Skip to main content

Search Space Analysis of Evolvable Robot Morphologies

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

We present a study on morphological traits of evolved modular robots. We note that the evolutionary search space –the set of obtainable morphologies– depends on the given representation and reproduction operators and we propose a framework to assess morphological traits in this search space regardless of a specific environment and/or task. To this end, we present eight quantifiable morphological descriptors and a generic novelty search algorithm to produce a diverse set of morphologies for any given representation. With this machinery, we perform a comparison between a direct encoding and a generative encoding. The results demonstrate that our framework permits to find a very diverse set of bodies, allowing a morphological diversity investigation. Furthermore, the analysis showed that despite the high levels of diversity, a bias to certain traits in the population was detected. Surprisingly, the two encoding methods showed no significant difference in the diversity levels of the evolved morphologies or their morphological traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://robogen.org/docs/robot-body-parts/.

  2. 2.

    https://tinyurl.com/y9s8ssuc.

  3. 3.

    The types of modules would not have to be necessarily the same, as long as the body had the same amount of modules.

  4. 4.

    https://tinyurl.com/yc364pfe.

  5. 5.

    https://tinyurl.com/ybpcvdqp.

References

  1. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  2. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)

    Article  Google Scholar 

  3. Vargas, P., Paolo, E.D., Harvey, I., Husbands, P. (eds.): The Horizons of Evolutionary Robotics. MIT Press, Cambridge (2014)

    Google Scholar 

  4. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2(4) (2015)

    Google Scholar 

  5. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  6. Hornby, G.S., Pollack, J.B.: Evolving L-systems to generate virtual creatures. Comput. Graph. 25(6), 1041–1048 (2001)

    Article  Google Scholar 

  7. Samuelsen, E., Glette, K., Torresen, J.: A hox gene inspired generative approach to evolving robot morphology. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 751–758. ACM (2013)

    Google Scholar 

  8. Corucci, F., Calisti, M., Hauser, H., Laschi, C.: Novelty-based evolutionary design of morphing underwater robots. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 145–152. ACM (2015)

    Google Scholar 

  9. Veenstra, F., Faina, A., Risi, S., Stoy, K.: Evolution and morphogenesis of simulated modular robots: a comparison between a direct and generative encoding. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 870–885. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_56

    Chapter  Google Scholar 

  10. Eiben, A., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell, A., Winfield, A., et al.: The triangle of life: evolving robots in real-time and real-space. Adv. Artif. Life ECAL 2013, 1056–1063 (2013)

    Google Scholar 

  11. Auerbach, J.E., Bongard, J.C.: Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10(1), e1003399 (2014)

    Article  Google Scholar 

  12. Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L., Floreano, D.: Robogen: robot generation through artificial evolution. In: Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 136–137. The MIT Press (2014)

    Google Scholar 

  13. Jacob, C.: Genetic L-system programming. In: Davidor, Y., Schwefel, H.-P., Manner, R. (eds.) Parallel Problem Solving from NaturePPSN III, pp. 333–343. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  14. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  15. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE, pp. 329–336 (2008)

    Google Scholar 

  16. Koza, J.R.: Genetic Programming: On The Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  17. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 665347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Miras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miras, K., Haasdijk, E., Glette, K., Eiben, A.E. (2018). Search Space Analysis of Evolvable Robot Morphologies. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics