
Geometric Differential Evolution for
Combinatorial and Programs Spaces

A. Moraglio A.Moraglio@cs.bham.ac.uk
School of Computer Science, University of Birmingham, UK

J. Togelius julian@togelius.com
Center for Computer Games Research, IT University of Copenhagen,
Denmark

S. Silva sara@kdbio.inesc-id.pt, sara@dei.uc.pt
INESC-ID, IST Technical University of Lisbon, and CISUC,
University of Coimbra, Portugal

doi:10.1162/EVCO_a_00099

Abstract
Geometric differential evolution (GDE) is a recently introduced formal generalization
of traditional differential evolution (DE) that can be used to derive specific differential
evolution algorithms for both continuous and combinatorial spaces retaining the same
geometric interpretation of the dynamics of the DE search across representations. In
this article, we first review the theory behind the GDE algorithm, then, we use this
framework to formally derive specific GDE for search spaces associated with binary
strings, permutations, vectors of permutations and genetic programs. The resulting
algorithms are representation-specific differential evolution algorithms searching the
target spaces by acting directly on their underlying representations. We present exper-
imental results for each of the new algorithms on a number of well-known problems
comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and
vectors of permutations. We also present results for the regression, artificial ant, parity,
and multiplexer problems within the genetic programming domain. Experiments show
that overall the new DE algorithms are competitive with well-tuned standard search
algorithms.

Keywords
Differential evolution, representations, principled design of search operators, combi-
natorial spaces, genetic programming, theory.

1 Introduction

Two relatively recent additions to the evolutionary algorithms (EAs) family are particle
swarm optimization (PSO) (Kennedy and Eberhart, 2001), inspired by the flocking
behavior of swarms of birds, and differential evolution (DE) (Storn and Price, 1997),
which is similar to PSO, but it uses different equations governing the motion of the
particles. In PSO, the velocity and position of each particle (individual)1 are updated
using a linear combination involving the position of the best solution the particle has
visited so far and the position of the best particle in the current swarm (population).

1The position of a particle represents the location of a solution in the search space. Its velocity
determines the current search direction from that location and the step size.

Manuscript received: June 29, 2010; revised: July 7, 2011; accepted: December 11, 2012.
C© by the Massachusetts Institute of Technology Evolutionary Computation xx(x): 1–34

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

In DE, the position of each individual is updated using a linear combination of the
positions of three individuals picked at random in the current population. Despite their
relatedness, DE is known to produce consistently better performance than PSO on many
problems. In fact, DE is one of the most competitive EAs for continuous optimization
(Price et al., 2005; Storn and Price, 1997).

In their initial inception, both PSO and DE were defined only for continuous prob-
lems. In both algorithms, the motion of particles is produced by linear combinations
of points in space and has a natural geometric interpretation (Moraglio et al., 2007;
Moraglio and Togelius, 2009). There are a number of extensions of DE to binary spaces
(Pampara et al., 2006; Price et al., 2005), spaces of permutations (Gong and Tuson,
2007; Onwubolu and Davendra, 2009), and to the space of genetic programs (O’Neill
and Brabazon, 2006). There are also extensions of PSO to binary spaces (Kennedy and
Eberhart, 1997). Some of these works recast combinatorial optimization problems as con-
tinuous optimization problems and then apply the traditional DE algorithm to solve
these continuous problems. Other works present DE algorithms defined directly on
combinatorial spaces that, however, are only loosely related to the traditional DE in that
the original geometric interpretation is lost in the transition from continuous to combi-
natorial spaces. Furthermore, every time a new solution representation is considered,
the DE algorithm needs to be rethought and adapted to the new representation.

GDE (Moraglio and Togelius, 2009) is a recently devised formal generalization of
DE that, in principle, can be specified to any solution representation while retaining
the original geometric interpretation of the dynamics of the points in space of DE
across representations. In particular, GDE can be applied to any search space endowed
with a distance and associated with any solution representation to derive formally a
specific GDE for the target space and for the target representation. GDE is related to
geometric particle swarm optimization (GPSO; Moraglio et al., 2007), which is a formal
generalization of the particle swarm optimization algorithm (Kennedy and Eberhart,
2001). Specific GPSOs were derived for different types of continuous spaces and for
the Hamming space associated with binary strings (Moraglio et al., 2008), for spaces
associated with permutations (Moraglio and Togelius, 2007) and for spaces associated
with genetic programs (Togelius et al., 2008).

The present article reviews the theory behind the GDE algorithm, illustrates how
this framework can be used in practice as a tool for the principled design of DE search
operators for standard and more complex solution representations associated with
combinatorial spaces, and finally presents experimental tests and analysis of the new
GDE algorithms endowed with such operators on well-known problems. In particular,
as target spaces for the GDE, we consider combinatorial spaces associated with binary
strings, permutations, and vectors of permutations and computer programs represented
as expression trees.

The contribution of this article is to show that an existing and very popular al-
gorithm for continuous optimization—differential evolution—can be generalized in a
mathematically principled way and systematically instantiated to any combinatorial
space/representation, endowed with a notion of distance, without introducing any
arbitrary element of choice in the transition. So, the derived representation-specific
algorithms are in a strong mathematical sense equivalent to the original DE for the
continuous space. Whereas the geometric framework makes the instantiation of the DE
to new spaces and representations always formally possible, it is important to show
that the search operators specified by the theory can be actually constructed in prac-
tice. This article shows that it is indeed possible for a number of important, nontrivial

2 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

representations. From an experimental point of view, the article shows that the new DE
algorithms are competitive with standard algorithms on a few well-studied problems.
This is a rather interesting achievement, as it is one of the very rare examples in which
evolutionary computation theory has been able to inform the practice of search operator
design successfully.

The practitioner interested in applying the new framework to a specific problem
domain on one of the representations presented in this work can skip the theorems
and proofs. The article reports pseudocode of the general GDE algorithm and of all
representation-specific operators. Also, the parameter space of important parameters is
investigated to suggest reasonable parameter settings for each representation.

As for deriving specific GDE for new representations and new distances, it is
necessary to have an understanding of the underlying theory. This task suits better the
theoretician than the practitioner. However, the long term vision of this line of research
is to automate the design of DE and other search algorithms for new representations and
new problems, so making this theory very practically relevant and useful.

The remaining part of the article is organized as follows. Section 2 contains an
introduction to a formal theory of search operators that applies across representations
that forms the context for the generalization of the DE algorithm. Section 3 briefly
introduces the classic DE algorithm, and Section 4 describes the derivation of the general
GDE algorithm. Section 5 presents specific GDE search operators for binary strings, and
reports experimental results on NK-landscapes. Section 6 presents specific GDE search
operators for permutations, and reports experiments on the traveling salesman problem
(TSP). Section 7 presents specific GDE search operators for Sudoku for which candidate
solution grids are represented as vectors of permutations, and reports experimental
results for this problem. Section 8 presents specific GDE search operators for expression
trees, and reports the experimental analysis on standard GP benchmark problems.
Section 9 presents conclusions and future work.

2 The Geometry of Representations

In this section, we introduce the ideas behind a recent formal theory of representations
(Moraglio, 2007) which forms the context for the generalization of DE presented in the
following sections. A complete treatment of this matter can be found in Moraglio.

Search algorithms can be viewed from a geometric perspective (Moraglio, 2007). The
search space is seen as a geometric space with a notion of distance between points, and
candidate solutions are points in the space. For example, search spaces associated with
combinatorial optimization problems are commonly represented as graphs in which
nodes correspond to candidate solutions and edges between solutions correspond to
neighbor candidate solutions. We can endow these spaces with a notion of distance
between solutions equal to the length of the shortest path between their corresponding
nodes in the graph. Formally, a search space is seen as a metric space.

DEFINITION 1: A metric space is a set X together with a real valued function d : X → X (called
a metric or distance function) such that, for every x, y, z ∈ X:

1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, z) + d(z, y) ≥ d(x, y)

Evolutionary Computation Volume xx, Number x 3

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Geometric search operators are defined using geometric shapes, defined in terms of
distance between points in space, to delimit the region of search space where to sample
offspring solutions relative to the positions of parent solutions. For example, geometric
crossover is a search operator that takes two parent solutions in input corresponding to
the end points of a segment, and returns points sampled at random on the segment as
offspring solutions. In order to define formally geometric crossover, we need the notion
of metric segment which is a generalization of traditional segment in the Euclidean
space to metric spaces.

DEFINITION 2: Let X be a metric space endowed with a metric d. For any x, y ∈ X, the d-metric
segment [x, y]d between x and y is the set {z ∈ X : d(x, z) + d(z, y) = d(x, y)}

Geometric crossover is defined formally as follows.

DEFINITION 3: (Geometric crossover (Moraglio and Poli, 2004)) A recombination operator is
a geometric crossover under the metric d if for any pair of parents all their offspring are in the
d-metric segment between them.

The specific distance associated with the search space at hand is used in the
definition of metric segment to determine the specific geometric crossover for that
space. Therefore, each search space is associated with a different space-specific geo-
metric crossover. However, all geometric crossovers have the same abstract geometric
definition.

Candidate solutions can be seen as points in space, geometric view, or equivalently,
as syntactic configurations of a certain type, representation view. For example, a candi-
date solution in the Hamming space can be considered as a point in space or as a binary
string corresponding to that point. This allows us to think of a search operator equiva-
lently as (i) an algorithmic procedure which manipulates the syntactic configurations of
the parent solutions to obtain the syntactic configurations of the offspring solutions us-
ing well-defined representation-specific operations (representation/operational view),
or (ii) a geometric description which specifies what points in the space can be returned
as offspring for the given parent points and with what probability (geometric/abstract
view). For example, uniform crossover for binary strings (Syswerda, 1989) is a recom-
bination operator that produces offspring binary strings by inheriting at each position
in the binary string the bit of one parent string or of the other parent string with the
same probability. This is an operational view of the uniform crossover that tells how to
manipulate the parent strings to obtain the offspring string. Equivalently, the same op-
erator can be defined geometrically as the geometric crossover based on the Hamming
distance that takes offspring uniformly at random on the segment between parents
(Moraglio and Poli, 2004).

This dual perspective on the geometric search operators has surprising and im-
portant consequences (Moraglio, 2007). One of them is the possibility of principled
generalization of search algorithms from continuous spaces to combinatorial spaces, as
sketched in the following.

1. Given a search algorithm defined on continuous spaces, one has to recast the
definition of the search operators expressing them explicitly in terms of Euclidean
distance between parents and offspring.

2. Then one has to substitute the Euclidean distance with a metric, obtaining a
formal search algorithm generalizing the original algorithm based on the con-
tinuous space. The formal search algorithm obtained is defined axiomatically as

4 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

Algorithm 1 DE with differential mutation and discrete recombination

1: initialize population of Np real vectors at random
2: while stop criterion not met do
3: for all vector X(i) in the population do
4: pick at random three distinct vectors from the current population X1, X2, X3
5: create mutant vector U = X3 + F · (X1−X2) where F is the scale factor parameter
6: set V as the result of the discrete recombination of U and X(i) with probability Cr
7: if f(V) ≥ f(X(i)) then
8: set the ith vector in the next population Y (i) = V
9: else

10: set Y (i) = X(i)
11: end if
12: end for
13: for all vector X(i) in the population do
14: set X(i) = Y (i)
15: end for
16: end while

it is based on the axiomatic notion of metric. In particular, it does not refer to any
specific instantiation of metric space.

3. Next, one can consider a (discrete) representation and a distance associated
with it (a combinatorial space) and use it in the definition of the formal search
algorithm to obtain a specific instance of the algorithm for this space.

4. Finally, one can use the geometric description of the search operator to derive
its operational definition in terms of manipulation of the specific underlying
representation.

This methodology was used to generalize PSO and DE to general metric spaces ob-
taining the abstract algorithms GPSO (Moraglio et al., 2006b) and GDE (Moraglio and
Togelius, 2009) which can then be used as formal specifications to derive specific ver-
sions of GPSO and GDE for specific representations and distances. In the following
sections, we illustrate how the methodology can be used in practice to generalize DE
and to specialize it to specific metric spaces associated with a number of representa-
tions. The same methodology can be used to generalize to combinatorial spaces other
algorithms naturally based on a notion of distance. This includes search algorithms
such as response surface methods, estimation of distribution algorithms, and Lipschitz
optimization algorithms, and also machine learning algorithms.

3 Classic Differential Evolution

In this section, we describe the traditional DE2 (Price et al., 2005) (see Algorithm 1).
Note that we consider the objective function f to be maximized.

The characteristic that sets DE apart from other evolutionary algorithms is the
presence of the differential mutation operator (see line 5 of Algorithm 1). This operator
creates a mutant vector U by perturbing a vector X3 picked at random from the current

2The DE version considered here is known as DE/rand/1/bin, which is perhaps the most well-
known. However, many other versions exist (Price et al., 2005).

Evolutionary Computation Volume xx, Number x 5

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Figure 1: Construction of U using vectors.

population with the scaled difference of the other two randomly selected population
vectors F · (X1 − X2). The operation is understood to be important because it adapts the
mutation direction and its step size to the level of convergence and spatial distribution
of the current population. The mutant vector is then recombined with the currently
considered vector X(i) using discrete recombination3 and the resulting vector V replaces
the current vector in the next population if it has better or equal fitness.

The differential mutation parameter F, known as scale factor or amplification factor,
is a positive real normally between 0 and 1, but it can take also values greater than 1.
The recombination probability parameter Cr of the discrete recombination (Algorithm 1,
line 6) takes values in [0, 1]. It is the probability, for each position in the vector X(i), of
the offspring V inheriting the value of the mutant vector U. When Cr = 1, Algorithm 1
degenerates to a DE algorithm with differential mutation only (because V = U). When
F = 0, Algorithm 1 degenerates to a DE algorithm with discrete crossover only, as
U = X3. The population size Np normally varies from 10 to 100.

4 Geometric Differential Evolution

Following the methodology outlined in Section 2, in this section we generalize the
classic DE algorithm to general metric spaces. To do it, we recast differential muta-
tion and discrete recombination as functions of the distance of the underlying search
space, thereby obtaining their abstract geometric definitions. Then, in the following
sections, we derive the specific DE algorithms for binary strings, permutations, vectors
of permutations and genetic programs by plugging distances associated with these
representations in the abstract geometric definition of the search operators.

4.1 Generalization of Differential Mutation

Let X1, X2, X3 be real vectors and F ≥ 0 a scalar. The differential mutation operator
produces a new vector U as follows:

U = X3 + F · (X1 − X2) (1)

The algebraic operations on real vectors in Equation (1) can be represented graphically
(Price et al., 2005) as in Figure 1 by means of operations on (graphical) vectors, in which
the real vectors X1, X2, X3, and U are represented as points.

Unfortunately, the graphical interpretation of Equation (1) in terms of operations
on vectors does not help us to generalize Equation (1) to general metric spaces because

3In order to enforce a modification of X(i), at least one locus of the mutant vector is normally kept
during recombination.

6 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

the notions of vector and operations on vectors are not well-defined at this level of
generality. More formally, a vector space V is a set that is closed under vector addition
and scalar multiplication. The basic example is the n-dimensional Euclidean space,
where scalars are real numbers. For a general vector space, the scalars are members
of a field F. A field is any set of elements endowed with two operations, addition,
and multiplication, that satisfy a number of axioms, called field axioms. Whereas the
n-dimensional Euclidean space can be naturally associated with a notion of distance,
via the notion of norm, the underlying set X of a metric space cannot in general be
associated with a vector space V over a scalar field F, derived from the metric d of the
metric space.

In the following, we propose a generalization based on interpreting Equation (1)
in terms of segments and extension rays, which are geometric elements well-defined
in both vector spaces and metric spaces. To do that, we need the notions of convex
combination and extension ray, as follows.

DEFINITION 4: Given vectors u, v ∈ V a vector space over Rn, and scalars r, s ∈ R, a convex
combination is defined as

CX(u, v) = r · u + s · v

with r ≥ 0, s ≥ 0, and r + s = 1. The extension ray originating in u and extending beyond v

is defined as
ER(u, v) = r · u + s · v

with s ≥ 0, and r + s = 1.

Note that convex combination and extension ray differ only in the range of the
parameter r.

Equation (1) can be rewritten in terms of convex combination as follows:

U + F · X2 = X3 + F · X1 (2)

By dividing both sides by 1 + F and letting W = 1
1+F

we have:

W · U + (1 − W) · X2 = W · X3 + (1 − W) · X1 (3)

Both sides of Equation (3) are convex combinations of two vectors. On the left-hand side,
the vectors U and X2 have coefficients W and 1 − W , respectively. These coefficients
sum up to one and are both positive because W ∈ [0, 1] for F ≥ 0.4 Analogously, the
right-hand side is a convex combination of the vectors X3 and X1 with the same
coefficients.

There is an interesting relation between the algebraic notion of convex combination
of two vectors and the geometric notion of segment in the Euclidean space. Vectors
represent points in space. Any point PC corresponding to a vector C obtained by a convex
combination of two vectors A and B lay in the line segment between their corresponding
points PA and PB. The converse also holds true: any vector C corresponding to a point
PC of the segment [PA, PB] can be obtained as a convex combination of the vectors A and
B. For each point on the segment, the weights WA and WB in the convex combination
localize the point PC on the segment [PA, PB]: distances to PC from PA and PB are
inversely proportional to the corresponding weights, WA and WB, that is, d(PA, PC) ·
WA = d(PB, PC) · WB .

4As F is generally in the range [0, 1], the corresponding range for W is in fact only [0.5, 1]. The value
of F should be chosen larger than one, in case different spaces require larger W.

Evolutionary Computation Volume xx, Number x 7

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Figure 2: Construction of U using convex combination and extension ray.

The above relation allows for a geometric interpretation of Equation (3) in terms
of convex combinations (see Figure 2). Let us call E the vector obtained by the con-
vex combinations on both sides of Equation (3). Geometrically the point E must be
the intersection point of the segments [U,X2] and [X1, X3]. The distances from E to
the end points of these segments can be determined from Equation (3) as they are in-
versely proportional to their respective weights (i.e., d(U,E) · W = d(X2, E) · (1 − W)
and d(X1, E) · (1 − W) = d(X3, E) · W). Since the point U is unknown (but its weight is
known), it can be determined geometrically by first determining E = CX(X1, X3), the
convex combination of X1 and X3; then, by projecting X2 beyond E obtaining a point
U = ER(X2, E), that is, the extension ray originating in X2 and passing through E, such
that the proportions of the distances of X2 and U to the point E is inversely proportional
to their weights. In the Euclidean space, the constructions of U using vectors (Figure 1)
and convex combinations (Figure 2) are equivalent (algebraically, hence geometrically).

Segments and extension rays in the Euclidean space and their weighted extensions
can be expressed in terms of distances, hence, these geometric objects can be naturally
generalized to metric spaces by replacing the Euclidean distance with a metric. We will
present their abstract definitions in Section 4.3.

The differential mutation operator U = DM(X1, X2, X3) with scale factor F can now
be defined for any metric space following the construction of U presented in Figure 2
as follows:

1. Compute W = 1
1+F

2. Get E as the convex combination CX(X1, X3) with weights (1 − W,W) (general-
izing E = (1 − W) · X1 + W · X3)

3. Get U as the extension ray ER(X2, E) with weights (W, 1 − W) (generalizing
U = (E − (1 − W) · X2)/W)

4.2 Generalization of Discrete Recombination

After applying differential mutation, the DE algorithm applies discrete recombination
to U and X(i) generating V. Discrete recombination is a geometric crossover under the
Hamming distance for real vectors (Moraglio, 2006b).5 The Hamming distance for real
vectors is defined analogously to the Hamming distance between binary strings: it is

5The name Hamming distance for real vectors derives from the observation that when the domain
of real vectors is restricted to the set of binary strings, the distance on the restricted domain coincides
with the traditional notion of Hamming distance for binary strings.

8 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

Algorithm 2 Formal geometric differential evolution

1: initialize population of Np configurations at random
2: while stop criterion not met do
3: for all configuration X(i) in the population do
4: pick at random three distinct configurations from the current population X1, X2, X3
5: set W = 1

1+F where F is the scale factor parameter
6: create intermediate configuration E as the convex combination CX(X1, X3) with

weights (1 − W, W)
7: create mutant configuration U as the extension ray ER(X2, E) with weights (W, 1 −W)
8: create candidate configuration V as the convex combination CX(U, X(i)) with

weights (Cr, 1 − Cr) where Cr is the recombination parameter
9: if f(V) ≥ f(X(i)) then

10: set the i configuration in the next population Y (i) = V
11: else
12: set Y (i) = X(i)
13: end if
14: end for
15: for all configuration X(i) in the population do
16: set X(i) = Y (i)
17: end for
18: end while

th

the number of sites with mismatching values across the two vectors. This distance is
provably a metric as it is a product metric of the discrete metric on R (Moraglio, 2006b).
From its definition, we can derive that the Cr parameter of the discrete recombination
is proportional to the expected number of values that V inherits from U. Therefore,
E[HD(U,V)] = Cr · HD(U,X(i)) and E[HD(X(i), V)] = (1 − Cr) · HD(U,X(i)). Con-
sequently, Cr and 1 − Cr can be interpreted as the weights of U and X(i), respectively,
of the convex combination that returns V in the space of real vectors endowed with
Hamming distance. In order to generalize the discrete recombination, by replacing
Hamming distance with a metric, we obtain the abstract convex combination operator
CX introduced in the previous section. So, we have that the generalized discrete re-
combination of U and X(i) with probability parameter Cr generating V is as follows:
V = CX(U,X(i)) with weights (Cr, 1 − Cr).

In the classic DE (Algorithm 1), replacing the original differential mutation and
discrete recombination operators with their generalizations, we obtain the formal geo-
metric differential evolution (see Algorithm 2). When the formal algorithm is specified
on the Euclidean space, the resulting Euclidean GDE does not coincide with the classic
DE. This is because, whereas the original differential mutation operator can be ex-
pressed as a function of the Euclidean distance, the original discrete recombination
operator can be expressed as a function of the Hamming distance for real vectors, not
of the Euclidean distance. The Euclidean GDE coincides with an existing variant of
traditional DE (Price et al., 2005), which has the same differential mutation operator
but in which the discrete recombination is replaced with blend crossover. Interestingly,
blend crossover lives in the same space as differential mutation and their joint behavior
has a geometric interpretation in space.

4.3 Definition of Convex Combination and Extension Ray

A notion of convex combination in metric spaces was introduced in the GPSO frame-
work (Moraglio et al., 2006b). The notion of extension ray in metric spaces was intro-

Evolutionary Computation Volume xx, Number x 9

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

duced in the GDE framework (Moraglio and Togelius, 2009). In the following, we review
their definitions and emphasize that the extended ray recombination can be naturally
interpreted as the inverse operation of the convex combination.

In Section 2, we introduced the notion of metric segment. Let us recall the definition
of extension ray in metric spaces. The extension ray ER(A,B) in the Euclidean plane is
a semi-line originating in A and passing through B (note that ER(A,B) �= ER(B,A)).
The extension ray in a metric space can be defined indirectly using metric segments, as
follows.

DEFINITION 5: Given points A and B, the metric extension ray ER(A,B) is the set of points
which comprises any point C that satisfies C ∈ [A,B] or B ∈ [A,C].

Only the part of the extension ray beyond B will be of interest because any point C
that we want to determine, which is the offspring of the differential mutation operator,
is never between A and B by construction.

We can now use these geometric objects as basis for defining the convex combination
operator and the extended ray recombination operator in metric spaces, as follows.

DEFINITION 6: Let X be a metric space endowed with distance function d. The convex combi-
nation in metric spaces CX((A,WA), (B,WB)) of two points A and B in X with weights WA

and WB (positive and summing up to one) returns the set of points comprising any point C in
X such that C ∈ [A,B] and d(A,C) · WA = d(B,C) · WB .

When specified to Euclidean spaces, this notion of convex combination coincides
with the traditional notion of convex combination of real vectors. Note that, unlike the
Euclidean case, in other spaces, for specific points A and B and specific choices of WA

and WB, the convex combination in metric spaces may return a set that contains a single
point, the empty set, or a set containing more than a point.

The extension ray recombination in metric spaces ER is defined as the inverse operation
of the weighted convex combination CX, as follows.

DEFINITION 7: Let X be a metric space endowed with distance function d. The weighted extension
ray ER((A,Wab), (B,Wbc)) of the points A (origin) and B (through) and weights Wab and Wbc

returns a set of points comprising any point C such that the set of points returned by the convex
combination of C with A with weights Wbc and Wab, that is, CX((A,Wab), (C,Wbc)), includes
point B.

Note that from the above definition it follows that the weights Wab and Wbc in ER

are positive real numbers between 0 and 1 and sum up to 1 because they must respect
this condition in CX((A,Wab), (C,Wbc)). The set of points returned by the weighted
extension ray in metric spaces ER can be characterized explicitly in terms of distances
to the input points of ER, as follows Moraglio and Togelius (2009).

LEMMA 1: The points returned by the weighted extension ray ER((A,Wab), (B,Wbc)) com-
prises any point C which is at a distance d(A,B) · Wab/Wbc from B and at a distance
d(A,B)/Wbc from A.

PROOF: From the definition of weighted extension ray we have that B ∈ CX((A,Wab),
(C,Wbc))). Hence, d(A,C) = d(A,B) + d(B,C) and the distances d(A, B) and d(B, C) are
inversely proportional to the weights Wab and Wbc, that is, d(A,B) · Wab = d(B,C) ·
Wbc. Consequently, d(A,C) = d(A,B)/Wbc and substituting it into d(B,C) = d(A,C) −
d(A,B) we get d(B,C) = d(A,B) · Wab/Wbc, since Wab + Wbc = 1. �
10 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

Algorithm 3 Binary convex combination operator

1: inputs: binary strings A and B and weights WA and WB (weights must be positive and sum
up to 1)

2: for all position i in the strings do
3: if random(0,1) ≤ WA then
4: set C(i) to A(i)
5: else
6: set C(i) to B(i)
7: end if
8: end for
9: return string C as offspring

This characterization is useful to construct procedures to implement the weighted
extension ray for specific spaces. In fact, we used it, together with representation-specific
properties of the extension ray, in the derivation of the extension ray recombination
operators for all representations in this article.

Importantly, the above definitions of convex combination and extension ray in
metric spaces can be made stochastic and relaxed treating their output points as
the outcomes of a random variable which are required to meet the relation between
weights and distances only in expectation. More precisely, the convex combination
CX((A,WA), (B,WB)) is understood as a stochastic operator whose output is a random
variable C for which it must hold that (i) the support set of C is included in [A,B] and
(ii) E[d(A,C)] · WA = E[d(B,C)] · WB . An analogous stochastic definition can be made
for the extension ray. These relaxed versions of the operators have the advantage of
being more naturally suited to combinatorial spaces and being easier to implement for
such spaces.

5 Binary GDE

In this section, we derive formally specific convex combination and extension ray
recombination for the Hamming space for binary strings. These specific operators can
then be plugged in the formal GDE (Algorithm 2) to obtain a specific GDE for the
Hamming space, the binary GDE.

5.1 Convex Combination

Let us consider the convex combination C = CX((A,WA), (B,WB)) of two points A and
B with weights WA and WB (positive and summing up to one). In the Euclidean space, C
is uniquely determined; however, this is not the case for all metric spaces. In particular, it
does not hold for Hamming spaces. When CX is specified to Hamming spaces on binary
strings, it can be formally shown that we obtain the recombination operator outlined in
Algorithm 3 (Moraglio et al., 2006b). This algorithm returns an offspring binary string C
of parent binary strings A and B, where C is interpreted as a random variable on [A,B],
such that E[HD(A,C)]/E[HD(B,C)] = WB/WA (i.e., the relation holds in expectation
as defined in the previous section), where HD denotes the Hamming distance between
binary strings. This differs from the Euclidean case where the ratio is guaranteed.

5.2 Extension Ray

In order to gain an intuitive understanding of how an extension ray looks like in the
Hamming space, let us consider an example of extension ray originating in A = 110011
and passing through B = 111001.

Evolutionary Computation Volume xx, Number x 11

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Algorithm 4 Binary extension ray recombination

1: inputs: binary strings A (origin) and B (through) of length n and weights WAB and WBC

(weights must be positive and sum up to 1)
2: set HD(A, B) as Hamming distance between A and B
3: set HD(B, C) as HD(A, B) · WAB /WBC rounded to the closest integer (estimate the

distance between B and C using the weights)
4: set p as HD(B, C)/(n − HD(A, B)) (this is the probability of flipping bits away from A

and B beyond B)
5: for all position i in the strings do
6: set C(i) = B(i)
7: if B(i) = A(i) and random(0,1) ≤ p then
8: set C(i) to the complement of B(i)
9: end if

10: end for
11: return string C as offspring

The relation C ∈ [A,B] is satisfied by those C that match the schema S1 = 11 ∗ 0 ∗ 1.
This is the set of the possible offspring of A and B that can be obtained by recombining
them using the uniform crossover.

The relation B ∈ [A,C] is satisfied by all those C that match S2 = ∗ ∗ 1 ∗ 0∗. This
is the set of all those C that when recombined with A using the uniform crossover can
produce B as offspring.

The following theorem characterizes the extension ray in the Hamming space in
terms of schemata.

THEOREM 2: Let A and B be fixed binary strings in the Hamming space:

1. The relation C ∈ [A,B] is satisfied by those strings C that match the schema obtained
by keeping the common bits in A and B and inserting ∗ where the bits of A and B do not
match.

2. The relation B ∈ [A,C] is satisfied by all those strings C that match the schema obtained
by inserting ∗ where the bits are common in A and B and inserting the bits coming from
B where the bits of A and B do not match.

PROOF PROOF OF STATEMENT 1: the schema so defined corresponds to the set of the
possible offspring of A and B that can be obtained by recombining them using the uni-
form crossover. This crossover operator corresponds to the uniform geometric crossover
under Hamming distance which returns offspring on the segment between parents.
PROOF OF STATEMENT 2: all C matching the schema S defined in the second statement
recombined with A can produce B as offspring. This is because, at positions where
the schema S presents ∗, the bit in B can be inherited from A. At positions where the
schema S has 0 or 1, the bit in B can be inherited from C. Furthermore, only the strings
C matching S can produce B when C is recombined with A. �

Using the characterization of the weighted extension ray in terms of distances
(Lemma 1) and the characterization of the extension ray in the Hamming space in
terms of schemata (Theorem 2), we were able to derive the weighted extension ray
recombination for this space (see Algorithm 4). Theorem 3 proves that recombination
operator conforms to the definition of weighted extension ray for the Hamming space
(in expectation).

12 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

THEOREM 3: Given parents A and B, the stochastic recombination in Algorithm 4 returns ran-
dom offspring C such that Pr(B ∈ [A,C]) = 1 and E[HD(B,C)]/HD(A,B) = WAB/WBC ,
where E[HD(B,C)] is the expected Hamming distance between B and the offspring C (with
respect to the probability distribution of C).

PROOF: This can be shown as follows. The number of bits in which A and B differ are
HD(A,B). The number of bits in which A and B do not differ is n − HD(A,B). For the bits
in which A and B differ, the string C equals B. For each bit in which A and B do not differ,
C does not equal B with probability p. So, the expected distance between B and C is
E[HD(B,C)] = (n − HD(A,B)) · p. By substituting p = HD(B,C)/(n − HD(A,B)), we
have E[HD(B,C)] = HD(B,C) = HD(A,B) ·WAB/WBC . So, E[HD(B,C)]/HD(A,B) =
WAB/WBC . �

Theorem 3 holds under the assumption that the diameter of the space is at least as
large as the wanted Hamming distance between A and C. That is, that the requested
point on the extension ray does not go beyond the boundary of the space. When such
a condition does not hold, the value of p becomes larger than 1, and the offspring C
returned by Algorithm 4 is the point on the extension ray at maximum distance from
A, that is, the same offspring which is returned when p = 1. In this case, the required
relation between distance and weights does not hold.

Now we have operational definitions of convex combination and extension ray for
the space of binary strings under HD. These space-specific operators can be plugged in
the formal GDE (Algorithm 2) to obtain a specific GDE for the space of binary strings.

5.3 Experiments for Binary GDE

We implemented the GDE algorithm for binary spaces within a Java framework.6 In
order to systematically test the behavior of GDE on landscapes with varying amounts
of epistasis, we performed experiments using NK fitness landscapes, as proposed by
Kauffman (1993). NK landscapes have two parameters: N, the number of dimensions,
was fixed to 100 in our experiments; K, the number of dependencies on other loci per
locus, was varied between 0 and 5.

The proposed algorithm was compared with three other algorithms:

• cGA: A canonical GA, with roulette wheel fitness-proportionate selection, uni-
form crossover and bitflip mutation.

• tGA: A GA with truncation selection, with a selection threshold of popsize/2.

• ES: A μ + λ ES, with μ = λ = popsize/2 and bitflip mutation.

These are basic standard evolutionary algorithms and were chosen to have simple and
well-known methods to compare against. Two types of GAs differing in the selection
scheme used are considered because we found that the selection scheme may affect the
performance significantly.

For the ES and GAs, the bitflip mutation works as follows: each bit in the chro-
mosome is considered, and with probability p this bit is flipped. In the experiments
involving these algorithms, the parameter p was systematically varied between 0.0 and
0.5 in increments of 0.01. For the experiments involving GDE, the key parameters F and
Cr were systematically varied between 0.0 and 1.0 in increments of 0.1.

6Source code is available upon request from the second author.

Evolutionary Computation Volume xx, Number x 13

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Table 1: Results on the NK landscape benchmark. Average maximum fitness at the
last generation (standard deviations in parentheses) for each algorithm using K values
between 0 and 5, using population sizes of both 10 and 100. Fifty runs were performed
for each configuration.

K = 0 K = 1 K = 2 K = 3 K = 4 K = 5

Population size 10
GDE 0.675 (0.0) 0.685 (0.019) 0.741 (0.02) 0.768 (0.063) 0.752 (0.102) 0.733 (0.136)
cGA 0.579 (0.098) 0.620 (0.146) 0.598 (0.117) 0.613 (0.130) 0.603 (0.127) 0.607 (0.116)
tGA 0.651 (0.011) 0.709 (0.0419) 0.736 (0.045) 0.731 (0.079) 0.747 (0.092) 0.725 (0.11)
ES 0.679 (0.02) 0.698 (0.036) 0.72 (0.063) 0.717 (0.071) 0.720 (0.099) 0.722 (0.104)

Population size 100
GDE 0.649 (0.01) 0.722 (0.049) 0.695 (0.081) 0.715 (0.09) 0.689 (0.113) 0.683 (0.14)
cGA 0.495 (0.138) 0.511 (0.183) 0.528 (0.191) 0.526 (0.217) 0.528 (0.189) 0.517 (0.198)
tGA 0.587 (0.113) 0.605 (0.119) 0.620 (0.133) 0.624 (0.119) 0.629 (0.156) 0.628 (0.121)
ES 0.657 (0.035) 0.693 (0.069) 0.681 (0.097) 0.673 (0.089) 0.692 (0.096) 0.685 (0.109)

Table 2: Best parameter settings found for GDE on the NK landscape benchmark.

K pop/gen F Cr

0 100/100 0.0 0.8
1 100/100 0.0 0.7
2 100/100 0.0 0.5
3 10/1000 0.1 0.9
4 10/1000 0.1 0.8
5 10/1000 0.1 0.8

All evolutionary runs lasted for 10,000 function evaluations, which were allocated
either as population size 100 and 100 generations or as population size 10 and 1,000
generations. The CPU time of the different algorithms was very similar in all cases.

The results in Table 1 show that GDE is a very competitive algorithm overall on
this problem. For population size 100, GDE is the best of the four algorithms for K > 1,
and for population size 10, GDE is the best-performing algorithm when 0 < K < 4.
The difference is statistically significant (p < .001 using a two-tailed student’s t-test) for
K = 3 (both population sizes) and K = 1 (population size 10). GDE is never much worse
than the best algorithm, even for those values of K where it is not the best algorithm.

Table 2 shows the best parameter settings for GDE for different K. Apparently, for
low K, larger population sizes are preferred; and for higher K, smaller populations
do better. Interestingly, for all K, the best configuration is very low F and medium to
high Cr . Table 3 presents the best mutation settings found for ES and GA. The GAs
always performed best with population size 100, and the ES with population size 10.
A clear trend is that ES works best with small populations and both GAs with larger
populations; ES also generally prefers lower mutation rates than the GAs.

5.3.1 Discussion
We have found GDE to be competitive with the best of the tested algorithms. For NK
landscapes, GDE performs overall best of the standard algorithms we tested it against
given roughly the same amount of automatic parameter tuning.

14 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

Table 3: Best mutation settings for GAs and ES on the NK landscape benchmark.

K cGA tGA ES

0 0.01 0.35 0.01
1 0.01 0.43 0.03
2 0.28 0.47 0.03
3 0.16 0.19 0.04
4 0.39 0.36 0.02
5 0.20 0.30 0.02

Algorithm 5 Swap distance

1: inputs: permutations pa and pb

2: set dist = 0
3: for all position i in the permutations do
4: if pa(i) = pb(i) then
5: find pa(i) in pb and be j its position in pb

6: swap contents of pb(i) and pb(j)
7: dist = dist + 1
8: end if
9: end for

10: return dist

The best parameters found for GDE show that high Cr and low F values seem to be
the best choice in most cases. However, although we have not included a table showing
this, the algorithm is not very sensitive to parameters; in particular, F can be varied
within the low range on NK landscapes with very little performance difference. The
exception is that extreme values of Cr result in drastic performance drops.

6 Permutation-based GDE

In this section, we formally derive specific convex combination and extension ray re-
combination for the space of permutations. We use the swap distance between per-
mutations as a basis for the GDE. These specific operators can then be plugged into
the formal GDE (Algorithm 2) to obtain a specific GDE for the space of permutations,
the permutation-based GDE. Note, however, that in principle, we could choose any
other distance between permutations (e.g., adjacent swap distance, reversal distance,
insertion distance, etc.) as a basis of the GDE. In that case, for each distance, we would
obtain a different permutation-based GDE.

6.1 Swap Distance

The swap distance SD(A, B) between two permutations A and B is the minimum number
of swaps needed to order one permutation into the order of the other permutation. The
swap distance can be implemented by counting the number of swaps employed by the
selection sort algorithm as in Algorithm 5, which is provably minimal.

6.2 Convex Combination

Algorithm 6 presents a recombination operator for permutations that was introduced
in the GPSO framework (Moraglio et al., 2008). This operator produces an offspring by

Evolutionary Computation Volume xx, Number x 15

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Algorithm 6 Convex combination

1: inputs: permutations pa and pb , and their weights Wa and Wb

2: generate a recombination mask m randomly with a and b with probabilities Wa and Wb

3: for all position i in the permutations do
4: if pa(i) = pb(i) then
5: if m(i) = a then
6: find pa(i) in pb and be j its position in pb

7: swap contents of pb(i) and pb(j)
8: else
9: find pb(i) in pa and be j its position in pa

10: swap contents of pa(i) and pa(j)
11: end if
12: end if
13: end for
14: return pa as offspring

sorting by swaps the two parent permutations one toward the other until they converge
to the same permutation. A random recombination mask of the size of the parent
permutations is generated using the parent weights interpreted as probabilities and
tossing a biased coin multiple times to select which parents to consider at each position
in the mask. The outcome at a specific position dictates which of the two permutations
has to be sorted toward the other at that position. This operator was proven to be
a convex combination for permutations under swap distance SD in Moraglio et al.
(2008). We report only the statement of the theorem and refer the interested reader to
that reference.

THEOREM 4: The convex combination in Algorithm 6 is a geometric crossover under swap
distance.

Additionally, in previous work (Moraglio et al., 2008), it was shown that the dis-
tances of the parents to the offspring are decreasing functions of their weights in the
convex combination. In the following, we give a stronger result that says that these
distances are inversely proportional to the corresponding weights, as required by the
refined definition of convex combination introduced in this article.

THEOREM 5: The stochastic convex combination in Algorithm 6 is in expectation a convex
combination in the space of permutations endowed with swap distance.

PROOF: The convex combination for permutations is a geometric crossover under swap
distance. Therefore, the offspring of the convex combination are on the segment between
parents as required to be a convex combination. To complete the proof, we need to show
that the weights Wa and Wb of the convex combination are inversely proportional to
the expected distances E[SD(pa, pc)], E[SD(pb, pc)] from the parents pa and pb to their
offspring pc, that is, E[SD(pa, pc)] · Wa = E[SD(pb, pc)] · Wb, as follows.

The recombination mask m contains a set of independently generated choices. Let
us consider a generic position, that we call current position. When pa and pb differ at
the current position, the effect of the corresponding choice in the mask m is sorting pa a
single swap toward pb with probability Wb and sorting pb a single swap toward pa with
probability Wa. When pa and pb are equal at the current position, the effect of the choice
is to leave pa and pb unchanged. When all choices in the mask m have been applied,
pa and pb become equal in all positions, hence converged to the offspring pc. Since the
convex combination operator is a geometric crossover, the offspring pc is on a shortest

16 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

Algorithm 7 Extension ray recombination

1: inputs: parent pa (origin point of the ray) and pb (passing through point of the ray), with
corresponding weights Wab and Wbc (both weights are between 0 and 1 and sum up to 1)

2: output: a single offspring pc (a point on the extension ray beyond pb on the ray originating
in pa and passing through pb)

3: compute the swap distance SD(pa , pb) between pa and pb

4: set SD(pb, pc) = SD(pa , pb) · Wab/Wbc (compute the distance between pb and pc using
the weights)

5: set p = SD(pb , pc)/(n − 1 − SD(pa , pb)) (the probability p of swapping elements away
from pa and pb beyond pb)

6: set pc = pb

7: for all position i in the permutations do
8: if pc(i) = pa(i) and random(0,1) ≤ p then
9: select at random a position j

10: swap contents of pc(i) and pc(j)
11: end if
12: end for
13: return pc as offspring

path between pa and pb (shortest sorting trajectory by swaps). The expected number of
swap moves on the shortest path from pa toward pb to reach pc, that is, E[SD(pa, pc)], is
given by the number of swap moves on the shortest path, that is, SD(pa, pb), multiplied
by the probability that any swap move on the shortest path was obtained by ordering pa

toward pb, that is, Wb. Hence E[SD(pa, pc)] = SD(pa, pb) · Wb. Analogously for the other
parent we obtain: E[SD(pb, pc)] = SD(pa, pb) · Wa . Therefore, the expected distances of
the parents to the offspring are inversely proportional to their respective weights. �

6.3 Extension Ray

Algorithm 7 presents a recombination operator that is allegedly the extension ray recom-
bination for permutations under swap distance. This operator produces an offspring
permutation by sorting by swaps parent permutation pb away from parent permutation
pa. The number of swaps away is calculated in a way to obtain consistency between
weights and distances of the offspring to the parents as required from the general defini-
tion of extension ray recombination in metric space. The following theorem proves that
this is indeed an extension ray recombination for permutations under swap distance.

THEOREM 6: The stochastic extension ray recombination in Algorithm 7 is in expectation an
extension ray operator in the space of permutations endowed with swap distance.

PROOF: First we prove that pc = ER(pa, pb) by proving that pb is on the segment
between pa and pc under swap distance. Then we prove that the expected distances
E[SD(pa, pb)] and E[SD(pb, pc)] are inversely proportional to the weights Wab and Wbc,
respectively (i.e., E[SD(pa, pb)] · Wab = E[SD(pb, pc)] · Wbc).

Every swap move applied to pb that increases the Hamming distance between pa

and pb generates a permutation p′
b such that pb is on a swap shortest path between pa

and p′
b. This is because (i) p′

b is a swap away from pb, that is, SD(pb, p
′
b) = 1, and (ii)

p′
b is a swap further away from pa since HD(pa, p

′
b) > HD(pa, pb), that is, SD(pa, pb) +

1 = SD(pa, p
′
b). Hence, SD(pa, pb) + SD(pb, p

′
b) = SD(pa, p

′
b). This construction can be

continued applying a swap move to p′
b obtaining a p′′

b such that p′
b and pb are on a swap

Evolutionary Computation Volume xx, Number x 17

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

shortest path between pa and p′′
b . Analogously, for any further reiteration, we obtain

p
(n)
b such that pb is on a swap shortest path between pa and p

(n)
b . Since the operator ER

constructs the offspring pc (corresponding to p
(n)
b) from parents pa and pb following the

above procedure, we have that pb is on the segment between pa and pc under swap
distance.

The probability p is the probability of applying a swap away from pa for each
position i, for which pa equals pb. Hence, the probability p together with the number
k of positions at which pa equals pb determine the expected number of swaps away
pc is from pb. Therefore, E[SD(pb, pc)] = p · k. For the theorem to hold, the probabil-
ity p must determine the distance E[SD(pb, pc)] such that distances and weights of
parents are inversely proportional, that is, E[SD(pa, pb)] · Wab = E[SD(pb, pc)] · Wbc.
So the required p for this to happen is p = E[SD(pb, pc)]/k where E[SD(pb, pc)] =
E[SD(pa, pb)] · Wab/Wbc. The number k is well-estimated by the length of the diameter
of the space (maximum swap distance between any two permutations), which is n − 1
where n is the number of elements in the permutation, minus the swap distance be-
tween pa and pb, that is, k ≈ (n − 1 − E[SD(pa, pb)]). For this value of k, the probability
p is E[SD(pb, pc)]/(n − 1 − E[SD(pa, pb)]), which is the one in Algorithm 7. Hence, the
theorem holds. �

As for the case of the Hamming space, the extension ray recombination operator
for permutations cannot return points which are farther away than the diameter of the
space. When input weights require this, the point actually returned by the operator is
the farthest away point on the extension ray.

Now we have operational definitions of convex combination and extension ray for
the space of permutations under swap distance. These space-specific operators can be
plugged into the formal GDE (Algorithm 2) to obtain a specific GDE for the space of
permutations.

6.4 Experiments with GDE on TSP

We have tested the permutation-based GDE on randomly generated instances of the
traveling salesman problem (TSP), which is perhaps the most famous permutation-
based optimization problem. We use TSP as a benchmark problem on which to study the
performance of GDE under various parameters, and on which to compare it against two
standard search algorithms; we do not try to beat the best customized TSP algorithms.

