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Abstract—Genetic programming has proven capable of evolv-
ing solutions to a wide variety of problems. However, the successes
have largely been with programs without iteration or recursion;
evolving recursive programs has turned out to be particularly
challenging. The main obstacle to evolving recursive programs
seems to be that they are particularly fragile to the application of
search operators: a small change in a correct recursive program
generally produces a completely wrong program. In this paper,
we present a simple and general method that allows us to pass
back and forth from a recursive program to an associated non-
recursive program. Finding a recursive program can be reduced
to evolving non-recursive programs followed by converting the
optimum non-recursive program found to the associated optimum
recursive program. This avoids the fragility problem above, as
evolution does not search the space of recursive programs. We
present promising experimental results on a test-bed of recursive
problems.

I. INTRODUCTION

Recursion is a key technique in the design of programs.
However, genetic programming (GP) and related techniques
have struggled with the evolution of recursive programs. One
difficulty is that GP operators, are rarely successful when
applied to recursive programs. There are a number of reasons
for this: two important ones are that small changes to the
text of a recursive program cascade through the recursion,
amplifying the difference between a correct program and a
near-mutant; and, evolution needs to construct two separate
structures—the call itself and the base-case—to produce a
valid recursive program.

In this paper we introduce a novel approach to this problem.
During evolution, recursive calls are replaced with calls to
what we term a scaffolding function, which provides the
correct answer for all entries in the training set. This allows
evolution to work on parts of the recursive structure without
needing to evolve a whole recursive structure at once. Once
the program has correctly evolved, the non-recursive call is
replaced by a recursive call to the evolved program, so the
final program is a fully-recursive program with none of the
scaffolding remaining.

The remainder of the paper is structured as follows. Sec-
tion II reviews prior efforts to evolve recursive programs.
Section III introduces the new ideas through an extended
illustrative example, and Section IV gives details of a spe-
cific implementation of this approach and provides results

for experiments on two problems. This is followed by brief
conclusions and suggestions for future work.

II. RELATED WORK

A first attempt to evolve recursive programs was presented
by Koza [1, chapter 18.3], where a function to calculate the
Fibonacci sequence was evolved. It used a special function
SRF (sequence referencing function) that takes two arguments
(K and D) and returns the K-th Fibonacci number if it was
already calculated, otherwise a default value D. In order to
evolve a solution, the input values for the Fibonacci sequence
are given in ascending order and each result is stored in a table
that can be referenced by the SFR function. Koza successfully
evolved a program to generate the Fibonacci sequence using
the first twenty values as input examples, although the evolved
program is not actually a recursive program—instead, the SRF
function allows the program to reference previously computed
values (with the requirement that input values are given in
ascending order) without the need for recursive calls.

Brave [2] investigated a restricted form of recursion using
Automatically Defined Functions (ADFs) to evolve a recursive
tree search program. The proposed recursive ADFs method
uses two ADFs that are allowed to call themselves, i.e.,
the function set of ADF1 contains the symbol ADF1 and
the function set of ADF2 contains the symbol ADF2. The
recursive ADFs were compared against a basic GP (without
ADFs) and a GP using (non-recursive) ADFs, and the results
show that the recursive ADFs variant has the best performance,
both in terms of probability of success and computational
effort.

Brave has highlighted two of the main problems that
make recursion difficult in GP. Firstly, small variations of the
structure of a recursive program can have a big impact in
its functionality, and consequently, its fitness. The fitness of
a candidate program on such problems does not necessarily
reflect its proximity to the optimal solution. Secondly, there is
a need to deal with the potential problem of non-terminating
recursion. Brave argues that the tree search problem can
avoid this difficulty, since small changes in the structure
of a candidate program do not have a big impact on its
functionality—i.e., a small variation on the sub-portion of a
program that searches a specific section of the tree will not
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affect how the program searches other sections of the tree—
and the tree depth can be used as the maximum number of
recursive calls to avoid endless recursion; but, other classes of
problems may have to deal with them.

Whigham and McKay [3] investigated the learning of re-
cursive member functions—these take a list and an element,
and return true if the element is found in the list or false
otherwise—using a tree-based GP, by adding the function
to be evolved to the non-terminal set (functions) available,
enabling a candidate solution to recursively call itself. They
discovered that the GP could not successfully find a recursive
definition of the member function. They observed that partial
solutions—i.e., solutions that satisfy some of the test cases
(e.g., solutions that can find the first-element member)—
cannot lead the GP towards finding the recursive solution.
Moreover, they argue that as GP does not have a mechanism to
identify the usefulness of the components (internal structure)
of a candidate solution—e.g., a candidate program that fails
because of an infinite recursive call will not help to propagate
the use of the recursive call, although it only requires the
addition of a termination condition.

A similar argument was presented by Wong [4], [5]. A re-
cursive program is described as consisting of one or more base
(control) statements and a number of recursive statements.
The difficulty of evolving recursive programs arises from the
fact that appropriate base and recursive statements, and their
correct ordering have to be evolved simultaneously by the
GP. Moreover, the fitness function does not reward incorrect
programs that contain correct components of the optimal
solution—e.g., a candidate program with the correct base
statement, but missing or incorrect the recursive statement;
or, vice versa.

In order to overcome this, Wong proposed an adaptive
grammar-based GP (GBGP) which dynamically adjusts the
production rule weights to increase/decrease the probability
of producing good/bad candidate programs, and to reduce the
chance of producing non-terminating programs. Recursion is
allowed by placing a production rule that calls the program
being evolved into the grammar and a maximim execution
time limit was used to penalise non-terminating candidate
programs. This was found to increase the probability of
success when compared to a non-adaptive GBGP and also
reduced (but did not avoided) the number of non-terminating
candidate programs generated.

Koza et al. [6] introduced a mechanism similar to ADFs
to evolve recursion, called Automatically Defined Recursion
(ADR). ADRs involve a recursion condition branch (RCB), a
recursion body branch (RBB), a recursion update branch (RUB)
and a recursion ground branch (RGB). In order to evaluate
an ADR, its RCB branch is executed first. The RCB controls
the recursion and while it returns certain values (in general
a positive numeric value), the recursion is continued and the
RBB is executed. The RBB may contain references to the ADR
of which it is a part, triggering a recursive call. After the
execution of the RBB branch, the RUB is executed. When the
recursion is terminated by the RCB branch—i.e., the RCB does

not return a value that indicates to continue the recursion—
the RGB branch is executed. Therefore, the value returned
by an ADR is the value returned by the RBB branch, if the
RCB returns a value that indicates to continue the recursion;
otherwise, it is the value returned by the RGB branch. Since the
bodies of the four branches are subject to modification during
the run of the GP, the use of an ADR separates the evolution of
the control statement and the recursive statement in a program,
and also enforces their correct ordering. On the other hand, it
imposes a structure on the evolved programs and also requires
special operators to create/modify/delete ADRs. A similar
approach was proposed in [7], where Automatically Defined
Nodes (ADN) were used to generate recursive programs using
graph structured program evolution (GRAPE).

Yu and Clack [8] proposed the use of implicit recursion
through a higher-order function foldr. The foldr function
takes a binary operator (a function that takes two arguments) as
the first argument and a list of values as the second argument;
then, it places the operator between each item of the list and
evaluates the resulting expression from right to left. The use of
implicit recursion avoids the problem of non-terminating pro-
grams, although the evolved program is not actually a recursive
program. Such methods can only work on a limited number of
problems. Spector et al. [9] evolved recursive programs using
the PushGP system. The Push language provides an execution
stack that can be manipulated by the GP in order to achieve
recursion and loops. Agapitos and Lucas [10], [11] explored
the idea of evolving Object Oriented recursive programs,
which represent method implementations conforming to a
specified interface. Recursion is achieved by allowing calls
to the evolved method within the evolved method’s body. The
evolved method is placed together with the built-in methods
(function set) available for creating new solutions. To mitigate
the potential problem of non-terminating recursive programs,
a limit on the number of permitted recursive calls is used
in their experiments. They draw attention to the fact that
using a higher probability of mutation was better than using
a higher probability of crossover on most of the problems.
They observed that the candidate programs using the recursive
call are usually non-terminating ones and consequently have
a lower fitness, causing the premature elimination of recursive
structures when a lower mutation probability is used.

