
1

Cartesian Genetic 
Programming

Julian Francis Miller
Dept of Electronics

University of York, UK
jfm7@ohm.york.ac.uk

Simon Harding
Dept of Computer Science

Memorial University of Canada
slh@evolutioninmaterio.com

Copyright is held by the author/owner(s). 
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA. 
ACM 978-1-60558-131-6/08/07. 2

Genetic Programming
The automatic evolution of computer 

programs
– Tree-based, Koza 1992
– Stack-based, Perkis 1994, Spector 1996 

onwards (push-pop GP)
– Linear GP, Nordin and Banzhaf 1996
– Cartesian GP, Miller 1997
– Parallel Distributed GP, Poli 1996
– Grammatical Evolution, Ryan 1998
– Lots of others…

3

Cartesian Genetic Programming (CGP)

• Grew out of work in the evolution of digital circuits, Miller 
and Thomson 1997. First mention of the term Cartesian 
Genetic Programming appeared at GECCO in 1999.

• Originally, represents programs or circuits as a two 
dimensional grid of program primitives.

• This is loosely inspired by the architecture of digital 
circuits called FPGAs (field programmable gate arrays)

• The genotype is a list of integers that represent the 
program primitives and how they are connected together
– CGP represents programs as graphs in which there 

are non-coding genes

4

Types of CGP

• Classic
• Modular
• Self-modifying
• Developmental
• Cyclic
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CGP General form

r rows

c columns

n inputs

Levels-back

m outputs

node

Note: Nodes in the same column are not allowed to be connected to each other 6

CGP genotype

f0 C0 0 … C0 a … f (c+1)r C(c+1)r  0 … C(c+1)r a O1,…Om

Connection genes
Usually, all functions have as many inputs as maximum
function arity

Unused connections are ignored (see later)

Output genesfunction genes

7

Example

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4    2 5  4              2   5  7   3

Encoding of graph as a list of integers (i.e. the genotype)

8

Obtaining the graph

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4    2 5  4              2   5  7   3

Encoding of graph as a list of integers (i.e. the genotype)
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Example: Function look up table

The function genes are the addresses in a user-
defined lookup table of functions

0 +  Add the  data presented to inputs

1 - Subtract the  data presented to inputs

2 *  Multiply data presented to inputs

3 /  Divide data presented to inputs (protected)

10

So what does the graph represent?

11

What happened to the node whose 
output label is 6?

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4 2 5  4              2   5  7   3

The node was not used so the genes are silent or non-coding

12

The role of the geometric parameters: 
rows, columns and level-back

Tall and thin graphs Short and wide graphs

Layered graphs 
(levels-back =1)

Less layered graphs 
(levels-back =3)
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Types of graphs easily controlled

• Depending on rows, columns and levels-back a 
wide range of graphs can be generated

• When rows =1 and levels-back = columns arbitrary
directed graphs can be created with a maximum 
depth
– In general choosing these parameters imposes the 

least constraints. So without specialist knowledge this 
is the best and most general choice

Arbitrary directed graph CGP Example

15

Allelic constraints

All function genes fi must takes allowed function alleles

0 ≤ fi ≤ nf

Nodes connections Cij of a node in column j, and levels-back l, must 
obey (to retain directed acyclicity)

j ≥ l n + (j-l)r ≤ Cij ≤ n + jr

j < l 0 ≤ Cij ≤ n + jr

Output genes (can connect to any previous node or input)

0 ≤ 0i ≤ n + cr -1
16

Non-coding genes in CGP

• Contains active and inactive regions (rather 
than coding or non-coding)

• Mutations can make active genes become 
inactive and inactive genes become active

• A single gene change can thus cause large 
phenotypic changes

• When a gene is changed by mutation several 
things can happen
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Point mutation
• Most CGP implementations only use mutation. 
• Carrying out mutation is very simple. It consists of the following 

steps. The genes must be chosen to be valid alleles (as in slide
14)

