1 Genetic operators

Symmetry in our model is implemented somewhat differVe use th_ree genetic o_perators, broadly similar_ to.those
ently than in Sims'. In our model, each genetic node (corrdSed by SimsCrossoveris performed by simply aligning
sponding to a limb) may possess a “reflection” flag, whicl’jhe genetic nodes of 'both parents in two rows, then build-
means that when this node is read and the correspondi\ﬁ? anew list of genetic nodes by concatenating the left part
limb attached to its parent, a symmetric copy of this limtPT On€ parent with the right part of the othérafting cor-

will also be created. Any further sub-limbs will similarly "6SPonds to the removal of a branch (i.e. a limb and all

be duplicated in a symmetric fashion, which leads to t -

hifs sub-limbs), and its replacement by a branch taken from
appearance of bilaterally symmetric branches. Our presé?ﬁomer individual. Connectivity information is adapted and

design allows for only one type of symmetry, namely Symmaintained: the neurons of the trunk establish the same con-
metry along the parents: plane. When a g'iven limb is Nnections with the new branch as they had with the old one,

randomly generated, its reflection flag is set with probabi@nd similarly the new branch has the same connection with
ity P,z (for this paperpP,.; = 0.1). its new trunk as it had with its previous trunk.
! !

Mutation occurs by modifying each parameter of the
genome with a certain probability,,,; (in this paper,
Ph. = 0.04). The mutation operator proceeds in a se-
Symmetry in Sims’ model (and in ours, under its currentimguential manner. First, with probabiliti,,..;, a random
plementation) has a limitation which is not discussed in hismb may be deleted (along with its sub-limbs) from the
papers. When a limb is duplicated by reflection, all geneticreature (with the restriction that no creature may have less
information is duplicated in the process, including neural inthan two limbs). Then a new randomly generated limb
formation. A consequence of this duplication is tagfiven  (with randomly generated neural information) may be cre-
limb cannot distinguish information it sends to, or receiveated. Then, each slots in the neural array may be “flipped”
from, either of its symmetric sub-limb8ecause neurons (i.e. empty slots are filled with a new neuron with randomly
from both symmetric sub-limbs share the same connectigssigned connections, existing neurons are deleted). Then,
information, they will receive identical connections (and inthe threshold value of each existing neuron may be modi-
formation) from the same neurons in the parent. Similarlyfjed by a random amount between -0.33 and 0.33 (threshold
any connection that the sub-limbs send to the parent willalues are taken from thle-3/2,3/2] torus). The output
point to the same neuron in the parent, and information frofiinction may be changed. Each connection of every exist-
both sub-limbs will be merged at that point. Thus, althouging neuron may be “flipped”, i.e. created (and randomly as-
both limbs may behave in different manners due to their disigned) if it is unassigned, or deleted otherwise. The weight
tinctinner neural networks, they will not be able to send disef each existing connection may then be modified by a ran-
tinct information to the parent, or to receive distinct infor-dom amount between -0.33 and +0.33 (weight values are
mation from it. While several solutions to this problem maytaken from thé—1, 1] torus). The source of each connection
be considered (e.g. assigning input from symmetric limb@.e. the neuron from which it originates) may be randomly
to symmetric neurons within the parent’s array, and assigmeassigned. Finally, with probabilit,,..;, morphological
ing input from the parent to symmetric neurons within thénformation for each node is mutated. Morphological muta-
arrays of the two symmetric limbs), for the present task, wion performs one randomly selected operation out of seven
decided that such refinements would be unnecessary.  possibilities: reassigning a given limb to a different “ances-

tor” limb (which amounts to moving a whole branch along
4.3 Absence of segmentation the organism), randomly assigning a new length, width or
. . . height to the limb, modifying either of its orientation an-
In Sims model, a qup in the genetic grgph correspon_ds taes (possible orientations are discrete multiplesrpd;
a s_et (.)f limbs Whlc.h IS re_peated a certaln_ number of time utation occurs by choosing a new value within the range
This, in essence, is a simple and effective modeseg- 4—%/2,7r/2] around the current value), switching the ori-

mentation that is, _the repetition of h.omologous.module entation of its joint (horizontal or vertical), and flipping its
arranged sequentially, as gpparent in many animals (VeFéerction" flag. Again, each of these modifications is ap-
tebrates, arthropqu, gnellldae, gtc.). Beqause our gen d with probability P, for each parameter.

