
Matchmaker, Matchmaker, Make Me a Match 45

0
10
20
30
40
50
60
70
80
90
100

3H
Uc
Hn
til
H

HDPPing HDsh IntHgHU IntHgHU (bi)

 5Dw

6tUHDk

0 0.5 1
0
10
20
30
40
50
60
70
80
90
100

3H
Uc
Hn
til
H

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

 8niIRUP
iIiHd

0Dtch DistDncH

Fig. 14: Distance distributions of metrics before and after uniformification.
Each visualization arranges individually sampled observations (thin horizontal
bars) vertically in descending order. The y axis can be interpreted as ranging
from the 0th percentile of outcomes (bottom) to 100th percentile (top) with
width of horizontal bars showing match distance at a certain percentile. Dashed
lines trace an ideal uniform distribution.

A Notes on Tag Alphabet

For tractability and consistency, this work exclusively considers strings composed from the
binary alphabet {0, 1}. However, we expect that most geometric, variational, and evolution-
ary properties of the metrics studied are not fundamentally tied to the particular use of the
binary alphabet.

We suspect that the surveyed integer metrics under the existing bitstring representation
should behave e↵ectively indistinguishably from a continuous-valued (i.e., floating point)
representation. Due to the uniformification process performed, both would be e↵ectively

46 Moreno et al.

0 0.5 1

100
90
80
70
60
50
40
30
20
10
0

3H
rc
Hn
til
H

HDPPing

0 0.5 1

HDsh

0 0.5 1

IntHgHr

0 0.5 1

IntHgHr (bi)

0 0.5 1

6trHDk

0Dtch DistDncH

Fig. 15: Cumulative distributions of sampled similarity constraint values. Each
visualization arranges individually sampled observations (thin horizontal bars)
vertically in descending order. The y axis can be interpreted as ranging from
the 0th percentile of outcomes (bottom) to 100th percentile (top) with hori-
zontal bar width showing similarity constraint at a certain percentile.

0 0.5 1

100
90
80
70
60
50
40
30
20
10
0

3H
rc
Hn
til
H

HDPPing

0 0.5 1

HDsh

0 0.5 1

IntHgHr

0 0.5 1

IntHgHr (bi)

0 0.5 1

6trHDk

0Dtch DistDncH

Fig. 16: Cumulative distributions of sampled dissimilarity constraint values.
Each visualization arranges individually sampled observations (thin horizontal
bars) vertically in descending order. The y axis can be interpreted as ranging
from the 0th percentile of outcomes (bottom) to 100th percentile (top) with
horizontal bar width showing similarity constraint at a certain percentile.

Matchmaker, Matchmaker, Make Me a Match 47

−1 0 1 2

100
90
80
70
60
50
40
30
20
10
0

3H
rc
Hn
til
H

HDPPing

−1 0 1 2

HDsh

−1 0 1 2

IntHgHr

−1 0 1 2

IntHgHr (bi)

−1 0 1 2

6trHDk

0Dtch DistDncH ChDngH

Fig. 17: Cumulative distributions of sampled detour di↵erence values. Each dis-
tribution visualization arranges individually sampled observations (thin hori-
zontal bars) vertically in descending order. The y axis can be interpreted as
ranging from the 0th percentile of outcomes (bottom) to 100th percentile (top)
with horizontal bar width showing the detour di↵erence at a certain percentile.
A positive value (colored blue) indicates that total distance increased with the
addition of an intermediate stop. A value of exactly 0 indicates an intermediate
stop had no e↵ect on total distance. A negative value (colored red) indicates
violation of the triangle inequality: taking an intermediate stop reduced the
total distance traveled.

rescaled to the range [0, 1]. With a precision of 1/232 — tighter than 10�9 — the 32-bit
tags used should exhibit near-undetectable granularity, especially given the relatively small
pools of query and operand tags used in our experiments.

However, it is important to note that the bit flip mutation operator used in our ex-
periments induces a roughly exponential distribution of mutational e↵ect size, which might
otherwise be an unusual choice when working with a continuous-valued tag system. We
unpack this issue in greater detail in Section 4.