While we have not tailored our search operators particularly to TSP, it is worth
noting that the neighborhood structure on the TSP that works best with local search
heuristics is that based on the 2-opt move which reverses the order of the elements
in a continuous section of the permutation. Analogously to the swap move, the 2-opt
move gives rise to a distance between permutations (known as reversal distance). This
would be perhaps the most suitable distance to use as a base for GDE when applied
to TSP, as a geometric crossover based on the reversal distance (Moraglio and Poli,
2011) beats the edge recombination crossover (Whitley et al., 1991), which is a crossover
specifically tailored to the TSP that performs extremely well. However, computing the
reversal distance is NP hard (Caprara, 1997), and only an approximation of the geometric
crossover associated with this distance can be implemented efficiently. Furthermore, the
approximated geometric crossover is rather complex. As the swap move gives rise to
simple geometric operators, it is a better choice for an initial exploration of the GDE
framework. We will derive and test a GDE based on reversal distance in future work.

Local search heuristics based on the swap move are known to do reasonably well
on the TSP. Also, genetic algorithms with the PMX crossover operator for permutation,

18 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

which is known to be a geometric crossover under swap distance, does reasonably well
on the TSP. Therefore, as a reference, we compare the GDE on the swap space with
a stochastic hill-climber based on the swap move and with a genetic algorithm with
rank-based selection, PMX crossover, and swap mutation.

The TSP instances used in our experiments are randomly generated, with either
10, 20, 50, 100, or 200 cities. The distance between each pair of cities lies between 0
and 1, and the instances are symmetric but not Euclidean. Twenty TSP instances were
generated at the beginning of the experiments; every algorithm configuration is run
once per instance, and the fitness is averaged over all instances.

Moderately extensive tuning experiments were performed for the population-based
algorithms. All algorithms (GDE, GA, and hill climber) were run for 100,000 function
evaluations. For GDE and GA, population sizes of 10, 20, 50, 100, and 1000 were tried,
with the number of generations set to 100000/popsize. For both algorithms, their two
respective key parameters were varied between 0 and 1 in increments of 0.2; for GDE,
the parameters are F and Cr . For the GA, these parameters were defined as the elite
proportion (how large a part of the rank-ordered population is used as the elite; the lesser
fit rest of the population is replaced in each generation) and mutation probability (the
probability that a new offspring is created through swap mutation from the previous
individual at the same position in the population rather than using PMX crossover
of two randomly selected individuals in the population). We note that some extreme
settings yield degenerate versions of both algorithms. Alas, for the hill climber, there is
nothing to tune.

The results can be found in Table 4. Generally, on small instance sizes (tour lengths
of less than 100), a well-tuned GDE is clearly competitive with a well-tuned GA. For tour
lengths of 10 and 20, the GDE is significantly better (p < .05 with a two-tailed student’s
t-test). On larger instances, GDE loses out to the GA by a large margin. However, on
these instances, the GA also performs worse than a standard hill climber.

For the smallest instances, large populations seemed to work best with GDE; for all
the other instances, population size 10 performed best. The best values for both F and
Cr were typically low.

Figure 3 dives deeper into parameter space, presenting a comparison of the settings
of the F and Cr parameters on TSP instances of size 10, 50, and 200, respectively. For
short tours, GDE is not very sensitive to parameters and performs well under most
settings, with the exceptions of Cr = 0 and (Cr = 1 when F = 0 or F = 0.2). Generally,
the best setting for both parameters is low for but not 0; setting both F and Cr to 0.2
yields the best or second best setting for all three instance sizes.

6.4.1 Analyzing the Failure of GDE on Long TSP Tours
In the attempt to investigate the reason for the failure of the algorithm for larger tour
lengths, we experimentally analyzed the dynamics of population fitness and average
distance of individuals in the population varying the parameters Cr and F systemat-
ically from 0 to 1 with increments of 0.2 for a total of 36 combinations. We studied
populations of size 10 for TSP tours of length 100. A short summary of the analysis
(table not reported) is as follows. The algorithm presents a variety of different behav-
iors. For F = 0, there is always premature convergence, and for Cr = 0, there is little
useful progress. Values of Cr = 0.2 and Cr = 0.4 for almost all values of F tend to be
the more stable configurations of the algorithm, which produces steady improvements
without loss of diversity, but the progress is very slow and eventually halts without
convergence.

Evolutionary Computation Volume xx, Number x 19

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Table 4: Results on TSP instances of sizes 10, 20, 50, 100, and 200. Standard deviations in
parentheses. All fitnesses and standard deviations are calculated over 100 independent
runs. Lower fitnesses are better.

Algorithm Fitness Population Parameters

Tour length 10
Hill climber 1.9 (0.422) — —
GA 1.532 (0.408) 50 elite 0.0, mut 0.4
GDE 1.407 (0.375) 1000 F 0.4, Cr 0.4

Tour length 20
Hill climber 2.871 (0.558) — —
GA 2.30 (0.388) 1000 elite 0.2, mut 0.2
GDE 2.167 (0.37) 10 F 0.0, Cr 0.2

Tour length 50
Hill climber 5.457 (0.609) — —
GA 5.399 (0.638) 10 elite 0.2, mut 0.6
GDE 5.24 (0.429) 10 F 0.0, Cr 0.2

Tour length 100
Hill climber 8.758 (0.758) — —
GA 9.945 (0.782) 10 elite 0.2, mut 0.4
GDE 15.899 (1.707) 10 F 0.1, Cr 0.4

Tour length 200
Hill climber 15.099 (0.794) — —
GA 21.92 10 elite 0.2, mut 0.4
GDE 48.926 (1.173) 10 F 0.2, Cr 0.2

0 0.2 0.4 0.6 0.8 1 0
0.2

0.4
0.6

0.8
1

1

1.5

2

Cr
F

TSP size 10

A
ve

ra
ge

 F
itn

es
s

0 0.2 0.4 0.6 0.8 1 0
0.2

0.4
0.6

0.8
1

0
5

10
15
20
25

Cr
F

TSP size 50

A
ve

ra
ge

 F
itn

es
s

0 0.2 0.4 0.6 0.8 1 0
0.2

0.4
0.6

0.8
1

40

60

80

100

Cr

F

TSP size 200

A
ve

ra
ge

 F
itn

es
s

Figure 3: GDE parameters for TSP tours of lengths 10, 50, and 200, and corresponding
fitness on the y axis. Lower fitnesses are better. The best-performing population sizes
were used for each tour length, meaning size 1,000 for length 10 and size 10 for lengths
50 and 200.

7 GDE for Sudoku

The Sudoku puzzle is a good candidate to test new algorithmic ideas because it is
entertaining and instructive as well as a nontrivial constrained combinatorial problem.
We have used it in previous work to test GPSO (Moraglio and Togelius, 2007) and a
GA (Moraglio et al., 2006a) with geometric operators based on a vector-of-permutations
solution representation, which is a natural representation for Sudoku grids, associated
with row-wise swap distance. In this section, we derive the specific GDE for Sudoku
based on the space above. Then, in Section 7.4, we present experimental results and
compare the performance of GA, GPSO, and GDE.

20 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

7.1 Sudoku Solving as Optimization Problem

Sudoku is a logic-based placement puzzle. The aim of the puzzle is to enter a digit
from 1 through 9 in each cell of a 9 × 9 grid made up of 3 × 3 subgrids (called regions),
starting with various digits given in some cells (i.e., the givens). Each row, column, and
region must contain only one instance of each digit. Sudoku puzzles with a unique
solution are called proper Sudoku, and the majority of published grids are of this type.
The general problem of solving Sudoku puzzles on n2 × n2 boards of n × n blocks is
known to be NP-complete (Yato, 2003).

Sudoku is a constraint satisfaction problem with four types of constraints:

1. Fixed elements

2. Rows are permutations

3. Columns are permutations

4. Boxes are permutations

It can be cast as an optimization problem by choosing some of the constraints as
hard constraints that all feasible solutions have to respect, and the remaining constraints
as soft constraints that can only be partially fulfilled and the level of fulfillment is the
fitness of the solution. Only two of the above four constraints can be chosen to be hard
constraints because generating feasible initial grids satisfying three or more constraints
is NP hard (Moraglio et al., 2006). We consider a space with the following characteristics:

• Hard Constraints. fixed positions and permutations on rows

• Soft Constraints. permutations on columns and boxes

• Distance. sum of swap distances between paired rows (row-swap distance)

Formally, the fitness function (to maximize) is

f (g) =
∑

i=1...9

∑

e=1...9

δ(�(e, rowg(i)) = 1) +
∑

i=1...9

∑

e=1...9

δ(�(e, colg(i)) = 1)

+
∑

i=1...9

∑

e=1...9

δ(�(e, boxg(i)) = 1)

where �(e, v) is a function that returns the number of occurrences of the number e in the
vector v; δ(c) is a function that returns one if the condition c is true, and zero otherwise;
rowg(i), colg(i), and boxg(i) are vectors containing the elements of the ith row, column,
and box of the grid g, respectively. In words, it is the sum of the number of unique
elements in each row, plus the sum of the number of unique elements in each column,
plus the sum of the number of unique elements in each box. So, for a 9 × 9 grid, we
have a maximum fitness of 9 · 9 + 9 · 9 + 9 · 9 = 243 for a completely correct Sudoku
grid and a minimum fitness of little more than 9 · 1 + 9 · 1 + 9 · 1 = 27, because for each
row, column, and square, there is at least one unique element type.

It is possible to show that the fitness landscape associated with this space is smooth,
making the search operators proposed a good choice for Sudoku.

In previous work (Moraglio et al., 2006), we presented geometric crossovers and
mutations based on the space of vectors of permutations endowed with the row-swap
distance. The geometric mutation swaps two non-fixed elements in a row. The geometric
crossovers are the row-wise PMX (partially matched crossover) and row-wise cycle

Evolutionary Computation Volume xx, Number x 21

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

crossover that recombine parent grids applying PMX and cycle crossover to each pair
of corresponding rows. These operators preserve the hard constraints above, hence
search only the space of feasible solutions (when the initial population is seeded with
feasible solutions).

7.2 Extension Ray and Convex Combination in Product Spaces and Subspaces

In the following, we present general theoretical results that allow us to build new
convex combination (or extension ray recombination) by combining operators that are
known to be convex combinations (or extension ray recombinations) and by restricting
the domain of known convex combinations (or extension ray recombinations). These
results are very useful to deal in a natural way with the compound structure of Sudoku
solutions and their hard constraints. We illustrate their application to Sudoku in the
following section. Note that the results on convex combination presented in this section
refine those presented earlier within the GPSO framework (Moraglio and Togelius,
2007).

THEOREM 7: The operator on the product space obtained by combining vector-wise a set of
convex combination operators is a convex combination on the product space endowed with the
distance obtained by summing the distances of the composing convex operators.

PROOF: Let us consider the convex combination operators CX1(S1, S1) → S1, CX2(S2, S2)
→ S2, . . . , CXn(Sn, Sn) → Sn. Let the compound operator on the product space S =
S1 × S2 × · · · × Sn CX(S, S) → S be defined as CX(S, S) = (CX1(S1, S1), CX2(S2, S2), . . . ,
CXn(Sn, Sn)). Since CX1, CX2, . . . , CXn are convex combination operators, they are also
geometric crossover under distances d1, d2, . . . , dn. For the product geometric crossover
theorem (Moraglio and Poli, 2006a), the compound operator CX is a geometric crossover
under the distance d = d1 + d2 + · · · + dn.

To prove that CX is a convex combination on d, we need to prove that apply-
ing CX1, CX2, . . . , CXn all with the same parent weights Wa and Wb on their respective
spaces (S1, d1), (S2, d2), . . . , (Sn, dn) and grouping their offspring in a vector is equivalent
to applying CX on the space (S, d) with weights Wa and Wb. Let c′ = CX1(a′, b′), c′′ =
CX2(a′′, b′′), . . . , c(n) = CXn(a(n), b(n)). We have that d1(a′, c′) = d1(a′, b′) · Wb, d2(a′′, c′′) =
d2(a′′, b′′) · Wb, . . . , dn(a(n), c(n)) = dn(a(n), b(n)) · Wb. Summing these equations we obtain
d1(a′, c′) + d2(a′′, c′′) + · · · + dn(a(n), c(n)) = (d1(a′, b′) + d2(a′′, b′′) + · · · + dn(a(n), b(n))) ·
Wb. This can be rewritten in terms of the distance d as d((a′, a′′, . . . , a(n)), (c′, c′′, . . . , c(n)))
= d((a′, a′′, . . . , a(n)), (b′, b′′, . . . , b(n))) · Wb. An analogous result holds for the parents
b′, b′′, . . . , b(n) with respect to the weight Wa. This means that CX is a weighted combi-
nation with respect to the distance d. �
THEOREM 8: The operator on the metric subspace (S ′, d) with S ′ ⊂ S obtained by restricting
the domain of application of a convex combination operator on the metric space (S, d) from S to
S ′ is a convex combination operator on (S ′, d).

PROOF: Let C = {ci} be the set of offspring obtained by CX(a,b) with weights Wa and
Wb on the original space (S, d). The operator CX is a convex combination if and only
if for any ci we have that d(a, ci) + d(ci, b) = d(a, b) and that d(a, ci)/d(ci, b) = Wb/Wa .
By restricting the space S to S ′ ⊂ S, we have that if a, b ∈ S ′, then the set C ′ of their
offspring by CX(a,b) with weights Wa and Wb on the restricted space is C ′ ⊂ C. The
properties on each of the offspring in C ′ defining the convex combination operator CX

on the subspace S ′ holds because they hold for every offspring in the superset C. �

22 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

The product space theorem and the subspace theorems apply as well to extension
ray operators. Essentially, the reason is because the equality c = CX(a, b) involving the
convex combination CX with weights Wa,Wb and the equality b = ER(a, c) involving
the extension ray recombination ER with weights Wa,Wb, from a declarative point of
view are equivalent, as they entail exactly the same relationship between the points a, b,
and c, which is, the point c is in the line between the points a and b and their distances
to it are inversely proportional to their weights, that is, d(a, c) · Wa = d(b, c) · Wb. The
two operators differ in which among a, b, and c are known elements and which are
unknown. In the case of CX, a and b are known and c unknown; in the case of ER, a and
c are known and b unknown. Since the theorems above do not rely on this difference,
they apply to both CX and ER.

The correct practical application of these theorems may require careful understand-
ing of the difference between declarative definition and operational definition of the
recombination operators. Also, these theorems hold when distances are deterministic
objects. However, in the operators defined in this paper, distances are treated as stochas-
tic objects (random variables) and distance relationships between points are guaranteed
only in expectation. Special care needs to be taken when applying these theorems on
stochastic operators.

7.3 Convex Combination and Extension Ray Recombination for Sudoku

In this section we use the theoretical results in the previous section to build the convex
combination and extension ray recombination operators for Sudoku starting from those
for permutations under swap distance. As usual, once we have these specific operators
we can plug them in the formal GDE (Algorithm 2) to obtain a specific GDE for the space
of vectors of permutations under row-wise swap distance, hence obtaining a specific
GDE for Sudoku.

The product convex combination theorem allows us to build a convex combination
for an entire Sudoku grid by applying row-wise a convex combination operator defined
on permutations. Let cx be a convex combination operator on permutations under
swap distance (as the one presented in Algorithm 6), where weights Wa and Wb, and
pa, pb, pc are the two parent permutations and the offspring permutation respectively,
that is, pc = cx(pa, pb). By applying cx to each paired rows of Sudoku grids Ga and Gb

and grouping the offspring permutations in a grid Gc, we obtain a convex combination
operator CX on grids under row-wise swap distance, with weights Wa and Wb.

We want to search the subspace of Sudoku grids in which all givens are fixed.
Grids belonging to this subspace are termed feasible grids. We note that when the
convex combination operator CX on grids is applied to feasible grids, it returns feasible
grids. This holds because any convex combination operator on permutations under
swap distance transmits unchanged to the offspring those elements that are in the same
position in both parents. Therefore, for the subspace convex combination theorem, the
operator CX′ obtained by restricting the domain of CX to feasible grids is a convex
combination operator on the space of feasible grids (w.r.t. the same metric).

Analogous to the product convex combination theorem, the product extension
ray theorem allows us to build an extension ray recombination operator ER on entire
Sudoku grids by applying row-wise an extension ray recombination operator defined
on permutations (such as the one in Algorithm 7).

Analogous to the subspace convex combination theorem, the subspace extension
ray theorem can be used to derive an operator ER′ from the operator ER to search the
subspace of feasible grids, provided that the ER operator returns feasible grids when

Evolutionary Computation Volume xx, Number x 23

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Table 5: Number of runs out of 50 the grid was solved (average highest fitness, rounded
to the nearest integer, in parentheses); GDE compared with other search algorithms from
previous papers, on the same two Sudoku grids. The best results found after parameter
tuning are reported for all algorithms. The best GDE settings were population size 50,
F 1.0, Cr 0.8 for Easy 1, and population size 100, F 0.0, Cr 0.6 for Hard 1.

Algorithm Easy 1 Hard 1

Hillclimber 35 1
GA 50 (243) 15 (242)
GPSO 36 (242) N/A
GDE 50 (243) 13 (242)

applied to feasible grids. This can be achieved by modifying the extension ray operator
on permutations in Algorithm 7 as a base for ER, in a way that fixed elements in both
parents are not changed (so obtaining feasible offspring). However, the probability p
for the extension ray recombination operator must be changed and adapted to the
new restricted space. In fact, if one prevents the fixed elements from being changed,
the effect is to have less swaps applied to b to obtain c, that is, a shorter expected
swap distance between b and c. To compensate for this is sufficient to adequately
increment the probability p of swaps to obtain the wanted expected swap distance
between b and c. This probability can be easily determined by noting that searching a
permutation subspace with permutations of size n with ng fixed elements is, in fact,
equivalent to search a permutation space with permutations of size n − np obtained
by removing the fixed elements that can be added back when the search is over. Thus,
the probability p for the extension ray recombination operator on this space is p =
SD(pb, pc)/(n − ng − 1 − SD(pa, pb)).

7.4 Experiments with GDE on Sudoku

We implemented GDE for Sudoku in the same publicly available codebase as our
previous experiments on EAs with geometric operators and geometric PSO (Moraglio
and Togelius, 2007; Moraglio et al., 2006). As our previous results define the state of the
art for this problem, we chose to compare our GDE results with our previous results,
and have thus not run any additional experiments for other algorithms apart from GDE.

The same parameter search was performed for Sudoku as for TSP (see Section 6.4
for details). However, instead of 20 randomly generated instances, the algorithms were
tested on two of the same Sudoku grids as used in our previous papers, one rated as
easy and the other as hard by a Sudoku website. For each parameter configuration, the
algorithm was run 50 times. Average fitness was calculated, as well as the number of
times out of 50 the run resulted in a fitness of 243, which means the grid was solved.

From Table 5, we can see that GDE is on par with a finely tuned GA on both easy
and hard Sudoku grids, and significantly outperforms both geometric PSO and hill
climbers. It should be noted that more extensive tuning was performed for the GA than
for GDE for this problem, as a number of different geometric crossover and mutation
operators were tried; similar attention given to the GDE might improve the results
further.

Figure 4 presents a comparison of parameter settings for GDE with population size
50 on the easy grid. We can see a general preference for high values of both parameters,
though the effect is stronger for Cr than for F. Additionally, extreme values of Cr (i.e.,

24 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

0 0.2 0.4 0.6 0.8 1 0
0.2

0.4
0.6

0.8
1

200

210

220

230

240

Cr

F

Sudoku size 50

A
ve

ra
ge

 F
itn

es
s

Figure 4: Parameter settings and corresponding average fitness on the “easy 1” Sudoku
grid, using population size 50, where the best setting was found.

0 and 1) yield much lower performance, which is understandable as these lead to a
degenerate algorithm. The best parameter setting for the Hard 1 grid yields very good
results, though not the best results found, on the Easy 1 grid. In general, it seems that
a Cr between 0.4 and 0.8 works well for all tested Sudoku problems, almost without
regard to the F value.

7.4.1 Discussion
The good performance of GDE on the Sudoku problem is consonant with the good
performance on small instances on TSP; this is because each individual Sudoku grid
is a composite of nine permutations of length nine, slightly smaller than the shortest
TSP tours tested. The optimal parameters for Sudoku differ from those for TSP, but the
general pattern remains that:

• Both parameters are important, suggesting that both operators contribute to
search quality;

• Extreme values of Cr yield drastic performance decreases; and

• Within the intermediate parameter range 0.2 ≤ Cr ≤ 0.8 and F ≥ 0.2, the al-
gorithm performs quite well.

8 GDE for Genetic Programs

In order to specify the GDE algorithm to the specific space of genetic programs, we need
to choose a distance between genetic programs. A natural choice of distance would be a
distance (metric) associated to the Koza-style crossover (Koza, 1992). This would allow
us to derive the specific GDE that searches the same fitness landscape seen by that
crossover operator. Unfortunately, the Koza-style crossover is provably nongeometric
under any metric (Moraglio and Poli, 2006b), so there is no distance associated with

Evolutionary Computation Volume xx, Number x 25

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

it that we can use as basis for the GDE.7 Another crossover operator, the homologous
crossover (Langdon and Poli, 2002) is provably geometric under structural Hamming
distance (SHD; Moraglio and Poli, 2005) which is a variant of the well-known structural
distance for genetic programming trees (Ekart and Nemeth, 2000). We use this distance
as the basis for the GDE because we will be able to use the homologous crossover as
a term of reference. Note, however, that in principle, we could choose any distance
between genetic programming trees as a basis of the GDE.

8.1 Homologous Crossover and Structural Hamming Distance

The common region is the largest rooted region where two parent trees have the same
topology. In homologous crossover (Langdon and Poli, 2002) parent trees are aligned
at the root and recombined using a crossover mask over the common region. If a node
belongs to the boundary of the common region and is a function, then the entire subtree
rooted in that node is swapped with it.

The structural distance (Ekart and Nemeth, 2000) is an edit distance specific to
genetic programming trees. In this distance, two trees are brought to the same tree
structure by adding null nodes to each tree. The cost of changing one node into another
can be specified for each pair of nodes or for classes of nodes. Differences near the root
have more weight. The structural Hamming distance (Moraglio and Poli, 2005) is a
variant of the structural distance in which when two subtrees are not comparable (i.e.,
they are roots of different arities), then they are considered to be at a maximal distance.
When two subtrees are comparable, then their distance is at most 1.

DEFINITION 8: (Structural Hamming distance (SHD))
dist(T1, T2) = hd(p, q) if arity(p) = arity(q) = 0

dist(T1, T2) = 1 if arity(p) �= arity(q)

dist(T1, T2) = 1
m + 1

(hd(p, q) +
∑

i=1...m
dist(si, ti)) if arity(p) = arity(q) = m

THEOREM 9: Homologous crossover is a geometric crossover under SHD (Moraglio and Poli,
2005).

8.2 Convex Combination

In the following, we first define a weighted version of the homologous crossover.
Then we show that that operator is a convex combination in the space of genetic
programming trees endowed with SHD. In other words, the weighted homologous
crossover implements a convex combination CX in this space.

DEFINITION 9: (Weighted homologous crossover). Let P1 and P2 be two parent trees, and W1

and W2 their respective weights. Their offspring O is generated using a crossover mask on the
common region of P1 and P2 such that for each position of the common region, P1 nodes appear
in the crossover mask with probability W1, and P2 nodes appear with probability W2.

THEOREM 10: The weighted homologous crossover is in expectation a convex combination in
the space of genetic programming trees endowed with SHD.

PROOF: The weighted homologous crossover is a special case of homologous crossover,
so it is also geometric under SHD. Therefore, the offspring of the weighted homologous

7In the sense that there is no distance such that the offspring trees are always within the metric
segment between parent trees.

26 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

crossover are on the segment between parents as required to be a convex combina-
tion. To complete the proof, we need to show that the weights W1 and W2 of the
weighted homologous crossover are inversely proportional to the expected distances
E[SHD(P1,O)], E[SHD(P2,O)] from the parents P1 and P2 to their offspring O, that is,
E[SHD(P1,O)] · W1 = E[SHD(P2,O)] · W2, as follows.

Given two trees P1 and P2, the SHD can be seen as a weighted Hamming distance on
the common region of P1 and P2 where the weight Wi on the distance of the contribution
of a position i in the common region depends on the arities of the nodes on the path from
i to the root node. For each position i of the common region, the expected contribution
SHDi(P1,O) to the distance SHD(P1,O) of that specific position is directly proportional
to Wi and inversely proportional to the weight W1 (so, E[SHDi(P1,O)] = Wi/W1). This
is because, from the definition of weighted homologous crossover, W1 is the proba-
bility that at that position the offspring O equals the parent P1. Thus, the higher this
probability, the smaller the expected contribution to the distance at that position. Fur-
thermore, the contribution to the distance is proportional to the weight Wi of the position
i by definition of weighted Hamming distance. From the linearity of the expectation
operator, we have that E[SHD(P1,O)] = E[

∑
i SHDi(P1,O)] = ∑

i E[SHDi(P1,O)] =∑
i Wi/W1 = 1/W1. The last passage holds true because, by definition of SHD, the sum

of the weights on the common region equals 1 (this corresponds to the case of having
two trees maximally different on the common region and their distance is 1). Analo-
gously, for the other parent, one obtains E[SHD(P2,O)] = 1/W2. This completes the
proof. �
8.3 Extension Ray

In the following, we first define a weighted homologous recombination. Then we show
that this operator is an extension ray recombination in the space of genetic programming
trees endowed with SHD.

To determine a recombination that implements an extension ray operator, it is useful
to think of an extension ray operator as the inverse of a convex combination operator,
as follows. Given a parent P1 (the origin of the extension ray) and the offspring C (the
point the extension ray passes through), one wants to determine a parent P2 (the point
on the extension ray) such that O results from the convex combination of P1 and P2.
The weighted extension ray homologous recombination is described in Algorithm 8. It
produces offspring with the same tree structure of the second parent.

Note that in theory any arbitrarily large subtree SC could be generated to be included
in TC. However, in practice, its size should be limited. In the experiment, we generate
SC with the same number of nodes of SA and SB.

THEOREM 11: The weighted extension homologous ray recombination is in expectation an
extension ray operator in the space of genetic programming trees endowed with SHD.

PROOF: First we prove that TC = ER(TA, TB) by showing that TB = CX(TA, TC). Then we
prove that the expected distances E[SHD(TA, TB)] and E[SHD(TB, TC)] are inversely
proportional to the weights WAB and WBC, respectively, that is, E[SHD(TA, TB)] · WAB =
E[SHD(TB, TC)] · WBC .

The offspring TC has the same structure of TB. This is because TC was constructed
starting from TB and then for each node of the common region between TA and TB, TC

was not changed or it was randomly chosen but preserving the arity of that node in TB.
The structures of the common regions CR(TA, TB) and CR(TA, TC) coincide. This is

because the structure of the common region between two trees is only a function of their

Evolutionary Computation Volume xx, Number x 27

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Algorithm 8 Weighted extension ray homologous recombination

1: inputs: parent trees TA (origin point of the ray) and TB (passing through point of the ray),
with corresponding weights WAB and WBC (both weights are between 0 and 1 and sum up
to 1)

2: output: a single offspring tree TC (a point on the extension ray beyond TB on the ray
originating in TA and passing through TB)

3: compute the structural Hamming distance SHD(TA, TB) between TA and TB

4: set SHD(TB , TC) = SHD(TA, TB) ·WAB /WBC (compute the distance between TB and
TC using the weights)

5: set p = SHD(TB , TC)/(1 − SHD(TA, TB)) (the probability p of flipping nodes in the
common region away from TA and TB beyond TB)

6: set TC = TB

7: for all position i in the common region between TA and TB do
8: consider the paired nodes TB (i) and TA (i) in the common region
9: if TB (i) = TA (i) and random(0,1) ≤ p then

10: set TC (i) to a random node with the same arity of TA(i) and TB (i)
11: end if
12: end for
13: return string TC as offspring

structures. Thus, since TB and TC have the same structure, CR(TA, TB) and CR(TA, TC)
have the same structure.

The tree TB can be obtained by homologous crossover applied to TA and TC (hence,
TC = ER(TA, TB)). This can be shown considering two separate cases, (i) nodes of TB

inherited from the common region CR(TA, TC), and (ii) subtrees of TB inherited from
subtrees of TA and TC at the bottom of the common region. Let us consider nodes on
the common region. For each node with index i in the common region, the node TB(i)
matches TA(i) or TC(i). This is true from the way TC(i) was chosen on the basis of the
values of TA(i) and TB(i). We have two cases. First, TC(i) was chosen at random, when
TA(i) = TB(i). In this case, TB(i) can be inherited from TA(i), since it may be TB(i) �= TC(i)
but TB(i) = TA(i). Second, TC(i) was chosen to equal TB(i), when TA(i) �= TB(i). In this
case, TB(i) can be inherited from TC(i). In either case, for nodes on the common region,
the corresponding nodes of TB can be inherited from TA or TC. The subtrees of TB at the
bottom of the common region can all be inherited from TC (both structure and content),
since by construction TC inherited those subtrees from TB without modifying them.

To show that this recombination is a weighted extension homologous ray re-
combination, we are left to show that the expected distances E[SHD(TA, TB)] and
E[SHD(TB, TC)] are inversely proportional to the weights WAB and WBC, that is,
E[SHD(TA, TB)] · WAB = E[SHD(TB, TC)] · WBC . The probability p of flipping nodes in
the common region away from TA and TB beyond TB was chosen as an appropriate
function of WAB and WBC and of SHD(TA, TB) to obtain SHD(TB, TC) such that the
above requirement holds true. It is possible to prove that the chosen p is the correct one
using the same argument used in the proof of Theorem 10. �

Now we have operational definitions of convex combination and extension ray for
the space of genetic programming trees under SHD. These space-specific operators can
be plugged in the formal GDE (Algorithm 2) to obtain a specific GDE for the genetic
programming trees space, the GDE-GP.

28 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

HGP GDE−GP
0

2

4

Regression − PopSize 500
B

es
t F

itn
es

s

HGP GDE−GP
0

20

40

60

Artificial Ant − PopSize 500

B
es

t F
itn

es
s

HGP GDE−GP
10

12

14
Parity − PopSize 500

B
es

t F
itn

es
s

HGP GDE−GP

400

600

800

Multiplexer − PopSize 500

B
es

t F
itn

es
s

HGP GDE−GP
0

2

4

Regression − PopSize 1000

B
es

t F
itn

es
s

HGP GDE−GP
0

20

40

60

Artificial Ant − PopSize 1000
B

es
t F

itn
es

s

HGP GDE−GP
10

12

14
Parity − PopSize 1000

B
es

t F
itn

es
s

HGP GDE−GP

400

600

800

Multiplexer − PopSize 1000

B
es

t F
itn

es
s

Figure 5: Box plots of the best fitness achieved in each problem (× marks the mean).
Population sizes of 500 individuals (top row) and 1,000 individuals (bottom row)

8.4 Experiments for GDE-GP

This section reports an experimental analysis of the GDE-GP behavior on four standard
GP benchmark problems: symbolic regression of the quartic polynomial, artificial ant
on the Santa Fe trail, 5-bit even parity, and 11-bit multiplexer. We will compare the
behavior of GDE-GP with a baseline GP approach, not only in terms of fitness, but
also in terms of the evolution of population diversity and average solution length. We
also take a closer look at pairwise and average SHDs during the evolution in order to
understand the different behaviors.

In all the experiments, we used F = 0.8 and Cr = 0.9, according to Price et al.
(2005). As a baseline for comparison, we used standard GP with homologous crossover
(70%) and reproduction (30%), always applying point mutation with probability 1/L,
where L is the number of nodes of the individual. We call this baseline HGP. All the
experiments were performed using populations of two different sizes (500 and 1000
individuals) initialized with the ramped half-and-half procedure Koza (1992) with an
initial maximum depth of eight, allowed to evolve for 50 generations. Each experiment
was repeated 50 times. Statistical significance of the null hypothesis of no difference
was determined with pairwise Kruskal-Wallis nonparametric ANOVAs at p = .05. A
nonparametric ANOVA was used because the data are not guaranteed to follow a
normal distribution. For the same reason, the median was preferred over the mean in
all the evolution plots that follow. The median is also more robust to outliers.

Figure 5 shows the box plots of the best fitness achieved along the run, using
populations of 500 individuals (top row) and 1,000 individuals (bottom row). With a
population size of 500, in all four problems there is a statistically significant difference
between HGP and GDE-GP. GDE-GP is consistently better than HGP.

It may be argued that HGP is being crippled by such a small population size, which
may reduce diversity along the run. This could be true, because when doubling the
population size, HGP significantly improves its best fitness of run in both regression
and multiplexer problems. However, with 1,000 individuals, the GDE-GP techniques
show significant improvement in many more cases, and remain consistently better than
HGP, exactly as before.

However, the observation of diversity, measured as the percentage of genotypically
distinct individuals in the population, revealed somewhat unexpected results. Figure 6
shows the evolution of the median values of diversity along the run, for both population

Evolutionary Computation Volume xx, Number x 29

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

0 10 20 30 40 50
0

50

100
Regression

Generations

D
iv

er
si

ty

0 10 20 30 40 50
0

50

100
Artificial Ant

Generations

D
iv

er
si

ty

0 10 20 30 40 50
0

50

100
Parity

Generations

D
iv

er
si

ty HGP − PopSize 500
HGP − PopSize 1000
GDE−GP − PopSize 500
GDE−GP − PopSize 1000

0 10 20 30 40 50
0

50

100
Multiplexer

Generations

D
iv

er
si

ty

Figure 6: Evolution of the median values of diversity in each problem.

0 10 20 30 40 50
5

10

15

20

25
Regression

GenerationsA
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

0 10 20 30 40 50
0

200

400

Artificial Ant

GenerationsA
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

0 10 20 30 40 50

100

150

200

Parity

GenerationsA
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

0 10 20 30 40 50

20

40

60

Multiplexer

GenerationsA
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

Figure 7: Evolution of the median values of average program length in each problem.
Legend as in Figure 6.

sizes. Not only does HGP not show any clear sign of diversity loss, regardless of
population size, but GDE-GP exhibits an extraordinarily varied behavior, approaching
both extreme values in different problems (in regression and artificial ant it practically
reaches 0% while in parity it reaches 100%), in some cases undergoing large fluctuations
along the run (multiplexer).

In Figure 7, we look at the evolution of the median values of average program
length along the run, for both population sizes. Once again, GDE-GP behaves radically
differently from HGP. GDE-GP presents large but smooth fluctuations in most problems,
when compared to the more constrained but somewhat erratic behavior of HGP. The
most interesting case is probably the artificial ant, where GDE-GP quickly and steadily
increases the average program length until a plateau is reached, followed by a steep
decrease to very low values and a tendency for stabilization at the end of the run.

In spite of the large fluctuations in diversity and average program length observed
in the GDE-GP runs, nothing particularly obvious seems to simultaneously happen in
terms of fitness evolution, except for the fact that fitness seems to stabilize when either

30 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

0 10 20 30 40 50
0

5

10

x 104 Artificial Ant − GDE−GP − example 1

Generations

S
H

D
 F

re
qu

en
cy

0 10 20 30 40 50
0

50

100
Artificial Ant − GDE−GP − example 1

Generations

D
iv

er
si

ty
 a

nd
A

vg
 S

H
D

 (x
10

0) Diversity
Avg SHD

0 10 20 30 40 50
0

5

10

x 104 Artificial Ant − GDE−GP − example 2

Generations

S
H

D
 F

re
qu

en
cy

0 10 20 30 40 50
0

50

100
Artificial Ant − GDE−GP − example 2

Generations

D
iv

er
si

ty
 a

nd
A

vg
 S

H
D

 (x
 1

00
)

Diversity
Avg SHD

Figure 8: Two GDE1 runs of artificial ant with population size 500, showing the evolution
of SHD frequencies (left) and the evolution of diversity and average SHD (right). Legend
for the frequency plots: —— 0, · · · · · ·]0, 0.25[, • [0.25, 0.75[, ◦ [0.75, 1[, —— 1.

diversity or average program length reach very low values (not shown). There is also no
clear correlation between the changes in diversity and the changes in average program
length.

In an attempt to understand the reasons behind the different evolution patterns of
GDE-GP and HGP, we have observed what happens in terms of the distance between
the individuals during the search process, and tried to visualize how the individuals
move in the search space. In each generation, we measured all the pairwise SHDs
between the trees of the population. Figure 8 reports two examples of artificial ant
runs performed with population size 500. The plots on the left-hand side of Figure 8
show the evolution of the frequency of pairs within each of the five different distance
intervals. The intervals considered are: [0, 0] (minimal distance, equal to 0),]0, 0.25[
(short distances), [0.25, 0.75[(medium distances), [0.75, 1[(long distances), and [1, 1]
(maximal distance, equal to 1). The plots on the right show the evolution of diversity
along with the evolution of the average SHD (multiplied by 100, so it uses the same
range as diversity). The two runs reported on this figure are interesting because they
show two possible and quite opposite behaviors in terms of SHD evolution. In the first
one, there is a clear predominance of medium distances from the middle of the run,
shared with an even greater predominance of minimal distances at the end of the run,
which accounts for the loss of diversity as well as the low average SHD. In the second
example, the run finishes with an almost complete dominance of the short distances,
evidencing a strong convergence, but with no minimal distances, which accounts for
a high diversity in spite of the low average SHD. Because the maximal distances take
longer to disappear in this example, for many generations it is the maximal and the
short distances that dominate, which strongly suggests the formation of clusters of
individuals in the search space (merging into only one cluster by the end of the run).

Figure 9 reports one typical example of an artificial ant run performed with HGP
with population size 500. Although the initial frequencies of distances are the same as
in GDE-GP, their evolution is radically different in HGP.

Unlike artificial ant, parity was the problem where the behavior of GDE-GP revealed
almost no variability between different runs, and also revealed to be very similar to the
behavior of HGP in terms of diversity (Figure 6). Similarly to the previous figures,

Evolutionary Computation Volume xx, Number x 31

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

0 10 20 30 40 50
0

5

10

x 10 Artificial Ant − HGP

Generations

S
H

D
 F

re
qu

en
cy

0 10 20 30 40 50
0

50

100
Artificial Ant − HGP

Generations

D
iv

er
si

ty
 a

nd
A

vg
 S

H
D

 (x
 1

00
)

Diversity
Avg SHD

Figure 9: HGP run of artificial ant with population size 500, showing the evolution of
SHD frequencies (left) and the evolution of diversity and average SHD (right). Legend
as in Figure 8.

0 10 20 30 40 50
0

5

10

x 104 Parity − GDE−GP

Generations

S
H

D
 F

re
qu

en
cy

0 10 20 30 40 50
0

50

100
Parity − GDE−GP

Generations

D
iv

er
si

ty
 a

nd
A

vg
 S

H
D

 (x
 1

00
)

Diversity
Avg SHD

0 10 20 30 40 50
0

5

10

x 104 Parity − HGP

Generations

S
H

D
 F

re
qu

en
cy

0 10 20 30 40 50
0

50

100
Parity − HGP

Generations

D
iv

er
si

ty
 a

nd
A

vg
 S

H
D

 (x
 1

00
)

Diversity
Avg SHD

Figure 10: GDE1 and HGP runs of parity with population size 500, showing the evolu-
tion of SHD frequencies (left) and the evolution of diversity and average SHD (right).
Legend as in Figure 8.

Figure 10 reports examples of the typical behavior of GDE-GP (top) and HGP (bottom)
in the parity problem, in terms of the evolution of distance frequencies (left) and average
distance along with diversity (right). As expected, the behavior of GDE-GP is different
from the one observed in the artificial ant examples (see Figure 8). Also as expected,
given the similarities in diversity evolution between GDE-GP and HGP, the behaviors
of the two approaches are not so dissimilar as in the artificial ant problem.

9 Conclusions

Geometric differential evolution is a formal generalization of DE on continuous spaces
that retains the original geometric interpretation and that applies to generic combina-
torial spaces. GDE can be formally specified to specific spaces associated, in principle,
to any solution representation. In this article, we have illustrated that this is indeed
possible in practice by deriving the specific GDEs for the Hamming space associated
with binary strings, for the space of permutations endowed with the swap distance,
for the space of vectors of permutations endowed with the row-swap distance, and for
the space of genetic programs endowed with the structural Hamming distance. These
are quite different spaces based on nontrivial solution representations. The derived
representation-specific GDEs are, in a strong mathematical sense, the same algorithm
doing the same type of search on different spaces.

32 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

Geometric Differential Evolution for Combinatorial and Programs Spaces

We have analyzed the behavior of specific GDE algorithms experimentally, tested
them on standard benchmarks, and compared them against a set of classic evolutionary
algorithms defined on the same search space and representation. The binary GDE and
the GDE-GP outperformed the other algorithms in the comparison. The GDE based
on permutations did well on the TSP, but only for short tour lengths; for long tours, it
performed very badly. Finally, GDE on vectors of permutations on Sudoku did almost
as well as a very finely tuned GA. We believe these are very promising initial results.
This is a rather interesting achievement, as the present work is one of the very rare
examples in which theory has been able to inform the practice of search operator
design successfully. GDE is a very recent algorithm and further analysis is required
to gain an in-depth understanding of its behavior on different representations. Also,
further experimentation is needed to more thoroughly explore its potential to effectively
solve combinatorial problems and problems naturally formulated as search in spaces
of programs. This constitutes an important piece of future work.

The formal generalization methodology employed to generalize differential evolu-
tion, which is the same that was used to generalize PSO, can be applied in principle to
generalize virtually any search algorithm for continuous optimization to combinatorial
spaces. Interestingly, this generalization methodology is rigorous, conceptually simple,
and promising as both GDE and GPSO seem to be quite good algorithms in practice.
In future work, we will generalize, using this methodology, other classical derivation-
free methods for continuous optimization that make use of geometric constructions of
points to determine the next candidate solution (e.g., the Nelder and Mead method and
the controlled random search method).

Acknowledgments

We would like to thank Riccardo Poli for passing us the code of the homologous crossover for
genetic programs, and Paulo Fonseca and João Carriço for ideas on visualizing distances. The
first author acknowledges EPSRC grant EP/I010297/1 that partially supported this work. The
third author acknowledges the support by national funds through FCT under contract Pest-
OE/EEI/LA0021/2011 and project PTDC/EIA-CCO/103363/2008, Portugal.

References

Caprara, A. (1997). Sorting by reversals is difficult. In Proceedings of the 1st Annual International
Conference on Computational Molecular Biology, pp. 75–83.

Ekart, A., and Nemeth, S. Z. (2000). A metric for genetic programs and fitness sharing. In Proceed-
ings of the European Conference on Genetic Programming, EuroGP’2000, pp. 259–270.

Gong, T., and Tuson, A. L. (2007). Differential evolution for binary encoding. In Soft Computing in
Industrial Applications (pp. 251–262). Berlin: Springer-Verlag.

Kauffman, S. (1993). Origins of order: Self-organization and selection in evolution. Oxford, UK: Oxford
University Press.

Kennedy, J., and Eberhart, R. C. (1997). A discrete binary version of the particle swarm algo-
rithm. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
Computational Cybernetics and Simulation, pp. 4104–4108.

Kennedy, J., and Eberhart, R. C. (2001). Swarm intelligence. San Mateo, CA: Morgan Kaufmann.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection.
Cambridge, MA: MIT Press.

Evolutionary Computation Volume xx, Number x 33

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

A. Moraglio, J. Togelius, and S. Silva

Langdon, W., and Poli, R. (2002). Foundations of genetic programming. Berlin: Springer-Verlag.

Moraglio, A. (2007). Towards a geometric unification of evolutionary algorithms. Ph.D. thesis,
University of Essex, UK.

Moraglio, A., Di Chio, C., and Poli, R. (2007). Geometric particle swarm optimization. In Proceed-
ings of the European Conference on Genetic Programming, pp. 125–136.

Moraglio, A., Di Chio, C., Togelius, J., and Poli, R. (2008). Geometric particle swarm optimization.
Journal of Artificial Evolution and Applications, doi: 10.1155/2008/143624.

Moraglio, A., and Poli, R. (2004). Topological interpretation of crossover. In Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1377–1388.

Moraglio, A., and Poli, R. (2005). Geometric landscape of homologous crossover for syntactic
trees. In Proceedings of IEEE Congress on Evolutionary Computation, pp. 427–434.

Moraglio, A., and Poli, R. (2006a). Product geometric crossover. In Proceedings of Parallel Problem
Solving from Nature Conference, pp. 1018–1027.

Moraglio, A., and Poli, R. (2006b). Inbreeding properties of geometric crossover and non-
geometric recombinations. In Proceedings of the Workshop on the Foundations of Genetic Al-
gorithms, pp. 1–14.

Moraglio, A., and Poli, R. (2011). Topological crossover for the permutation representation. Intel-
ligenza Artificiale 5(1):49–70.

Moraglio, A., and Togelius, J. (2007). Geometric PSO for the Sudoku puzzle. In Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 118–125.

Moraglio, A., and Togelius, J. (2009). Geometric differential evolution. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, pp. 1705–1712.

Moraglio, A., Togelius, J., and Lucas, S. (2006). Product geometric crossover and the Sudoku
puzzle. In Proceedings of IEEE Congress on Evolutionary Computation, pp. 470–476.

O’Neill, M., and Brabazon, A. (2006). Grammatical differential evolution. In Proceedings of the 2006
International Conference on Artificial Intelligence, pp. 231–236.

Onwubolu, G. C., and Davendra, D. (Eds.). (2009). Differential evolution: A handbook for global
permutation-based combinatorial optimization. Berlin: Springer.

Pampara, G., Engelbrecht, A. P., and Franken, N. (2006). Binary differential evolution. In Proceed-
ings of the IEEE Congress on Evolutionary Computation, pp. 1873–1879.

Price, K. V., Storm, R. M., and Lampinen, J. A. (2005). Differential evolution: A practical approach to
global optimization. Berlin: Springer.

Storn, R., and Price, K. (1997). Differential evolution a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, pp. 2–9.

Togelius, J., De Nardi, R., and Moraglio, A. (2008). Geometric PSO+GP = particle swarm pro-
gramming. In Proceedings of the Congress on Evolutionary Computation (CEC), pp. 3594–3600.

Whitley, D., Starkweather, T., and Shaner, D. (1991). Travelling salesman and sequence schedul-
ing: Quality solutions using genetic edge recombination. In L. Davis (Ed.) , Handbook of
Genetic Algorithms (pp. 350–372). New York: Van Nostrand Reinhold.

Yato, T. (2003). Complexity and completeness of finding another solution and its application to
puzzles. Master’s thesis, University of Tokyo, Japan.

34 Evolutionary Computation Volume xx, Number x

Evolutionary Computation_corrected proof
doi:10.1162/EVCO_a_00099
© by the Massachusetts Institute of Technology