graphs are organised in a tree hierarchy (i.e. no loops are
allowed Wlthln the graph),_ thls feature_of Sims quel ISz 5 The evolutionary algorithm
not present in our system in its current implementation. By
preventing loops in our genetic graphs, we thus remove oWge chose to use a simple steady-state genetic algorithm
“trick” from our evolutionary toolbox. However our results (SSGA, as described in e.g. Mitchell [10]) with “triple tour-
indicate that this particular feature is not necessary for theament” selection. After a whole population of individuals
reliable emergence of meaningful and efficient behaviourds randomly generated, and each individual is evaluated, the

algorithm goes through the following cycle:

4.2 A limitation of symmetry

in artificial evolution. o
1. Three individuals are randomly selected, and ordered



according to their score: let us call them A, Band C, A visible feature of these curves is that those that sta-
where A has the highest score and C has the lowestbilise do so on noticeably different values. This is re-
ﬂ!_ated to the fact that creatures converge towards different
behaviours, which may be divided into several categories:
SCrawlers” use two symmetric limbs to propel themselves
forward by direct contact with the ground, “snakes” undu-
- Crossover between A and B, followed by applicaiate in a coordinated way to obtain efficient locomotion,
tion of the mutation operator. “bouncers” use very quick oscillations at one or several
- Grafting between A and B (A providing the trunk, B joints and exploit the resulting momentum to jump forward,
the new branch), followed by application of the mu-etc.

tation operator. Several variants of these behaviours exist. The most im-

- Four sequential applications of the mutation Operat_)ortant feature is proper exploitation of dynamics: the most

tor to A - this corresponds to Sims’ asexual reproduc(_efficient creatures are able to remain in a constantly dy-
tion. namic, unstable state, in other words, they are constantly

If the resu_lting qﬁspring is non-viable (i.e. two non- e{z(T/gIrngx.plgiltjgt]irc))l:?)fci?]grtt)iz grtzctjaxgizzgﬁd propulsion
adjac_ent limbs Intersect, or t_he dev_eloped phenotype Another feature of these curves is that they mostly share
contains too many “mbs)’. this step is re_peated as O{ﬁe same general shape, divided in three domains: an initial
ten as necessary until a viable creature is produced10w regime, a rapid increase in performance, and a stabili-

3. The resulting offspring is evaluated, and the cycl&ation at a high plateau (though there is much variety in the
starts again from step 1. length of each phase). This corresponds to actual phases

én the evolution of creatures. The initial low regime cor-

Evaluation simply occurs by letting the creature mov responds to creatures that cannot perform any locomotion
for a fixed period of time, and measuring the distance it has P P y

covered in the: direction. In order to penalise trivial, inele- at all: they do not have any oscillating or cyclical move-

. . : . ent, and stop moving after a short time when all joints
gant behaviours (such as an animat simply falling down a . . ; )
L . ave reached their angular limits. The increase in perfor-
using its sheer length to obtain a good score), actual eval-

. S mance starts with the discovery of a first oscillatory mech-
uation only starts aftet/8 of the total evaluation time has _ ! .
elapsed. anism which allows for locomotion of some sort. After a

short phase of experimentation, the population tends to set-
tle fairly early on a specific type of creature (which hap-
pens to crudely implement one of the behaviours mentioned
above). From there on, evolution essentially optimises this
particular plan. When the resulting creature has been thor-
Our experiments involved populations of 500 individualspughly optimised, leaving little room for further progress,
which were evaluated for 10000 timesteps, each timesteipe curve stabilises on a plateau, corresponding to the max-
corresponding to 0.01 second of simulated time. Fig. 2 démum fitness of this creature.

scribes the progression of the best individual in each of 15

different runs, over 500000 cycles (each cycle correspong:2 Optimisation and efficiency

ing to one reproduction and one evaluation). Each curve

plots the score of the current best individual in this particu™n iNteresting aspect of these creatures is their high degree

lar run after a given number of evaluation-reproduction cy?f OPtimisation. Movements of imbs around joints are both
cles. ample and well-coordinated. The movement is not only

From this data it is clear that in this system, the pronSCi"atory’ butcycl'icall (i.e.. the. c.o.mplete grganism_ goes
ability of basic success (i.e. the probability that a giveﬁ_hrough a c_ycle W't_h identical |n|t|al_and fl_nal conflgura-
run manages to come up with an efficient locomotive belon). and this cycle is often synchronised with the displace-
haviour at all) is high, although not one. Only one run fajldn€nt of the creature: for example, “bouncers™ movements
to produce any interesting behaviour. Another one starts f§€ tuned so that the propelling part of the body performs
progress very late in the course of evolution, and when tH<@ctly a full cycle during the time of a full jump, which en-

experiment ends the resulting behaviour is still clearly supyres sustained, efficient Iocpmotlon. The coordlnatlon _Of
optimal. Note that in this work, the main defining criterion0vements ensures that a high proportion of motile activ-

for deciding whether a creature exhibits an efficient locolY In the creature is transformed into overall forward mo-
motive behaviour is the presence of cyclical or at least o&iON: there is no dispendious “jittering” (disordered activity
cillatory propulsive movement, without which no sustained'hich incidentally results in slow overall locomotion due
locomotion can take place: in the absence of any oscillatiof 3Symmetry in the distribution of movements) or “para-
all limbs simply revolve around their joints until they eitherS'te movement (movements that do not contrl_bute to t_he
stop moving or reach the angular limit of their joints, andPverall motion of the creature, or even contradict and hin-

no further movement occurs. The distinction between limb3€” It). This leads to a criterion for efficiency. WhiCh can pe
level oscillation and creature-level cycle is emphasised fvaluated by comparing the speed and activity of individ-
the following section. ual limb displacements with the overall velocity of the crea-

2. C is deleted and replaced with a newly created o
spring. This offspring may be created in one of thre
ways, with equal probability:

6 Results and interpretation

6.1 Description of results



Distance Covered Distance Covered

250 T T T T T T T T T 250 T T T T T T T T T
200 200
150 150
100 100

50 50

0 0

o B0000 100000 150000 200000 250000 300000 350000 400000 450000 500000 o B0000 100000 150000 200000 250000 300000 350000 400000 450000 500000
Number of Reproduction-Evaluation Cycles Number of Reproduction-Evaluation Cycles

Figure 2:Left: Performance of the best individual, in 15 different runs. The average over the 15 runs is shown shown as a thicker light
line. Right: A typical run, divided into three phases - see text for details

Figure 3: Four creatures from four different runs: a simple crawler, a “snake”, a tailed crawler and a bouncer.



Simulation constants

ture: if individual limbs move significantly faster than the

whole creature (as is often observed in “jittering” creatures), Max. number of neurong 6
the conversion of general activity into overall locomotion is per limb

poor, and hence the creature can be called inefficient. To be Max. number of connec 3
successful, a creature must be both active (sustained, ample | tiONS per neuron

motion must be observed in individual limbs) and efficient | Initial proportion of as- 75 %
(this local activity must be efficiently converted into overall :;gieﬁjr%r;l?c;og”esnes _
locomotion through the global organisation and coordina- Max. number of imbs (af 1

tion of movement).
The efficient f i letes the i . ter development)
€ efficient use of symmetry completes the |£11pres§|0n Activation functions 5=, tanh(2z)
of optimisation and, we believe, gives a natural “touch” to +e

. . e Joint angle range [—3m/4, 37 /4]
our creature; (there. isa strong temptauqn to cIaSS|f){ bilater- Range of connectior 1, 1]
ally symmetric, cyclically .moblle, prqpulswe appendlice's as weights
“arms” or “legs”). We believe that this degree of optimisa- Range of neuron thresholds [=3/2,3/2]
tion, also apparent in Sims’ results, is a distinctive feature of P, (see text, section 4.1 0.1
our work with comparison to other replications of Sims’ ex- Prut (S€€ text, section 5.1] 0.04
periments. We encourage readers to consult video samples | Max. force applicable by 4N
(available at the URL specified in section 1.3) to observe each motor
evolved creatures in action. Max. angular speed at each 4rad/s

joint

6.3 Neural network analysis Actual mass of alimb of di-| 0.8 * tanh(x * y * 2)

mensionyz, y, z)
Physics engine parameters |

Through observation of values and artificial “lesions” (sup-
pression of selected neurons in order to determine which