III. PROPOSED APPROACH

In this paper we introduce a novel approach to this prob-
lem. During evolution, it is assumed that recursive calls
from programs in the evolving population return the correct
answer—this is clearly a circular assumption, as it entails
the knowledge of the sought function. However, at the end
of fitness calculation, the circularity can be resolved: instead
of carrying out the recursion as such, the correct answer
is provided using the information about the sought function
stored in the fitness cases.

We now present the proposed approach using a worked
example. We will touch on, but not describe systematically,
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program representation, genetic operators and fitness function.
The details will be presented in the next section.

Let us suppose that our task is to evolve a recursive function
reverse that given a list of items (of any size) returns the
reversed list. An example of an optimal candidate solution is:

function reverse(list) {
if (empty(list)) {

return list;
}
else {

return snoc(
reverse(tail(list)),

head(list));
}

}

The above definition returns the empty list when the input
list is empty, otherwise it returns the list obtained by appending
(snoc) the first element of the input list (head) to the reversed
tail of the input list. This is clearly a recursive definition as it
comprises a call to itself.

Let us now consider the following non-optimal candidate
solution obtained by mutating the program above and remov-
ing the test of the base case of the recursion (i.e., checking
whether or not the input list is empty):

function reverse(list) {
return snoc(

reverse(tail(list)),
head(list));

}

This fails as the functions head(list) and tail(list)

produce an error when applied to the empty list. The main
motivation was to penalise programs that have the correct
recursive call without the base statement (because we wanted
to be able to evolve programs with explicit base case and
recursive call). Notice that this happens for any input list as the
recursion consumes the input list and reduces it to the empty
list which then produces the error. This program has the worst
fitness possible, as it returns an error for any fitness case. This
exemplifies the fragility of recursive programs under mutation:
a single mutation is sufficient to transform a program with the
best fitness into a program with the worst fitness. Furthermore,
this is not a particularly unfortunate case, it is a typical case.

Let us now assume that instead of the call to itself we have
a function correct-reverse that, given a list, returns the
reversed list. At first, this seems to make no sense as we are
assuming we know the very function we are trying to find. We
will show later how to resolve this apparent circularity.

An example of an optimal candidate solution with the new
functional set is:

function reverse(list) {
if (empty(list)) {

return list;
}
else {

return snoc(
correct-reverse(tail(list)),

head(list));
}

}

There are three important observations about this solution.
Firstly, it is not a recursive definition as reverse does not call
itself in the definition but instead calls correct-reverse.
Secondly, there is a natural one-to-one correspondence be-
tween recursive functions (which call reverse) and functions
whose definition uses the call to correct-reverse obtained
by replacing correct-reverse with reverse, and vice
versa. Thirdly, exchanging correct-reverse with reverse

or vice versa in an optimal solution, we obtain an optimal
solution.

Let us now consider the corresponding non-recursive func-
tion to the sub-optimal recursive function presented earlier.
function reverse(list) {

return snoc(
correct-reverse(tail(list)),

head(list));
}

It is interesting to compute the fitness of this solution.1

This program fails when the input list is an empty list,
as the functions head and tail fail when applied to an
empty list. However, when the input list is not an empty
list the program produces always the correct solution as
the function correct-reverse can handle appropriately
the base case of the recursion on the tail of the input list
(as correct-reverse is correct on any list by definition).
Therefore, the fitness of this program is almost optimal as it
fails only on the fitness case corresponding to the empty input
list, but it returns the exact output on any other input list.

There are two important observations that can be made
on this example. Firstly, the non-recursive optimal program
is more robust to mutation than the corresponding recursive
program, as in the recursive case the fitness of the mutated pro-
gram drops dramatically, whereas in the non-recursive case the
fitness drops only one fitness case. In general, the reason why
recursive programs are more fragile than the corresponding
non-recursive programs seems to be that when there are one
or more errors in the program (i.e., when the program is one
or more mutations away from the optimum) the recursive calls
re-use the erroneous definition of the program multiple times
and propagate and amplify the effect of the errors. One the
other hand, in non-recursive programs errors do not percolate
down the recursive call, so the fitness reflects more closely
the actual number of errors. Secondly, the fitness landscape of
non-recursive programs has a gradient that can make it easier
to search than the corresponding fitness landscape of recursive
programs, while both fitness landscapes have exactly the same
global optima.

