Skip to main content

CGP4Matlab - A Cartesian Genetic Programming MATLAB Toolbox for Audio and Image Processing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

This paper presents and describes CGP4Matlab, a powerful toolbox that allows to run Cartesian Genetic Programming within MATLAB. This toolbox is particularly suited for signal processing and image processing problems. The implementation of CGP4Matlab, which can be freely downloaded, is described. Some encouraging results on the problem of pitch estimation of musical piano notes achieved using this toolbox are also presented. Pitch estimation of audio signals is a very hard problem with still no generic and robust solution found. Due to the highly flexibility of CGP4Matlab, we managed to apply a new cartesian genetic programming based approach to the problem of pitch estimation. The obtained results are comparable with the state of the art algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Genetic Programming Theory and Practice X, pp. 31–44. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-2_3

  2. Inácio, T., Miragaia, R., Reis, G., Grilo, C., Fernandéz, F.: Cartesian genetic programming applied to pitch estimation of piano notes. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2016)

    Google Scholar 

  3. Miller, J., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: a case study 219 (1997). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.7671

  4. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation GECCO1999, vol. 2, pp. 1135–1142. Morgan Kaufmann Publishers Inc., San Francisco (1999). http://dl.acm.org/citation.cfm?id=2934046.2934074

  5. Hansen, N., Arnold, D.V., Auger, A.: Evolution Strategies, pp. 871–898. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-43505-2_44

  6. Yeh, C., Roebel, A., Rodet, X.: Multiple fundamental frequency estimation and polyphony inference of polyphonic music signals. Trans. Audio Speech Lang. Proc. 18(6), 1116–1126 (2010). https://doi.org/10.1109/TASL.2009.2030006

  7. Klapuri, A.P.: Multiple fundamental frequency estimation based on harmonicity and spectral smoothness. IEEE Trans. Speech Audio Process. 11(6), 804–816 (2003)

    Article  Google Scholar 

  8. Reis, G., Fernandéz de Vega, F., Ferreira, A.: Audio analysis and synthesis-automatic transcription of polyphonic piano music using genetic algorithms, adaptive spectral envelope modeling, and dynamic noise level estimation. IEEE Trans. Audio Speech Lang. Process. 20(8), 2313 (2012)

    Article  Google Scholar 

  9. Marolt, M.: A connectionist approach to automatic transcription of polyphonic piano music. IEEE Trans. Multimedia 6(3), 439–449 (2004)

    Article  Google Scholar 

  10. Mueller, M., Wiering, F. (eds.): An efficient temporally-constrained probabilistic model for multiple-instrument music transcription. In: ISMIR, Malaga, Spain (October 2015)

    Google Scholar 

  11. Emiya, V., Bertin, N., David, B., Badeau, R.: Maps-a piano database for multipitch estimation and automatic transcription of music (2010)

    Google Scholar 

  12. Emiya, V., David, B., Badeau, R.: A parametric method for pitch estimation of piano tones. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 1, pp. 1–249. IEEE (2007)

    Google Scholar 

  13. De Cheveigné, A., Kawahara, H.: Yin, a fundamental frequency estimator for speech and music. J. Acoust. Soc. Am. 111(4), 1917–1930 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Spanish Ministry of Economy, Industry and Competitiveness and European Regional Development Fund (FEDER) under projects TIN2014-56494-C4-4-P (Ephemec) and TIN2017-85727-C4-4-P (DeepBio); Junta de Extremadura FEDER, projects GR15068, GRU10029 IB16035 Regional Government of Extremadura, Consejería of Economy and Infrastructure, FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Miragaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miragaia, R., Reis, G., Fernandéz, F., Inácio, T., Grilo, C. (2018). CGP4Matlab - A Cartesian Genetic Programming MATLAB Toolbox for Audio and Image Processing. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics