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Preface

Evolutionary computation involves the study of problem-solving and optimiza-
tion techniques inspired by principles of evolution and genetics. As any other
scientific field, its success relies on the continuity provided by new researchers
joining the field to help it progress. One of the most important sources for new
researchers is the next generation of PhD students that are actively studying
a topic relevant to this field. It is from this main observation the idea arose of
providing a platform exclusively for PhD students.

From the perspective of a PhD student, it is important to work on an exciting
topic that is of interest to other researchers in the field. Contact with these
researchers early in the study can help in guiding the course by focusing on what
other researchers deem important. Furthermore, those contacts are important for
the social network of the PhD student, which will become vital for choosing the
step following the PhD study.

We would like to stress that the work presented in the proceedings is not
that of regular papers. Instead it is a collection of works where each student has
described the project of his/her PhD thesis, and has outlined his/her achieve-
ments and goals of the PhD study. Moreover, a description is given of the desired
feedback.

This volume contains the proceedings of EvoPhD 2006, the First European
Graduate Student Workshop on Evolutionary Computation. It was held in Bu-
dapest, Hungary on 10–12 April 2006, as part of the EvoWorkshops 2006, which
again runs jointly with the 9th European Conference on Genetic Programming
and the 6th European Conference on Evolutionary Computation in Combinato-
rial Optimization.

We would like to acknowledge the work performed by the Program Commit-
tee, who has made sure, with a rigorous reviewing process, that this proceedings
contains scientific works of a high quality. This year, seven manuscripts were
submitted of which six were accepted for publication in the proceedings and,
subsequently their authors have presented their work at the workshop. Each
manuscript was reviewed independently by three reviewers, which gave insight-
ful comments on the work as presented, but also on the topic itself and the
proposed work and goals.

We are grateful to Franz Rothlauf for his moral support and helpful com-
ments. Last, but not least, we thank Jennifer Willies for her administration of
and efforts in both the conferences and the workshops, and especially for making
this proceedings available on paper here today.

March 2006 Mario Giacobini and Jano van Hemert
Program Chairs
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An Evolutionary Approach for Neural Model
Optimization

Antonia Azzini

Università degli Studi di Milano
Dipartimento di Tecnologie dell’Informazione

via Bramante 65, I-26013, Crema, Italy
azzini@dti.unimi.it

Abstract. Neuro-genetic systems are biologycally inspired computa-
tional models that use evolutionary algorithms (EAs) in conjunction
with neural networks (NNs) to solve problems. The PhD research work
presented in this paper describes an evolutionary approach to the joint
optimization of neural network structure and weights which can take
advantage of backpropagation as a specialized decoder. The approach is
successfully applied to a real-world engine fault diagnosis problem and
to a classification application of brain waves in the context of brain-
computer interfaces.

1 Introduction

The evolutionary approach that implements the conjunction of evolutionary al-
gorithms (EAs) with neural networks (NNs) is a more integrated way of designing
ANNs. Neuro-genetic systems have become a very important topic of study in
recent years since they allow all aspects of NN design to be taken into account
at once and do not require expert knowledge of the problem. Much research
has been undertaken on the combination of EAs and NNs. Through the use of
EAs, the problem of designing a NN is regarded as an optimization problem.
Some EAs have implemented search over the topology space, or a search for the
optimal learning parameters. Some others focus on weight optimization: these
can be regarded as alternative training algorithms, and in this case the evo-
lution of weights assumes that the architecture of the network must be static.
The main drawback using traditional gradient descent techniques such as back-
propagation (BP) [10], lies in the trapping in local minima. Usually, a gradient
descent algorithm is used to adapt the weights based on a comparison between
the desired and actual network response to a given input stimulus. All training
pairs, each consisting of input and desired output values, are forming a multi-
dimensional error surface, getting stuck in local minima when moving across a
rugged error surface. A common error surface has many local minima usually not
meeting the desired convergence criterion. For this reason, rather than adapt-
ing weights based on local improvement only, EAs evolve weights based on the
whole network fitness. Several works in this direction have been carried out by
Yang and colleagues in [12] and by Zalzala and colleagues in [8]. The design
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of an optimal NN architecture can be formulated as a search problem in the
architecture space, where each point represents an architecture. As pointed out
by Yao [13], given some performance (optimality) criteria, e.g., minimum error,
learning speed, lower complexity, etc., about architectures, the performance level
of all these forms a surface in the design space. Determining the optimal archi-
tecture design is equivalent to finding the highest point on this surface. Stanley
and Miikkulainen in [11] also presented a neuro evolutionary method through
augmenting topologies (NEAT). An interesting area of evolutionary NNs is the
simultaneous evolution of different aspects of a NN. One of the most important is
the combination of architecture and weight evolution, as presented in EPNet by
Yao et al [14], and in work presented by Leung and colleagues [6]. The advantage
of combining these two basic elements of a NN is that a completely functioning
network can be evolved without any intervention by an expert.

2 Research

In this research we outline an approach to the design of NNs based on EAs, whose
aim is both to find an optimal network architecture and to train the network
on a given data set. The approach is designed to be able to take advantage of
the backpropagation (BP) algorithm if that is possible and beneficial; however,
it can also do without it. The basic idea is to exploit the ability of the EA to
find a solution close enough to the global optimum, together with the ability of
the BP algorithm to finely tune a solution and reach the nearest local minimum.
This research was primed by an industrial application for the design of neural
engine controllers, with particular attention to reduced power consumption and
silicon area occupation. This application is described in Section 4. Then, another
real-world application, that considers brain wave signal processing, has been
successfully applied. In this case a classification algorithm in the analysis of
P300 Evoked Potential is considered. It is described in Section 6.

2.1 Future Plans and Study

Further work on this problem during PhD research will include an in-depth
study for parameters tuning and data set up, in order to improve the accuracy
of classification. Furthermore we will apply our approach to a financial problem,
related to financial market trends, currency exchange and industrial market. The
aim of this approach is to model the mutual relationship among several financial
instruments. For instance we are now investigating the relationship among the
Dow Jones Industrial Average and a number of other market indices, including
foreign exchange rates, market segments, and commodity prices. We are also
investigating novel crossover operators for ANNs. As indicated in [7] there has
been some debate in the literature about the opportunity of applying crossover
to ANN evolution, based on disruptive effects that it could make into neural
model. Our idea is to implement a kind of vertical crossover, defining a merge-
operator between the topologies and weights matrices of two parents in order to
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create the offspring. I am in the third and last year of the PhD curriculum in
Computer Science of the University of Milan. At the end of each year of PhD
course, all research works are taken into account and evaluated by an academic
commission in order to make a critical analysis of the work and to give a positive
outcome. I think that one of the major drawbacks of this research area is the
lack of open positions in Italian universities in this field. Therefore I have to take
into serious consideration the possibility of looking for a post-doctoral position
abroad.

3 The Neuro-Genetic Approach

A peculiar aspect of our approach is that we do not use BP as some genetic
operator, as is the case in some related work [2], the EA optimizes both the
topology and the weights of the networks; BP is optionally used to decode a
genotype into a phenotype NN. Accordingly, it is the genotype which undergoes
the genetic operators and which reproduces itself, whereas the phenotype is used
only for calculating the genotype’s fitness. Concerning the kind of neural nework
model, we restrict our attention to Multi-Layer Perceptrons (MLPs), a specific
subset of the feedforwards NNs with a layer of input neurons, a layer of one or
more output neurons and zero or more “hidden” (i.e., internal) layers of neurons
in between; neurons in a layer can take inputs from the previous layer only.

3.1 The Evolutionary Algorithm

A key objective of our work is the design and the evolution of a suitable NN
architecture. Some problem-specific parameters of the algorithm are the cost
α of a neuron and β of a synapsis used to establish a parsimony criterion for
the network architecture; a bp parameter, which enables the use of BP if set to
1, and other parameters like probability values used to define topology, weight
distribution and ad hoc genetic operators.

The overall evolutionary process can be described by the following pseudo-
code:

1. Initialize the population, either by generating new random individuals or by
loading a previously saved population.

2. Create for each genotype the corresponding MLP, and calculate its mean
square error (mse), its cost and its fitness values.

3. Save the best individual as the best-so-far individual.
4. While not termination condition do

(a) Apply genetic operators to each network.
(b) Decode each new genotype into the corresponding network.
(c) Compute the fitness value for each network.
(d) Save statistics.
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The initial population is seeded with random networks initialized with different
hidden layer sizes, using two exponential distributions to determine the number
of hidden layers and neurons for each individual, and a normal distribution to
determine the weights and bias values. For all weights matrices and bias we also
define matrices of variance, that will be applied in conjunction with evolution
strategies in order to perturb network weights and bias values. Variance matrices
will be initialized with matrices of all ones. In both cases, the maximum size and
number of the hidden layers is neither pre-determined, nor bounded, even though
the fitness function may penalize large networks.

3.2 Representation

Each individual is encoded in a structure that maintains basic information on the
net as illustrated in Table 1. The values of all these parameters are affected by

Table 1. Individual Encoding.

Element Description

l Lenght of the topology string, corresponding to the number
of layers.

topology String of integer values that represent the number of neurons
in each layer.

W(0) Weights matrix of the input layer neurons of the network.

Var(0) Variance matrix of the input layer neurons of the network.

W(i) Weights matrix for the ith layer, i = 1, . . . , l.

Var(i) Variance matrix for the ith layer, i = 1, . . . , l.

bij Bias of the jth neuron in the ith layer.

Varbij Variance of the bias of the jth neuron in the ith layer.

the genetic operators during evolution, in order to perform incremental (adding
hidden neurons or hidden layers) and decremental (pruning hidden neurons or
hidden layers) learning. Note that the use of the bp parameter defines two differ-
ent types of genetic encoding: if no BP-based network training is employed, we
have a direct encoding, in which the network structure is directly translated into
the corresponding phenotype; otherwise, we have an indirect encoding of net-
works, where the phenotype is obtained by the training of an initial (embryonic)
network using BP.

3.3 Fitness

We adopt the convention that a lower fitness means a better NN, mapping
directly to the objective function of our problem in a cost minimization problem.
Therefore, the fitness is proportional to the value of the mse and to the cost of
the considered network. It is defined as

f = λkc + (1− λ)mse, (1)
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where λ ∈ [0, 1] is a parameter which specifies the desired trade-off between
network cost and accuracy, k is a constant for scaling the cost and the mse of
the network to a comparable scale, and c is the overall cost of the considered
network, defined as

c = αNhn + βNsyn, (2)

where Nhn is the number of hidden neurons, and Nsyn is the number of synapses.
The mse depends on the Activation Function, that calculates all the output val-
ues for each single layer of the neural network. In this work we use the Sigmoid
Transfer Function. The rationale behind introducing a cost term in the objective
function is that we seek for networks which use a reasonable amount of resources
(neurons and synapses), which makes sense in particular when a hardware im-
plementation is envisaged. To be more precise, two fitness values are actually
calculated for each individual: the fitness f , used by the selection operator, and
a test fitness f̂ . Following the commonly accepted practice of machine learning,
in our approach, the problem data are partitioned into three sets:

– training set, used to train the network;
– test set, used to decide when to stop the training and avoid overfitting;
– validation set, used to test the generalization capabilities of a network.

It is important to stress that no thikness is given to these dataset definitions in
the literature. Now, f̂ is calculated according to Equation 1 by using the mse
over the test set. When BP is used, i.e., if bp = 1, f = f̂ ; otherwise (bp = 0),
f is calculated according to Equation 1 by using the mse over the training and
test sets together.

3.4 Genetic Operators

The genetic core of the algorithm is described by the following pseudo-code:

1. Select from the population (of size n) bn/2c individuals by truncation and
create a new population of size n with copies of the selected individuals.

2. For all individuals in the population:
(a) Perform crossover.
(b) Mutate the weights and the topology of the offspring.
(c) Train the resulting network using the training and test sets if bp = 1.
(d) Calculate f and f̂ .
(e) Save the individual with lowest f̂ as the best-so-far individual if the f̂

of the previously saved best-so-far individual is higher (worse).
3. Save statistics.

The selection strategy used by the algorithm is truncation: starting from a pop-
ulation of n individuals, the worst bn/2c (with respect to f) are eliminated.
The remaining individuals are duplicated in order to replace those eliminated.
Finally, the population is randomly permuted.

As indicated in [7] there has been some debate in the literature about the
opportunity of applying crossover to ANN evolution, based on disruptive effects
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that it could make into neural model. In this approach two ideas of crossover are
independently implemented: the first is a kind of single-point crossover with dif-
ferent cutting points; the second implements a kind of vertical crossover, defining
a merge-operator between the topologies and weight matrices of two parents in
order to create the offspring.

Single-Point Crossover : it is a kind of single-point crossover, where cutting
points are extracted for each parent, since the genotype lenght is variable. Fur-
thermore, the genotypes can be cut only in ‘meaningful’ places, i.e., only between
one layer and the next: this means that a new weight matrix has to be created to
connect the two layers at the crossover point in the offspring. These new weight
matrices are initialized from a normal distribution, while corresponding variance
matrices are setted to matrices of all ones. This kind of crossover is shown in
Figure 1.

Parent ‘a’ Parent ‘b’

iw

Input First Layer Second Layer Output

},{ jilw },{ jilw

Cut Point a

iw

Input First Layer Second Layer Output

},{ jilw },{ jilw

Cut Point b

Third Layer

},{ ji
lw

Offspring from ‘a’ and ‘b’

iw

Input First Layer Second Layer Output

},{ ji
lw

},{ ji
lw

Fig. 1. Single-Point Crossover Representation.

Vertical Crossover : the second type of crossover operator is a kind of ‘vertical’
crossover and it is implemented as shown in Figure 2. Once the new population
has been created by the selection operator, two individual are chosen for coupling
and their neural structures are compared. If there are some differences in the
topology length l, the hidden layer insertion mutation operator will be applied
to the shortest neural topology in order to obtain individuals with the same
number of layers. Then a new individual will be created, the child of the two
parents selected. The neural structure of the new individual is created by adding
the number of neurons in any hidden layer of each parent, excepted for input
and output layer (they are the same for each neural network). The new input-
weights matrix W(0) and the relative variance matrix Var(0) are respectively
obtained by appending the matrix of the second parent to the matrix of the
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Parent ‘a’ Parent ‘b’

iw

Input First Layer Second Layer Output

},{ jilw },{ jilw
iw

Input First Layer Second Layer Output

},{ jilw },{ jilw

"
lw

(a)
1,1 lw

(a)
1,2

lw
(a)
2,1 lw

(a)
2,2

# h
lw

(b)
1,1 lw

(b)
1,2

i
Offspring from ‘a’ and ‘b’

iw

Input First Layer Second Layer Output

},{ ji
lw

},{ ji
lw

264 lw
(a)
1,1 lw

(a)
1,2 0 0

lw
(a)
2,1 lw

(a)
2,2 0 0

0 0 lw
(b)
1,1 lw

(b)
1,2

375
Fig. 2. Merge-Crossover Representation.

first parent. Then, the new weight matrix W(i) and the corresponding variance
matrix Var(i) for each hidden layer of the new individual are respectively defined
as the block diagonal matrix of the matrix of the first parent and the matrix
of the second parent. Bias values and corresponding variance matrices of two
parents are concatenated in order to obatin the new values for the new biases bij

and variances Var(bij). All the weights of the inputs to the new output layer will
be set to the half of the corresponding weights in the parents. The rationale of
this choice is that, if both parents were ‘good’ networks, they would both supply
the appropriate input to the output layer; without halving it, the contribution
from the two subnetworks would add and yield an approximately double input
to the output layer. Therefore, halving the weights helps to make the operator
as little disruptive as possible.

Two types of mutation operators are used: a general random perturbation of
weights, applied before the BP learning rule, and three mutation operators which
affect the network architecture. The weight mutation is applied first, followed
by the topology mutations, as follows:

1. Weight mutation: all the weight matrices W(i), i = 0, . . . , l and the biases
are perturbed by using variance matrices and evolutionary strategies applied
to the number of synapses of the entire neural network Nsyn. This mutation
is implemented by the following equation:



8

W
(i)
j ←W

(i)
j + N(0, 1) ·Var(i)j

Var(i)j ← Var(i)j · e
τ ′N(0,1)+τN(0,1)

with τ ′ = 1√
2Nsyn

and τ = 1q
2
√

Nsyn

.

After this perturbation has been applied, neurons whose contribution to the
network output is negligible are eliminated, basing on threshold. In this work
two different kinds of threshold are considered and alternatively applied to
the weight perturbation. The first is a fixed threshold, simply defining a ε pa-
rameter, setted before execution. The following pseudocode is implemented
in mutation operator by applying a comparison between that parameter and
all weight matrices values.

for i = 1 to l − 1 do
if Ni > 1

for j = 1 to Ni do
if ||W (i)

j || < ε

delete the jth neuron

where Ni is the number of neurons in the ith layer, and W
(i)
j is the jth

column of matrix W(i). This solution presents the drawback that the fixed
threshold value ε could be difficult to set for different real-world application.
A solution to this problem has been implemented in this approach by defining
a variable threshold. In this case the new threshold is defined, depending on
a norm (in this case L∞) of the weight vector for each node, and the relevant
average and standard deviation of the norms of the considered layer. This
task is carried out according to the following pseudo-code:

for i = 1 to l − 1 do
if Ni > 1

for j = 1 to Ni do
if ||W (i)

j || < (avgk(||W (i)
k ||)− r · stdevk(||W (i)

k ||))
delete the jth neuron

where Ni is the number of neurons in the ith layer, W
(i)
j is the jth column of

matrix W(i), and r is a parameter which allows the user to tune how many
standard deviations below the layer average the contribution of a neuron
must be before it is deleted. In this solution the settings of r parameter is
only for tuning standard deviation and corresponding variances are not so
invasive in mutation.

2. Topology mutations: these operators affect the network structure (i.e., the
number of neurons in each layer and the number of hidden layers). In par-
ticular, three mutations can occur:
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(a) Insertion of one hidden layer: with probability p+
layer, a hidden layer i is

randomly selected and a new hidden layer i − 1 with the same number
of neurons is inserted before it, with W(i−1) = I(Ni) and bi−1,j = bij ,
with j = 1, . . . , Ni = Ni−1, where I(Ni) is the Ni ×Ni identity matrix.

(b) Deletion of one hidden layer: with probability p−layer, a hidden layer i
is randomly selected; if the network has at least two layers and layer i
has exactly one neuron, layer i is removed and the connections between
the (i− 1)th layer and the (i + 1)th layer (to become the ith layer) are
rewired as follows:

W′(i−1) ←W′(i−1) ·W′(i).

Since W(i−1) is a row vector and W(i) is a column vector, the result of
the product of their transposes is a Ni+1 ×Ni−1 matrix.

(c) Insertion of a neuron: with probability p+neuron, the jth neuron in the
hidden layer i is randomly selected for duplication. A copy of it is inserted
into the same layer i as the (Ni + 1)th neuron; the weight matrices are
then updated as follows:
i. a new row is appended to W(i−1), which is a copy of jth row of

W(i−1);
ii. a new column W

(i)
Ni+1 is appended to W(i) where W

(i)
j ← 1

2W
(i)
j and

W
(i)
Ni+1 ←W

(i)
j .

The rationale for halving the output weights from both the jth neuron
and its copy is that, by doing so, the overall network behavior remains
unchanged, i.e., this kind of mutation is neutral.

All three topology mutation operators are designed so as to minimize their im-
pact on the behavior of the network; in other words, they are designed to be as
little disruptive (and as much neutral) as possible. Table 2 lists all the parame-
ters of the algorithm, and specifies the default values that they assume in this
work.

4 Fault-Diagnosis Application

Every industrial application requires a suitable monitoring system for its pro-
cesses in order to identify any decrease in efficiency and any loss. A generic
information from an electric power measurement system, which monitors the
power consumption of an electric component, can be usefully exploited for sen-
sorless monitoring of an AC motor drive, whose input terminals are the only
accessible points to it. The proposed approach involves the analysis of the signal
– the load current – through wavelet series decomposition. The decomposition
results in a set of coefficients, each carrying local time-frequency information.
An orthogonal basis function is chosen, thus avoiding redundancy of information
and allowing for easy computation. This problem has been already approached
with a neuro-fuzzy network, whose structure was defined a priori, trained with
BP.
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Table 2. Parameters of the Algorithm.

Symbol Meaning Default Value

n Population size 60

seed Previously saved population none

T Maximum time for simulation ∞
G Maximum number of generations ∞
bp Backpropagation selection 0/1

p+
layer Probability to insert a hidden layer 0.1

p−layer Probability to delete a hidden layer 0.1

p+
neuron Probability to insert a neuron in a hidden layer 0.05

pcross Probability to crossover 0

r Parameter for use in weight mutation to decide neuron
elimination

1.5

h Mean for the exponential distribution 3

Nin Number of network inputs *

Nout Number of network outputs *

α Cost of single neuron 2

β Cost of single synapsis 4

λ Desired tradeoff between network cost and accuracy 0.5

k Constant for scaling cost and mse in the same range 10−5

*) depends on the problem.

5 Experiments and Results

In our approach, both the network structure (topology) and the weights have to
be determined through evolution at the same time. We have to look for networks
with 8 input attributes, corresponding to the wavelet coefficients for each level
of wavelet decomposition, and 1 output, which we shall interpret as an estimate
of the fault probability: zero thus means a fault is not expected at all, whereas
one is the certainty that a fault is about to occur. The data used for learning
have been obtained from a Virtual Test Bed (VTB) model simulator of a real
engine. Several settings of five parameters (namely, bp, the population size n,
and the three mutation probabilities relevant to structural mutation, p±layer and
p+
neuron) have been explored in order to assess the robustness of the approach and

to determine an optimal set-up: the results are summarized in Table 3. All runs
were allocated the same fixed amount of neural network executions, to allow
for a fair comparison between the cases with and without backpropagation. Ten
runs were executed for each setting, of which we report the average and standard
deviation for the best solutions found. A first comment can be made regarding
the size of the population. In most cases we observe that the solutions found
with a larger population are better than those found with a smaller population.
With bp = 1, 15 settings out of 27 give better results with n = 60, while with
bp = 0, 19 settings out of 27 give better results with the larger pupulation. In
addition, we observe that, for this problem, there is a clear tendency for the runs
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using backpropagation (bp = 1) to consistently obtain better quality solutions
(lower average fitness and smaller standard deviation).

Table 3. Experimental results for the engine fault diagnosis problem.

bp = 1 bp = 0

setting p+
layer p−layer p+

neuron n = 30 n = 60 n = 30 n = 60

avg stdev avg stdev avg stdev avg stdev
1 0.05 0.05 0.05 0.11114 0.0070719 0.106 0.0027268 0.14578 0.013878 0.13911 0.0086825
2 0.05 0.05 0.1 0.10676 0.003172 0.10606 0.0029861 0.1434 0.011187 0.13573 0.013579
3 0.05 0.05 0.2 0.10776 0.0066295 0.10513 0.0044829 0.13977 0.014003 0.13574 0.010239
4 0.05 0.1 0.05 0.10974 0.0076066 0.10339 0.0036281 0.14713 0.0095158 0.13559 0.011214
5 0.05 0.1 0.1 0.1079 0.0067423 0.10696 0.0050514 0.14877 0.010932 0.13759 0.014255
6 0.05 0.1 0.2 0.10595 0.0035799 0.10634 0.0058783 0.14321 0.0095505 0.1309 0.012189
7 0.05 0.2 0.05 0.10332 0.0051391 0.10423 0.0030827 0.14304 0.014855 0.13855 0.0089141
8 0.05 0.2 0.1 0.10723 0.0097194 0.10496 0.0050782 0.13495 0.015099 0.13655 0.0079848
9 0.05 0.2 0.2 0.10684 0.007072 0.1033 0.0031087 0.14613 0.010733 0.14165 0.013385
10 0.1 0.05 0.05 0.10637 0.0041459 0.10552 0.0031851 0.13939 0.013532 0.13473 0.0085242
11 0.1 0.05 0.1 0.10579 0.0050796 0.10322 0.0035797 0.13781 0.0094961 0.13991 0.012132
12 0.1 0.05 0.2 0.10635 0.0049606 0.10642 0.0042313 0.13692 0.017408 0.13143 0.012919
13 0.1 0.1 0.05 0.10592 0.0065002 0.10889 0.0038811 0.13348 0.009155 0.1363 0.013102
14 0.1 0.1 0.1 0.10814 0.0064667 0.10719 0.0054168 0.13785 0.013465 0.13836 0.0094587
15 0.1 0.1 0.2 0.10851 0.0051502 0.11015 0.0055841 0.14076 0.01551 0.13994 0.011786
16 0.1 0.2 0.05 0.10267 0.005589 0.10318 0.0085395 0.1396 0.0098416 0.13719 0.016372
17 0.1 0.2 0.1 0.10644 0.0045312 0.10431 0.0041649 0.13597 0.012948 0.14091 0.014344
18 0.1 0.2 0.2 0.10428 0.004367 0.10613 0.0052063 0.14049 0.013535 0.13665 0.011426
19 0.2 0.05 0.05 0.10985 0.0059448 0.10757 0.0045103 0.13486 0.0079435 0.14068 0.013874
20 0.2 0.05 0.1 0.10593 0.0048254 0.10643 0.0056578 0.13536 0.0112 0.12998 0.013489
21 0.2 0.05 0.2 0.10714 0.0043861 0.10884 0.0049295 0.13328 0.0087402 0.1314 0.0088282
22 0.2 0.1 0.05 0.10441 0.0051143 0.10789 0.0046945 0.13693 0.0096481 0.13456 0.012431
23 0.2 0.1 0.1 0.1035 0.0030094 0.1083 0.0031669 0.13771 0.015971 0.13939 0.0092643
24 0.2 0.1 0.2 0.10722 0.0048851 0.1069 0.0050953 0.13204 0.010325 0.1378 0.01028
25 0.2 0.2 0.05 0.10285 0.0039064 0.1079 0.0045474 0.14062 0.012129 0.14005 0.011195
26 0.2 0.2 0.1 0.10785 0.008699 0.10768 0.0061734 0.14171 0.008802 0.13877 0.0094973
27 0.2 0.2 0.2 0.10694 0.0052523 0.10652 0.0050768 0.14216 0.015659 0.13965 0.015732

We can observe that there is a clear trend for the runs using backpropagation
(bp = 1) to consistently obtain better quality solutions (lower average fitness and
smaller standard deviation). In all cases, the relative standard deviation is suf-
ficiently small to guarantee finding a good solution in a few runs. A comparison
with the results obtained in [3] for a hand-crafted neuro-fuzzy network did not
reveal any significant difference. This is an extremely positive outcome, given
the expert time and effort spent in hand-crafting the neuro-fuzzy network, as
compared to the practically null effort required to set up our experiments. On
the other hand, the amount of required computing resources was substantially
greater with our approach.

6 Application to Brain-Wave Analysis

The second application consider a binary classification of brain waves in the con-
text of Brain Computer Interfaces (BCI). BCI represent a new communication



12

option for those suffering from neuromuscular impairment that prevents them
from using conventional input devices, such as mouses, keyboards, joysticks, etc.
This new approach has been developing quickly during the last few years, thanks
to the increase of computational power and the availability of new algorithms
for signal processing that can be used to analyze brain waves. BCI systems ap-
pear as a possible and sometimes unique mode of communication for people
with severe neuromuscular disorders like spinal cord injury or cerebral paraly-
sis. Exploiting the residual functions of the brain, may allow those patients to
communicate. The human brain has an intense chemical and electrical activity,
partially characterized by peculiar electrical patterns, which occur at specific
times and at well-localized brain sites. All of that is observable with a certain
level of repeatability under well-defined environmental conditions. These simple
physiological issues can lead to the development of new communication systems.

6.1 Problem Description

One of the most utilized electrical activities of the brain for BCI is the so-called
P300 Evoked Potential. This wave is a late-appearing component of an Event
Related Potential (ERP) which can be auditory, visual or somatosensory. It has
a latency of about 300 ms and is elicited by rare or significant stimuli, when
these are interspersed with frequent or routine stimuli. Its amplitude is strongly
related to the unpredictability of the stimulus: the more unexpected the stimulus,
the higher the amplitude. This particular wave has been used to make a subject
chose between different stimuli [5, 4]. The general idea of Donchin’s solution is
that the patient is able to generate this signal without any training. This is due
to the fact that the P300 is the brains response to an unexpected or surprising
event and is generated naturally. Donchin developed a BCI system able to detect
an elicited P300 by signal averaging techniques (to reduce the noise) and used
a specific method to speed up the overall performance. Donchin’s idea has been
adopted and further developed by Beverina and colleagues of ST Microelectronics
[1]. We have applied the neuro-genetic approach described in Section 3 to the
same dataset of P300 evoked potential used by Beverina and colleagues for their
approach on brain signal analysis based on support vector machines.

6.2 Experiments and Results

The dataset provided by Beverina and colleagues consists of 700 negative cases
and 295 positive cases. The feature are based on wavelets, morphological cri-
teria and power in different time windows, for a total of 78 real-valued input
attributes and 1 binary output attribute, indicating the class (positive or neg-
ative) of the relevant case. A positive case is one for which the response to the
stimulus is correct; a negative case is one for which the response is incorrect.
In order to create a balanced dataset of the same cardinality as the one used
by Beverina and colleagues, for each run of the evolutionary algorithm we ex-
tract 218 positive cases from the 295 positive cases of the original set, and 218
negative cases from the 700 negative cases of the original set, to create a 436
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training test
bp false positives false negatives false positives false negatives

avg stdev avg stdev avg stdev avg stdev

0 93.28 38.668 86.14 38.289 7.62 3.9817 7.39 3.9026

1 29.42 14.329 36.47 12.716 1.96 1.4697 2.07 1.4924

Table 4. Error rates of the best solutions found by the neuro-genetic approach with
and without the use of backpropagation, averaged over 100 runs.

case training dataset; for each run, we also create a 40 case test set by randomly
extracting 20 positive cases and 20 negative cases from the remainder of the
original dataset, so that there is no overlap between the training and the test
sets. This is the same protocol followed by Beverina and colleagues. For each run
of the evolutionary algorithm we allow up to 25,000 network evaluations (i.e.,
simulations of the network on the whole training set), including those performed
by the backpropagation algorithm. 100 runs of the neuro-genetic approach with
different parameters settings were executed with bp = 0 and bp = 1, i.e., both
without and with backpropagation.

Due to the way the training set and the test set are used, it is not surprising
that error rates on the test sets look better than error rates on the training sets.
That happens because, in the case of bp = 1, the performance of a network on the
test set is used to calculate its fitness, which is used by the evolutionary algorithm
to perform selection. Therefore, it is only networks whose performance on the test
set is better than average which are selected for reproduction. The best solution
has been found by the algorithm using backpropagation and is a multi-layer
perceptron with one hidden layer with 4 neurons, which gives 22 false positives
and 29 false negatives on the training set, while it commits no classification error
on the test set. However, the results obtained by the neuro-genetic approach
without any specific tuning of the parameters, appear promising in comparison
with results obtained by Beverina and colleagues with support vector machines
[9]. To provide a reference, the average number of false positives obtained by
Beverina and colleagues with support vector machines are 9.62 on the training
set and 3.26 on the test set, whereas the number of false negatives are 21.34 on
the training set and 4.45 on the test set [9].

7 Achievements and Feedback

We illustrated an evolutionary approach to the joint design of neural network
structure and weights which can take advantage of BP as a specialized decoder.
The results obtained on the fault diagnosis application compared well against
alternative approaches based on the conventional training of a predefined neuro-
fuzzy network with BP and they shown how the algorithm is somewhat robust
w.r.t. the setting of its parameters, i.e., its performance is little sensitive of the
fine tuning of the parameters. In the second application of Brain-Wave Analy-
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sis, the comparison with a mature approach, based on support vector machines
[1], shows that our approach has some potential, even though, unsurprisingly, it
does not attain the same levels of accuracy. An important issue still unresolved
regards the the efficiency and the robustness of this approach even when input
data are affected by uncertainty depending on errors introduced by some mea-
surement instrumentations. From this Doctoral Consortium I hope to obtain
valuable feedback about my research work, and suggestions for future direc-
tions. It could be interesting and useful to know what is the relevance of these
techniques in real problems with respect to other techniques and what could be
further improvements to this approach, with particular attention to genetic oper-
ators and parameter’s settings here implemented. I also expect to make contacts
with other researchers with similar interests in this field.
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Abstract. We study an extension of cellular automata to arbitrary in-
terconnection topologies for the majority and the synchronization prob-
lems. By using an evolutionary algorithm, we show that small-world type
network topologies consistently evolve from regular and random struc-
tures without being designed beforehand. These topologies have bet-
ter performance than regular lattice structures and are easier to evolve,
which could explain in part their ubiquity. Moreover, we show exper-
imentally these graph topologies are much more robust in the face of
random faults than lattice structures for these problems.

1 Introduction to the Research Area

In recent years there has been substantial research activity in the study of net-
works. These latter, which can be formally described by the tools of graph theory,
are a central model for the description of many phenomena of scientific, social
and technological interest. Typical examples include the Internet, the World
Wide Web, social acquaintances, electric power networks, neural networks, and
many others. The pioneering studies of Watts and Strogatz [18, 17] have been
instrumental in initiating the movement, and they have been followed by many
others in the subsequent years. Their key observation was that most real net-
works, both in the biological world as well as man-made structures, have math-
ematical properties that set them apart from regular lattices and from random
graphs, which were the two main topologies that had been studied until then. In
particular, they introduced the concept of small-world networks, in which most
pairs of vertices seem to be connected by a short path through the network. The
existence of short paths between any pair of nodes has been found in networks
as diverse as the Internet, airline routes, neural networks, metabolic networks,
among others. The presence of short paths is also a characteristic of random
graphs, but what sets these real networks apart is a larger clustering coefficient
than that of random graphs having a comparable number of nodes and links.
The clustering coefficient roughly represents the probability that two nodes that
are neighbors of a third one, are also neighbors of each other, which means that
there is more local structure in these networks than in plain random graphs.
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Another type of networks which also differs from both the regular and the ran-
dom ones, the scale-free graphs, is more typical of real-world networks; they are
fully described in [1], which is a very readable and complete account of modern
network theory.

The topological structure of a network has a marked influence on the pro-
cesses that may take place on it. Regular and random networks have been thor-
oughly studied from this point of view in many disciplines. In computer science,
for instance, variously connected networks of processors have been used in paral-
lel and distributed computing [9], while lattices and random networks of simple
automata have also received a great deal of attention [4, 7]. On the other hand,
due to their novelty, there are very few studies of the computational properties
of small-world networks. One notable exception is Watts’ book [17] in which
cellular automata (CAs) computation on small-world networks is examined in
detail. Another recent study for CAs on small worlds appears in [12]. However,
one important piece of the puzzle is missing in these works. How such networks
could arise in the first place? In the works cited above the graphs are generated
by a prescribed algorithm. In our opinion, the question of how these networks
could emerge in the fist place is an interesting yet unanswered one. In contrast,
for scale-free networks there exist several models that account for their genesis
[1], although all of them make some hypothesis as to how new nodes become
linked to existing ones. For example, preferential attachment posits that the
likelihood of connecting to a node depends on the node’s degree: high-degree
nodes are more likely to attract other nodes.

2 Research and Study

2.1 Goals

The work presented here is an appetizer to a more thorough study of the behavior
of CAs on different network topologies. The long term ambition is to simulate
and study real-world like interactions whilst keeping the advantages, flexibility
and simplicity of CAs. Namely mostly biological phenomena that take on more
complex network structures, such as protein-cell interactions.

The need to study the evolution and properties of complex networks of dy-
namical processes is rapidly becoming a key factor in order to be able to master
the complexity of social, biological, and technological systems. In this project
we will focus on metabolic networks as an important case study. Using networks
of cellular automata as a model, our aim is to develop tools that will allow us
to investigate the dynamical properties of such real networks. The analysis of
simulation data will be useful to forecast the behavior of such networks under
the influence of perturbations, such as those present in diseases and in the use
of pharmaceutical drugs. However, the models and the tools developed should
prove of more general value, since all these networks share a number of structural
properties which, in turn, influence their behavior.
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2.2 Current Status

Current studies are toy examples of more complex behavior. We have conducted
three main studies along the lines proposed in the introduction (Section 1) of
this document that follow from Watt’s past studies [17].

1. An attempt to find how and what kind of networks might come to be se-
lected consisted of letting an artificial evolutionary process find ”good” net-
work structures according to a predefined fitness measure, leaving the fine
details of the wiring to the evolutionary algorithm. We take as a prototypical
problem the majority classification problem which is the same that Watts
discusses in [17] as a useful first step. This will also allow us to compare the
products of artificial evolution with Watts’ results.

2. We have thoroughly studied the performance of the above described evolved
networks on both the majority classification and synchronization task and
compared to Watt’s and other’s work.

3. We have compared the robustness of our newly evolved structures to the
artificially evolved rules CAs in [10, 11], using the Hamming distance as a
measurement for the capacity of both to resist to random transient faults.

2.3 Future Planning

Future work include:

– A study of the co-evolution of the structure of our CAs and the nodes update
rules of our generalized CAs.

– A comparison of the results obtained on evolved Small-World networks
and different, better known, structures, notably hand-constructed Scale-Free
structures using the Barabási-Albert [1] model.

– Further down the road our work will drift towards biological networks as
more concrete study cases will be required. At that time, we hope to have
built a team around this project composed of both computer scientists and
biologists and try to make everyone proficient in both fields.

– On a more personal note, the ways I envisage the future are multiple. Having
had a business experience prior to my Ph.D. studies, I could see myself going
back to business in an R&D oriented company or department. On the other
hand, I am currently developing a strong taste for academic research and
depending on the results of this project and the opportunities ahead of me,
I might want to carry out more research on the subject or on related ones.
The important factor for me is to be able to relocate, move abroad in a
completely new and exciting environment.

2.4 Study

Ph.D. studies at the University of Lausanne are conducted over four years of
research plus a possible fifth one for the redaction and defense of the work.
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Starting in October 2005, an 18-month Bologne-like doctoral school has been
added to the beginning of the cursus. This goes along a study plan put together
by the student and his supervisor and include reading of articles, participation
to seminars, summer schools and courses and publications. I am currently in
my first year of the Ph.D. cursus. In addition to the academic part, all Ph.D.
students have a didactical workload as teaching assistants for their supervisor
and the classes they teach.