’ - Step size 0.01s
neurons have an influence on the behaviour of the creature), —grp 0.015
we can determine the functional parts of the neural network [cgm 0.01
of any creature. Fig. 4 represents the functional part of the
neural network (as obtained by observation of values and Table 1: Simulation constants

artificial lesions) for two simple creatures: respectively, one

arm of the simple crawler and the “snake” shown in Fig. . . . - .
P gout bias, acts as a “whiptail” which amplifies the undulation

3. In these two cases, the “root” limb did not participate in t this extremity of the creature. These two creatures ex-
the functional network, which makes the structure clearef y '

For each neuron, the activation function is shown with thgmplify successful joint evolution between morphology and

threshold represented as a constant bias to the sum of inpﬂ 3L;r)al information (both connection weights and thresh-

z. In the first case, both actuators spontaneously start wi
a negative speed, because of their negative bias; however
cross-connections between the lower and upper limbs mednFuture work

that the upper limb will strongly tend to have an angular

velocity opposed to the current value of the joint betwee%{\/h'l.e <_avtolvm? Cr?at.lt”eﬁ ford5|mplehtasks Sul.Ch ?S Ioc_omo—
these two limbs, while the lower limb will tend to have - o" IS INtEresting In'itsetr and may have appiications in re-

an angular velocity positively correlated with the angle bel—";‘?eOI f'e(;df fsucfh atlﬁ evolutllotr_1ary rObOt'CS? we 't”‘.e”d Ito_ use
tween the upper limb and the trunk. The overall resultis thé{]IS modet for further evolutionary experiments invoiving
both limbs move in opposite directions, and in phase oppgjore complex tasks and co-evolution. Our first objective is

sition. Because the joint orientations are respectively vePg comlp Itgte repl|5:§t|on ofbi{ms" ;esEItsl 1b y Tpl)lemen?ng a
tical and horizontal, the upper limb will alternatively lower €O-€VOIUlIONATY, 'DOX grabbing" tas [11]. onger term

and raise the “arm”, and the lower limb will act as a ufoot,,objective would be to study more complex tasks, such as

which will oscillate orthogonally to this arm, in the direc- physical fight. L .
tion of the movement of the creature. The foot will reach The neural organisation of our creatures also opens in-

its highest speed backward (resp. forward) when the ar}ﬁresting rout_es_ for. i_nves;igation in other domains. Our net-
will be in its lowest (resp. highest) position, notwithstand-works offer similarities with Kauffman’s Random Boolean

ing shifts induced by damping and thresholds. The connelyetWorks (RBN) [5]: our neurons specify theficoming

tions with the interneuron are not necessary for Iocomotio?\onnecuons' and th_e number of !ncomlng_cqnnectlons for
ach neuron may either be specified a priori (correspond-

to occur, but stabilise the creature in the initial phase of thig .
evaluation P ing to the K constant of a RBN), or left under evolutionary

Similar considerations apply to the second creature. Tﬁ:é)ntro" It would be interesting to see whether Kauf_fman N
esults on RBN apply to our networks as well, especially re-

shake-like oscillations occur through a cascade of crost ding th f 2 bh { ition betw haoti
connections between the sensors and actuators of differédf 2'!N9 th€ presence ol a pnase fransition between a chaotic

limbs. The lowest limb, having a speed positively correlateand a f_rozenh_rek?mel,( athwh|ch a tran_smérly ;egl(;ne exh|b|ts
with the angle between its parent and its grandparent, witRroperties which make the system suitable for dynamic op-



CRAWLER (left arm, root limb not shown)

ACTUATORS ANGLE SENSORS

INTERNEURONS

tanh( x — 0.10)

tanh( x — 0.12)

— pm Connection with positive weight

— — — g Connection with negative weight

The output of any angle sensor is the current value
of the angle between this limb and its parent, scaled

within the [-1; 1] range.

Figure 4: Functional subnets extracted from the neural networks of two creatures shown in Fig. 3. See text for details.

eration and evolution.
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