There is a constraint that needs to be imposed. We do not
allow the program to call the reverse function on a list of
the same size of the input list or larger. When this happens
the program fails (for all inputs for which the program fails
to meet this condition). This constraint is important for two
reasons. In recursive programs, it helps to prevent infinite
recursion. In the corresponding non-recursive programs, it

1Here we assume that better solutions have higher fitness, so an optimal
solution has the highest fitness.
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allows us to resolve the circularity deriving from allowing
correct-reverse calls within the definition of candidate
solutions.

It is clear from the discussion above that to find the optimal
recursive program it would be desirable to proceed as follows:
(i) evolve non-recursive programs which are associated with
an easier fitness landscape and find an optimum non-recursive
program; (ii) convert the optimum non-recursive program
found into the corresponding optimum recursive program by
replacing in it all occurrences of correct-reverse with
reverse.

However, this seems problematic: in order to evolve
non-recursive programs one needs to know the function
correct-reverse, which is what is being searched for!
But, consider how programs are evolved using GP. During
evolution, the program is tested on a number of fitness cases
for which the desired output is known. For example, for
reverse we would have a set of fitness cases such as:

Size Function
0 {}-->{}
1 {X1}-->{X1}
2 {X1,X2}-->{X2,X1}
3 {X1,X2,X3}-->{X3,X2,X1}

There are two observations that need to be made. Firstly,
the fitness cases are an explicit enumeration of a set of cases
for which we know the function correct-reverse. In the
specific example the fitness cases tell us the following:

correct-reverse({})={}
correct-reverse({X1})={X1}
correct-reverse({X1,X2})={X2,X1}
correct-reverse({X1,X2,X3})={X3,X2,X1}

Secondly, the set of fitness cases chosen covers all cases
of the target function for lists from size 0 to size 3.
Therefore these fitness cases define completely the function
correct-reverse for lists up to size 3. In general, to be able
to apply our approach, analogously to the example above, we
require the fitness cases to be a complete sequence of input-
output pairs defining the target function starting with the first
case (i.e., base case of the recursion) up to a fixed later term
in the recursion.

Now putting together the requirement that: (i) the
correct-reverse function can be called by a program
only on lists shorter that the input list; and (ii) the fitness
cases define completely the correct-reverse function up
to input lists of size 3; it then becomes possible to com-
pute the fitness of any program making use of the function
correct-reverse in its definition. This is because to com-
pute the fitness of a program we need to compute its output
on all the input lists of the fitness cases. As these input lists
range in size from 0 to 3, in all cases the program will need
to call the function correct-reverse on lists of size 2 or
less. The output values of the correct-reverse function
on these lists is always known (from the fitness cases), hence
the fitness of the program can be computed. This resolves the
apparent circularity of evolving programs that make use of the
correct-reverse function in their definition.

It is important to notice here that the programs making
use of the call to the correct-reverse function are well-
defined, in our example, only on input lists up to size 4 (as
they can then make calls to correct-reverse input lists up
to size 3, whose cases are covered by the fitness cases). In
general, the output of the programs for lists of size 5 or larger
cannot be computed, as the correct-reverse for input lists
of size 4 is not in the set of fitness cases. So, in this respect, an
optimal program that uses correct-reverse in its definition
does not differ much from the correct-reverse defined
by enumeration on the fitness cases, as the optimal program
can be only used to generalise to the case of lists of size 4.
The apparently merely formal act of replacing the function
correct-reverse with the function reverse in the defini-
tion of the program to obtain the associated recursive program
is the true source of the generalisation. This is because the
recursive program is well-defined and can be queried on input
lists of arbitrary length.

The approach presented in this section is very general and
can be applied to find recursive programs defined on virtually
any domain. Also, it is not bound to a specific type of GP,
and can be used with different flavours of GP using different
representations and different search operators.

IV. EXPERIMENTS

This section shows how the above approach was imple-
mented in the context of a grammar-based GP system. Exper-
iments have been carried out on two problems concerned with
the manipulation of lists of integer numbers, viz. reversing a
list and inserting an element into a sorted list. The same basic
algorithmic approach was used in both a traditional recursive
approach where the name of the function being used is
available within the grammar, and the new approach, referred
to below as scaffolding-based approach, where the correct
function is available within the grammar to substitute the
recursive call during evolution. We present experiments with
crossover alone, mutation alone, and combined crossover and
mutation, as we found that the performance of the scaffolding-
based approach is quite different in the three scenarios.

A. General Approach

In order to evaluate the effectiveness of the proposed ap-
proach in evolving recursive functions, we have used a context
free grammar-based genetic programming (CFG-GP) [12]. The
basic grammar productions used to define the structure of the
programs (individuals) were:
S ::= T
T ::= if(B) { T } else { T } | return L
L ::= append(L, L) | snoc(L, N) | cons(N, L) |

tail(L)
B ::= empty(L) | N = N | N <= N | N >= N
N ::= head(L)

where the start symbol is S; nonterminals symbols are T (a
statement that returns a list), L (a statement that evaluates to a
list), B (a statement that evaluates to a boolean value) and N
(a statement that evaluates to a numeric value); and terminals
symbols are:
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• list operations: append (join two lists), snoc (appends an
element to the end of the list), cons (appends an element
to the start of the list), tail (elements of the list excluding
the first one), empty (tests if the list has no elements),
head (first element of the list);

• binary operators: = (equality), <= (less than or equal to)
and >= (greater than or equal to);

• conditional statement: if-else (if the test B evaluates to
true, executes the first block; otherwise executes the
second block).

For each of the problems, the grammar productions were
extended to include specific parameters and the recursive
call—details of these are given in Sections IV-B and IV-C
below. Using the grammar presented above, individuals are
represented by derivation trees, where the internal nodes
of the tree correspond to non-terminal symbols, leaf nodes
correspond to terminal symbols and the root node correspond
to the start symbol. A derivation tree is created in a top-
down fashion by randomly selecting and applying grammar
productions from a non-terminal symbol, starting from the start
symbol S (root node of the tree), until a leaf node (terminal
symbol) is reached for each tree path.

The fitness of a program consists of the sum of the edit dis-
tances between the list returned by a program and the correct
list solution, over all test cases. The edit distance measures the
minimum number of insert, delete and substitute operations
needed to transform one list into the other. Therefore, the aim
of a program is to minimise the edit distance—i.e., the more
similar the lists, the better the program. When a program uses a
recursive call or the correct function (in the scaffolding-based
approach) on a list of the same size of the input list or larger,
or perform an invalid operation (e.g., invoke tail or head on
an empty list) for a specific test case, a penalty is imposed by
setting the edit distance equal to the length of the longest test
case list +1. The motivation of using the length of the longest
list as a penalty is that we guarantee that this value will be
greater than the distance obtained by a working program on
any of the test cases, even if the list returned by the working
program does not contain any element in the correct position.
Also, it does not impose an arbitary high penalty.

In the runs that produced the results reported in this section
we have used population size of 500, tournament size 5, num-
ber of generations 200, the initial population was created using
a ramped-half-and-half method (from tree depth 4 to 8) and
the maximum tree depth for crossover and mutation operators
was 16. These parameters values have been determined based
on preliminary experiments and they were used in all the
experiments presented in this section, for both the recursive
and scaffolding-based approaches.

The most critical parameters were found to be the crossover
and mutation rates, which are therefore varied in the ex-
periments. We have used standard CFG-GP crossover and
mutation operators [12]. The crossover is performed selecting
two individuals p1 and p2 from the population; then a non-
terminal node from p1 is randomly selected and a matching
non-terminal is selected from p2; if no matching node is found,

the crossover restarts by selecting other individuals; finally, the
subtrees below these non-terminals are swapped. The mutation
is performed on a single individual by randomly selecting
a non-terminal node and generating a new subtree from the
grammar using this non-terminal as the starting symbol.

B. Reverse List Problem

Given a list of elements as input, the reverse list problem
consists of returning a list with the elements in the reverse
order—e.g., for the input list {1, 2, 3, 4}, the correct output
is the list {4, 3, 2, 1}. We have used training cases involving
lists of variable lengths from 0 to 5 elements (6 fitness cases in
total) and the aim for the GP is to evolve a recursive program
that can generalise to reverse any input list of any length.
An evolved program is considered a solution if it correctly
reverses all test cases consisting of lists from 0 to 20 elements.
An example of the correct solution is:

function reverse(list) {
if (empty(list)) {

return list;
}
else {

return snoc(
reverse(tail(list)),

head(list));
}

}

We can identify two main structures (‘building blocks’) that
compose an optimal solution: (1) the operation that adds the
head of the input list to the list returned by the recursive call
used to reverse the tail of the input list (2) the conditional test
that stops the recursion when the input list is empty. If either
of these structures is missing, the optimal solution cannot be
created.

To evolve a recursive program for the reverse problem, the
grammar symbol L was extended to include two productions:
list (the input list) and reverse(L) (the recursive call
to the evolved function). To evolve a non-recursive program
(using the proposed scaffolding-based approach), the grammar
symbol L was extended to include two productions: list

(the input list) and correct-reverse(L) (the call to the
function that returns the correct reversed list). Three sets of
experiments were carried out: crossover-only, mutation-only,
and mutation-and-crossover. The results of these are presented
in the remainder of this section.

In the first set of experiments, we have set the mutation rate
to 0% and crossover rate to 100% (crossover-only setting).
The recursive approach did not find any solution over 100
runs, while the scaffolding-based approach found a solution
in 5 out of 100 runs, reaching the minimum computational
effort I(M,i,z) [1]—i.e., the total number of individuals that
must be processed in order to yield a solution to the problem
with 99% probability, where the lower the value the better
the computational effort—value of 228,456 at generation 1.
These results illustrate the difficulty of evolving recursive pro-
grams: the operation involving the recursive call, the recursive
structure (conditional test) and their correct ordering should be
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TABLE I
SUMMARY OF THE RESULTS FOR THE REVERSE PROBLEM. THE BEST
I(M,i,z) (LOWER COMPUTATION EFFORT VALUE) IS SHOWN IN BOLD.

(i) recursive approach P(M,i) min I(M,i,z)

crossover-only 0% –
mutation-only 89% 201,000
crossover-and-mutation 71% 362,500

(i) scaffolding-based approach P(M,i) min I(M,i,z)

crossover-only 5% 228,456
mutation-only 65% 169,500
crossover-and-mutation 100% 49,000

evolved simultaneously. It is unlikely that individuals created
in earlier generations will have the required structures and/or
correct ordering, therefore their fitness will be generally low.
This may cause the premature elimination of ‘building blocks’
required to create an optimal solution. Since the crossover does
not introduce new structures to the population, it is limited to
recombine individuals in the current population and it will
not have the chance to combine individuals with the required
structures to create an optimal solution.

In the second set of experiments, we have set the mutation
rate to 100% and crossover rate to 0% (mutation-only setting).
The recursive approach found a solution in 89 out of 100 runs,
reaching the minimum computational effort value of 201,000
at generation 133. The scaffolding-based approach found a
solution in 65 out of 100 runs, and although the number of
successful runs was smaller than the recursive approach, it has
reached the minimum computational effort value of 169,500
at generation 2. This is substantially better than the crossover-
only setting. Since the mutation operator can introduce new
structures in the population, it is not limited by diversity of
the individuals in the population. The performance curves for
the recursive and scaffolding-based approach are illustrated in
Fig. 1(a) and Fig. 1(b), respectively—the P(M, i) curves shown
in Fig. 1 correspond to the cumulative probability of success
that a run with a population size M = 500 yields a solution
by generation i.

Although the results of the scaffolding-based approach are
better than the recursive approach, they do not highlight
the main advantage of the proposed approach—i.e., in the
scaffolding-based approach, both the operation involving the
recursive call (represented by the call to the correct reverse
function) and conditional test can be evolved separately, since
the evolved programs are not actual recursive programs. For
example, consider the program with the correct conditional
test:

function reverse(list) {
if (empty(list)) {

return list;
}
else {

return snoc(tail(list), head(list));
}

}

which can reverse lists of 0 to 2 elements—i.e., 3 out of
6 fitness cases—and the program with the correct operation
involving the recursive call:

function reverse(list) {
return snoc(correct-reverse(tail(list)),

head(list));
}

which can reverse 5 out of 6 fitness cases (it fails in the empty
input list case). Both programs represent fit individuals and
have a greater chance of being selected for future generations
and the use of crossover has the chance of combining them
to construct the optimal solution. On the other hand, in the
recursive approach, the equivalent program with the correct
operation involving the recursive call:

function reverse(list) {
return snoc(reverse(tail(list)),

head(list));
}

fails in all fitness cases, since there is no structure to stop
the recursion when the input list is empty. Therefore, the
individual will have a very low fitness, and consequently,
smaller chance of being selected for future generations.

To make this advantage more apparent, we run a third
set of experiments setting the mutation rate to 80% and
crossover rate to 20% (crossover-and-mutation setting).2 The
performance of the recursive approach decreased slightly,
finding a solution in 71 out of 100 runs and reaching the
minimum computational effort value of 362,500 at generation
24. On the other hand, the performance of the scaffolding-
based approach increased, finding a solution in 100 out of 100
runs and reaching the minimum computational effort value
of 49,000 at generation 97. The performance curves for the
recursive and scaffolding-based approach are illustrated in Fig.
1(c) and Fig. 1(d), respectively. The positive effect of the
crossover operator in the scaffolding-based approach is a result
of the fact that the population contains working individuals
with the required ‘building blocks’, i.e., there are fit individuals
with the correct conditional test and fit individuals with the
correct operation involving the recursive call. Table I presents
a summary of the results for the reverse problem.

C. Insert Problem

Given an ordered list of elements and a new element as
inputs, the insert problem consists of inserting the new element
into the list maintaining the natural order of the elements
and returning that list—e.g., for the input list {1, 3} and the
element 2, the correct output is the list {1, 2, 3}. We have
used training cases involving lists of variable lengths from 0
to 3 elements (10 fitness cases in total)—representing cases
where an element should be inserted at the beginning, middle
or end of the list—and the aim for the GP is to evolve a
recursive program that can generalise to insert an element to

2The 80% mutation and 20% crossover rates have been empirically deter-
mined by a systematic (but coarse) parameter tuning. They are inline with the
findings of Agapitos and Lucas [10], [11], which suggest the use of a higher
mutation rate in relation to crossover rate.
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(a) recursive (mutation-only)
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(c) recursive (crossover-and-mutation)
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(b) scaffolding (mutation-only)
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(d) scaffolding (crossover-and-mutation)

Fig. 1. Performance curves—cumulative probability of success P(M,i) and computational effort I(M,i,z)—for the recursive and scaffolding-based approaches
in the reverse problem for the mutation-only and crossover-and-mutation settings. The value in the box corresponds to the generation followed by the lowest
I(M,i,z) achieved; the best I(M,i,z) value is achieved by the scaffolding-based approach using the crossover-and-mutation setting.

any ordered input list of any length. An evolved program is
considered a solution if it correctly inserts an element in all test
cases consisting of lists from 0 to 10 elements. An example
of the correct recursive solution is as follows:

function insert(list, x) {
if (empty(list)) {

return cons(x, list);
}
else {

if (x <= head(list)) {
return cons(x, list);

}
else {

return cons(head(list),
insert(tail(list), x));

}
}

}

The insert problem represents a more complex problem than
the reverse, and we can identify three main structures: (1)
the operation that adds the head of the input list to the list
returned by the recursive call used to insert the input value
in the correct position; (2) the conditional test that stops the
recursion when the input list is empty; and (3) the conditional
test that stops the recursion when the correct position of the
input value is found. If any of these structures is missing, the
optimal solution cannot be created.

The experiments for the insert problem followed the same
experimental setup and the same parameter settings as for
reverse problem. To evolve a recursive program for the insert
problem, the grammar symbol L was extended to include
two productions: list (the input list) and insert(L, x)

(the recursive call to the evolved function); and the gram-
mar symbol N was extended to include a new production
x (the input value for the evolved function). To evolve a
non-recursive program (using the proposed scaffolding-based
approach) for the insert problem, the grammar symbol L was

extended to include two productions: list (the input list) and
correct-insert(L, x) (the call to the function that returns
the correct list containing the new element x); and the grammar
symbol N was extended to include a new production x (the
input value for the evolved function).

In the first set of experiments, we have set the mutation
rate to 0% and crossover rate to 100% (crossover-only setting).
The recursive approach did not find any solution over 100 runs,
while the scaffolding-based approach found a solution in 1 out
of 100 runs, reaching the minimum computational effort value
of 2,299,590 at generation 9. In the second set of experiments,
we have set the mutation rate to 100% and crossover rate
to 0% (mutation-only setting). The recursive approach found
a solution in 7 out of 100 runs, reaching the minimum
computational effort value of 5,984,000 at generation 186.
The scaffolding-based approach found a solution in 32 out of
100 runs, reaching the minimum computational effort value
of 792,000 at generation 87. The performance curves for the
recursive and scaffolding-based approach are illustrated in Fig.
2(a) and Fig. 2(b), respectively. The mutation-only setting is
substantially better than the crossover-only setting, achieving
a lower computational effort value.

The best results are obtained setting setting the mutation
rate to 80% and crossover rate to 20% (crossover-and-mutation
setting), used in our third set of experiments. Differently than
the reverse problem, the performance of the recursive approach
using mutation combined with crossover increased, finding a
solution in 25 out of 100 runs and reaching the minimum
computational effort value of 1,623,500 at generation 190. The
performance of the scaffolding-based approach also increased,
finding a solution in 69 out of 100 runs and reaching the
minimum computational effort value of 252,000 at generation
55. The performance curves for the recursive and scaffolding-
based approach are illustrated in Fig. 2(c) and Fig. 2(d),
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(a) recursive (mutation-only)
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(c) recursive (crossover-and-mutation)

1 50 100 150 200
0

25

50

75

100

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

87 : 792000

0

3519000

7038000

In
di

vi
du

al
s t

o 
be

 P
ro

ce
ss

edP(M,i)
I(M,i,z)

(b) scaffolding (mutation-only)
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(d) scaffolding (crossover-and-mutation)

Fig. 2. Performance curves—cumulative probability of success P(M,i) and computational effort I(M,i,z)—for the insert and scaffolding-based approaches
in the insert problem for the mutation-only and crossover-and-mutation settings. The value in the box corresponds to the generation followed by the lowest
I(M,i,z) achieved; the best I(M,i,z) value is achieved by the scaffolding-based approach using the crossover-and-mutation setting.

TABLE II
SUMMARY OF THE RESULTS FOR THE INSERT PROBLEM. THE BEST I(M,i,z)

(LOWER COMPUTATION EFFORT VALUE) IS SHOWN IN BOLD.

(i) recursive approach P(M,i) min I(M,i,z)

crossover-only 0% –
mutation-only 7% 5,984,000
crossover-and-mutation 25% 1,623,500

(i) scaffolding-based approach P(M,i) min I(M,i,z)

crossover-only 1% 2,299,590
mutation-only 32% 792,000
crossover-and-mutation 69% 252,000

respectively. These results (summary presented in Table II)
show that the insert problem is more complex than the reverse
problem, which is expected since it requires more structures to
create the optimal solution. They also show that the proposed
approach successfully reduces the complexity of the search by
avoiding the need to evolve these structures simultaneously.

V. CONCLUSIONS

We have introduced an indirect approach to evolving pro-
grams with recursion, based on the idea of using a scaffolding
function that replaces the recursive call and that provides
the correct answer for all entries in the training set, and
which can be removed once the correct program has been
evolved. The programs using the scaffolding functions are not
recursive, hence much less fragile to the application of search
operators than the corresponding recursive programs. This has
been shown to have a considerably better performance than a
traditional approach. Future work will extend this approach
to a broader class of problems, in particular investigating
problems where multiple calls to the recursive function are
needed; relax the requirement of having all fitness cases up to

a certain input size; and a more detailed investigation of the
structure of fitness landscapes in recursive problems and how
these approaches transform those landscapes.
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