3 Results

3.1 Methodology

CAs are dynamical systems in which space and time are discrete. A standard
CA consists of an array of cells, each of which can be in one of a finite number
of possible states. Here we will only consider boolean automata for which the
cellular state s ∈ B = {0, 1}. The regular cellular array (lattice) is d-dimensional,
where d = 1, 2, 3 is used in practice. In one-dimensional lattices a cell is connected
to r local neighbors (cells) on either side, where r is referred to as the radius
(thus, each cell has 2r + 1 neighbors, including itself).

CAs are updated synchronously in discrete time steps, according to a local,
identical rule. The state of a cell at the next time step is determined by the
current states of a surrounding neighborhood of cells, including the cell itself:

st+1
i = f(st

i−r..., s
t
i, ...s

t
i+r), f : B2r+1 → B

where st
i denotes the value of site i at time t, f(.) represents the local transition

rule, r is the CA radius, and B is the binary alphabet. The term configuration
refers to an assignment of 1s and 0s to all the cells at a given time step. It can
be described by st = (st

0, s
t
1, . . . , st

N−1), where N is the lattice size. Often one-
dimensional CAs have periodic boundary conditions st

N+i = st
i. Configurations

evolve in time according to a global update rule Ψ which is the result of applying
f in parallel to all the cells st+1 = Ψ(st).

Here we will consider an extension of the concept of CA in which the rule
is the same on each node but nodes can be connected in any way, that is, the
topological structures are general graphs, provided the graph is connected and
self and multiple links are disallowed.

The majority task is a prototypical distributed computational task for CAs,
and can be contrasted with the well-studied tasks known as Byzantine agreement
and consensus in the distributed computing litterature. For a finite CA of size
N it is defined as follows. Let ρ0 be the fraction of 1s in the initial configuration
(IC) s0. The task is to determine whether ρ0 is greater than or less than 1/2.
If ρ0 > 1/2 then the CA must relax to a fixed-point configuration of all 1s;
otherwise it must relax to a fixed-point configuration of all 0s, after a number of
time steps of the order of the lattice size N (N is odd to avoid the case ρ0 = 0.5).
This computation is trivial for a computer having a central control. However, it
is nontrivial for a small radius one-dimensional CA since such a CA can only
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transfer information at finite speed relying on local information exclusively, while
density is a global property of the configuration of states [10].

It has been shown that the density task cannot be solved perfectly by a
uniform, two-state CA with finite radius [8], although a slightly modified version
of the task can be shown to admit perfect solution by such an automaton [2].

The performance P of a given rule on the majority task is defined as the frac-
tion of correct classifications over 104 randomly chosen ICs. The ICs are sampled
according to a binomial distribution. Clearly, this distribution is strongly peaked
around ρ0 = 1/2, thus making a difficult case for the CA to solve.

Watts [17] studied a general graph version of the density task. Since a CA rule
table depends on the number of neighbors, given that a small-world graph may
have vertices with different degrees, he considered the simpler problem of fixing
the rule and evaluating the performance of small-world graphs on the task. The
chosen rule is a variation of the majority rule: at each time step, each node will
assume the state of the majority of its neighbors in the graph. If the number of
neighbors having state 0 is equal to the number of those at 1, then the next state
is assigned at random with equal probability. When used in a one-dimensional
CA this rule has performance P ' 0 since it gives rise to stripes of 0s and 1s that
cannot mix at the borders. Watts, however, has shown that the performance can
be good on other network structures, where “long” links somewhat compensate
for the lack of information transmission of the regular lattice case, in spite of
the fact that the node degrees are still low. Indeed, Watts constructed with an
ad-hoc algorithm many networks with performance values P > 0.8, while the
Mitchell’s best rule-evolved lattices with the same average number of neighbors
had P around 0.77 [10] and were difficult to obtain.

In a remarkable paper [13], Sipper and Ruppin had already examined the
influence of different connectivity patterns on the density task. They studied the
co-evolution of network architectures and CA rules, resulting in non-uniform,
high-performance networks, while we are dealing with uniform CAs here. Since
those were pre-small world years, it is difficult to state what kind of graphs were
obtained. However, it was correctly recognized that reducing the average cellular
distance has a positive effect on the performance.

Following Watts [17], we will show our results as a function of the parameter
φ, which is the fraction of edges in a graph that are shortcuts. The range of
φ is [0, 1], where a value of 0 (no shortcuts) corresponds to a perfect regular
lattice, and 1 corresponds to the random graph limit (every link is a shortcut on
the average). In between lies the small-world range, with the typical small-world
behavior already present for low φ values (around 0.01-0.1). For higher φ values,
the graphs tend to be more random-like.

3.2 Experiments and Results

Artificial Evolution of Small Worlds Evolutionary algorithms have been
successfully used for more than ten years to evolve network topologies for ar-
tificial neural networks and several techniques are available [15]. As far as the
network topology is concerned, the present problem is similar, and we use an
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unsophisticated structured EA with the aim of evolving small-world networks
for the density and synchronization tasks. Our EA is spatially structured, as
this permits a steady diffusion of good solutions in the population due to a less
intense selection pressure [6]. The population is arranged on a 20×20 square grid
for a total of 400 individuals. Each individual represents a network topology and
it is coded as an array of integers denoting vertices, each one of which has a list
of the vertices it is connected to, as the graph is undirected. The automaton rule
is the generalized majority rule described above for all cases. The termination
condition is reached after computing exactly 100 generations.

The fitness of a network of automata in the population is calculated by ran-
domly choosing 100 out of the 2N possible initial configurations (ICs) with uni-
form density—i.e. any initial density has the same probability of being selected—
and then iterating the automaton on each IC until it converges to a stable state
but at mots for M = 2N time steps, where N = 149 is the automaton size. The
performance at the end of the evolutionary cycle is computed over 10’000 ICs
with a density around 0.5, thus the task difficult to solve. Figure 2 shows the per-
formance of the best individual (i.e. the individual with the highest performance)
of 50 independent evolutionary runs.

Selection is done locally using a central individual and its north, east, south
and west first neighbors in the grid. Binary tournament selection is used with
this pool. The winner is then mutated (see below) and evaluated. It replaces the
central individual if it has a better fitness.

Mutation is designed to operate on the network topology and works as fol-
lows. Each node of an individual is mutated with probability 0.5. If chosen, a
vertex (called target vertex) will have an edge either added or removed to a ran-
domly chosen vertex (called destination vertex) with probability 0.5. This will
only happen if all the requirements are met (minimum and maximum degree
are respected). If the source vertex has already reached its maximum degree
and should be added one edge or its minimum degree and should be removed
one edge, the mutation will not happen. If the same case happens with the tar-
get, another one is randomly chosen. This version of the algorithm does not use
recombination operators.

As starting point, we used populations of, on the one hand, slightly per-
turbed regular one-dimentional radius-two lattices (ring-based individuals) and,
on the other hand, random graphs (random-based individuals) with average de-
gree 〈k〉 ' 4. Having different initial population types reduces the chances of a
biased evolution towards small-world networks.

We see on Fgures 1 that, both in the case of ring-based and random based
evolved networks, fitness quickly reaches high levels, while performance, which
is a harder measure of the generalization capabilities of the evolved networks on
the density task, stays lower and then stabilizes at a level greater than 0.8 (See
results in Table 3). The population entropy remains high during all runs, meaning
that there is little diversity loss during evolution. Note that the entropy refers
to the “genotype” and not to fitness. This is unusual and probably due to the
spatial structure of the evolutionary algorithm, which only allows slow diffusion
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(a) (b)

Fig. 1. A typical evolutionary run starting from a perturbed ring population (a) and
from a random-based population (b). Graphs are of the evolutionary run of the best
individual on that run.

of good individuals through the grid [5]. The φ curve is particularly interesting
as it permits a direct comparison with Watts’ hand-constructed graphs [17].
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Fig. 2. The 50 best ring-based evolved networks and the 50 best random-based evolved
networks of all independent runs

The results fully confirm his measurements, with networks having best per-
formance clustering around φ values between 0.6 and 0.8. This is clearly seen in
figure 2 where the 50 best ring-based and the 50 best random-based networks of
independent evolutionary runs are reported as a function of their φ, which is to
be compared with figure 7.2, p.190, in [17]. The mean degree 〈k〉 of the evolved
networks is around 7, which compares well with the ring case and Watts’s (see
Table 3). Therefore, we see that even a simple EA is capable of consistently
evolving good performance networks in the small-world range. This is not the
case for the standard ring CAs for the majority task, where good rules are noto-
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riously difficult to evolve. In fact, while we consistently obtain networks having
performance around 0.8 in each evolutionary run, Mitchell et al. [10] found that
only a small fraction of the runs lead to high-performance CAs. As well, our
networks and Watts’ reach higher performance: 0.82 against 0.77 for the lat-
tice. Evidently, the original fitness landscape corresponding to the 2128 possible
ring CAs with radius three is much more difficult to search than the landscape
corresponding to all possible graphs with N vertices.

Ring-net 〈k〉 C L Φ P Rand-net 〈k〉 C L Φ P

A 7.906 0.053 2.649 0.654 0.823 A 7.798 – 2.695 0.664 0.821
B 7.611 0.053 2.703 0.670 0.820 B 7.543 – 2.736 0.585 0.812
C 7.409 0.048 2.750 0.685 0.813 C 7.355 – 2.729 0.686 0.800
D 7.342 0.049 2.736 0.669 0.807 D 7.422 0.062 2.736 0.631 0.798
E 7.450 0.057 2.730 0.679 0.807 E 6.778 – 2.858 0.748 0.797

Fig. 3. The ten best evolved networks. 〈k〉 is the mean node degree. C is the clustering
coefficient. L is the characteristic path length. φ is the percentage of shortcuts, and P is
the network performance on the density task. Left part: ring-based evolved individuals.
Right part: random-based evolved individuals (a – in random-based graphs means that
the clustering coefficient is not computable since those graphs are allowed to have
vertices with a degree smaller than 2).

Reducing the number of shortcuts In the case above, we feel that the value
of φ around 0.6 is too close to that of random networks. In order to evolve net-
works in the small-world region, we include a term in the fitness function which,
for a given network fitness, favors networks having a lower φ value. Obviously,
the most general way to solve the problem would be to use multi-objective opti-
mization. However, the simpler technique will prove sufficient for our exploration.
The new fitness function is thus:

f
′
= f + (1− φ)× w,

where f is the usual CA fitness, w is an empirical weight factor with w ∈ [0, 1],
and f

′
is the effective fitness. After experimenting with a few different w values,

we finally used w = 0.6 in the experiments described here, although the precise
w value only makes a small difference. At each generation a different set of ICs
is generated for each individual.

As depicted in Figure 4, we see that the introduction of a selection pres-
sure favoring networks with small φ values is effective in evolving graph-CAs
that show high performance. Starting from a population of perturbed rings or
random graphs does not make a big difference although, as expected, starting
from slightly perturbed rings, which have low φ, tends to favor slightly lower
φ values of the evolved networks. The φ values are around 0.3 (see Figure 4b).
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Fig. 4. Density task results. (a): φ and performance curves over generations for an
initial population of 50 perturbed rings and a population of 50 random graphs. (b):
φ vs. performance values of the 50 best individuals evolved in the 50 independent
evolutionary runs starting from rings and starting from random graphs, and compared
to Watts’ hand-constructed networks with 〈k〉 = 12.

The average degrees are 11.76 and 9.72 for ring-based and random graph-based
respectively. This compares favorably with Watts’ hand-constructed networks,
where one can see high-performance networks with φ around 0.3 but with ave-
rage degree 〈k〉 equal to 12. It is clear thus that, to some extent, having more
neighbors on the average compensates for the reduced number of shortcut links.

Fig. 5. Evolution of a typical run for both ring and random-based individuals. The
curves show performance vs. φ, each angle in the curves is a new generation.

Interestingly, Figure 5 contrasts the evolution of φ over the generations for
both individual kinds. In the case of the ring-based individual, we can see it be-
coming less organized, while the random-based one is becoming more so. Both
then join and cluster around a point of semi-organization and higher perfor-
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mance.

Task Flexibility of the Evolved Networks The one-dimensional synchro-
nization task was introduced in [3]. In this task the CA, given an arbitrary initial
configuration, must reach a final configuration, within M ' 2N time steps, that
oscillates between all 0s and all 1s on successive time steps. As with the density
task, synchronization also comprises a non-trivial computation for a small-radius
CA, and it is thus extremely difficult to come up with CA rules that, when ap-
plied synchronously to the whole lattice produce a stable attractor of oscillating
all 0s and all 1s configurations.

When changing the rule, networks evolved specifically for the density task
yield good performance when used for the synchronization task. As noted by
Watts [17], the two tasks are nearly identical and thus this finding is not sur-
prising. Furthermore, this remains true for the whole range of φ values for which
automata have been evolved or generated by hand.
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Fig. 6. Performance vs φ of networks evolved for the density task on both density and
synchronization. Ring-based (a) and random graph-based (b) networks.

For instance, Figure 6 shows how networks evolved for the density task us-
ing φ as a second objective (see previous section) are also well-suited for syn-
chronisation. The opposite is also true: namely, that networks evolved for the
synchronization task can be used for solving the density problem.

Robustness in Presence of Random Faults Noisy environments are the rule
in the real world. Since these automata networks are toy examples of distributed
computing systems, it is interesting and legitimate to ask questions about their
fault-tolerance aspects. A network of automata may fail in various ways when
random noise is allowed. For instance, the cells may fail temporarily or they may
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die altogether; links may be cut, or both things may happen. In this section, we
will compare the robustness of standard lattice-CAs and small-world CAs with
respect to a specific kind of perturbation, which we call probabilistic updating.
It is defined as follows: the CA rule may yield the incorrect output bit with
probability pf , and thus the probability of correct functioning will be (1 − pf ).
Futhermore, we assume that errors are uncorrelated. This implies that, for a
network with N vertices, the probability P (N,m) that m cells (vertices) are
faulty at any given time step t is given by

P (N,m) =
(

N

m

)
pf

m (1− pf )N−m

i.e. it is binomially distributed. It should be noted that we do not try to correct
or compensate for the errors, which is important in engineered system but very
complicated and outside our scope. Instead, we focus on the “natural” fault-
tolerance and self-recovering capabilities of the systems under study.
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Fig. 7. Hamming distance (normalized over 100) over 2 × N steps (298) vs. fault
probability (x-axis) of the topology-evolved networks (black line) and of Mitchell’s
rule-evolved ring CAs (grey line) for the density problem. The curves are averages over
103 distinct initial configurations.

To observe the effects of probabilistic updating on the CA dynamics, two ini-
tially identical copies of the system are maintained. One proceeds undisturbed
with pf = 0, while the second is submitted to a nonzero probability of fault. We
can then measure such things as Hamming distances between unperturbed con-
figurations and those subject to faults, which give information on the spreading of
damage (e.g., [14] where the case of synchronous, nonuniform CAs is examined).
Figure 7 shows that, for the density task, the amount of disorder is linearly
related to the fault probability. For each fault probability, each 50 individual
has been evaluated over 10’000 Initial Configurations (ICs). This is an excellent
result when compared with ring CAs where already at pf = 0.001 the average
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Hamming distance is about 20 [14], and tends to grow exponentially. At pf = 0.1
it saturates at about 95, while it is still only about 20 for the small-world CA.

(a) (b)

(c) (d)

Fig. 8. Typical behavior of a small-world CA over 2×N (298) time steps for the density
task under probabilistic updating. The first line represents the IC (1 is black and 0 is
white) and then each line is a time step, whit the state of each cell. The density ρ0 of
the Initial Configuration is 0.490 and the probabilities of fault pf in (a), (b), (c), and
(d) are, respectively, 0, 0.0001, 0.001, and 0.01.

This striking difference is perhaps more intuitively clear by looking at figures
8 and 9. The faulty CA depicted is figure 9 is the best one obtained by artificial
evolution in [10, 11] and it is called EvCA here. It is clear that even small amounts
of noise are able to perturb the lattice CA so much that either it classifies
the configuration incorrectly (c), or it cannot accomplish the task any longer
(d) as pf increases further. For the same amount of noise the behavior of the
small-world CA is much more robust and even for pf = 0.01 the fixed point
configuration is only slightly altered. Note also that the EvCA configuration has
ρ0 = 0.416 whereas the one used in the small-world CA has ρ0 = 0.490, and it
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(a) (b)

(c) (d)

Fig. 9. Typical behavior of EvCA [11] under probabilistic updating on the density
task. The density ρ0 is 0.416 and the probabilities of fault pf in (a), (b), (c), and (d)
are, respectively, 0, 0.0001, 0.001, and 0.01.

is thus more difficult to classify. For completeness, we note that in a previous
study [16] we investigated the behavior of evolved asynchronous lattice CAs for
the density task under probabilistic noise. We found that, while asynchronous
CAs are much more fault-tolerant than synchronous ones, their robustness is not
as good as that of small-world CAs and their performance is significantly lower.

Looking again at figure 7 we see that the behavior of the synchronization
task (dashed line) under noise is poorer. In fact, it is not possible to maintain
strict synchronization in the presence of faults. The system manages to limit
the damage for low fault probabilities but it goes completely out of phase over
pf = 0.2. For higher probabilities the distance stabilizes around 75 (i.e. half of
the cells on the average are in the wrong state). In spite of this, the behavior
is still much better that the one observed for ring CAs, where at pf = 0.01
the Hamming distance is already about 55 [14], while it is only about 8 in the
small-world CA.
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4 Achievements

Starting from the work of Watts on small-world automata for the density task,
we have used an evolutionary algorithm to evolve networks that have similar
computational capabilities. Without including any preconceived design issue,
the evolutionary algorithm has been consistently able to find high-performance
automata networks in the same class of those constructed by Watts. The power
of artificial evolution is seen in the fact that, even starting from a population of
completely random graphs, the algorithm finds automata in the same class. This
result is an indication that small-world network automata in this range have
above average distributed computation capabilities, although we only studied
one problem of this type. This is also in line with the results of recent research
which point to a pervasive presence of small-world and scale-free graphs in many
different domains. Finally we have studied the tolerance of such evolved networks
to transient probabilistic faults and showed these structures are highly resistant
to random faults thank to the presence of shortcuts. These results open perspec-
tive for future work. One immediate interesting subject will be to compare the
performances and tolerance to random transient faults of Scale-Free networks
built following the Barabási-Albert [1] model. The next step will probably be a
thorough study around the co-evolution of the network structure (as described
in this work) and of the rules of each node of the CA.

5 Feedback

What I expect from EvoPhD2006 go along three different lines. From a project
perspective, I would like to have a glimpse at what other groups/Ph.D. students
working in the field of evolutionary algorithms are producing and in which di-
rection is the whole field going. From an experience perspective, I would like to
have a first personal encounter with people who might be interested in, criticize,
compare, contrast, challenge or make evolve in any way my current and future
work and ideas. From a future perspective, I am hoping to meet possible collab-
orators and groups with which synergies of different kinds might be possible be
in on this project or on related/complementary ones in the years to come.
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Abstract. Is it possible to simulate socio-biological behaviours using
particle swarm systems? And if so, what should it be the best approach
to use? These are the questions which I would like to answer with my re-
search. Particle swarm systems have been originally developed to model
social behaviours. My research will therefore follow the initial socio-
biological metaphor underlying particle systems. The idea is to use a ge-
netic programming approach to automatically evolve the particle swarm
equations to model animal social behaviours. This research is intended
to be a first example of application of genetic programming and particle
swarm to simulate animal behaviours.

1 Introduction

Particle Swarm Optimisation (PSO) is an optimisation algorithm for nonlinear func-
tions which was discovered through the simulation of a simplified social (and cultural)
model called the particle swarm [12].

Bearing in mind the original context in which particle swarm systems have been
developed (i.e. modelling social behaviours), this research will follow the social and bio-
logical metaphor that constitutes the background for particle systems. It will therefore
be focused on:

1. analysing existing versions of particle swarm systems from a socio-biological point
of view,

2. studying possible integration with other methodologies in the context of the sim-
ulation of biological systems,

3. exploring new interactions among particles, among swarms, and among swarms
and the environment.

The main goal of the research will be using genetic programming (GP) to auto-
matically evolve the particle swarm equations to model simulations of animal social
behaviours. I will start modelling some simple behaviours, and then progressively add
complexity to them in order to match real data. This research is intended to be a first
example of application of genetic programming and particle swarm algorithms in the
simulation of animal behaviours. I hope, in the future, to be able to extend this ap-
proach to other socio-biological systems, to let genetic programming be a generic tool
for the simulation of these systems.

In the following part of this section (sec. 1.1), I present a short survey of the most
important PSO literature. In section 2 I describe the research questions I am trying
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to answer (sec. 2.1), what I have done so far (sec. 2.2), and what I will do until the
end of my study (sec. 2.3). Section 3 summarises some of the results I have previously
presented. I present my achievements in section 4.

1.1 Literature review

General PSO papers Particle Swarm Optimisation (PSO) is an algorithm for find-
ing optimal regions of complex search space through the interaction of individuals in a
population of particles. The concept is first presented in 1995 by Kennedy et al. [10].
The authors introduce a new methodology for optimising continuous nonlinear func-
tions based on the simulation of a simplified social model. The inspirational work for
Kennedy and Eberhart is a 1987 paper by Reynolds [22] (which in turn takes inspira-
tion from particle systems, first introduced in 1983 by Reeves [21]), in which the author
describes a new approach to model the aggregate motion of flocks of birds (or schools
of fish) in order to obtain a realistic computer animation. In 1998, Kennedy proposes
a simplified version of the algorithm [11] to better understand the trajectories of the
particles while they are looking for the solutions in the search space. In 1999, another
paper to study trajectories of particles is presented by Ozcan et al. [17]. The first gen-
eralisation of the model is proposed in 1998 by Shi et al. [23] with the introduction
of the inertia weight, a parameter used to control the impact of the previous history
of velocities on the current velocity, balancing between wide-ranging and nearby ex-
ploration (i.e. global and local search). Another generalised model of PSO including
methods to control the system’s convergence tendencies is introduced by Clerc et al.
in 2002 [4]). The authors introduce a new parameter to control the behaviour of the
particles called constriction coefficient.

Comparisons and hybrids Few papers have been proposed in the literature with
either comparison between PSO and other evolutionary computation paradigms or
hybrid PSOs based on ideas taken from other evolutionary algorithms:

– A 1998 paper by Eberhart et al. [8], which presents a comparison between PSO
and GA, highlighting the differences among the operators of each paradigms.

– A 1998 paper by Angeline [1], in which the author reviews the differences between
PSO and evolutionary optimisation from a more philosophical point of view.

– A 2001 paper by Løvbjerg et al. [15], where the authors present two hybrid models
of PSO based on ideas taken from genetics algorithms (GA). In particular, they
combine the particle swarm update rules for velocity and position with the concepts
of breeding and subpopulation.

– A 2005 paper by Holden et al. [9], in which is presented a solution to a classification
problem by taking the best characteristic from Ant Colony Optimisation (ACO)
(i.e its capacity to solve classification problems with categorical data), and from
PSO (i.e. its ability to solve optimisation problems with continuous values).

PSO extensions Several variations and extensions of the PSO have been made over
the years, with the aim of improving the performance of the algorithm:

– In 2002, Vesterstrøm et al. [25] present a version of the particle swarm algorithm
extended with the concept of division of labour (DoL) typical of biological systems
(e.g. social animals).
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– In 2002, Brits et al. [3] introduce the concept of niche in the PSO framework to
locate multiple optimal solutions in multimodal problems in parallel.

– In 2002, Silva et al. [24] take inspiration from the predator-prey model of biological
interaction.

– In 2002, Blackwell [2] introduces the idea of charged PSO, which are well suited to
solve dynamical search problems as inter-particle repulsion maintains population
diversity and good tracking can be achieved.

– In 2005, Poli et al. ([19]) present a new way to automatically generate the equations
of the forces driving the particles in the swarm. Variations of this idea have been
implemented, and will be discussed later in this document (see § 3).

2 Research and study

2.1 Goals

The particle swarm paradigm has been “invented” to model social behaviours. In my
research, I would like to focus on this socio-biological background, exploring it and
extending the definition of the particle swarm model in order to simulate biological
systems.

Is it possible to simulate biological systems (and model social behaviours, individ-
uals interactions, animal social organisation) using particle swarms?

One of the aspects of particle swarms I have been very interested about since I
started to work with them is the interaction among particles. I believe that, to
simulate animal behaviours, it is necessary to differentiate both the particles and
the interactions that occur among them. By differentiation, I mean introducing in
the particles some kind of diversity in order to be able to distinguish a particle with
certain specific characteristics and another particle with different characteristics.
For instance, among social animals, roles and specialisation exist, and in some
cases the social differences become so extreme (eusociality) that a reproductive
specialisation happens, with some individuals devoted to reproduction and others
sterile devoted to work and defence of the nest. Social differences among individuals
should be reflected in differences in interactions, i.e. interactions among individuals
in the same social class are different from interactions among individuals belong-
ing to different social groups (animal social organisation). Anyway, individuals in
different social groups are still part of the same swarm, i.e. a swarm can be made
up of one or more social groups of individuals (in this context, a swarm can be
seen as an animal species).

How many different types of interactions among individuals, social groups and
swarms can emerge?

A very preliminary (and possibly subject to variations) classification of the possible
typologies of interactions that can emerge is the following:
• among particles in the same social group
• among particles in different social groups within the same swarm
• among social classes
• among swarms
• between a social group and the environment
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• between a swarm and the environment
The next steps would be first studying each different type (level) of interaction
independently, and later gather them for an overall analysis of their effects.

What kind of interactions can occur?

Several types of interactions among animals within the same species (e.g.mating,
feeding) and among species (e.g. predation, mutualism) exist. Interaction between
a species and the environment in which the individuals live can be seen as a special
instance of the interaction among species, considering the environment as a species
itself (e.g. herbivore eating plants is a kind of predation, bees pollinating plants is
a form of mutualism). Different types of interactions will introduce some sort of
cooperation among individuals and co-evolution of species, and will also affect the
population size of each swarm. The first two aspects have already been considered
in the PSO theory, but again only from the point of view of optimisation. They will
now be studied from the point of view of social behaviours. The latter (changes in
swarm population size) has not been inspected too much even in the optimisation
context. Anyway, in my opinion, this is a crucial aspect in biological systems (birth
is also another particular type of interaction) that cannot be ignored.

What kind of approach should be used to model the simulation of socio-biological
systems?

The idea is to use a genetic programming approach as a tool to automatise the
process of simulating social behaviours in animals.

2.2 Current status

My research is part of the eXtended Particle Swarm (XPS) project1. The aim of this
multidisciplinary research project is to systematically explore the extension of particle
swarms by including strategies from a wide range of collective behaviours in biology,
by extending the physics of the particles, by generating an extensive set of engineering
problems and a flexible simulation engine, and by providing a solid theoretical and
mathematical basis for the understanding and problem-specific design of new parti-
cle swarm algorithms. My research will sit between the biological and the theoretical
streams, that are just two of the many disciplinary streams in which the project is
partitioned.

During the first six months of my research, my main activity has been reviewing
PSO literature in order to get a suitable background. After few weeks, I have also
started to develop my programming skill in the context of the PSO working on a paper
by Poli et al. ([19]), which represents an existing research topic in the XPS project.
First, I have extended the idea of using genetic programming to evolve particle swarm
forces by adding ingredients to the equations. I have then tested the performance of the
new model with different neighbourhood topologies and on pool of testing functions (I
will explain these works in detail in § 3). Thanks to this initial investigation, I have
been able to publish two papers. The first [20] was presented at the 2005 “Genetic and
Evolutionary Computation Conference (GECCO)”, whilst the second [7] was presented
at the 2005 “Workshop on Evolutionary Computation (GSICE)”, where it won an
award as Best Paper.

1 http://xps-swarm.essex.ac.uk
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In the following six months, I have improved my biological background with a
literature review on the subject ([14, 18, 16, 13]) and keeping in touch with members of
the biology stream of the XPS project. I have also worked on the initial design of the
model, and I am presently implementing the standard version of the particle swarm
algorithm in Java with the Mason simulation toolkit2.

2.3 Future planning

For the two remaining years, my research will be divided into two phases, during which
I will approach the same problem of simulating (social) animal behaviours (evolving
group behaviours in animals) following two paths, that can be considered one the
“natural” extension of the other.

Phase 1 In this first phase, I will use the GP has an automatic tool to evolve the
equations of a model of animal behaviour. These models’ performances will be com-
pared to those of the particle swarm and a model of animal aggregation proposed by
Couzin et al. ([5, 6]). In this phase, the key point will be the choice of the problem
(and the respective fitness function). I will let the GP find the model for three different
animal grouping scenarios, namely feeding, hunting and escaping predators. Each of
these three problems has a different difficulty to be analysed, in particular:

feeding - homogeneous swarm looking for multiple static resources
hunting - heterogeneous swarm (bold/shy) looking for (single) dynamic resources
escaping (predators) - multiple (prey/predator) homogeneous swarms

I will then compare the results obtained by the GP evolved models on those scenarios
with the results of the particle swarm algorithm and the biological inspired model on
the same problems. The fitness for the three scenarios can be evaluated on various
factors, e.g. amount of food eaten (feeding), catching the prey (hunting), staying alive
(escaping).
Outline:

1. Implement the particle swarm algorithm, the biologically inspired model and a
simple version of genetic programming in Java (with the Mason simulation toolkit).

2. Evolve simple animals behaviours (on each one of the three previously presented
scenarios), modifying the equations of the models with a genetic programming
approach.

3. Test the obtained extended models over real data.

Phase 2 On the second phase, I will again use a GP approach to evolve the strategies
that characterise animal grouping behaviours. In this phase of evolving the strategies,
it will be interesting to see if the GP is able to evolve a “social” behaviour without
having any “handcrafted information” about the fact the agents have to stay close
together (one of the three rules that describe a flocking behaviour). This way, a social
behaviour should emerge only thanks to certain conditions in the environment (i.e.
if the environment is such that is more advantageous to stay in group, then sociality
will emerge, otherwise the animals will stay isolated). The problems (scenarios) will be

2 http://cs.gmu.edu/˜eclab/projects/mason
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the same as before. Initially, the GP will evolve a strategy for each one of those, but
they will eventually be combined to create an unique multi-objectives scenario (this
will allow me to make experiments with multiple and heterogeneous swarms). The
fitness will be measured either as the number of time-steps needed to obtain the goal
(feed, mate, hunt, or survive) or as the survival of the population (in terms of number
of individuals surviving after having accomplished a task or after a fixed amount of
time).
Outline:

1. Initialise the population of agents with random strategies (i.e. different strategies
for different agents) and position them at random in the landscape (i.e. different
position in the space).

2. Let the agents (i) go for n time-steps and/or (ii) reach the target.
3. Evaluate the fitness as described in (i) Phase 1 and/or (ii) Phase 2.
4. Select the “best” agents (i.e. the agents with the fittest behaviour) and crossover

them to obtain the new population.

3 Results

3.1 Methodology

In this section, I describe the results obtained in previous works [20, 7]. These have
already been presented in other conferences and are based on [19]. In that paper, the
authors started exploring the possibility of evolving, through the use of GP, the force-
generating equations which control the particles:

ai = F (xi(t− 1), xsi , xpi , vi(t− 1)) (1)

where xi is the particle’s current location, xsi is the best point visited by the swarm,
xpi is the particle’s personal best, and vi is the particle’s velocity. In [19], the GP
evolved PSOs with good performances, in particular:

PSOG1 - F = (xsi − xi)− (viR)
PSOG3 - F = R1(xsi − xi)− 0.75R2R1xix

2
si
− 0.25R3R2R1xixsi

However, the exploration was limited by the use of the same ingredients present in the
original PSO model. In [20], we have independently verified the previous findings and
then extended the search by considering additional information about the global state
of the swarm:

ai = F (xi(t− 1), xsi , xpi , vi(t− 1), xci , d) (2)

where xci is the centre of mass of the swarm, and d is the dispersion of the swarm
around its centre of mass. These were believed to be very important so as to provide
a way of adapting the nature of the forces used depending on the current situation of
the swarm as a whole. We extended our work further in [7]. Here we considered other
new ingredients for the control law of the forces acting on the particles:

ai = F (xi(t− 1), xsi , xpi , vi(t− 1), vsi , xci , d, t) (3)

where vsi is the velocity for the best point visited by the members of the swarm, and
t is a time factor. These were believed to be important to allow the adaptation of
these forces to the current situation of the swarm: providing the particles with more
information about the overall state of the swarm, should allow more sophisticated
search behaviour.
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3.2 Results

In [20], experiments have been done with the settings summarised in the table 1. In [7],
the experiment settings changed according to the parameters in the equation of the
force governing the PSO. The new objective and terminal set are summarised in table 2.
All the other settings remained the same as before.

Table 1. GP’s parameter settings in [20]

Objective Evolve equation (2) over 10 random problems from the
City-block Sphere or Rastrigin function classes with di-
mensions N = 2 and N = 10, and values for the global
optima G = 1.0 and G = 2.0

Terminal set xi, xsi , xpi , vi, xci , d, −1.0, −0.5, 0.5, 1.0 and a random
number generator R which returns numbers uniformly
distributed within [−1, 1]

Function set +, −, × and the protected division DIV
Fitness cases 10 particles with random initial position (in the interval

[−5.0, 5.0]) and initial velocity null; 30 iterations on each
problem; for each problem, 5 runs with different initial
random positions for the 10 particles; velocity of particles
updated using Clerc’s update rule [4] with κ = 0.7 and
the components of the velocity vector constrained within
[−2.0, 2.0]

Fitness
P

x

P
i |xi − gi|, i.e. the sum of the distances between

each particle and the global optimum
Population size 1000 forces
Initialisation method Random
Simulation time 100 generations
Crossover probability 90% standard sub-tree crossover (with uniform random

selection of crossover points)
Mutation probability 10% point mutation with a 2% chance of mutation per

node
Initial program length 6 levels, the root being at level 0
Selection scheme Steady state binary tournaments for parent selection and

binary negative tournaments to decide who to remove
from the population

Termination criteria Automatically at generation 100

In order to evaluate the PSOs produced by GP, we compared them with a number
of both human-designed (e.g. standard PSO and random PSOR1) and previously
evolved update rules (e.g. PSOG1 and PSOG3; for a comprehensive set of results,
and the details of the testing settings, please refer to [19]).

For [20], we selected the set of testing problems from the City-block Sphere and
Rastrigin benchmark functions with dimension N = 2 and N = 10, and G = 1.0 and
G = 2.0:
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Table 2. GP’s parameter settings in [7]

Objective Evolve equation (3) over 10 random problems from the Sphere or
Rastrigin function classes with dimensions N = 2, and values for
the global optima G = 1.0

Terminal set xi, xsi , xpi , vi, vsi , xci , d, t, −1.0, −0.5, 0.5, 1.0 and a random
number generator R which returns numbers uniformly distributed
within [−1, 1]

City-block sphere - unimodal with global optimum at x = (g1, · · · , gN ), with f(x) =
0

f(x) =

NX
i=1

|xi − gi|

Rastrigin’s - multimodal with global optimum at x = (g1, · · · , gN ), with f(x) = 0,
and many local optima

f(x) = 10N +

NX
i=1

`
(xi − gi)

2 − 10 cos(2π(xi − gi))
´

Among the many new PSOs automatically created by GP, we present here only the
two best performing ones:

PSODIS2 - evolved on the two dimensional City-block Sphere functions with G = 2.0,
with only the dispersion as new added characteristic in the terminal set.

F = (xsi − xi) + (xpi − xi)− dxi

The evolved function is completely deterministic. Should the swarm collapse (in
which case the dispersion term d would be zero) then this rule would become the
standard (deterministic) PSO. Normally d is non-zero, so the third component
(dxi) tends to push the swarm towards the origin.

PSOCD1 - evolved on the two dimensional City-block Sphere functions with G = 1.0,
with both centre of mass of the swarm and dispersion in the terminal set.

F = (xsi − xi)−
R2

d
vi

The first term is the 100% social term, which tends to move the swarm closer to its

best point. The random friction term (R2

d
vi) is inversely proportional to swarm’s

dispersion d. So when the particles are close to each other the friction is higher than
it is when the swarm is more spread. This could mean that at the beginning the
search is more rapid while, when the particles get closer their movement becomes
slower.

Table 3 shows the mean over the 30 runs and the standard deviation of the nor-
malised distance between the best location found by each PSO and the global optimum.

For [7], we tested the evolved PSOs on a larger set of benchmark functions:
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Table 3. Normalised mean (and standard deviation) of the distance between the best
location found by each PSO and global optima of the City-block Sphere and Rastrigin
functions in [20]. Best results in bold

City-block Sphere Rastrigin

N = 2 N = 10 N = 2 N = 10
G = 1.0 G = 2.0 G = 1.0 G = 2.0 G = 1.0 G = 2.0 G = 1.0 G = 2.0

PSO 0.184 0.22 0.826 0.946 0.726 0.859 1.336 1.471
(0.248) (0.273) (0.579) (0.548) (0.322) (0.31) (0.47) (0.382)

PSOR1 0.003 0.003 0.279 0.315 0.638 0.687 1.332 1.402
(0.0005) (0.0005) (0.018) (0.029) (0.076) (0.09) (0.065) (0.06)

PSOG1 0.0005 0.002 0.455 0.554 0.89 1.058 1.293 1.389
(0.0005) (0.002) (0.02) (0.047) (0.101) (0.1) (0.063) (0.072)

PSOG3 0.009 0.043 0.183 0.456 0.307 0.556 0.578 0.943
(0.004) (0.025) (0.022) (0.101) (0.078) (0.152) (0.062) (0.119)

PSODIS2 0.003 0.009 0.262 0.545 0.326 0.642 0.562 0.943
(0.002) (0.004) (0.029) (0.094) (0.067) (0.144) (0.077) (0.121)

PSOCD1 0.0005 0.0005 0.283 0.353 0.717 0.745 1.326 1.405
(0.00) (0.00) (0.019) (0.036) (0.089) (0.108) (0.067) (0.082)

Generalised Ackley - multimodal with one global optimum at x = (g1, · · · , gN ),
with f(x) = 0, and many local optima.

f(x) = 20 + e− 20e−0.2
√

1
N

PN
i=1(xi−gi)2 − e

1
N

PN
i=1 cos(2π(xi−gi))

Griewangk - multimodal with one global optimum at x = (g1, · · · , gN ), with f(x) =
0, and many regularly distributed local optima.

f(x) = 1 +

NX
i=1

(xi − gi)
2

4000
−

NY
i=1

cos

„
xi − gi√

i

«
Generalised Rastrigin - see above

Rosenbrock - unimodal with one global optimum at x = (g1 + 1, · · · , gN + 1), with
f(x) = 0.

f(x) =

NX
i=1

(100((xi − gi)− (xi−1 − gi−1)
2)2 + (1− (xi−1 − gi−1))

2)

Sphere - unimodal with one global optimum at x = (g1, · · · , gN ), with f(x) = 0.

f(x) =

NX
i=1

(xi − gi)
2

We used problems of dimension N = 2, N = 10 and N = 30, and G = 1.0 and
G = 2.0. The best performing PSO was:
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PSOTIME - evolved on the Rastrigin function, with only time as new added charac-
teristic in the terminal set.

F = (t + 1)(xsit− xi)

This one as well is completely deterministic and 100% social. A qualitative ex-
planation of the behaviour of this PSO can be given by analysing how the force
changes as the time increases (i.e. the search progresses):
– at the beginning of the run (t = 0), all particles are attracted towards the area

where the optima typically are (around the origin);
– as the run progresses, the swarm best becomes progressively the attractor for

the particles. Eventually (t ' 1) and the bias towards the origin disappears.
Why has the GP evolved this particular force? Recalling the update rule modified
with the constriction factor [4], we can rewrite the equation as

vi(t) = κvi(t− 1) + κF

= vi(t− 1)− (1− κ)vi(t− 1) + κF

We can consider the second term −(1−κ)vi(t− 1) as friction, while the coefficient
multiplying F (the constriction factor, κ) can be interpreted as the inverse of
the mass of the particles. In all our experiments we compose our force generating
equations with this update rule (with κ = 0.7). So, the force is first scaled by κ and
then added to the friction component −(1− κ)vi(t− 1). Therefore, a time varying
scaling factor (1+t) has been evolved. This effectively means that at different times
the particles have different masses. At time t = 0, the mass is κ−1 ≈ 1.4. However,
as time progresses, first the effects of the constriction coefficient are completely
removed (at t = 0.5 the mass is 1

κ(1+t)
≈ 1) and then the mass is eventually

reduced to approximately 0.7 at t = 1.

For each of the five benchmark functions, table 4 summarises the best results ob-
tained in testing the newly evolved PSOs against the existing ones for dimensions
N = 2, N = 10 and N = 30. Again the table shows the normalised mean and standard
deviation over 30 runs of the distance between the swarm best and the global optimum.

4 Achievements and conclusions

The results obtained in the work I have done so far show that GP is able to evolve a
variety of PSOs that work as well as, or considerably better than, standard human-
designed ones. These work represent an important step within a new research trend:
using search algorithms to discover new search algorithms. Analysis of the evolved
programs has led to new insights in the design of PSOs tailored for specific classes
of landscapes. Our main contribution is to show that genetic programming can auto-
matically evolve better than human-designed PSOs in a few hours on a standard PC.
Adding extra information has confirmed our hypothesis that, if a particle has a greater
knowledge of the other individuals in the swarm, the whole swarm may perform better
in finding the optimum.

The good results obtained in my previous work and the robustness of the method
used, together with a personal interest in the socio-biological aspect of particle swarm
systems, inspired the next step of my research: apply the genetic programming approach
to simulate social behaviours in animals. This research is intended to be a first example
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Table 4. Normalised mean (and standard deviation) of the distance between the best
location found by each PSO and global optima for each test function in [7]. Best results
in bold

N = 2 N = 10 N = 30
G = 1.0 G = 2.0 G = 1.0 G = 2.0 G = 1.0 G = 2.0

Ackley PSOTIME 0.2420 0.3899 0.3843 0.4901 0.4755 0.5522
(0.0629) (0.1017) (0.0347) (0.0545) (0.0510) (0.0459)

Griewangk PSOG3 0.0170 0.2605 0.0685 0.1915 0.1299 0.2709
(0.0202) (0.2445) (0.0184) (0.0512) (0.0115) (0.0405)

PSOTIME 0.0598 0.2210 0.1212 0.2583 0.1543 0.3089
(0.0343) (0.1687) (0.0283) (0.0514) (0.0153) (0.0420)

Rastrigin PSOG3 0.0997 0.1536 0.1851 0.3056 0.1968 0.3357
(0.0235) (0.0488) (0.0179) (0.0414) (0.0139) (0.0235)

PSOTIME 0.1130 0.2145 0.1777 0.3171 0.1856 0.3370
(0.0512) (0.0947) (0.0291) (0.0428) (0.0146) (0.0276)

Rosenbrock PSOG3 0.2179 0.2233 0.0797 0.1896 0.1320 0.2806
(0.0430) (0.0856) (0.0200) (0.0453) (0.0122) (0.0269)

PSOTIME 0.1387 0.1931 0.1236 0.2599 0.1467 0.3172
(0.0582) (0.0992) (0.0288) (0.0535) (0.0158) (0.0330)

Sphere PSOG3 0.0036 0.0136 0.0615 0.1451 0.1191 0.2508
(0.0023) (0.0099) (0.0102) (0.0269) (0.0099) (0.0269)
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of application of genetic programming and particle swarm algorithms in the simulation
of animal behaviours. I hope, in the future, to be able to extend this approach to other
socio-biological systems, to let genetic programming be a generic tool for the simulation
of these systems.
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Appendix: Feedback

Of course, the first feedback I would like to have from the Doctoral Consortium is a
general comment on the topic I have chosen. How feasible do you think it is? How
relevant/interesting do you think is my idea for the scientific (EC, ALife, simulation)
community? Do you think it will still be interesting in a few years?

Something that I think it would be really useful is knowing who are the other
researchers working on the same (or related) topic, to become part of sub-community
(i.e. specialised). In fact, I believe that (any form of) collaboration between people is
the best way to understand a subject, having new ideas, and making great discoveries.

Last but not least, since English is not my first language, feedback on my writing
style would be highly appreciated.
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Abstract. Evolutionary algorithms are only superficially different and
can be unified within an axiomatic geometric framework by abstraction
of the solution representation. This framework describes the evolutionary
search in a representation-independent way, purely in geometric terms,
paving the road to a general theory of evolutionary algorithms. It also
leads to a principled design methodology for the crossover operator for
any solution representation.

1 Context of the research

Evolutionary Algorithms (EAs) are successful and widespread general problem solv-
ing methods that mimic in a simplified manner biological evolution. Whereas all EAs
share the same basic algorithmic structure, they differ in the solution representation -
the genotype - and in the search operators employed - mutation and crossover - that
are representation-specific. Is this difference only superficial? Is there a deeper unity
encompassing all mutation and crossover operators beyond the specific representation,
hence all EAs? So far, no one has been able to attack this question successfully and
has proposed a general mathematical framework that unifies search operators for all
solution representations.

In the research community there is a strong feeling that the EC field needs unifica-
tion and systematization in a rational framework to survive its own exceptional growth
(De Jong [4]). Beside De Jong, there are important researchers who have been promot-
ing EC unification: Radcliffe pioneered a unified theory of representations [11], although
he never used the word “unification”. Riccardo Poli unified the schema theorem for tra-
ditional genetic algorithms and genetic programming [3]. Chris Stephens suggests that
all evolutionary algorithms can be unified using the language of dynamical systems and
coarse graining [1]. Franz Rothlauf has initiated a theory of representations [12].

2 Research and study

2.1 Research questions and goals

My research questions are:

1. Possibility: Is the unification of evolutionary algorithms within a general mathe-
matical framework possible?

2. Utility: What are the advantages and consequences of the unification?
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The significance of the unification is not obvious a priori and resides in the impor-
tant consequences and insights brought about by seeing evolutionary algorithms from
a new and more general viewpoint. For this reason the focus of my research is both on
possibility and utility of unification.

My goals are: developing a formal framework for the unification, show that this
framework helps to rethink various familiar aspects of evolutionary algorithms simpli-
fying and clarifying their roles, show that the unification is possible and many preexist-
ing representations and operators fit the framework, show that the formal framework
can be used to do crossover principled design for any representation, show that the
framework forms a solid basis for a representation-independent theory that applies to
all evolutionary algorithms.

2.2 Current status: overview of the achievements

In this section, a short overview of the research achievements is reported. A sample of
the results that will appear in the thesis is reported in section 4. Most of this research
has been already published [5] [6] [8] [7] [9] or is about to be published.

1. Possibility of unification: mathematical unification is possible. Developed an ax-
iomatic geometric framework for unification. The definition of search operators is
axiomatic and intentionally does not involve the notion of representation: unifica-
tion by abstraction of the representation1.

2. Clarification and simplification: the change in perspective coming with unification
completely reverses the orthodoxy [2] clarifying and simplifying many fundamental
aspects of evolutionary algorithms. Clarified the consequences of this new perspec-
tive on fundamental notions: common search space for mutation and crossover,
problem-independent and representation-independent formal evolutionary algo-
rithm, simple fitness landscape of crossover, geometric format of problem knowl-
edge, role of the EA designer, duality of neighborhood search and representation-
based evolutionary search.

3. Interesting scope of unification: the significance of unification lies on how many in-
teresting cases it encompasses. Shown that many interesting pre-existing operators
for the most-used representations fit the requirements of the unification.

4. Crossover principled design: by reversing the abstraction and applying the ab-
stract definition of crossover to a distance firmly rooted in a specific representa-
tion one obtains a formal recipe to build new crossovers for any representation.
When the distance chosen as basis for the new crossover is meaningful in terms
of the problem addressed, the new operator is likely to perform well. This way of
doing crossover principled design is the representation dual of the neighborhood
search meta-heuristic path-relinking that suggests picking new solutions on a path
(not necessarily shortest) in the search space connecting parent solutions. Unlike
path-relinking that neglects altogether the underlying solution representation and
does not show how to actually generate offspring (that is left as “implementation
details”), geometric crossover tells exactly how to manipulate the syntax of the
solution representation to build offspring solutions. Various examples of crossover
design are given with good experimental results.

1 This does not mean I regard solution representation as an “implementation de-
tail” and unimportant. This means that the relationship between representation and
search operators, which is ultimately what is relevant to the search, can be expressed
in a geometric language that is representation-independent.
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5. Depth of the abstraction and general theory : the significance of an abstraction lies
on the kind of results that can be inferred using only the axioms the abstraction
is based upon; if only trivialities encompassing all evolutionary algorithms can be
inferred, the abstraction is not significant. The geometric abstraction is indeed
significant. (i) A fundamental result is that all evolutionary algorithms with any
solution representation and with search operators that fit the geometric frame-
work do the same search, convex search. This is a simple, deep and important
result arising from the geometric interpretation of mutation and crossover only.
(ii) Convexity plays a major role in the way evolutionary algorithms search the
space: the evolutionary search can be naturally recast from the point of view of the
underlying metric convexity associated with the search space. This allows show-
ing the correspondence of metric convex sets with inheritable genetic traits, and
generalize in a representation-independent way the notion of schema. Then, doing
coarse-graining of the equation of the evolutionary dynamics over the convex sets
one obtains a representation-independent schema theorem. The importance of this
result relies on the fact that it reconciles two fundamental notions that until now
were separated: the notion of inheritance and the notion of fitness landscape. Spec-
ifying the representation-independent definition of inheritable trait (schema) for
a distance rooted on a specific solution representation, one can reveal the syntac-
tic appearance of schemata for any representation. When applied to DNA strands
with edit distance, this can have important application in genetics to discover new
genes. (iii) Knowing how all evolutionary algorithms search the space is prelim-
inary to understand under what general condition on the fitness landscape they
perform well. Fitness distribution, correlation of the fitness landscape and per-
formance are studied together to show why positive correlation in the landscape
makes geometric crossover and geometric mutation perform better than random
search.

2.3 Future planning

From February to June 2006 focus on: writing-up the thesis. I have most of
the material in the form of draft/submitted/published papers. Background activities:
writing a journal paper, writing grant proposal and maybe submitting a paper to
PPSN.

Future after PhD: ideally, I would like to stay in academia, becoming a lecturer and
continuing this research.

2.4 Study

I am finishing my third year of PhD study. In theory, one could finish within 3 years;
in practice, it is more common to do 3 years of research and then doing the writing-up
and submitting the thesis the 4th year, the so-called completion year. Every 6 months
there is a board meeting in which a panel of academics evaluate the progress of PhD
students from the previous board meeting using a system with milestones and give
suggestions/feedback on the research and research plan.
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3 Methodology and thesis outline

3.1 Methodology: focus on unification

Unification is a delicate matter: besides proving that unification is possible in principle,
one has to explain the consequences of the new angle on a network of related concepts.
Plus, one has to go wide and show that many interesting cases are actually encom-
passed, but one also needs to go deep to show that the unification does capture some
fundamental aspects common to all evolutionary algorithms and not only trivialities
can be inferred for all evolutionary algorithms. Moreover one needs also to show that
unification is not only theory for its own sake but that has practical advantages too.
This all needed to be done within a time-window of a PhD study. To different extent
I think I managed to address all the previous points. Naturally, since a complete and
thorough unification is a monumental task, I focussed on particular topics that I felt
had the priority and showed that a particular important territory is encompassed by
the unification. By no means, I have exploited systematically each topic covered as
much as it would have deserved. Indeed, each topic would have taken a PhD to be
exhaustively addressed alone. Since the focus is the unification, for each topic I have
shown instead how the geometric framework reveals its connection with all the others
and this in turn had shed light on the specific topic itself.

3.2 Thesis outline

Title: Geometric unification of evolutionary algorithms
Thesis: Evolutionary algorithms are only superficially different and can be unified
within an axiomatic geometric framework by abstraction of the solution representa-
tion. This framework describes the evolutionary search in a representation-independent
way, purely in geometric terms, paving the road to a general theory of evolutionary
algorithms. It also leads to a principled design methodology for the crossover operator
for any solution representation.

1 Introduction

2 Geometric framework

2.1 Geometric preliminaries

2.2 Search operators definition

2.3 Change in perspective

2.3.1 Formal evolutionary algorithm

2.3.2 Geometric fitness landscape

2.3.3 Problem knowledge

2.3.4 Representation/neighbourhood duality

3 Representation unification

3.1 Geometric unification by abstraction

3.2 Binary and multary strings

3.3 Real vectors

3.4 Permutations: simple, circular and with repetitions

3.5 Syntactic trees

3.6 Biological sequences

3.7 Structural representations

4 Crossover principled design

4.1 Geometric design principles
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4.2 N-queens problem

4.3 TSP

4.4 JSSP

4.5 Protein motif discovery

4.6 Sudoku

4.7 Graph partitioning

5 Representation-independent theory

5.1 Generality of the theory

5.2 Convex evolutionary search

5.3 Convexity, heredity and generalized schema theorem

5.4 Fitness distribution, correlated landscape and performance

6 Future work

6.1 More unification

6.2 Establish crossover principled design

6.3 Developing the general theory

6.4 Computational perspective on biological evolution

4 Results

In this section I report a sample of the results that will appear in the thesis. Section
4.1 introduces the representation-independent definition of geometric crossover and
describes how crossover connects with fitness landscape. The merit of the geometric
framework here is that it simplifies enormously this connection: unlike the established
paradigm [2] the geometric interpretation of crossover in the landscape is simple and
intuitive. Section 4.2 shows that a number of recombination operators for 5 important
representations are actually specific instances of geometric crossover. Section 4.3 gives
an example of crossover principled design for the TSP problem. Experimental results
(not reported) show that this crossover performs extremely well. Finally, section 4.4
gives an example of a very general representation-independent theoretical result that
holds for all evolutionary algorithms using instances of geometric crossover.

4.1 Geometric framework

Geometric preliminaries The terms distance and metric denote any real valued
function that conforms to the axioms of identity, symmetry and triangular inequality.
A simple connected graph is naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length of a shortest path between
the nodes. Similarly, an edge-weighted graph with strictly positive weights is naturally
associated to a metric space via a weighted path metric.

In a metric space (S, d) a closed ball is the set of the form B(x; r) = {y ∈ S|d(x, y) ≤
r} where x ∈ S and r is a positive real number called the radius of the ball. A line
segment (or closed interval) is the set of the form [x; y] = {z ∈ S|d(x, z) + d(z, y) =
d(x, y)} where x, y ∈ S are called extremes of the segment. Metric ball and metric
segment generalize the familiar notions of ball and segment in the Euclidean space to
any metric space through distance redefinition. These generalized objects look quite
different under different metrics. Notice that a metric segment does not coincide to a
shortest path connecting its extremes (geodesic) as in an Euclidean space. In general,
there may be more than one geodesic connecting two extremes; the metric segment is
the union of all geodesics.
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We assign a structure to the solution set by endowing it with a notion of distance
d. M = (S, d) is therefore a solution space and L = (M, g) is the corresponding fitness
landscape (where g is the fitness function). Notice that d is arbitrary and need not
have any particular connection or affinity with the search problem at hand.

Geometric crossover definition The following definitions are representation-
independent therefore crossover is well-defined for any representation. It is only function
of the metric d associated with the search space being based on the notion of metric
segment.

Definition 1. (Image set) The image set Im[OP ] of a genetic operator OP is the set
of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover under
the metric d if all offspring are in the segment between its parents.

Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX is a
geometric crossover where all z laying between parents x and y have the same probability
of being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])

|[x; y]|
Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mutation have been derived.

Geometric crossover landscape Geometric operators are defined as functions of
the distance associated to the search space. However, the search space does not come
with the problem itself. The problem consists only of a fitness function to optimize,
that defines what a solution is and how to evaluate it, but it does not give any structure
on the solution set. The act of putting a structure over the solution set is part of the
search algorithm design and it is a designer’s choice. A fitness landscape is the fitness
function plus a structure over the solution space. So, for each problem, there is one
fitness function but as many fitness landscapes as the number of possible different
structures over the solution set. In principle, the designer could choose the structure to
assign to the solution set completely independently from the problem at hand. However,
because the search operators are defined over such a structure, doing so would make
them decoupled from the problem at hand, hence turning the search into something
very close to random search.

In order to avoid this one can exploit problem knowledge in the search. This can be
achieved by carefully designing the connectivity structure of the fitness landscape. For
example, one can study the objective function of the problem and select a neighborhood
structure that couples the distance between solutions and their fitness values. Once this
is done problem knowledge can be exploited by search operators to perform better than
random search, even if the search operators are problem-independent (as in the case
of geometric crossover and mutation).