Alternate alphabet choice would have a minimal e↵ect on the streak metric. Imagine, for
example, using a four-valued alphabet instead of the existing two-valued binary alphabet.
Any character in that four-valued alphabet could be encoded by a pair of binary digits.
So, the existing bitstring representation for tags could be preserved and adjustment instead
made to the match distance metric to count only entirely-matching (or mismatching) pairs
of bits as contributing to a streak. The significance of this e↵ect would depend on typical
streak length and, of course, for large alphabets this truncation e↵ect would eventually
become overwhelming.

Increased alphabet size might have a more nuanced e↵ect on the Hamming metric. Under
the binary alphabet, every mutation a↵ects a tag’s match distances to all other tags — no
mutation is neutral. However, with a larger alphabet size this would no longer be the case.
As with the streak metric, increased alphabet size would introduce e↵ects from coarsened
granularity, with the magnitude of these e↵ects eventually becoming overwhelming under
large alphabets.

48 Moreno et al.

100
90
80
70
60
50
40
30
20
10
0

3H
rc
Hn
tLl
H

HDPPLng HDsh IntHgHr IntHgHr (bL)

AIILnLty
 LoosH

6trHDk

−101

100
90
80
70
60
50
40
30
20
10
0

3H
rc
Hn
tLl
H

−101 −101 −101 −101

AIILnLty
 7Lght

0Dtch DLstDncH ChDngH

Fig. 18: Distributions of mutation e↵ects on match distance for loosely matched
(pre-mutation match distance > 0.5) and tightly matched (pre-mutation
match distance < 0.01) tag pairs. Each distribution visualization arranges in-
dividually sampled observations of mutation outcome from an independently
sampled tag pair (thin horizontal bars) vertically in descending order. The y
axis can be interpreted as ranging from the 0th percentile of outcomes (bottom)
to 100th percentile (top) with horizontal bar width showing the mutation e↵ect
size at a certain percentile. Mutations that increase a�nity are colored blue
and mutations that decrease a�nity are colored red. Solid lines indicate the
median between mutations that increase match distance and mutations that
decrease match distance. Dashed lines demarcate the boundaries between non-
neutral and perfectly-neutral mutations. Note that the x axis is inverted so
mutations increasing a�nity fall to the right and mutations decreasing a�nity
fall to the left.

Matchmaker, Matchmaker, Make Me a Match 49

● ●

0

25

50

75

100

Hamming Streak
Metric

G
en
er
at
io
n

Fig. 19: Generations to solution for the first 100 replicates out of 200 to pro-
duce a complete solution to the changing-signal task. Error bars indicate boot-
strapped 95% confidence intervals.

We do not fully explore the possibilities introduced by alternate tag-matching repre-
sentations in this work, so a detailed and rigorous understanding of this topic remains an
avenue for future research.

B Graph Matching with Normally-distributed Mutation Operator

In order to contextualize our use of bitwise mutation with integer metrics, we replicated the
32-vertex target graph matching experiment with randomly-initialized genomes reported in
Section 5.1 using a normally-distributed mutation operator.

Under the normally-distributed mutational operator, each tag had an integer amount
drawn from a normal distribution added to its integer representation every generation.
Specifically, the amount added was drawn fromN (0,m⇥c), wherem was a variable mutation
rate parameter and c was a fixed scale parameter 232 � 1. (Recall that 232 � 1 is the largest
possible Overflow values after addition were wrapped around.

50 Moreno et al.

0.0

0.2

0.4

0.6

0.8

1.0

M
a

x
 m

)
m

 F
 (

n
e

s
s

Targe(Degree = 1.0

T
a

r
g

e
(
 S

(
r
)

c
(
)

r
e

 =
 R

e
g

)
la

r

Targe(Degree = 2.0

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Upda(e

0.0

0.2

0.4

0.6

0.8

1.0

M
a

x
 m

)
m

 F
 (

n
e

s
s

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Upda(e

T
a

r
g

e
(
 S

(
r
)

c
(
)

r
e

 =
 Ir

r
e

g
)

la
r

Hash

Hamm ng

S(reak

In(eger

In(eger (b)

Fig. 20: Trajectories of adaptive evolution for each tag-matching metric on
the 32-vertex graph-matching task with randomly-initialized initial genomes.
Maximum fitness represents the best fitness value for any individual within
a population. Reported results use each metric’s best-performing per-bit mu-
tation rate. (See Supplementary Figure 21 for survey of how mutation rate
a↵ects adaptive evolution under each metric.) Note logarithmic x axis. Er-
ror bars represent bootstrapped 95% confidence intervals across 50 replicate
observations.

A swath of 15 standard deviations m between 0.000976562 and 0.125 were surveyed.
All metrics had a best-performing mutation rate within the range of surveyed rates for
each problem configuration tested. Supplementary Figure 26 summarizes performance across
surveyed mutation rates. We used the best-performing mutation rate for each metric on
each problem configuration for further analysis. Supplementary Table 4 provides the best-
performing mutation rates used.

Supplementary Figure 24 shows adaptation over generations under this mutational op-
erator for regular/irregular target graphs with mean degree 1/2. The normally-distributed
mutation operator performs comparably to the bitwise mutation operator or worse in all
instances.

It may be possible to achieve better performance with a mutation operator that combines
a per-tag mutation probability with a normally distributed mutational e↵ect. Further work
will be required to explore such possibilities.

Matchmaker, Matchmaker, Make Me a Match 51

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s

Regular 1 Irregular 1 Regular 2 M
etric =

 H
am

m
ing

Irregular 2

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s M

etric =
 Streak

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s M

etric =
 H

ash

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s

M
etric =

 Integer (bi)

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

M
etric =

 Integer

Mutation
Rate

0.75
1.0
1.5
2.0
3.0
4.0
6.0
8.0
12.0
16.0

Fig. 21: Survey of adaptive evolution rates across mutation rates for 32-vertex graph-matching task
with randomly-initialized initial genomes. Metrics exhibited fastest adaptive evolution within the
range of mutation rates surveyed, except the hash metric which exhibited fastest adaptive evolution
at at the lowest mutation rate surveyed. Maximum fitness is the best fitness value for any individual
within a population. Maximum fitness at each update is presented across the range of surveyed mu-
tation rates. Error bars represent bootstrap 95% confidence intervals across 50 replicate populations.

52 Moreno et al.

0.0

0.2

0.4

0.6

0.8

1.0

M
a

x
 m

)
m

 F
 (

n
e

s
s

Targe(Degree = 1.0

T
a

r
g

e
(
 S

(
r
)

c
(
)

r
e

 =
 R

e
g

)
la

r

Targe(Degree = 2.0

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Upda(e

0.0

0.2

0.4

0.6

0.8

1.0

M
a

x
 m

)
m

 F
 (

n
e

s
s

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Upda(e

T
a

r
g

e
(
 S

(
r
)

c
(
)

r
e

 =
 Ir

r
e

g
)

la
r

Hash

Hamm ng

In(eger

In(eger (b)

S(reak

0.0

0.2

0.4

0.6

0.8

1.0

M
a

(
im

u
m

 F
it

n
e

s
s

Target Degree = 1

T
a

r
g

e
t
 S

t
r
u

c
t
u

r
e

 =
 R

e
g

u
 a

r

Target Degree = 2

10
0

10
1

10
2

Update

0.0

0.2

0.4

0.6

0.8

1.0

M
a

(
im

u
m

 F
it

n
e

s
s

10
0

10
1

10
2

Update

T
a

r
g

e
t
 S

t
r
u

c
t
u

r
e

 =
 Ir

r
e

g
u

 a
r

Hash

Hamming

Integer

Integer (bi)

Streak

Fig. 22: Trajectories of adaptive evolution for each tag-matching metric on
the 64-vertex graph-matching task. Maximum fitness is the best fitness value
for any individual within a population. Reported results use each metric’s
best-performing per-bit mutation rate. (See Supplementary Figure 23 for sur-
vey of how mutation rate a↵ects adaptive evolution under each metric.) Note
logarithmic x-axes. Shaded area and error bars represent bootstrapped 95%
confidence intervals across 10 replicate observations.

Matchmaker, Matchmaker, Make Me a Match 53

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s

Regular 1 Irregular 1 Regular 2

M
etric =

 Streak
M

etric =
 Streak

Irregular 2

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s M

etric =
 Integer

M
etric =

 Integer

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s

M
etric =

 H
am

m
ing

M
etric =

 H
am

m
ing

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s M

etric =
 H

ash
M

etric =
 H

ash

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 F
itn

es
s

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

M
etric =

 Integer (bi)
M

etric =
 Integer (bi)

Mutation
Rate

0.75
1.0
1.5
2.0
3.0
4.0
6.0
8.0
12.0
16.0

Fig. 23: 64-vertex graph-matching task mutation rate sensitivity analysis. Metrics exhibited fastest
adaptive evolution within the range of mutation rates surveyed, except the hash metric which exhib-
ited fastest adaptive evolution at at the lowest mutation rate surveyed. Maximum fitness is the best
fitness value for any individual within a population. Maximum fitness at each update is presented
across the range of surveyed mutation rates. Error bars represent bootstrap 95% confidence intervals
across 10 replicate populations.

54 Moreno et al.

Metric Target Structure Target Degree
Best-Performing
Per-Genome Bit
Mutation Rate

Hash Regular 1 0.75
Hash Regular 2 0.75
Hash Irregular 1 1.0
Hash Irregular 2 0.75
Hamming Regular 1 4.0
Hamming Regular 2 2.0
Hamming Irregular 1 4.0
Hamming Irregular 2 2.0
Integer Regular 1 6.0
Integer Regular 2 6.0
Integer Irregular 1 8.0
Integer Irregular 2 6.0
Bidirectional Integer Regular 1 4.0
Bidirectional Integer Regular 2 6.0
Bidirectional Integer Irregular 1 8.0
Bidirectional Integer Irregular 2 4.0
Streak Regular 1 3.0
Streak Regular 2 2.0
Streak Irregular 1 3.0
Streak Irregular 2 1.5

Table 3: Best-performing per-bit mutation rates for 64-vertex graph matching
tasks. See Supplementary Figure 23 for performance across surveyed mutation
rates.

Metric Target Structure Target Degree
Best-Performing
Mutation Standard Deviation

Integer Regular 1 0.0117188
Integer Regular 2 0.0117188
Integer Irregular 1 0.015625
Integer Irregular 2 0.0117188
Bidirectional Integer Regular 1 0.0117188
Bidirectional Integer Regular 2 0.0117188
Bidirectional Integer Irregular 1 0.015625
Bidirectional Integer Irregular 2 0.015625

Table 4: Best-performing mutation rates for 32-vertex graph matching task
with normally-distributed mutations. See Supplementary Figure 25 for perfor-
mance across surveyed mutation rates.

C Genetic Programming Experiments

C.1 SignalGP

SignalGP (Signal-driven Genetic Programs) is a GP representation that enables signal-
driven (i.e., event-driven) program execution. In SignalGP, programs are segmented into
modules (functions) that may be automatically triggered by exogenously- or endogenously-
generated signals. Each module in SignalGP associates a tag with a linear sequence of
instructions. SignalGP makes explicit the concept of signals (events), which comprise a tag
and, optionally, signal-specific data. Signals trigger the module with the closest matching

Matchmaker, Matchmaker, Make Me a Match 55

0.0

0.2

0.4

0.6

0.8

1.0

M
ax
im
um

 Fi
tn
es
s

Target Degree = 1

Target Structure =
 Regular

Target Degree = 2

100 101 102
U date

0.0

0.2

0.4

0.6

0.8

1.0

M
ax
im
um

 Fi
tn
es
s

100 101 102
U date

Target Structure =
 Irregular

Integer
Integer (bi)

(a) Normally-distributed Mutation

0.0

0.2

0.4

0.6

0.8

1.0

M
a

(
im

u
m

 F
it

n
e

s
s

Target Degree = 1.0

T
a

r
g

e
t
 S

t
r
u

c
t
u

r
e

 =
 R

e
g

u
 a

r

Target Degree = 2.0

10
0

10
1

10
2

Update

0.0

0.2

0.4

0.6

0.8

1.0

M
a

(
im

u
m

 F
it

n
e

s
s

10
0

10
1

10
2

Update

T
a

r
g

e
t
 S

t
r
u

c
t
u

r
e

 =
 Ir

r
e

g
u

 a
r

Hash

Hamming

Streak

Integer

Integer (bi)

(b) Bitwise mutation

Fig. 24: Trajectories of adaptive evolution for each tag-matching metric on the 32-vertex graph-
matching task with normally-distributed mutation (24a) and bitwise mutation (24b). Maximum
fitness is the best fitness value for any individual within a population. Reported results use each
metric’s best-performing standard deviation mutation rate. (See Supplementary Figure 25 for survey
of how mutation rate a↵ects adaptive evolution under each metric.) Note logarithmic x-axes. Shaded
area represents bootstrapped 95% confidence intervals across 100 replicate observations.

tag (according to a given tag-matching scheme), using any signal-associated data as input
to the triggered module. SignalGP can handle many signals simultaneously, processing each
in parallel.

The SignalGP instruction set, in addition to including traditional GP operations, allows
programs to generate internal signals, broadcast external signals, and otherwise work in a
tag-based context. Instructions contain arguments, including an evolvable tag, that may
modify the instruction’s e↵ect, often specifying memory locations or fixed values. Instruc-
tions may refer to program modules using tag-based referencing; for example, an instruction
may trigger the execution of a program module using the instruction’s tag to specify which
module to trigger. SignalGP also supports genetic regulation with promoter and repressor
instructions that, when executed, allow programs to adjust how well subsequent signals
match with a target function (specified with tag-based referencing).

See (Lalejini and Ofria, 2018) for a more detailed description of the SignalGP represen-
tation. Additionally, see the GitHub repository for the SignalGP implementation used in
this work (Lalejini, 2020).

C.2 Changing-signal Task Description

The changing-signal task requires programs to express a distinct response to each of K
environmental signal (each signal has a unique tag). Programs express a response by ex-
ecuting one of K response instructions. Successful programs can ‘hardcode’ each response
with the appropriate environmental signal, ensuring that each environmental signal’s tag
best matches the function containing the correct response. We expect the particular metric
used to match tags to influence how well programs adapt to changing-signal task.

56 Moreno et al.

0.0

0.2

0.4

0.6

0.8

M
ax
im
um

 Fi
t
es
s

Regular 2 Irregular 2 Regular 1

M
etric =

 I teger

Irregular 1
1 2 4 8 16 32 64 12
8

25
6

51
2

Update

0.0

0.2

0.4

0.6

0.8

M
ax
im
um

 Fi
t
es
s

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

1 2 4 8 16 32 64 12
8

25
6

51
2

Update

M
etric =

 I teger (bi)

Mutatio
Rate

0.0009765619999999999
0.00146484
0.00195312
0.00292969
0.00390625
0.00585938
0.0078125
0.011718799999999998
0.015625
0.0234375
0.03125
0.046875
0.0625
0.09375
0.125

Fig. 25: Survey of adaptive evolution rates across mutation rates for 32-vertex graph-matching task
with normally-distributed mutation. Maximum fitness is the best fitness value for any individual
within a population. Maximum fitness at each update is presented across the range of surveyed
mutation rates. Mutation rate is the standard deviation of mutational di↵erence applied to tags each
generation. Error bars represent bootstrap 95% confidence intervals across 100 replicate populations.

Matchmaker, Matchmaker, Make Me a Match 57

0.0

0.5

1.0

M
a
x
im

)
m
 F
i(
n
e
s
s

Reg)lar 2 Irreg)lar 2 Reg)lar 1

M
e
(
r
ic
 =
 In

(
e
g
e
r

Irreg)lar 1

0.0

0.5

1.0

M
a
x
im

)
m
 F
i(
n
e
s
s M

e
(
r
ic
 =
 S
(
r
e
a

0.0

0.5

1.0

M
a
x
im

)
m
 F
i(
n
e
s
s

M
e
(
r
ic
 =
 In

(
e
g
e
r
 (
b
i)

0.0

0.5

1.0

M
a
x
im

)
m
 F
i(
n
e
s
s M

e
(
r
ic
 =
 H
a
s
h

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

Upda(e

0.0

0.5

1.0

M
a
x
im

)
m
 F
i(
n
e
s
s

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

Upda(e

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

Upda(e

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

Upda(e

M
e
(
r
ic
 =
 H
a
m
m
in
g

M)(a(ion

Ra(e

0.75

1.0

1.5

2.0

3.0

4.0

6.0

8.0

12.0

16.0

Fig. 26: Survey of adaptive evolution rates across mutation rates for 32-vertex graph-matching task
with uniformly-initialized initial genomes. Metrics exhibited fastest adaptive evolution within the
range of mutation rates surveyed, except the hash metric which exhibited fastest adaptive evolution
at at the lowest mutation rate surveyed. Maximum fitness is the best fitness value for any individual
within a population. Maximum fitness at each update is presented across the range of surveyed mu-
tation rates. Error bars represent bootstrap 95% confidence intervals across 10 replicate populations.

58 Moreno et al.

0
25

50
0
utDtionDl StHS

0.0

0.5

1.0

0Dtch DistDncH

H
Dm
m
ing

0
25

50
0
utDtionDl StHS

H
Dsh

0
25

50
0
utDtionDl StHS

IntHgHr

0
25

50
0
utDtionDl StHS

IntHgHr (bi)

0
25

50
0
utDtionDl StHS

StrHDk

F
ig.

27:
M
atch

d
istan

ce
over

m
u
tation

al
w
alks

from
id
entical

tags.
S
h
ad

ed
area

rep
resents

stan
d
ard

d
eviation

.

Matchmaker, Matchmaker, Make Me a Match 59

0 1 2 4 8 16 32 64
0utDtionDl 6tHS

0.0

0.2

0.4

0.6

0.8

1.0
0
Dt
ch
 D
is
tD
nc
H

0Htric
HDmming
HDsh
IntHgHr
IntHgHr (bi)
6trHDk

(a) Error bars represent 95% confidence intervals. Note logarithmic scale on the x axis.

0 25 50
0utDtionDl StHS

0.0

0.5

1.0

0
Dt
ch
 D
is
tD
nc
H

HDmming

0 25 50
0utDtionDl StHS

HDsh

0 25 50
0utDtionDl StHS

IntHgHr

0 25 50
0utDtionDl StHS

IntHgHr (bi)

0 25 50
0utDtionDl StHS

StrHDk

(b) Alternate visualization, shaded area represents standard deviation.

Fig. 28: Match distance along mutational walks from 32-bit tags sampled for
initial match distance < 0.01.

60 Moreno et al.

0 1 2 4 8 16 32 64
0utDtionDl 6tHS

0.0

0.2

0.4

0.6

0.8

1.0
0
Dt
ch
 D
is
tD
nc
H

0Htric
HDmming
HDsh
IntHgHr
IntHgHr (bi)
6trHDk

(a) Error bars represent 95% confidence intervals. Note logarithmic scale on the x axis.

0 25 50
0utDtionDl StHS

0.0

0.5

1.0

0
Dt
ch
 D
is
tD
nc
H

HDmming

0 25 50
0utDtionDl StHS

HDsh

0 25 50
0utDtionDl StHS

IntHgHr

0 25 50
0utDtionDl StHS

IntHgHr (bi)

0 25 50
0utDtionDl StHS

StrHDk

(b) Alternate visualization, shaded area represents standard deviation.

Fig. 29: Match distance along mutational walks from 64-bit tags sampled for
initial match distance < 0.01.

Matchmaker, Matchmaker, Make Me a Match 61

Metric Target Structure Target Degree
Best-Performing
Per-Genome Bit
Mutation Rate

Hash Regular 1 1.0
Hash Regular 2 1.0
Hash Irregular 1 1.0
Hash Irregular 2 1.0
Hamming Regular 1 4.0
Hamming Regular 2 3.0
Hamming Irregular 1 4.0
Hamming Irregular 2 3.0
Streak Regular 1 3.0
Streak Regular 2 2.0
Streak Irregular 1 4.0
Streak Irregular 2 2.0
Integer Regular 1 4.0
Integer Regular 2 6.0
Integer Irregular 1 6.0
Integer Irregular 2 4.0
Bidirectional Integer Regular 1 4.0
Bidirectional Integer Regular 2 6.0
Bidirectional Integer Irregular 1 8.0
Bidirectional Integer Irregular 2 6.0

Table 5: Best-performing per-bit mutation rates for 32-vertex graph matching
tasks with identically-initialized genomes. See Supplementary Figure 26 for
performance across surveyed mutation rates.

During evaluation, we a↵ord programs 64 time steps to express the appropriate response
after receiving a signal. Once a program expresses a response or the allotted time expires,
we reset the program’s virtual hardware (resetting all executing threads and thread-local
memory), and the environment produces the next signal. Evaluation continues until the
program correctly responds to each of the K environmental signals or until the program
expresses an incorrect response. During each evaluation, programs experience environmental
signals in a random order; thus, the correct order of responses will vary and cannot be
hardcoded.

For each metric, we evolved 200 replicate populations (each with a unique random
number seed) of 500 asexually reproducing programs in an eight-signal environment (K = 8)
for 100 generations. We identified the most performant tag mutation rate (from a range of
possible mutation rates) for each metric to use in our experiment. These data (and analyses)
are available online in the GitHub repository that houses these experiments (Lalejini, 2020).
We used the following per-bit tag mutation rates for the changing-signal task: 0.01 for
the Hamming and Streak metrics, 0.002 for the Hash metric, and 0.02 for the Integer and
Bidirectional Integer metrics. Aside from tag mutation rate, the overall configuration used
for each metric was identical. We limited tag variation in o↵spring to tag mutation (bit flips)
by initializing populations with a common ancestor program in which all tags are identical
and by disallowing mutations that would insert instructions with random tags.

The full configuration details for the changing-signal task (including a guide to running
these experiments on your local machine) can be found in the associated GitHub repository
(Lalejini, 2020).

62 Moreno et al.

C.3 Directional-signal Task Description

As in the changing-signal task, the directional-signal task requires that programs respond
to a sequence of environmental cues; in the directional-signal task, however, the correct
response depends on previously experienced signals. In the directional-signal task, there are
two possible environmental signals — a ‘forward-signal’ and a ‘backward-signal’ (each with
a distinct tag) — and four possible responses. If a program receives a forward-signal, it
should express the next response, and if the program receives, a backward-signal, it should
express the previous response. For example, if response-three is currently required, then a
subsequent forward-signal indicates that response-four is required next, while a backward-
signal would instead indicate that response-two is required next. Because the appropriate
response to both the backward- and forward-signals change over time, successful programs
must regulate which functions these signals trigger (rather than hardcode each response to
a particular signal).

We evaluate programs on all possible four-signal sequences of forward- and backward-
signals (sixteen total). For each program, we evaluate each sequence of signals independently,
and a program’s fitness is equal to its aggregate performance. Otherwise, evaluation on a
single sequence of signals mirrors that of the changing-signal task.

We used an identical experimental design for the directional-signal task as in the changing-
signal task. However, we evolved programs for 5000 generations (instead of 100) and re-
parameterized each metric’s tag mutation rate (these data are available in the associated
GitHub repository (Lalejini, 2020)): 0.001 for the Hamming and Hash metrics, 0.002 for the
Integer and Streak metrics, and 0.0001 for the Bidirectional Integer Metric.

The full configuration details for the directional-signal task (including a guide to running
these experiments on your local machine) can be found in the associated GitHub repository
(Lalejini, 2020) .

C.4 Data analysis and Implementation

The source code for our GP experiments can be found in the following GitHub repository:
(Lalejini, 2020) . This repository additionally includes all data analysis and visualization
scripts, experiment configuration details, and a guide for running our experiments locally.

Supplementary References

Lalejini, A. (2020). Exploring tag-matching metrics in SignalGP GitHub repository.
https://doi.org/10.5281/zenodo.3781295.

Lalejini, A. and Ofria, C. (2018). Evolving event-driven programs with signalgp. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference, pages 1135–1142.

