Skip to main content

Solving Complex Problems in Human Genetics Using Genetic Programming: The Importance of Theorist-Practitionercomputer Interaction

  • Chapter
Book cover Genetic Programming Theory and Practice V

Genetic programming (GP) shows great promise for solving complex problems in human genetics. Unfortunately, many of these methods are not accessible to biologists. This is partly due to the complexity of the algorithms that limit their ready adoption and integration into an analysis or modeling paradigm that might otherwise only use univariate statistical methods. This is also partly due to the lack of user-friendly, open-source, platform-independent, and freely-available software packages that are designed to be used by biologists for routine analysis. It is our objective to develop, distribute and support a comprehensive software package that puts powerful GP methods for genetic analysis in the hands of geneticists. It is our working hypothesis that the most effective use of such a software package would result from interactive analysis by both a biologist and a computer scientist (i.e. human—human—computer interaction). We present here the design and implementation of an open-source software package called Symbolic Modeler (SyMod) that seeks to facilitate geneticist—bioinformaticist—computer interactions for problem solving in human genetics. We present and discuss the results of an application of SyMod to real data and discuss the challenges associated with delivering a user-friendly GP-based software package to the genetics community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. 1998. Genetic Programming - An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco, CA, USA.

    MATH  Google Scholar 

  • Fogel, G.B. and Corne, D.W. (2003). Evolutionary Computation in Bioinformatics. Morgan Kaufmann Publishers.

    Google Scholar 

  • Freitas, Alex (2002). Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag.

    Google Scholar 

  • Goldberg, D. E. (2002). The Design of Innovation. Kluwer.

    Google Scholar 

  • Jakulin, A. and Bratko, I. 2003. Analyzing attribute interactions. Lecture Notes in Artificial Intelligence, 2838:229-240.

    Google Scholar 

  • Jin, Y. (2006). Multi-Objective Machine Learning. Springer.

    Google Scholar 

  • Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

    MATH  Google Scholar 

  • Koza, John R. 1994.Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge Massachusetts.

    MATH  Google Scholar 

  • Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999). Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman.

    Google Scholar 

  • Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Yu, Jessen, and Lanza, Guido (2003). Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

    Google Scholar 

  • Langdon, W. B. and Poli, Riccardo (2002). Foundations of Genetic Programming. Springer-Verlag.

    Google Scholar 

  • Langdon, William B. 1998. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming!, volume 1 of Genetic Programming. Kluwer, Boston.

    Google Scholar 

  • Langley, P. (2002). Lessons for the computational discovery of scientific knowledge. Proceedings of First International Workshop on Data Mining Lessons Learned, pages 9-12.

    Google Scholar 

  • Larra ñga, P. and Lozano, J.A. 2002. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Moore, J. H. (2007). Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In Knowledge Discovery and Data Mining: Challenges and Realities with Real World Data. IGI.

    Google Scholar 

  • Moore, J. H., Gilbert, J. C., Tsai, C.-T., Chiang, F. T., Holden, W., Barney, N., and White, B. C. 2006. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology, 24:252-261.

    Article  MathSciNet  Google Scholar 

  • Moore, J.H. 2003. Cross validation consistency for the assessment of genetic programming results in microarray studies. Lecture Notes in Computer Science, 2611:99-106.

    Article  Google Scholar 

  • Moore, J.H, Barney, N., Tsai, C.T, Chiang, F.T, Gui, J., and White, B.C 2007. Symbolic modeling of epistasis. Human Heridity, 63(2):120-133.

    Article  Google Scholar 

  • Moore, J.H. and Parker, J.S. 2001. Evolutionary computation in microarray data analysis. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Moore, J.H., Parker, J.S., and Hahn, L.W. 2001. Symbolic discriminant analysis for mining gene expression patterns. Lecture Notes in Artificial Intelligence, 2167:191-205.

    Google Scholar 

  • Moore, J.H, Parker, J.S., Olsen, N.J, and Aune, T. 2002. Symbolic discriminant analysis of microarray data in autoimmune disease. Genetic Epidemiology, 23:57-69.

    Article  Google Scholar 

  • Moore, J.H. and White, B.C. 2006a. Exploiting expert knowledge in genetic programming for genome-wide genetic analysis. Lecture Notes in Computer Science, 4193:969-977.

    Article  Google Scholar 

  • Moore, J.H. and White, B.C. (2006b). Genome-wide genetic analysis using genetic programming: The critical need for expert knowledge. Springer.

    Google Scholar 

  • O’Reilly, U.-M., Yu, T., Riolo, R., and Worzel, B. (Eds.) (2005). Genetic Programming: Theory And Practice. Springer.

    Google Scholar 

  • Reif, D.M, White, B.C., and Moore, J.H. 2004. Integrated analysis of genetic, genomic, and proteomic data. Expert Review of Proteomics, 1:67-75.

    Article  Google Scholar 

  • Reif, D.M, White, B.C., Olsen, N.J., Aune, T.A., and Moore, J.H. 2003. Complex function sets improve symbolic discriminant analysis of microarray data. Lecture Notes in Computer Science, 2724:2277-2287.

    Article  Google Scholar 

  • Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., and Moore, J. H. 2001. Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. American Journal of Human Genetics, 69:138-147.

    Article  Google Scholar 

  • Rowland, J.J. 2003. Model selection methodology in supervised learning with evolutionary computation. Biosystems, 72(1-2):187-196.

    Article  Google Scholar 

  • Sastry, K. and Goldberg, D. E. (2003). Probabilistic model building and competent genetic programming. Genetic Programming Theory and Practice.

    Google Scholar 

  • Schwartz, S.A., Weil, R.J., Thompson, R.C., Shyr, Y., and Moore, J.H. 2005. Proteomic-based prognosis of brain tumor patients using direct-tissue matrixassisted laser desorption ionization mass spectrometry. Cancer Research, 65:7674-7681.

    Google Scholar 

  • Tsai, C. T., Lai, L. P., Lin, J. L., Chiang, F. T., Hwang, J. J., Ritchie, M. D., Moore, J. H., Hsu, K. L., Tseng, C. D., Liau, C. S., and Tseng, Y. Z. 2004. Reninangiotensin system gene polymorphisms and atrial fibrillation. Circulation, 109:1640-6.

    Article  Google Scholar 

  • White, B. C., Gilbert, J. C., Reif, D. M., and Moore, J. H. (2005). A statistical comparison of grammatical evolution strategies in the domain of human genetics. Proceedings of the IEEE Congress on Evolutionary Computing, pages 676-682.

    Google Scholar 

  • Yu, T., Riolo, R., and Worzel, B. (Eds.) (2006). Genetic Programming Theory and Practice III. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moore, J.H., Barney, N., White, B.C. (2008). Solving Complex Problems in Human Genetics Using Genetic Programming: The Importance of Theorist-Practitionercomputer Interaction. In: Riolo, R., Soule, T., Worzel, B. (eds) Genetic Programming Theory and Practice V. Genetic and Evolutionary Computation Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76308-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76308-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76307-1

  • Online ISBN: 978-0-387-76308-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics