Skip to main content
Log in

Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Multi-gene genetic programming (MGGP) is a new nonlinear system modeling approach that integrates the capabilities of standard GP and classical regression. This paper deals with the prediction of compression index of fine-grained soils using this robust technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. The prediction coefficients of determination were 0.856 and 0.840 for the training and testing data, respectively. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbasi N, Javadi AA, Bahramloo R (2012) Prediction of compression behaviour of normally consolidated fine-grained soils. World Appl Sci J 18(1):6–14

    Google Scholar 

  • Akgun A, Türk N (2010) Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci 61(3):595–611

    Article  Google Scholar 

  • Alavi AH, Gandomi A (2011) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3):242–274

    Article  Google Scholar 

  • Alavi AH, Ameri M, Gandomi AH, Mirzahosseini MR (2011) Formulation of flow number of asphalt mixes using a hybrid computational method. Constr Build Mater 25(3):1338–1355

    Article  Google Scholar 

  • Alavi AH, Hasni H, Lajnef N, Chatti K, Faridazar F (2016a) An intelligent structural damage detection approach based on self-powered wireless sensor data. Automation Constr 62:24–44

    Article  Google Scholar 

  • Alavi AH, Hasni H, Lajnef N, Chatti K, Faridazar F (2016b) Damage detection using self-powered wireless sensor data: an evolutionary approach. Measurement. doi:10.1016/j.measurement.2015.12.020

    Google Scholar 

  • ASTM D2435 (2000) Standard test methods for one-dimensional consolidation properties of soils using incremental loading, vol 04.08. American Society for Testing Materials, Philadelphia, PA

  • Azamathulla HM (2012) Gene expression programming for prediction of scour depth downstream of sills. J Hydrol 460–461:156–159

    Article  Google Scholar 

  • Azamathulla HM, Wu F (2011) Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl Soft Comput 11(2):2902–2905

    Article  Google Scholar 

  • Azamathulla HM, Guven A, Demir YK (2011) Linear genetic programming to scour below submerged pipeline. Ocean Eng 38(8–9):995–1000

    Article  Google Scholar 

  • Azamathulla HM, Ghani AA, Fei SY (2012) ANFIS-based approach for predicting sediment transport in clean sewer. Appl Soft Comput 12(3):1227–1230

    Article  Google Scholar 

  • Azzouz AS, Krizek RJ, Corotis RB (1976) Regression analysis of soil compressibility. Soils Found 16(2):19–29

    Article  Google Scholar 

  • Bartlett SF, Lee HS (2004) Estimation of compression properties of clayey soils, Salt Lake Valley, Utah, University of Utah. Report No. UT-04.28. Utah Department of Transportation

  • Carter M, Bentley S (1991) Correlations of soil properties. Pentech Press, London

    Google Scholar 

  • Ceryan N, Okkan U, Kesimal A (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68(3):807–819

    Article  Google Scholar 

  • Cozzolino VM (1961) Statistical forecasting of compression index. Proc Fifth Int Conf Soil Mech Found Eng Paris 1:51–53

    Google Scholar 

  • Daryaee M, Kashefipour M, Ahadiyan J, Ghobadiyan R (2010) Modeling the compression index of fine soils using artificial neural network and comparison with the other empirical equations. J Water Soil 24(4):659–667

    Google Scholar 

  • Das SK, Basudhar PK (2008) Prediction of residual friction angle of clays using artificial neural network. Eng Geol 100(3–4):142–145

    Article  Google Scholar 

  • Das SK, Samui P, Sabat AK, Sitharam TG (2010) Prediction of swelling pressure of soil using artificial intelligence techniques. Environ Earth Sci 61(2):393–403

    Article  Google Scholar 

  • Das SK, Biswal RK, Sivakugan N, Das B (2011a) Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ Earth Sci 64(1):201–210

    Article  Google Scholar 

  • Das SK, Samui P, Khan SZ, Sivakugan N (2011b) Machine learning techniques applied to prediction of residual strength of clay. Cent Eur J Geosci 3(4):449–461

    Google Scholar 

  • Das SK, Samui P, Sabat AK (2011c) Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotech Geol Eng 29(3):329–342

    Article  Google Scholar 

  • Desai CK, Shaikh A (2012) Prediction of depth of cut for single-pass laser micro-milling process using semi-analytical, ANN and GP approaches. Int J Adv Manuf Technol 60:865–882

    Article  Google Scholar 

  • Desai VGM, Desai V, Rao DH (2009) Prediction of compression index using artificial neural networks. In: Indian geotechnical conference (IGC-2009), Guntur, India, pp 614–617

  • Farkhonde S, Bolouri J (2010) Estimation of compression index of clayey soils using artificial neural network. In: 5th National conference on civil engineering, Mashhad, Iran, Paper ID 1151

  • Francone F (1998–2004) Discipulus owner’s manual. Register Machine Learning Technologies, Littleton

  • Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2012a) New multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput Appl 21:171–187

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2012b) A new multi-gene genetic programming approach to nonlinear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Comput Appl 21:189–201

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Sahab MG (2010) New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming. Mater Struct 43(7):963–983

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Yun GJ (2011a) Formulation of uplift capacity of suction caissons using multi expression programming. KSCE J Civ Eng 15(2):363–373

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Yun GJ (2011b) Nonlinear modeling of shear strength of SFRCB beams using linear genetic programming. Struct Eng Mech 38(1):1–25

    Article  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2. J Mol Graph Model 20:269–276

    Article  Google Scholar 

  • Gopalakrishnan K, Kim S, Ceylan H, Khaitan S (2010) Natural selection of asphalt stiffness predictive models with genetic programming. In: Dagli CH et al (eds) Proceedings of the artificial neural networks in engineering (ANNIE), St. Louis, Missouri, 1–3 November 2010

  • Gregory AS, Whalley WR, Watts CW, Hallett PD, Whitmore AP, Bird NRA (2006) Calculation of the compression index and precompression stress from soil compression test data. Soil Tillage Res 89:45–57

    Article  Google Scholar 

  • Gulhati SK, Datta M (2005) Geotechnical engineering. Tata McGraw Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Günaydın O (2009) Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environ Geol 57(1):203–215

    Article  Google Scholar 

  • Guven A (2009) Linear genetic programming for time-series modelling of daily flow rate. J Earth Syst Sci 118(2):137–146

    Article  Google Scholar 

  • Guven A, Azamathulla HM, Zakaria NA (2009) Linear genetic programming for prediction of circular pile scour. Ocean Eng 36(12–13):985–991

    Article  Google Scholar 

  • Isik F, Ozden G (2013) Estimating compaction parameters of fine- and coarse-grained soils by means of artificial neural networks. Environ Earth Sci 69(7):2287–2297

    Article  Google Scholar 

  • Javadi AA, Rezania M, Mousavi Nezhad M (2006) Evaluation of liquefaction induced lateral displacements using genetic programming. Comput Geotech 33(4–5):222–233

    Article  Google Scholar 

  • Jianping I, Yangsong Z, Changhong Y, Guangyun G (2010) Application of BP neural network in prediction of compression index of soil. J Cent South Univ (Sci Technol) 41(2):722–727

    Google Scholar 

  • Kaunda RB, Chase RB, Kehew AE, Kaugars K, Selegean JP (2010) Neural network modeling applications in active slope stability problems. Environ Earth Sci 60(7):1545–1558

    Article  Google Scholar 

  • Kayadelen C, Taşkıran T, Günaydın O, Fener M (2009) Adaptive neuro-fuzzy modeling for the swelling potential of compacted soils. Environ Earth Sci 59(1):109–115

    Article  Google Scholar 

  • Kim H-S, Cho G-C, Lee JK, Kim S-J (2013) Geotechnical and geophysical properties of deep marine fine-grained sediments recovered during the Second Ulleung Basin Gas Hydrate Expedition, East Sea, Korea. Mar Pet Geol 47:56–65

    Article  Google Scholar 

  • Kolay E, Kayabali K, Tasdemir Y (2010) Modeling the slake durability index using regression analysis, artificial neural networks and adaptive neuro-fuzzy methods. Bull Eng Geol Environ 69(2):275–286

    Article  Google Scholar 

  • Koza J (1992) Genetic programming, on the programming of computers by means of natural selection. MIT Press, Cambridge

    Google Scholar 

  • Kumar VP, Rani CHS (2011) Prediction of compression index of soils using artificial neural networks (ANNs). Int J Eng Res Appl 1(4):1554–1558

    Google Scholar 

  • Kumar Y, Venkatesh K, Kumar V (2012) Prediction of compression index of cohesive soil using neural network approach. In: International conference on advances in architecture and civil engineering, pp 363–366

  • Mahmood MT, Majid A, Han J, Choi YK (2013) Genetic programming based blind image deconvolution for surveillance systems. Eng Appl Artif Intell 26(3):1115–1123

    Article  Google Scholar 

  • Malih SK (2006) Fuzzy model for predicting fine-grained soil consolidation test parameters. Master Thesis, University of Guilan

  • Mayne PW (1980) Cam-clay predictions of undrained strength. J Geotech Eng Div ASCE 106(11):1219–1242

    Google Scholar 

  • Mert E, Yilmaz S, Inal M (2011) An assessment of total RMR classification system using unified simulation model based on artificial neural networks. Neural Comput Appl 20:603–610

    Article  Google Scholar 

  • Mohammadi A, Wang G, Bolandi H, Alavi AH, Gandomi AH (2014) Multigene genetic programming for estimation of elastic modulus of concrete. Math Probl Eng. doi:10.1155/2014/474289

  • Mohammadzadeh D, Bolouri Bazaz J, Alavi AH (2014) An evolutionary computational approach for formulation of compression index of fine-grained soils. Eng Appl Artif Intell 33:58–68

    Article  Google Scholar 

  • Mousavi SM, Aminian P, Gandomi AH, Alavi AH, Bolandi H (2012) A new predictive model for compressive strength of high performance concrete using gene expression programming. Adv Eng Softw 45(2011):105–114

    Article  Google Scholar 

  • Muduli PK, Das SK (2013a) CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach. Indian Geotech J (Online). doi:10.1007/s40098-013-0048-4

    Google Scholar 

  • Muduli PK, Das SK (2013b) SPT-based probabilistic method for evaluation of liquefaction potential of soil using multi-gene genetic programming. Int J Geotech Earthq Eng 4(1):42–60

    Article  Google Scholar 

  • Muduli PK, Das SK, Das MR (2013a) Uplift capacity of suction caisson in clay using artificial intelligence techniques. Mar Georesour Geotechnol 31(4):375–390

    Article  Google Scholar 

  • Muduli PK, Das SK, Bhattacharya S (2013b) CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Georisk Int J. doi:10.1080/17499518.2013.845720

    Google Scholar 

  • Nishida Y (1956) A brief note on compression index of soils. J Soil Mech Found Div ASCE 82(SM3):1027-1–1027-14

    Google Scholar 

  • Ocak I, Seker S (2012) Estimation of elastic modulus of intact rocks by artificial neural network. Rock Mech Rock Eng 45(6):1047–1054

    Article  Google Scholar 

  • Ocak I, Seker SE (2013) Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes. Environ Earth Sci 70(3):1263–1276

    Article  Google Scholar 

  • Park H, Lee SR (2011) Evaluation of the compression index of soils using an artificial neural network. Comput Geotech 38:472–481

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464

    Article  Google Scholar 

  • Rani CHS, Kumar VP, Togati VK (2013) Artificial neural networks (ANNS) for prediction of engineering properties of soils. Int J Innov Technol Explor Eng 3(1):123–130

    Google Scholar 

  • Rezania M, Faramarzi A, Javadi AA (2011) An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement. Eng Appl Artif Intell 24(1):142–153

    Article  Google Scholar 

  • Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313

    Article  Google Scholar 

  • Salehi H, Taghikhany T (2012) Application of robust-optimum algorithms in semi-active control strategy for seismic protection of equipment. 15th world conference on earthquake engineering, Lisbon, Portugal, 24–28 September, pp 11–20

  • Salehi H, Taghikhany T, Fallah AY (2014) Seismic protection of vulnerable equipment with semi-active control by employing robust and clipped-optimal algorithms. Int J Civil Eng 12(4):413–428

    Google Scholar 

  • Salehi H, Das S, Chakrabartty S, Biswas S, Burgueno R (2015) Structural assessment and damage identification algorithms using binary data. ASME 2015 conference on smart materials, adaptive structures and intelligent systems, pp 1–10

  • Samui P (2008a) Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput Geotech 35(3):419–427

    Article  Google Scholar 

  • Samui P (2008b) Slope stability analysis: a support vector machine approach. Environ Geol 56(2):255–267

    Article  Google Scholar 

  • Sattari MT, Apaydin H, Ozturk F (2012) Flow estimations for the Sohu Stream using artificial neural networks. Environ Earth Sci 66(7):2031–2045

    Article  Google Scholar 

  • Searson DP (2009) GPTIPS: genetic programming and symbolic regression for MATLMATLAB. Manual Software. https://sites.google.com/site/gptips4matlab/

  • Searson DP, Willis MJ, Montague GA (2007) Co-evolution of nonlinear PLS model components. J Chemom 2:592–603

    Article  Google Scholar 

  • Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. In: Proceedings of the international multiconference of engineers and computer scientists, Hong Kong

  • Shahin M, Jaksa M (2005) Neural networks prediction of pullout capacity of marquee ground anchors. Comput Geotech 32(3):153–163

    Article  Google Scholar 

  • Singh A, Noor S (2012) Soil compression index prediction model for fine grained soils. Int J Innov Eng Technol 1(4):34–37

    Google Scholar 

  • Skempton AW (1944) Notes on the compressibility of clays. Q J Geol Soc Lond 100:119–135

    Article  Google Scholar 

  • Smith GN (1986) Probability and statistics in civil engineering. Collins, London

    Google Scholar 

  • Sower GB (1970) Introductory soil mechanics and foundation, 3rd edn. The Macmillan Company of Collier-Macmillan Ltd., London

    Google Scholar 

  • Tasdemir Y, Kolay E, Kayabali K (2013) Comparison of three artificial neural network approaches for estimating of slake durability index. Environ Earth Sci 68(1):23–31

    Article  Google Scholar 

  • Terzaghi K, Peck RB (1967) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • Tiwari BT, Ajmera B (2012) New correlation equations for compression index of remoulded clays. J Geotech Geoenviron Eng 138(6):757–762

    Article  Google Scholar 

  • Wroth CP, Wood DM (1978) The correlation of index properties with some basic engineering properties of soils. Can Geotech J 15:137–145

    Article  Google Scholar 

  • Wu X, Niu R, Ren F, Peng L (2013) Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China. Environ Earth Sci 70(3):1307–1318

    Article  Google Scholar 

  • Yilmaz I (2010a) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environ Earth Sci 60(3):505–519

    Article  Google Scholar 

  • Yilmaz I (2010b) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Bednarik M, Kaynar O, Fojtova L (2012) Neural computing models for prediction of permeability coefficient of coarse-grained soils. Neural Comput Appl 21(5):957–968

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Alavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh S, D., Bolouri Bazaz, J., Vafaee Jani Yazd, S.H. et al. Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming. Environ Earth Sci 75, 262 (2016). https://doi.org/10.1007/s12665-015-4889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4889-2

Keywords

Navigation