Decide how many genes to change:num_mutations
While (mutation_counter < num_mutations)
{

get gene to change
if (gene is a function gene)

change gene to randomly chosen new valid function
else if (gene is a connection gene)

change gene to a randomly chosen new valid 
connection

else
change gene to a new valid output connection

}

18

Crossover or not?
• Recombination doesn’t seem to add anything 

(Miller 1999, “An empirical study…”)
• However if there are multiple chromosomes 

with independent fitness assessment then it 
helps a LOT – see later (Walker, Miller Cavill
2006)

• Recent work using a floating point 
representation of CGP has suggested that 
crossover might be useful (Clegg, Walker, 
Miller 2007) 

19

Program changes caused by mutations

Gene 
was

Gene 
is

Genotypic 
change

Phenotypic 
change

Fitness 
change

silent silent Yes No No
active silent Yes Yes Likely
silent active Yes Yes Likely
active active Yes Yes Likely

When genetic changes occur without any fitness change it is 
often referred to a neutral change. 

The very interesting aspect is that in CGP most neutral 
change occurs externally to the phenotype, so it does not 
have to be processed in any fitness calculation (unlike many 
other forms of GP) 20

Silent mutations and their effects
Original

No change in 
phenotype but it 
changes the 
programs 
accessible through
subsequent 
mutational change

After silent 
mutation
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Non-silent mutations and their effects
Original

Massive change 
in phenotype is 
possible through 
simple mutation

After active 
mutation

Evolutionary Strategy

• CGP uses a variant of (1 + 4) Evolutionary 
Strategy
– However, an offspring is always chosen if it is equally 

as fit or has better fitness than the parent

23

Neutral search is fundamental to 
success of CGP

• A number of studies have been carried out 
to indicate the importance to neutral 
search (Miller and Thomson 2000, 
Vassilev and Miller 2000, Yu and Miller 
2001, Miller and Smith 2006)

24

Neutral search and the three bit multiplier 
problem (Vassilev and Miller 2000)

Importance of neutral 
search can be 
demonstrated by looking at 
the success rate in evolving 
a correct three-bit digital 
parallel multiplier circuit.

Graph shows final fitness 
obtained in each of 100 
runs of 10 million 
generations with neutral 
mutations enabled 
compared with disabling 
neutral mutations.
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Effectiveness of Neutral Search as a 
function of mutation rate and Hamming 

bound (Yu and Miller 2001) 

P ro bability o f  Success fo r 100 R uns

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16 18 20

M ut at i on Rat e

Ham-0 Ham-50 Ham-150 Ham-200 Ham-250 Ham-300

• Hamming Distance H(g,h)
g1=213 012 130 432 159
g2=202 033 132 502 652
hamming distance H(g1,g2)=9.

• If genotypes are selected so 
that H(gnew,gold) = 0. No neutral 
drift is permitted.

• If genotypes are selected so 
that H(gnew,gold) = length(g). Any 
amount of neutral drift is 
permitted.

26

Computational effort versus Genotype 
length and mutation rate 

Evolutionary search is most effective at low mutation rates and 
large genotype lengths. The larger the genotype length, the lower 
should be the value chosen for mutation rate 

Even-3 parity Two-bit multiplier

27

Minimum Computational Effort (over all mutation 
rates) versus genotype length (in nodes)

Two-bit multiplier with gate set 

{AND,  OR, NAND, NOR}.
Even 3 parity with gate set 

{AND,  OR, NAND, NOR}.

So provided you choose the ‘best’ mutation rate, problems are more easily 
solved with large genotypes. However big genotypes does NOT mean big 
phenotypes (programs)….

28

Phenotype length versus genotype length (two-bit 
multiplier)

Average proportion of active 
nodes in genotype at the 
conclusion of evolutionary run for 
all mutation rates versus genotype 
length

SEARCH MOST EFFECTIVE 
WHEN 95% OF ALL GENES ARE 
INACTIVE!!

Average phenotype length for the 
initial  population contrasted with 
the average phenotype length at 
conclusion of evolutionary run 
versus genotype length with 1% 
mutation 

NO BLOAT
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Modular/Embedded CGP (Walker, Miller 
2004)

• So far have described a form of CGP (classic) that does 
not have an equivalent of Automatically Defined 
Functions (ADFs)

• Modular CGP allows the use of modules (ADFs)

– Modules are dynamically created and destroyed

– Modules can be evolved

– Modules can be re-used

30

MCGP Example

Genotype

Module List Module 
Creation
Module 
Re-use
Module 

Evolution
Module 

Destruction

31

Representation Modification 1

• Each gene encoded by two integers in M-CGP
– Function/module number and node type
– Node index and node output 

• nodes can have multiple outputs
32

Representation Modification 2

• M-CGP has a bounded variable length genotype
– Compression and expansion of modules

• Increases/decreases the number of nodes

– Varying number of module inputs
• Increases/decreases the number of genes in a node

GECCO 2008 Tutorial / Cartesian Genetic Programming

2708



33

Modules
• Same characteristics as M-

CGP
– Bounded variable length 

genotype

– Bounded variable length 
phenotype

• Modules also contain inactive 
genes as in CGP

• Modules can not contain other 
modules!

34

Node Types

• Three node types:
– Type 0

• Primitive function

– Type I 
• Module created by compress operator

– Type II 
• Module replicated by genotype point-mutation

• Control excessive code growth
– Genotype can return to original length at any time

35

Creating and Destroying a 
Module

• Created by the compress operator
– Randomly acquires sections of the genotype into a module

• Sections must ONLY contain type 0 nodes
• Destroyed by the expand operator

– Converts a random type I module back into a section of the 
genotype

36

Module Survival

• Twice the probability of a module being 
destroyed than created

• Modules have to replicate to improve their 
chance of survival
– Lower probability of being removed

• Modules must also be associated with a high 
fitness genotype in order to survive
– Offspring inherit the modules of the fittest parent

GECCO 2008 Tutorial / Cartesian Genetic Programming

2709



37

Evolving a Module I
– Structural mutation

• Add input
• Remove input
• Add output
• Remove output

38

Evolving a Module II

– Module point-
mutation operator

• Restricted version 
of genotype point-
mutation operator

• Only uses primitive 
functions

39

Re-using a Module

• Genotype point-mutation operator
– Modified CGP point-mutation operator

• Allows modules to replicate in the genotype
– Primitive (type 0)  module (type II)
– Module (type II)  module (type II)
– Module (type II)  primitive (type 0)

• Does NOT allow type I modules to be mutated into 
primitives (type 0) or other modules (type II)
– Type I modules can only be destroyed by Expand

Experimental parameters

NOTES: ◊ these parameters only apply to Modular (Embedded) CGP

The results are heavily dependent on the maximum number of nodes allowed. 
Much better results are obtained when larger genotype lengths are used.
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Even Parity Results

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

Parity

C
E

CGP M-CGP(5) GP GP ADF EP EP ADF

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

Parity

C
E

CGP M-CGP(5) GP ADF EP ADF
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Digital Adder

• Three digital adder problems:
– 1-bit, 2-bit, and 3-bit

• Function set:
– AND, NAND, OR, NOR

• Fitness Function:
– Number of phenotype output bits that differ 

from the perfect n-bit digital adder solution
– Perfect solution has a fitness of zero

ha

a b

s

or

ha

c

c

43

Adder Results

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000
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7,000,000

8,000,000

9,000,000
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C
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Digital Multiplier
• Two digital multiplier problems:

– 2-bit and 3-bit

• Function set:
– AND, AND (on input inverted), XOR, OR

• Fitness Function:
– Number of phenotype output bits that 

differ from the perfect n-bit digital 
multiplier solution

– Perfect solution has a fitness of zero

• Results are averaged over fifty 
independent runs

ha

a b

z

2x1

ha

c

y

d

2x1

x
w
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Multiplier Results
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Symbolic Regression

• Two problems:
– x6 - 2x4 + x2

– x5 - 2x3 + x

• Function set:
– +, -, *, / (protected)

• Fitness Function:
– Absolute error over all fifty points in the input set
– Solution found when absolute error is within 0.01 of 

each point

*

-

x

1

*

*

Out
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Symbolic Regression Results

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

x6-2x4+x2 x5-2x3+x

C
E

CGP M-CGP(3) M-CGP(5) M-CGP(8) GP GP ADFs
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Lawnmower Problem
• Guide a lawnmower 

around a lawn cutting the 
grass
– Lawn divided into n x m

squares

– Cuts all the grass in a 
square, when the square is 
visited

– Starts in the centre square

– If the lawnmower leaves 
one side, it reappears on 
the opposite side

• Problem solved when all 
squares have been 
visited
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Lawnmower Problem Results

0

5000

10000

15000

20000

25000

32 48 64 80 96 112 128

Number of Squares

C
E

CGP M-CGP(5) PDGP GP-ADF

Parameter Sweeps

• Even 6 Parity Problem
– Genotype Length

• 100 1000 nodes

– Maximum Module Size
• 3 20 nodes

– Mutation Rate
• 2% 4%

Multi-chromosome Approach

• A multi-chromosome genotype is divided up into n equal 
length sections called “chromosomes”

– Each chromosome contains an equal number of nodes

• The no. of chromosomes (n) is dictated by the no. of 
outputs of the given problem

– Each chromosome has a single output

• The entire problem is still represented in a single 
genotype

Multi-chromosome CGP Example

• A node in a chromosome can connect to:
– A program input
– The output of a previous node in the SAME chromosome

• Creates a form of compartmentalisation in the genotype
– Removes any connections between the smaller problems in 

each chromosome

GECCO 2008 Tutorial / Cartesian Genetic Programming
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Multi-chromosome (1 + 4) ES

• Calculate fitness for each chromosome
• Select best chromosome from each position

– If tied, choose offspring over parent
• Promoted individual consists of the best chromosomes

– May not have been in the original population
– May have a higher overall fitness than parents

Multi-chromosome experiments and 
Parameters

• Adder †

– 2-bit   (3 chromosomes)

– 3-bit   (5 chromosomes)
• Multiplier *

– 2-bit   (4 chromosomes)

– 3-bit   (6 chromosomes)
• De-multiplexer †

– 3:8-bit   (8 chromosomes)
• Comparator †

– 4 x 1-bit   (18 
chromosomes)

• Arithmetic Logic Unit *

– 3-bit   (17 chromosomes)

• Each chromosome 
contained 100 nodes 
(300 genes)

• Function set 1 (*)
– AND, AND (one input 

inverted), XOR, OR

• Function set 2 (†)
– AND, NAND, OR, NOR

Results

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

2-bit Adder 3-bit Adder 2-bit Mulitplier 3-bit Multiplier 3:8-bit De-
multiplexer

4x1-bit Comparator 3-bit ALU

C
om

pu
ta

tio
na

l E
ffo

rt

CGP
ECGP
MC-CGP
MC-ECGP
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Modules within Modules?

• Currently only allow primitive functions in modules
– Single level hierarchy

• Allow modules within modules
– Multi-level hierarchy
– Produce larger building blocks
– Improve performance
– Evolve solutions to larger, more complex problems

• ADFs occur inside ADFs in GP, why not have modules 
inside modules?
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Multi-level Hierarchy (Walker 2008)

• Introduce level types into modules
– L1 primitive functions
– L2 primitive functions, L1 modules
– L3 primitive functions, L1 and L2 modules
– etc…

• Each level is created by the compress 
operator
– User sets the number of levels in the hierarchy

• Nodes in a module can only be mutated to 
functions with a lower level type

• Nodes in a genotype can be mutated to a 
function of any level

a b

c

e

d L1

L2

L3

Primitive 
Functions L0

Multi-level modular CGP Even 
Parity
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• SMCGP is a form of developmental CGP

• To be more specific: a form of genetic 
programming where an individual’s phenotype 
can vary over time
– It is iterated

Self-modifying CGP 
(Harding, Miller and Banzhaf 2007)
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• In CGP nodes connect explicitly
– i.e This node connects to node 12.

• In SMCGP nodes have a relative address
– i.e. This node connects to one 4 nodes back.
– Useful for moving pieces of cgp code around

• CGP node : 
– function & connections

• SMCGP node : 
– function, connections & 3 parameters.

Representational differences

62

• Input/Outputs handled differently.
– In SMCGP typically the last N-nodes in the 

graph are used as output nodes

• If a node addresses a node of  a negative 
index, then this is mapped to an input 
(using modulo arithmetic)

Other representational 
differences

63

+ 1,3
0 0 1

* 1,6
1 2 2

/ 2,3
1 2 0

% 1,2
2 3 2

- 1,10
2 2 4

Inputs Nodes in 
program

Output

Visualization

64

• In addition to functional nodes, SMCGP contains nodes 
that modify its own graph
– For example, a function may add, delete or move a 

section of the program
• Self modification nodes pass the larger numerical input 

unchanged  
• Phenotype is initially the same as the genotype graph, 

however
– It is iterated, which with modification, causes it to 

diverge from the original graph 

Self-modification

GECCO 2008 Tutorial / Cartesian Genetic Programming

2716



65

1. Evaluate CGP graph
• Get computational output

2. If a node is a modification node and it is activated, add 
to ‘ToDo’ list

• Activated means: If the first input is greater or 
equal to value to the second input 

3. When finished evaluating entire graph, parse ‘ToDo’
list.

4. Perform each operation to build modified graph for 
next iteration

Self-modification process

66

Operator Parameters Function
MOVE Start, End, Insert Moves each of the nodes between Start and End into 

the position specified by Insert

DUPE Start, End, Insert Inserts copies of the nodes between Start and End 
into the position specified by Insert 

DELETE Start, End Deletes the nodes between Start and End indexes

ADD Insert, Count Adds Count number of NOP nodes at position Insert

CHF Node, New Function Changes the function of a specified node to the 
specified function

CHC Node, Connection1, Connection2 Changes the connections in the specified node

CHP Node, Parameter, New Value Changes the specified parameter and a given node

FLR Clears any entries in the pending modifications list

OVR Start, End, Insert Moves each of the nodes between Start and End into 
the position specified by Insert, overwriting existing 
nodes

DU2 Start, End, Insert Similar to DUPE, but connections are considered to 
absolute, rather than relative

Some SMCGP operators

67

+ 1,2
0 1 2

D
U
P

1,3

1 2 0

- 2,4
0 1 2

* 1,2
0 1 2

+ 1,2
0 1 2

D
U
P

1,3

1 2 0

- 2,4
0 1 2

* 1,2
0 1 2

D
U
P

1,3

1 2 0

- 2,4
0 1 2

TIME

Example: Duplication

68

C
H
F

1,2

0 0 1

D
E
L

2,2

1 1 0

+ 4,1
0 1 2

* 2,1
0 1 2

C
H
F

1,2

0 0 1

+ 4,1
0 1 2

* 2,1
0 1 2

M
O
V

1,2

0  0  1

+ 4,1
0  1  2

* 2,1
0 1 2

TIME

Example: 
Deletion and 

changing 
function

M
O
V

1,2

0 0 1

+ 4,1
0 1 2

* 2,1
0 1 2
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• A special function can call another part of the 
graph as a procedure

• This section of graph could be made up of 
active nodes, or nodes neutral to the main 
graph

• Procedures can call other procedures.
• Procedures can self modify
• Inputs to this procedure are the inputs to the 

calling node

Operator Parameters Function
PRC Start, End Executes the nodes specified as a procedure.

Modules in SMCGP

70

• We limit the functional nodes to + and –
• The task is on each iteration (0,1,2,…) to produce the 

next number in a sequence
– Here, we ask for the squares: 1,4,9,16,25 etc.

• The only input was the iteration, i
• Fitness calculated by iterating from 0 to 9 and counting 

the longest sequence from zero that were correct
• Without self-modification this task is impossible

Example: Generating 
Sequences

71

Input, i Evolved 
program

Output

0 0 + i 0

1 0 + i 1

2 0 + i+ i 4

3 0 + i + i + i 9

4 0 + i + i+ i+ i 16

72

• In this experiment we tackled the well known problem of 
evolving circuits for solving even–parity

• We used a restricted function set, that is well studied in 
the literature
AND OR NAND NOR

• This set of functions make the problem very hard to 
solve

Evolving Digital Circuits

GECCO 2008 Tutorial / Cartesian Genetic Programming
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Evolving Parity Circuits
Number
of inputs 

4 5 6 7 8

SMCGP 28811 58194 191493 352901 583712

Speedup 
compared 

with 
MCGP

2.27 3.13 1.44 0.76 0.5

Speedup 
over CGP 2.84 5.04 4.88 8.53 10.13

74

• The largest parity problem solved to date 
with a direct GP approach appears to be 
22 inputs
– Although general solutions have been found.
– The function set used includes many more bit-

wise operations – including XOR
• We attempted to produce a solution that 

could be iterated to find any size circuit

Evolving big parity functions

75

• The challenge:
– Evolve an SMCGP program that solves 2-

input even parity. After iterating the growth 
algorithm once, it should solve 3-input. After a 
second time, 4-input and so on

• We were able to evolve (and test) to 24 bit input. 
We think it is a general solution but haven’t 
verified this yet

Evolving big parity functions

76

• Discussed a promising new variant of CGP that bridges 
the divide between artificial developmental systems and 
genetic programming

• This is done by directly producing a phenotype capable 
of performing a computation

• We have shown we can solve problems that cannot be 
solved by a conventional GP system.

• In other experiments we have shown that performance 
appears to be similar on problems where there is no 
inherent advantage for the self-modification

SMCGP Conclusions
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Developmental CGP

• Various types of CGP inspired by 
biological development, graph re-writing 
and neuro-develop have been devised
– Biological developmental (Miller 2003, 2004)
– Graph re-writing (Miller 2003)
– Neuro-developmental (Khan, Miller and 

Halliday 2007, 2008)

78

Bio-inspired developmental CGP

79

Graph-rewriting CGP

80

Neuro-inspired developmental CGP
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Cyclic CGP

• When outputs are allowed to connect to 
inputs through a clocked delay (flip-flop) it 
is possible to allow CGP to include 
feedback.

• By feeding back outputs generated by 
CGP to an input, it is possible to get CGP 
to generate sequences

GPU Implementation (Harding and 
Banzhaf 2007)

• A guaranteed maximum program length 
makes it easy to use CGP on more limited 
platforms.

• We have developed a version of CGP that 
runs on Graphics Processing Units
– Limited program length
– Memory constraints
– But fast, parallel architecture

82

83

Vertices Vertex 
Scheduler

Vertex 
Processors

Rasterizer Shader
Processors

GPU 
Memory

CPU

GP Array
s

API

GPU Speed up on a regression problem

84Expression length

Times faster

Test cases
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Image Processing

85

Image processing

86

Input Output from GP

Evolved 
filter

Target output Difference

Error image Edge mask

sum 
no. of pixels

Fitness

22.4

Image Processing : 
Example of Evolved Filters

87

Sobel filter
Evolved filter Target filter

88

Applications of CGP
• Digital Circuit Design

– ALU, parallel multipliers, digital filters
• Mathematical functions

– Prime generating polynomials
• Control systems

– Maintaining control with faulty sensors, helicopter control, simulated 
robot controller

• Image processing
– Image filters

• Bio-informatics
– Molecular Post-docking filters

• Developmental Neural Architectures
– Wumpus world, checkers

• Evolutionary Art
• Artificial Life

– Regenerating ‘organisms’
• Optimization problems

– Applying CGP to solve GA problems
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CGP Web Resources

• Home site:
http://www.cartesiangp.co.uk

• Julian Miller: 
http://www.elec.york.ac.uk/intsys/users/jfm7/

• Simon Harding:
http://www.evolutioninmaterio.com/
http://www.gpgpgpu.com

90

Conclusions
• Cartesian Genetic Programming is a graph based GP 

method
• Genetic encoding is compact, simple and easy to 

implement and can handle multiple outputs easily.
• The unique form of genetic redundancy in CGP makes 

mutational search highly effective
• The effectiveness of CGP has been compared with 

many other GP methods and it is very competitive
• The CGP method is still being developed (i.e. modular 

CGP, self-modifying CGP, neuro-developmental CGP)
• A method has been developed for CGP to output lists of 

numbers so that it can be applied to any problem that 
genetic algorithms can be applied to (see Walker and 
Miller 2007)
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