Under which conditions is a landscape well-searchable by geometric operators? As
a rule of thumb, geometric mutation and geometric crossover work well on landscapes
where the closer pairs of solutions, the more correlated their fitness values. Of course
this is no surprise: the importance of landscape smoothness has been advocated in
many different context and has been confirmed in uncountable empirical studies with
many neighborhood search meta-heuristics [10].
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4.2 Representation unification

We consider the application of geometric crossover to five important representations:
real vectors, n-ary strings, permutations, variable-size sequences and syntactic trees.
The aim here is to give a portfolio of concrete examples of application of the theo-
retical ideas outlined before. We will see how geometric crossover unifies pre-existing
crossovers for different representations (real vectors, binary strings, permutations, syn-
tactic trees), how it casts new interpretations of pre-existing crossovers (crossover for
permutations are sorting algorithms), how it guides to the principled design and im-
plementation of new crossovers for new representations (variable-size sequences), how
it may connect artificial and biological evolution (variable-size sequences) and how it
helps to understand what is the search space and distance associated to a pre-existing
crossover operator (syntactic trees).

Real vectors Pre-existing crossover operators, both blending type crossovers and
discrete type recombinations fit the definition of geometric crossover naturally (see fig.
1). The extended version of blending crossovers does not fit the definition of geometric
crossover (for any distance).

Binary strings The Hamming scheme is the association scheme where the elements
are vectors of length d over some alphabet of size q. The Hamming distance of two
vectors is the number of coordinates where they differ. The Hamming graph H(d,q) is
the graph that describes the distance-1 relation in the Hamming scheme. It is the direct
product of d complete graphs of size q. For d = 2 one gets the qq grid, also known
as the lattice graph of order q. The Hamming graphs H(d,2) are the familiar hyper-
cubes associated with binary strings of size d. The search operators are implemented by
syntactic manipulation of strings equivalent to the geometric transformations required
by the search operators. A geodesic between two points is a shortest path between
two points. A shortest path in the edit distance graph is a minimal sequence of edit
moves that transforms the syntax of one parent to the syntax of the other. In the case
of binary string the edit move is bit-flip and in the case of multary strings the edit
move is a substitution. The uniform crossover for binary strings is equivalent to picking
any minimal sequence of bit-flip (that changes at most once one bit) that transforms
one parent string into the other and interrupt the transformation somewhere in the
middle. The one-point crossover (selecting one crossover point and swapping strings
tails) is equivalent to applying a macro edit-move equivalent to the application of a
specific minimal sequence of edit moves connecting the two parent strings interrupted
somewhere in the middle.

All traditional mask-based crossovers for binary and multary strings are geometric
under Hamming distance. See also fig. 2.

Permutations Pre-existing operators for permutations are sorting algorithms in
disguise because picking offspring on the shortest path based on edit distances for
permutations translates into picking offspring on a minimal sorting trajectories between
parent permutations (see fig. 3). For example, PMX is geometric under swap distance.

Syntactic trees The search space and distances associated with pre-existing genetic
operators for syntactic trees are little understood. Here, differently form the previous
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representations, we want to use the geometric definitions not to guide the design and
implementation of new operators for syntactic trees but rather we want to find the
distance, hence the search space, associated to pre-existing operators if any of such
distance exists. There are various notions of distance defined for GP trees. Distances
among GP trees are used to (1) maintain diversity in the population and (2) predict
performance (fitness-distance correlation). If the distance employed does not match the
operator used its use is meaningless. So far it has been difficult to show that a certain
distance matches a certain operator. Here we propose a new distance, the structural
hamming distance (SHD) (a variation of the well-known structural distance for trees),
that perfectly matches with Poli’s Homologous crossover. Fig.4 shows an example of
how SHD and hyperschema connect.

Koza’s crossover is not geometric: there is provably no distance for which it is a
geometric crossover. Poli’s homologous crossovers family (1-point crossover, uniform
crossover, homologous crossover, point mutation) is geometric under SHD.

Variable-length sequences Let us consider a recombination for variable-length
sequences that requires an inexact sequence alignment before applying the traditional
crossover on the alignment.

Parent1=AGCACACA

Parent2=ACACACTA

best inexact alignment by dynamic programming:

AGCA|CAC-A

A-CA|CACTA

Child1=AGCACACTA

Child2=ACACACA

This crossover and its generalization can be proven to be geometric under Levin-
shtein edit distance (insertion, deletion, substitution).

Does it have biological significance? Edit distance is a very meaningful distance to
compare DNA strands. The present model of crossover (based on perfect alignment)
cannot explain molecular evolution. Molecular evolution is tried to be explained by
mutation only or by unequal crossover (imperfect crossover). Two DNA strands before
crossover align on their contents to minimize the free-energy admitting gaps, com-
pressions and mismatch alignment (molecular annealing). Geometric crossover based
on edit-distance could be a better model of biological crossover in that model more
realistically the effect of molecular annealing and could explain molecular evolution.

4.3 Crossover principled design: TSP

We consider a solution as a tour of cities and, therefore, rather than being defined for
permutations geometric crossover is defined over circular permutations.

In the case of circular permutations, the block-reversal move is the notion of edit
distance that makes sense for TSP. In a single application to a tour, this does the
minimal change to the adjacency relation among elements in the permutation. This
move is the well-known 2-change move, and it is the basis for successful local search
algorithms for TSP . Figure 5 shows the possible offspring (the segment) between two
circular (parent) permutations under topological crossover.
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Analogously to the linear case, the circular permutations in the segment under
reversal distance are those laying in a minimal sorting trajectory from a parent circular
permutation to the other. Sorting circular permutations by reversals is NP-hard. So, the
topological crossover under this notion of distance cannot be implemented efficiently.

Sorting circular permutations by reversals is tightly connected with the problem of
sorting linear permutations by reversals. So all the algorithms developed for the latter
task can be used with minor modifications also for the former. Sorting linear permu-
tations by reversals is NP-hard too. However a number of approximation algorithms
(running in polynomial time) exist to solve this problem within a bounded error from
the optimum. This allows implementing efficiently approximate crossovers whose image
set is a super-set of that of the exact crossover. We have implemented this crossover
and found that it outperforms edge recombination that is known to be very good for
TSP.

4.4 Representation-independent theory: convex evolutionary search

Using the axioms of distance and the definition of geometric crossover we can prove a
main result: an evolutionary algorithm using geometric crossover with any probability
distribution, any kind of representation, any problem, any selection and replacement
mechanism, does the same search: convex search. Proof based on abstract convexity
(axiomatic geodesic convexity) and axiomatization of search process (abstract search
process). See Fig. 6 for an example of convex search in the intuitive case of Euclidean
space.

5 Achievements and future directions

Achievements: this work answers fully the research questions, now there is no doubt
about possibility and utility of unification, and explores the main research directions
the unification opens up discovering new territories that now are ready to be conquered.
For its own nature, a unification project can be evaluated only at the end when the
whole picture is laid down, since each block reinforces the significance of unification as
a unity only when put aside all the others. My hope is that the overall picture that
emerges looks like a harmonious balance between all aspects of the unification.

Future directions: there are three main roads to follow from here.

1. The road to principled design: the first one is to unify a design methodology merging
path-relinking and geometric crossover design.

2. The road to computational complexity : the second road is developing a theory which
aim is general computational complexity results for evolutionary algorithms.

3. The road to biological evolution: the third road is casting a computational perspec-
tive on biological evolution to understand why is able to do “intelligent design” so
effectively and efficiently without intelligence.

6 Feedback

Unification is a delicate matter: to deliver a meaningful unification, on one hand, many
different aspects needed to be explored in parallel without losing sight of the overall
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objective. On the other hand, every topic needed to be exploited up to a point for
which the consequences of unification on that particular direction were crystal clear.
This all needed to be done within a time-window of PhD study. To different extent I
think I managed to address all the important aspects of unification. However a question
remains: is the overall emerging picture a harmonious balance between all aspects?
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Fig. 1. Examples of balls and segments in Minkowsky spaces

Fig. 2. Examples of balls and segments in Hamming spaces
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Fig. 3. Examples of balls and segments in Cayley spaces

Fig. 4. Structural Hamming distance and hyper-schema
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Fig. 5. Example of topological crossover between two circular permutations.
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Fig. 6. Geometric crossover + selection = convex search.
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Abstract. Most metaheuristics try to find a good balance between ex-
ploitation and exploration to achieve their goals. The exploration ef-
ficiency is highly dependent on the cardinality and ruggedness of the
search space. A metaheuristic like the Simple Genetic Algorithm (SGA)
can suffer a lot when traversing very large landscapes, especially de-
ceptive ones. The approach proposed here improves the exploration of
the SGA through the use of behavioural information of the SGA itself.
Behavioural information on the SGA is obtained through a number of
competitive processes which we refer to as “observers”. The new meta-
heuristic we investigate, trains the observers for a specific time and then
decides which of them is the most suitable to solve the whole prob-
lem. Concretely, a second evolutionary stage has been added to evolve
observers for the SGA. These observers transform the cardinality and
ruggedness of the search space through a simplification of the genotype.
To test the proposed approach, we chose some difficult problems such as
the Hierarchical IF-and-only-iF (HIFF). We obtained very good results,
since we seriously improved the adaptive capacity of the SGA. Based on
the current results, we are encouraged to continue in this way.

1 Introduction of the research Area

The essential part of research about evolutionary algorithms and optimisation in gen-
eral is the discovery of mechanisms to improve the search. Many metaheuristics and
hybridisations are invented and compared on their capacity to traverse the search space.
Most metaheuristics try to find a good balance between exploitation and exploration
to achieve their goals [1]. The exploration efficiency is highly dependent on the size
and ruggedness of the search space. A metaheuristic like the Simple Genetic Algorithm
(SGA) can suffer a lot when traversing very large landscapes, especially deceptive ones
[2, 3]. Each metaheuristic proposes its own compromise on the balance between explo-
ration and exploitation. For a wide search space, the SGA spends most of the time
trying to discover a promising area in which to refine the search.

One approach when facing the problem of the space dimension is to discover some
clever ways to reduce it. The notion of Intrinsic Emergence (IE), which wa originally
inspired by the developments of Crutchfield and Mitchell, appears to be very helpful [4–
9]. According to them, a “functional device” supplies some mechanical and non-human
observations with added and profitable functionalities. Here an observer, by modifying
the coding of the solutions, helps te optimisation process in order to simplify and
reduce the search space. From a cognitive point of view, a human does not take into
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consideration all detail to perform a task, such as finding the shortest driving path for
a trip. He first concentrates on the global map and adopts a coarse level of observation
to then focus on the details to refine the path. In the same idea, our approach improves
the SGA through the use of high-level observers altering the whole process.

Fig. 1. The fitness score has to be minimised. (a) Results for experiment 3 (see [9] for
parameters setup). Mean fitness (over 50 simulations) is plotting with respect to CA
varieties. The first graph shows the results obtained after the GA, the GEA masking
phase (GEA1) and the complete GEA (GEA2). The second graph gives the differ-
ences between these 3 functions: GA-GEA1, GA-GEA2 and GEA1-GEA2. (b) Results
for experiment 4 (see [9] for parameters setup). Mean fitness (over 50 simulations) is
plotting with respect to CA varieties. The first graph shows the results obtained after
the GA, the GEA masking phase (GEA1) and the complete GEA (GEA2). The sec-
ond graph gives the differences between these 3 functions: GA-GEA1, GA-GEA2 and
GEA1-GEA2.

The papers [8, 9] give the main framework of our work in which we have illustrated
the utility of the IE. In this work, we have examined in more details the concept of
IE from an engineering point of view. We apply IE to the problem of finding a good
CA implementation of a binary adder. The space cardinality can reach 10200, making
it hard for a classical GA to find a global optimum in decent time. To solve it, a
classical GA was combined with another evolutionary process that looks for the best
mask improving the GA. Based on the IE, an original way to observe the CA search
space consists in masking some of the eight neighbours of all cells to be updated. The
search space is considerably reduced because the mask alters the way the GA looks at
the search space. In our framework, the mask and its effects are the functional device
and the GA is the assisted system: the IE is implemented by this symbiosis mechanism
which improves the classical GA exploration strategy. The improvements have been
shown experimentally by comparing a single GA and the proposed IE implementation,
the Genetic and Emergent Algorithm (GEA). The results obtained through several
experiment sets have confirmed expected improvements: a gain in time or in fitness for
all non-uniform cases (see Figure [1]). So, IE is a good way to reduce a search space
and boost the adaptive capacity.
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2 Your research and study

2.1 Goals

By design, metaheuristics are generic methods tackling a wide class of problems. Is
it possible to optimise metaheuristics in a generic way? This is the long term goal
of our research. Behind this goal we can determine more concrete questions like the
role of observation, the utility of emergence or the relative need of information in
a representation. Because we need a starting point, we focus first on Evolutionary
Algorithms (EA) and especially the SGA for its simplicity [10, 2, 3]. The main question
becomes: does SGA need the whole information contained in the chosen encoding to
work efficiently? Indeed, the level of information depends on the nature of the problem,
specially those of the hierarchical class. So, inspired by the IE concept, a macroscopic
observation offers a way to inform the SGA and helps it to work better. Finally, we can
summarise the goals through several questions. We order them by top down approach
and their priority. We also separate them in two main categories:

1. Applications and design:
– Does the addition of observers improve the performance of SGA?
– Can we use macro observation to collect useful information?
– Which level of details is needed to observe efficiently?
– How can we find good observers?
– Does this generic method help SGA to tackle harder problems and classical

combinatorial problems?
2. Fundaments and epistemology:

– How can we interpret their effect on the search space?
– Can we theoretically model these observers?
– Can emergence be useful?
– Can we apply the same approach to all metaheuristics?

2.2 Current Status

The work started from Bersini’s work about the IE from a engineering point of view.
The first idea has been fully completed by adding a second evolutionary stage leading to
a greater coherence with the IE concept. The current implementation allows to tackle
any SGA-compatible problem. Therefore, we have to test different class of problem
[11, 12]. After first publications [8, 9], it has been decided to test this new “meta-SGA”
on the H-IFF problem [13, 12]. This second version gave excellent results on the H-
IFF. The algorithm has been also tested on Royal Road functions [14, 15] and the
same efficiency was obtained. During the run of many experiments, we focus on the
meaning of observing the landscape and on the explanation of the mechanism for future
publication. With respect to our previous questions, we can already answer to some of
them:

1. Applications and design:
– Does the addition of observers improve the performance of SGA?

A way is proposed. It affects the accessible state in the landscape with respect
to an observer. The algorithm is a second stage over the SGA, a meta-SGA.
This proposed approach gives very good result on hard-GA problems such
as the HIFF problem. We still have to test it much more, particularly on
combinatorial problems like Travelling Salesman Problem (TSP).
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– Can we use macro observation to collect useful information?
The macro observation consists in an evaluation of the efficiency of the SGA.
We have experimentally found a function giving the best results. We need to
investigate much more this question.

– Which level of details is needed to observe efficiently?
A version of the algorithm has been designed to adapt this level of details.
This adaptation property of the observer must not be provided a priori.

– How can we find good observers?
The second stage uses a SGA to evolve the observers. It is more efficient than
random search.

– How can we interpret their effect on the search space?
The meaning of the observer is a directed sampling. We need to formalise this
meaning and give a theory background to the algorithm.

– Does this generic method help SGA to tackle harder problems and classical
combinatorial problems?
It gives good result on hard-GA problem such as HIFF problem or Royal Road
functions. We need to test it much more.

2. Fundaments and epistemology:

– Can we model theoretically those observers?
Those observers can be defined like operators in the Vose’s theory [3]. It is not
done at all for the moment.

– Can emergence be useful?
This approach is inspired by the IE. This concept seems exploitable in engi-
neering. That opens new perspectives to understand the role of emergence in
biological system. Our research strongthen the Cruchtfield and Mitchell’s idea.

– Can we apply the same approach to all metaheuristics?
Because this approach reduces the search space temporally, it might to applied
to other metaheuristics. This is not tested at all for the moment.

2.3 Future Planning

For the future, it is important to test the approach on a wide range of problems. This
way, we will be able to compare results obtained by the EA without IE and best known
algorithms, and to better understand the effect of our approach on the SGA and other
EAs, its dynamics and the parameters tuning. This milestone is very important to give
more credit to our work and also new ideas to improve its design. The second important
future step is the theoretical study of our approach with the Vose’s theory [3].

3 Results

3.1 Methodology

General approach Our algorithm offers a way to assist the exploration process of a
given metaheuristic. An observer defines how the metaheuristic can look at the search
space: it is like a clever lens used by the metaheuristic to explore the landscape. This
additional help includes two main steps (see Algorithm [1]): the efficiency evaluation E-

valuateMetaheuristicRunWithObserver(...) and the building BuildAnotherObser-

ver(...).
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Algorithm 1 Canonical Skeleton of the proposed approach
O(0)← BuildAnotherObserver()
t← 0
while termination conditions not met do

SO ← EvaluateMetaheuristicRunWithObserver(O(t)) {SO temporarily stores
the score of the Observer O(t)}
O(t + 1)← BuildAnotherObserver(O(t), SO)
t← t + 1

end while
return best solution found by observed metaheuristic {i.e. a solution of the treated
problem, not an observer}

The first step evaluates the quality of an observer: according to the solutions found,
the observer is rewarded as a function of its quality that it helps the metaheuristics to
obtain (EvaluateMetaheuristicRunWithObserver(...)) and the reward is stored in
a temporary variable SO. This evaluation is a function of the quality of the solutions
obtained when such an observer is applied. The way this quality is defined in the SGA
case is discussed below.

The second step builds a new lens i.e. a new observer O(t + 1) with respect to the
previous one O(t). The next observer construction is directed by the score SO (Build-
AnotherObserver(...)) and depends on the encoding and its effect in the problem
search space.

Optimisation of observers Clearly a second search process is engaged here but,
this time, in the space of the observers. Again, any search algorithm could be used
for improving the observer solutions. In a preliminary attempt to evolve Cellular Au-
tomata, the observers were generated in a random and unguided way [7]. In a suc-
cessive attempt, an evolutionary search was proposed and tested [8, 9]. Here we follow
this second evolutionary search in the space of the observers. It is an iterated process
to optimise the way the solutions are coded and therefore to improve the progres-
sion of the SGA [10, 2, 3] in this “observed” space (see Algorithm [3]). The termina-
tion criterion depends on the chosen search algorithm in the space of the observers.
The current implementation of this search is again based on a SGA (see Algorithm
[2]) transforming the whole algorithm as an intertwining of two evolutionary stages
(through Evaluate(...)). The Evaluate(...) function corresponds to the Evaluate-

MetaheuristicRunWithObserver(...) and the observer evaluation function is then
defined by [9]:

fobs(O(t)) =

q
fsol ×max(fsol) , (1)

where fsol is the average of the individual fitness over the population and max fsol is
the maximum of these fitness values. An observer should be as good as it allows a pop-
ulation of average good quality and an excellent best individual. And the Select(...),
ApplyReproductionOperators(...) and Replace(...) functions of the Algorithm [2]
compose the BuildAnotherObserver(...) from the Algorithm [1].

Encoding of the observer The observer aims at improving the SGA by altering
the landscape, hence the coding of the individuals. It aims at sampling the search
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Algorithm 2 Evolutionary Implementation of our meta-(metaheuristic)
Generate initial observer population O(0)
Generate initial solution population P (0)
t1 ← 0
while termination conditions not met do
Evaluate(O(t1), P (0)) {Defined in Algorithm [3]}
O′(t1)← Select(O(t1))
O′′(t1)← ApplyReproductionOperators(O′(t1))
O(t1 + 1)← Replace(O(t1), O

′′(t1))
t1 ← t1 + 1

end while
return best solution found in P with best found observer O

Algorithm 3 Evaluate(O: an Observer, P : a solution population) implemen-
tation for an EA

Q(0)← ObservePopulation(P, O)
t2 ← 0
while termination conditions not met do
Evaluate(Q(t2))
Q′(t2)← Select(Q(t2))
Q′′(t2)←
ApplyReproductionOperatorsWithObservation(Q′(t2), O)
Q(t2 + 1)← Replace(Q(t2), Q

′′(t2))
t2 ← t2 + 1

end while
return efficiency of observation and best solution, i.e. fobs(O)



65

space and restricting it to the most informative areas. When coding the individuals as
a chromosome, the observer effect is to structurally group the genes. In a group, all
genes are assigned with the same value (allele). The search space is projected onto a
hyperplane. The observer defines a function that maps a gene location onto a group
location. Each gene is assigned to a specific group. The genes are glued in groups of
gene even if they are not contiguous in the original representation. This assignment
and mapping functions partially reconstruct the encoding of the treated problem. The
function works as described in Algorithm [4] and [5]. The map(...) function computed
the boolean AND (noted by ∧) of a gene locus i and a given observer O, both encoded
as binary number. The BuildGroup(...) computes the genes group, i.e. the observer
effect on problem encoding. Theses functions compose the ObservePopulation(...)

from Algorithm [3]. Therefore, an observer is encoded in a bits string of length lO =
dlog2(lC)e and defines the number of group as 2N1 , where N1 is the number of bit 1
in the observer chromosome. In the case of an observer of N1 number of bits 1, the

reduction in size of the search space is from 2lC to 22N1
. Since N1 goes from 0 to lO,

depending on the observer, the size of the search space goes from 1 to lC . The greater
the number of 1 in the observer coding the less this observer reduces the precision of
the coding and consequently the size of the search space.

Algorithm 4 l = map(i, O)
i {a given binary number for a gene locus}
O {a given binary number for a given observer}
l← i ∧O {l is a binary number for the group locus}
return l

Algorithm 5 BuildGroup(C: a chromosome of length lC , O: an observer)
for all i such that 0 ≤ i ≤ lC do

l← map(i, O)
C(i) ∈ G(l)

end for

3.2 Experiment

Our algorithm is tested on the Shuffled Hierarchical IF-and-only-iF (HIFF) problem
which is a maximisation problem [13, 16]. HIFF is the canonical version of a specific
class of problems modelling the interdependency between building blocks [11, 16, 12].
This kind of problems are very interesting for different reasons. They are tools to better
understand the compositional and accretive mechanism of a SGA [16, 17]. They are also
representative of hierarchies that we could identify in natural dynamic system. And
HIFF is very difficult for the SGA, especially the shuffled version. It does not explore
efficiently the search space and loses itself in the “fractal” landscape of HIFF (see
Figure [2]): SGA does not succeed to traverse through multiple local optima efficiently
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[16]. Different specific algorithms have been designed to tackle HIFF problems like
SEAM [16, 17], Hierarchical-GA [12, 18] or Compact Genetic Codes [19].
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Fig. 2. The fitness landscape results from the recursive definition of modules and sub-
modules. (a) is the landscape for the 8-bits instance and (b) for the 16-bits one. They
give us a good idea of the landscape ruggedness and the number of local optima.

The tackled Shuffled HIFF (SHIFF) is lC = 128 bits long and generated according
to the Watson’s implementation1. This problem size gives a maximum fitness of 1024
for both optima, i.e. binary strings of only 1 or 0. Following what was explained before,
the observers are encoded by a bit string of length lO = dlog2(128)e = 7. We compare
our approach with two other algorithms: a single SGA and a SGA with randomly gener-
ated observers. The comparison is made through the following performance evaluation,
i.e. what best solution can be found following a given number of fitness function eval-
uations. This is the most logical way to compare SGA without and with the addition
of observers, both random and evolved.

3.3 Results

In this section, we experimentally answer to the following questions:

1. Does the addition of observers improve the performance of SGA?
2. Can we use macro observation to collect useful information?
3. Which level of details is needed to observe efficiently?
4. How can we find good observers?
5. Does this generic method help SGA to tackle harder problems and classical com-

binatorial problems?

We compare the basic SGA with RO-SGA (in this case the observers are randomly
generated) and EO-SGA (in this case the observers are being evolved by a second
SGA). The main criterion of interest when comparing algorithms is their scalability,
i.e. the impact of the problem size on the computation time. For difficult problems,
the cost in computation time is mainly determined by the evaluation of fitness values.
This is why progresses in the GA community often aim at reducing this number. We

1 The watson’s source code is available on http://www.cs.brandeis.edu/ richardw/hiff.html.
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SGA RO-SGA EO-SGA (set 1) EO-SGA (set 2)

psol {20, 200, 2000} {20, 50, 200} {1, 5, 10, 20} {20, 200, 2000}
gsol {5, 10} {1, 10, 100} {1, 2, 5} {5, 10}
pobs - {1} {1, 2, 5} {2, 5, 10}
gobs - {1, 2, 5} {1, 2, 5} {2, 5, 10}
max(nf ) psolgsol psolgsolgobs psolgsolpobsgobs

nf PcrossPmut max(nf ) ∼ max(nf ) P 2
crossP

2
mut max(nf )

s∗ Fig. [3] Fig. [4.b] Fig. [5.b] -

o∗ - Fig. [4.a] Fig. [5.a] -

1 - Fig. [6.b] Fig. [6.a] Fig. [6.a]

Table 1. Parameters sets for each algorithm (SGA, meta-SGA and random meta-
SGA): solution population psol, solution generations gsol, observer population pobs and
observer generations gobs. With respect to these parameters, we also calculate the max-
imum number of evaluations max(n) and its probabilistically weighted estimation n.
The crossover probability is Pcross = 0.7 and the mutation probability is Pmut = 1/128
(the best ones frome [16]). Both are used for each SGA. The bottom rows summarised
the content of the figure.

therefore measure the best solution fitness s∗, which is computed by fhiff (see [16]), as a
function of the number of evaluations of nf . The fitness of the best observer o∗, which is
evaluated by fobs (see Equation (1)), is also measured in order to investigate the second
question above. For each parameters set (to be described below), the obtained results
are summarised by drawing two statistics as a function of the number of evaluations:

– a measure of central tendency by the calculation of the median which is marked
by a small dark horizontal bar,

– and a measure of statistical dispersion by the calculation of the extrema, the first
and third quartiles which are represented by a candlestick.

These measures provide a fair comparison between the algorithms performances and
give answers to most of the questions raised above except the third one. This question
will be investigated later through the study of the average number of bits 1 in the best
observer chromosome. The more 1s we have, the more detailed is the observation. This
number provides some indications on the capacity of the algorithm to autonomously
tune the observation level, i.e. the information compression of the search space still
sufficient enough to efficiently travel it.

Each SGA uses the elitist heuristic and fitness proportion selection. Both the popu-
lations of the solutions and the observers are initialised in an uniformly distributed way.
The probabilities of crossover and mutation are respectively 0.7 and 1/128. For each
experiment, we run the algorithms 30 times on 50 different instances of SHIFF. The
SGA needs two parameters: the size of the solutions population psol and the maximum
number of generations gsol. The EO-SGA is composed of two intertwined evolution-
ary stages and needs two additional parameters: the size of the observers population
pobs and the maximum number of observer generations gobs. However, in the case of
the RO-SGA, only one more parameter is needed: the maximum number of random
generation of observer gobs. The used parameters sets are listed in Table [1].

As shown in [16], the SGA can not exceed a score around 400, even for higher
evaluation numbers. By adding some heuristics like “deterministic crowding diversity
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Fig. 3. Results for basic SGA. The statistical measurements of best obtained solution
score s∗ are plotted with respect to the number nf of fitness evaluations. The SGA
cannot exceed a score of around 300 to 400 even for higher evaluation numbers. By
adding some heuristics like “diversity maintenance”, Watson has experimentally shown
that the SGA is unable to escape from local optima and hardly reaches a score of around
700 [16].

maintenance”, Watson has experimentally shown that SGA is unable to escape from
local optima and hardly reaches a score around 700. We obtain similar results for the
basic SGA (see Figure [3]). The small results dispersion indicates how hard it is to
travel through the SHIFF fractal landscape for a basic SGA.
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Fig. 4. Results for RO-SGA. The statistical measurements of the best obtained ob-
server score o∗ (a) and of the best obtained solution score s∗ (b) are plotted in function
of the number nf of fitness evaluations.

The RO-SGA provides a wide score range (see Figure [4.b]). The observers are
randomly generated and they do not adapt their zoom properly. Due to the uniform
distribution, each observer resolution is generated with the same frequency. The ob-
server score o∗ provides information on how good the observed population is with
respect to fobs definition (see Figure [4.a]). For higher evaluation numbers, the median
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is bigger: SGA spends more time to explore the observer search space and increases
the chance to find a good one.
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Fig. 5. Results of EO-SGA (set 1). The statistical measurements of the best obtained
observer score o∗ (a) and of the best obtained solution score s∗ (b) are plotted in
function of the number nf of fitness evaluations. Beyond nf ∼ 500, the EO-SGA found
the maximum solution score with a very small dispersion, which is reduced to zero at
nf ∼ 103.

Beyond around 500 evaluations, the EO-SGA efficiently computes the maximum
solution score (see Figure [5.b] ). Around 1000 evaluations, no more dispersion is ob-
served (see Figure [5.b]). By examining the Figures [5.a] and [5.b], we notice that
the EO-SGA is capable of finding the maxima following 10 evaluations. The way the
observers evolve depends on their quality evaluated by the evaluation function fobs

given above (see Equation (1)). After 1000 evaluations, the EO-SGA finds an adequate
observer and the resulting observed population which contains the two optima. The
convergence of the dispersion of s∗ and o∗ seems to support the original intuition that
observer could really help the SGA to efficiently travel through the SHIFF rugged
landscape. Compared to the random version, we also show the utility of evolving the
observers as a function of how well they progress and how well they adapt to the search
space of the problem. So, we answered to the questions above apart the third one:

– Our EO-SGA drastically improves the basic SGA.
– The observer provides an adapted way to “observe” the landscape so as to better

traverse it. With observer, only useful information is retained to explore the SHIFF
search space.

– Our evaluation function fobs rightly determines the quality of an observer. The
evolution of the observers by means of this second SGA is an adequate and faster
way to find them.

– The whole algorithm seems indeed to be well adapted to hard combinatorial prob-
lems.

Several specific algorithms have been implemented to tackle hierarchical problems
such as de Jong’s HGA [12] or Watson’s SEAM [16, 17]. Is our algorithm a competitive
approach? We compared our algorithm performances with the HGA and SEAM ones
extracted from [18, 16]. Considering a 128-bits SHIFF, our EO-SGA is ten times faster
than HGA and one thousand times more efficient than SEAM:
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SEAM HGA meta-SGA

evaluations number nf ∼ 106 ∼ 5.104 ∼ 3.103

whole processing time - 30s 0.2s

Over 1000 different instances, the EO-SGA finds the two optima in at most 3000
iterations and run in 0.2s on average2. Why is SHIFF such an easy problem for EO-
SGA?

We propose an first explanation through the study of the mean of 1s of the best
found observer chromosome. If the observer is encoded by only 0s, the 128 bits, which
represent the solution chromosome, compose one single group. Only two solutions are
possible and the search space falls from 2128 down to 21. With one 1, the bits are dis-
tributed in two genes groups and only four candidate solutions are possible. Examining
the Figure [6.a], the best observers contain around 0.5 bit on average. The more time
the EO-SGA has, the better and coarser the observers are. Figure [6.b] shows that by
randomly generating the observers, the number of 1 N1 i.e. the precision of the ob-
server is equal to the mean over all uniformly distributed 7-bits string, 3.5 = 7/2. These
results explain why and how the SHIFF problem turns out to be such an easy one for
our approach. We also better understand the role of the precision of the observer, the
third question raised above.
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Fig. 6. Average of 1s in best observer chromosome. (a) For both parameter sets EO-
SGA. (b) For the the parameter set of RO-SGA.

4 Achievements

Starting from the IE [4–9], we have designed a new approach called EO-SGA. Its main
goal consists in improving the SGA exploration process. The principle is based on the
evolution of observers which alter the way the SGA looks at the landscape [8, 9]. This
alteration changes the encoding and reduces the search space to more informative sub-
sets. We have shown the benefits gained by experimenting our algorithm on the SHIFF
problem [13]. The results confirm the improve of the SGA and outperform specific

2 The computer is a 1GHz AMD processor. The SGA implementation is not especially
optimised. For instance, dynamic libraries are used.
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algorithm such as the Watson’s SEAM [16]. The added stage allow to find the best
hierarchical level, i.e. the highest, to understand the strong genetic interdependency.
So, provided theses observers, the SGA restricts its search at this level and quickly
finds the best solutions due to the collapse of the search space size.

There are still many studies to achieve the thesis. That could be summarised in
three main milestones: experiments, new designs, and theoretical study. New experi-
ments should tackle more realistic problems such as Traveling Salesman Problem. Thes
experiments will provide the necessary information to deeply understand our approach
and improve its design. For instance, new designs should incorporate the coevolution
of observers by allowing interaction among the population of solutions obtained by
each observer. Finally, observers could be taken as genetic operator like crossover and
mutation ones. We would try to provide a theoretical treatment of our EO-SGA. Some
issues are still largely opened such as the generalisation of the approach and how well
it extends to the machine learning framework in general and the whole family of meta-
heuristics.
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Abstract. This PhD project focuses on the usage of Evolutionary Com-
putation (EC) in expressive music performance research. We aim at
building a computational model that co-evolves agent performers and
agent listeners. Through these autonomous agents’ interactions in the
society, we are hoping to observe the emergence of shared repertoire of
expressive music performance, and ideally this has some similarity with
human performances. The work has been done is the first stage of this
PhD project, in which we have implemented a system that uses Genetic
Algorithm (GA) to evolve hierarchical time vs. amplitude matrices for
music interpretation. The fitness for the GA is decided by how well the
interpretation fits some rules associated with the piece’s structural char-
acteristics.

1 Introduction of the research area

The achievements and potential of two fields: (1) applying EC in studying musicologi-
cal problems, and (2) computational modelling of expressive music performance, have
inspired the idea of this PhD project. In this section, we will give an overview of the
main concerns and some important works in these two fields, which are the context of
this project’s design.

1.1 Application of Evolutionary Computation in exploring
musicological problems

There have been growing applications using Evolutionary Computation (EC) in music,
which can be categorized into three approaches : the engineering, the creative and the
musicological. [1] We here focus on the musicological approach, with which simulations
are run with built models to demonstrate some theories about the origin and evolution
of musical behaviours. It is the path this project follows.

Several facts inspire the musicological approach. The first perhaps, is the lacking of
prehistoric proof or enough historic records, without which we cannot deduce convinc-
ing theories about the origin and evolution of music. Second, with computer simulation,
it’s possible to run simulation of generations in very short time, and also to observe
certain factor’s effect in the evolution by controlling related parameters. Therefore,
evolutionary simulation provides the possibility to prove some hypothesis or theories
about musicological problems, and helps us to understand them better.
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Our system design has taken inspiration from two systems that have been using this
approach. The first is Peter Todd and Gregory Werner’s system that studies the evolu-
tion of musical tunes through coevolving artificial music critics and music composers in
a community. [2] And the second is Eduardo Miranda’s mimetic model, which managed
to evolve a shared repertoire of tunes through imitations of autonomous agents from
scratch. [3]

1.2 Computational modelling of expressive music performance

Music performances with proper expressions are defined as expressive music perfor-
mances. ”Proper expressions” is what makes music interesting and sound alive. These
’proper expressions’ contribute to highlight the music’s structure. Expressive music per-
formance attracts investigations from various perspectives, such as physical, acoustic,
physiological, psychological, social, artistic and so on. Among these studies, researchers
in computer music area mainly focus on computationally modelling of expressive music
performance, which is also the goal of this PhD project.

In the context of western tonal music, there is a commonly agreed notion that
expression is conveyed in a music performance by performer’s delicate deviations of
notated score. Therefore, expressive music performance research is the study of why,
where and how these deviations take place in expressive performances. Computational
modelling of expressive music performance has the aim of building a bridge that con-
nects the properties of a musical score and performance context with the physical
parameters in the performance (such as note’s timing, loudness, tempo, articulation
and so on). [4] A good model might be either able to practically produce expressive
performance, or predict what it is like in real performance. Of course we have to bear
in mind that those predictions cannot be expected to always fit the real performance,
because of the existence of various interpretations, which is true even when the same
performer plays the same piece for more than once.

The following are the main strategies used in modelling expressive performance,
and we will briefly introduce the most important published work for each of them.

– Analysis-by-measurement. Studies falling into this category are based on the analy-
sis of deviations measured in recorded human performance, and aims at recognizing
regularities in the deviation patterns and describing them by mathematical mod-
els. [5] The approaches used include statistical models and mathematical models,
[6] as well as neural network [7] and so on.

– Analysis-by-synthesis. This method normally starts with hypotheses from obser-
vations of real performance and uses them to synthesize performance. The most
important representative is the KTH rule system that has groups of comprehensive
performance rules. [8]

– Machine learning. In a noteworthy application of artificial intelligence, Gerhard
Widmer and his co-workers in Austria have been using machine learning and data
mining technique to have the computer to discover regularities in large amounts
of real performance data. This paradigm has the potential of discovering more
generalized principles and interesting rules. [9]

– Lastly, there is Manfred Clynes’ microstructure or pulse set theory which can be
categorized as model from intuition.Clynes proposed that there exists particular
timing and accentuation pattern (or to say microstructure) for specific composers.
Consequently the best way to interpret a composer’s music perhaps is to discover
and follow this pattern. [10] Clynes has quantified these microstructures using the
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concept of hierarchical ”pulse set”, which will be introduced in later section. We
employ the idea of hierarchical pulse set to represent performance profile in our
project.

As a summary, achievements in computational modelling of expressive performance
affirm the promise of this field, and meanwhile promote further research on related
topics. This PhD project is one of these attempts. At the same time, considering musical
performance is such a cultural phenomena and has strong social context, we feel it
would be feasible and interesting to use evolutionary simulation of agents’ interactions
within a community, for observing the emergence of shared expressive performance
repertoires.

2 Research and study

2.1 Research goal

In keeping with most of the modelling work described above, one of our research goals
is to build common performance principles for expressive music performance. In addi-
tion, with the belief that these common principles have been developed or evolved from
a much more dispersed and irregular status, and also emerged from social interactions
of performers and listeners, we are interested to prove this idea by simulation with
computer. We have conceived the simulation model of this project, which is through
coevolution of artificial performer and artificial listener in a community, by their evalu-
ation or imitation of others. We are designing the system in hope of observing following
results from the simulation:

– Emergence of general agreement on performance principles. In the design, this
agreement is about the common way of using a collection of rules, the reason
being explained in next section.

– Emergence of similar but not the same performance profiles for a piece, which show
some similarity with real performance by human performers.

– Emergence of ”perfect” performers and listeners. An agent performer can be de-
fined as ”perfect performer” when firstly its performance is highly evaluated by
most of the audience, and secondly its evaluations for other performers’ perfor-
mance are always the same as most of the audience’s, which happens the same
with perfect listeners. If so, we can consider these performers represent the domi-
nated expressive performance profile at that time.

– Built upon above results, the most interesting and difficult topic that needs further
consideration is, how general is the evolved evaluation rules and performance pro-
files. It’s perhaps true that it is possible to simulate the evolution of a performance
profile once for only one piece, but we are interested to see if it also works well
with another piece of the same style or same composer. If not, we would like to
find out what are the strategies of transferring it to fit another similar piece. And
what about for quite different pieces?

2.2 Current Status

Several issues require solution or hypothesis before we start the evolution simulation.
Clearing up these problems is actually what has been completed so far.
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Our first concern is, what are the performance principles we aim to get from the
simulation? We consider it infeasible and inefficient to let the agent construct these
principles from scratch. Instead, it is our hypothesis that, various performance pro-
files are derived from assigning various priorities or weights to those rules, along with
implementing them differently in details. So we are hoping to evolve shared usage of
existing principles which may result in similar performance profiles as what happens in
reality. Recalling that expressive music performance mainly serves to highlight musical
structure, our solution is to compose a principles’ pool with several descriptive rules.
[11] These rules explain some associations between certain structural characteristics
and corresponding features of performance. And Second comes is the representation of
performance profile for a piece. The one used in our system is hierarchical pulse set,
which can be defined as a matrix of duration and amplitude values that decide the devi-
ations of the physical attributes of musical notes. For three reasons we feel the concept
of ”hierarchical pulse set” proposed by Manfred Clynes fits what we need. Firstly, the
choices of notes duration and amplitude significantly influence the expressive quality
of a music performance, although not fully. Secondly, the hierarchical nature of pulse
sets matches important features of most music genres; e.g., the notions of grouping and
hierarchical structures. Finally, we regard hierarchical pulse sets as rather compact and
informative forms for generative music interpretation.

In order to implement the above, we have designed an experimental system where
we adopted Clynes’s notion of pulse set as the representation of performance profile.
Then, we tested the possibility of evolving good pulse set from randomly initiated
ones using a GA. The fitness value of a pulse set is decided by its wellness or ability
to highlight musical structures, when we use it to interpret a piece of music (in this
case a quantised MIDI file with flat velocity). The fitness function uses rules derived
from research into the cognition of musical structure and generative rules of expressive
music performance. This system demonstrated that it is possible to evolve suitable
pulse sets for musical interpretation according to the musical structure and the user’s
preferred interpretation principles. The ”excellent” pulse sets evolved by the GA have
shown diversity and also commonality. This could be observed both objectively and
subjectively. This is necessary preparation before the next step of the project.

2.3 Design of the interaction model

As mentioned in the above sections, two types of agents, performer and listener are
designed to interact within the society. Each agent has the ability to listen to and
evaluate a performance according to its own combination of structural rules. As a
performer, an agent obviously has the function to produce a performance using its
performance profile (i.e. hierarchical pulse set). Figure 1 shows the interactions of the
agents in the community. It includes 1) the evaluation and imitation among performers.
For example, a performer P1 uses its performance profile S1 to produce a performance
M1. Another performer P0 compares M1 with its own interpretation M0 of the piece.
If M0 fits its rules better than M1, P0 remains its pulse set S0 unchanged, otherwise
it modifies S0. This modification is done by comparing the amplitude/duration curves
of M1 and M0, and updating M0 in a more detailed way (which we skip here). Then
we extract a new hierarchical pulse set S0’ from the modified M0 to replace S0; 2)
a discussion among the audience (including listeners and the performers who are not
currently performing)to conclude an overall evaluation of the current performer.

After every performer has got an evaluation, we rank these values in order to decide
the best and worst performers, which are respectively rewarded with high priority in
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next round to give overall evaluations to others, or to be removed because of their low
rankings. Similarly, the best and worst listeners are decided according to the close-
ness of their judgement with the overall evaluations to all the performers, and will be
rewarded or removed. New agents can be created by agents’ crossover and mutation,
and the type of agent is to be randomly decided. A key issue needs to be explained

Fig. 1. Interaction model of agents

here is how to associate the performance principles (i.e.the way of combining struc-
tural rules) of an agent performer with its performance profile, as there certainly exists
the bidirectional effect. For one thing, with certain musical structures, the preferred
performance principles decide or generate the performance pattern for the piece. For
another, when a more preferred performance profile appears, changes on the preference
of performance principles should take place accordingly. Our solution for this is, firstly
in the first iteration, we use GA to choose a good pulse set for every performer accord-
ing to its structural rules. Then during the simulation process, whenever the performer
has to modify its pulse set (because it finds better-preferred performance by others),
we modify the combination of its structural rules accordingly.

2.4 Study

I have started my PhD since October 2004, so this is my second year. The time of my
PhD is supposed to be three years plus one year writing up. As the programme I am in
is MPhil/PhD, I am at the moment applying transfer from MPhil stage to PhD study.

3 Results

3.1 Methodology

The experiment I have done so far is with a system that uses Genetic Algorithm
(GA) to evolve pulse set for music interpretation. The reasons to employ GA instead
of constructing pulse set according to performance principles are as follows. Firstly,
the critical problem of rule-based system of expressive performance is the difficulty of
combining those complex rules. This is not what we are mostly interested in. Never-
theless, we undoubtedly need guidance from musically meaningful rules (e.g., musical
structure, etc.) to evaluate whether a pulse set works well as a performance profile for
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certain piece. For this purpose, our approach is to design descriptive performance prin-
ciples without quantified regulations. And then we employ GA, whose fitness function
is informed by these principles, to select and evolve suitable pulse sets, starting from
randomly generated sets. In this sense, the usage of GA is ideal here because otherwise
it would be hard to design manually a decent performance profile based on such de-
scriptive principles. And furthermore, GA can evolve different and suitable pulse sets
for the same piece, which will be demonstrated in the results of our experiments. This
diversity is a noticeable phenomenon in real performances, and also a prerequisite for
the next stage of our research.

In order to explain this system, this section is organised as follow: firstly we in-
troduce the notion of pulse set and how it is used in our system to interpret music.
Then we present the rules that we have used to assign fitness values to different pulse
sets. Next, we present the evolutionary procedure, followed by a demonstration and a
discussion.

3.2 The Notion of Pulse Set

Representation and parameters of a pulse set
The inputs for our system are: (1) a quantised and flat MIDI file (without any expressive
interpretation and the notes have exact durations as written on score), and (2) a
hierarchical pulse set, which is a matrix of time vs. amplitude wraps. The process of
interpreting the music with hierarchical pulse follows an algorithm devised by Clynes
[12], as depicted in Figure 2a. In short, the values of hierarchical pulse set indicate the
relative modification of the duration or loudness of the corresponding notes. Figure 2b
gives a visual representation of a pulse set.

Representation Meaning

8 The length of note at the lowest level
4 4 3 Number of elements in level3,2,1

(From the lowest level to the highest)
0.339 0.762 0.953 0.319 Level3 Amplitude Values
73 93 66 124 Level3 Duration Values
0.453 0.798 0.498 1.333 Level2 Amplitude Values
62 103 114 118 Level2 Duration Values
1.398 1.476 1.864 Level1 Amplitude Values
73 121 120 Level1 Duration Values

a.Genome representation b.Visual representation

Fig. 2. Representation of a pulse set

Implementation of changes
Taking pulse set in Figure 2a as an example, the smallest unit of the music to be
operated on is eighth note. Four eighth notes form one element in the intermediate
level, and four such groups consist of one unit in the highest level. Therefore the entire
length defined by this pulse set is three 2-bar groups (suppose there are 4 beats in
one bar), comprising 4×4×3 = 48 segments, each has the length of an eighth note.
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Then, we can obtain individual amplitude and duration for each of the 48 segments,
by multiplying parameters from different hierarchical levels.

After having time and amplitude patterns calculated from the pulse set, we globally
change the file’s play back tempos according to the temporal list. The loudness of a
note is given by the amplitude information of its first smallest note component, which
is done by assigning the note-on velocity for the note.When the amplitude or duration
has the value of 1 or 100, the note’s velocity or duration will be set as it is in the flat
MIDI file.

3.3 Fitness Function based on Musical structure

In order to use structural rules for calculating fitness value, firstly we need an analysis
of a piece’s structure. In the present version of our system, we use David Temperley’s
software Melism, which performs several structural analysis such as metrical analysis,
group analysis and harmony. Then, we design a few performance rules mainly based
on Eric Clarke’s generative rules for expressive performance.[11] We associate expres-
sions in performance with the pieces structure features of grouping, accentuation and
cadence. Thus the fitness value of a pulse set consists of 3 parts, FitGrouper, FitAccent
and FitCadence.

a. FitGrouper
FitGrouper is obtained by a pulse set’s fitness in relation to two rules, mainly concern-
ing the notes’ duration at group boundaries. These two rules are:
Rule 1 : The time deviation of the last note of a group has either larger or smaller
timing deviation than both the notes before and after it.
Rule 2 : The last note of a group is always lengthened in order to delay the following
note and signify the starting of a new group.
The value of FitGrouper is dependent on a pulse sets violation of above two rules.
A parameter numVio (initialised equal to 0) increases whenever the pulse set breaks
either Rule 1 or Rule 2. If the number of groups in the piece is Ngroup, we define
FitGrouper =numV io

Ngroup
. The maximum value of FitGrouper is equal to 1.

b. FitAccent
FitAccent is an evaluation of how well the notes’ loudness contour in an ”interpreted”
piece (i.e., after the flat MIDI file is modulated by a given pulse set) fits the metrical
analysis. The rule used here is as follows:
Rule 3 : Preference should be given to the contour of notes’ loudness that has the most
similar shape to the music’s accentuation analysis.
Given two successive notes N0 and N1, FitAccent is produced by calculating: (i) The
accentuation information (b0, b1) from the structure analysis, and (ii) The Velocity
information (v0, v1) from the interpreted MIDI file. Because the accent value bi varies
from 0 to 4, firstly, we normalize the velocity difference (v1-v0) to integers in the range
of [-4, 4]. Then we assign a reward value between 0 and 1 to parameter x based on the
difference between (v1-v0) and (b1-b0). The closer they are to each other, the larger
the value assigned to x. If the number of notes in the piece is Nnote, we define FitAccent

=
PNnote−1

1 xi

Nnote−1
(0 ≤ xi ≤ 1). As with FitGrouper, the maximum value of FitAccent is

equal to 1.
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c.FitCadence
FitCadence takes into account the strong chord progressions in a piece, which can also
indicate group boundaries. While both FitGrouper and FitAccent work at the note
level, FitCadence judges the performance features of a higher group level. The rule for
calculating FitCadence is as follows:
Rule 4 : Both segments corresponding to two chords in a cadence (e.g., VI, IV I,
or DominantTonic, SubdominantTonic, respective) should be lengthened. Different
weights are set for different categories of cadences because they have varying impor-
tance on a pieces structure.
As with the FitGrouper, the value of FitCadence is also decided by a pulse sets viola-
tion of Rule 4. And the pulse set will receive more penalties when it breaks the rule
with stronger cadences. If the number of cadences in a piece is Ncadence, and we assign

weight wi to the ith cadence, then FitCadence =
PNcadence−1

1 wi

Ncadence−1
(0 ≤ wi ≤ 1). Alike

the previous two fitness measures, the maximum value of FitCadence is equal to 1.
In the present version of our system, we define the total fitness of a pulse set to be
the sum of FitGrouper, FitAccent and FitCadence. That is, Fitness = FitGrouper +
FitAccent + FitCadence, with maximum value equal to 3.

3.4 Evolution procedure

It this section we introduce the procedure to evolve suitable pulse sets from scratch.

Genome representation of a pulse set
A pulse set is represented by a long string of real numbers in the same order as shown
in Figure 2a. In this string, we separate lines with ”;” and insert ”,” between elements
in the same line. This makes it convenient to access and operate on parameters of dif-
ferent hierarchical levels. An additional number, either 0 or 1, is added at the end of an
individual pulse set. This is used to indicate one of the possible two ways of applying
a crossover operation, which will be clarified later.
As an example, the pulse set in Figure 2a is represented as follows (for the sake of
clarity, we omitted Level 2 and Level 1); the additional number at the end of the string
is equal to 0:
8; 4,4,3; 0.339,0.762,0.953,0.319; 73,93,66,124; ... ; 0

Initialisation of the first generation
The individual pulse sets of the first generation are randomly generated. For the mo-
ment, we have established that all pulse sets have 3 levels. All other pulse set values
are randomly generated, including:
(1) The length of quickest note
(2) The number of elements in each hierarchical level
(3) Amplitude and duration values for each element in every level
(4) The additional number at the end of the string (for selecting the crossover operation)

Evolutionary algorithm
Each pulse set in a generation is used to interpret the music, as described in section 2,
and a fitness value can be calculated according to the definition of fitness function in-
troduced in section 3. Thus we can obtain an array of fitness values Fit0=f0,f1,. . . ,fn,
where fi is the fitness value of the ith individual pulse set. Below we explain how
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the offspring pulse sets for next generation are created using this fitness array. This
procedure is as follows:

(1) Calculate the fitness values of the current generation P0
(2) Select parent candidates to compose of population P01

(3) Operating mutation on P01 and get population P02

(4) Operating crossover on pairs of pulse sets in P02 to get population P03

(5) Rank the fitness values of Generation P0 and P03 and the best half become
Generation P1
We define the three genetic operations: selection, mutation and crossover scheme as
following.

- Selection scheme
Based on Tobias Blickles comparative study of various widely used selection operators
in GA (such as, tournament, linear and exponential rankings, and proportional)[13], we
opted for using exponential ranking. This is because we wish to keep a certain degree of
diversity in the evolutionary process and exponential ranking has proved to work well
for this purpose. The pseudocode of our exponential ranking selection is as follows:
Exponential-ranking (c, J1, . . . . . . , JN)

J←sorted population J according to fitness (first is the worst)

S0←0

For i←1 to N do

si←Si−1 + pi

Do

For i←1 to N do

r←random[0,sN]

Ji←Jk such that si−1 ≤ r < sk

Do

Return

- Mu-

tation Scheme
Considering the hierarchical property of a pulse set, we have employed four different
ways for operating mutation on a single pulse set. They are respectively:
Ma: Randomly modify every duration or amplitude values in the pulse set. The range
of changes for amplitude is [-0.1, 0.1], and for duration is [-5, 5].
Mb: Append new duration and amplitude wraps or delete existing wraps from the end
of the string. The number of added or removed elements is defined randomly, with the
condition that the resulting pulse set is a valid pulse set. Also, if new elements are
added, they are generated randomly. The length of the quickest note in the pulse set
may be changed in this mutation, as we generate a new value for it randomly.
Mc: Swap the order of elements in the same level of the pulse set randomly, but keep
the duration and amplitude wraps.
Md : Swap the order of hierarchical levels in the pulse set randomly.
An integer between 1 and 4 is generated randomly in each generation. This number
defines which mutation method is used. For example, if we obtain 2, then only the
first two mutation methods (Ma and Mb) are used in the respective generation. Then,
whether to perform Ma or Mb to an individual pulse set is also decided randomly.

- Crossover Scheme
To maintain the evolved parameters in hierarchical levels, we only allow for segmenta-
tion and crossover at the positions of complete hierarchical levels. In this way, crossover
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is actually where two parents pulse sets exchange some of their component levels. For
clearer explanation, we use X1X2X3x and Y1Y2Y3y to represent the two pulse sets PX

and PY . Xn or Yn refers to the nth level of pulse set PX or PY . x or y is the single bit
at the end of a pulse set’s representation, with the value of either 0 or 1.
Here we use the subtraction of x − y (which can be 0,1,or -1) to decide the way to
perform crossover with two pulse sets. This includes the choice of one-point crossover
or two-point crossover, and also which levels of the parent pulse sets is the crossover
operating on. The possible ways of crossover are shown in Table 1, dependent on the
values of x and y.

Table 1. Crossover Schemes

xy 0 1

0 X1Y2X3x Y1X2Y3y X1X2Y3y Y1Y2X3x

1 X1Y2Y3y Y1X2X3x X1Y2X3x Y1X2Y3y

3.5 Demonstrations

As a didactic example, let us consider an excerpt from J.S. Bach’s Prelude in C major,
BWV 846 from WTK Book I. Figure 3 shows the excerpt with the structural analysis
that is used to calculate the fitness value.

Fig. 3. Excerpt of Structural Analysis of BWV 846

The group boundaries are represented by and the numbers under the starves give
the accentuation information.

From a run lasting for 200 generations, the best pulse set obtained is depicted
in Figure 4, with the total fitness value of 2.950 (the maximum this can value is

3). The sum of notes’ length specified by this pulse set is 2×2×4× =1 bar. With
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Fig. 4. Best pulse set obtained and the deviation pattern

this configuration we can say that the system has captured the positions of group
boundaries. And we can also find similar accentuation pattern in the amplitude curve as
the accentuation analysis in Figure 3. Since each note’s duration is already a parameter
determined by multi factors, and some of them may work against each other, at the
moment it’s hard to find out from this picture whether the pulse set has well fulfilled
the cadence rules we had set.
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Fig. 5. Fitness

Figure 5 shows the best fitness values for each generation in another run of the
system. FitGrouper and FitCadence, which are fitness components as penalties of vio-
lation, have been playing the dominated rules in the very beginning of evolution. After
they reached the maximum value, the configuration of the best pulse set in following
generations almost kept stable before some even better configuration emerged. During
this stable period, there can be a number of pulse sets which share the same fitness
value, but have different configurations and different duration or amplitude parameters.
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As a conclusion, our system demonstrated that it is possible to use a Genetic
Algorithm to evolve suitable pulse sets for musical implementation using fitness rules
derived from the structure of the piece to be performed. In this way, we can make the
computer to choose a performance profile for a piece of music according to the musical
structure and the user’s preferable interpretation principles. Comparing with directly
constructing a performance profile based on the structural rules, the advantage of using
Genetic Algorithm is, it is possible to find more than one suitable pulse set for a piece
through an efficient way, especially when the structural rules are to be combined in a
more complex manner. The possibility of various and suitable pulse sets is necessary
preparation for the simulation of interactions in the future work.

4 Future Work

We are currently improving the fitness rules in order to take into account some perfor-
mance principles associated or determined by melody. Also, having the concern that
those performance principles always work on different musical levels and some prin-
ciples have significant collision against each other, we are considering to modify the
straightforward summation scheme for concluding the total fitness and to assign dif-
ferent importance coefficients for different performance principle. Furthermore, as a
possible way for keeping diversity of pulse sets, we are also studying ways of varying
the number of hierarchical levels, since the pulse sets with more hierarchical levels are
supposed to be more compatible with the high complexity of music structure. And
after all, we would like to utilize these diversity and similarity among different pulse
sets to design the scheme for the goal of this project, which is to evolve performance
profiles in form of pulse set by agents’ interactions in agent society.
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