Skip to main content

Methods for Rich Phylogenetic Inference Over Distributed Sexual Populations

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XX

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 123 Accesses

Abstract

The structure of relatedness among members of an evolved population tells much of its evolutionary history. In application-oriented evolutionary computation (EC), such phylogenetic information can guide algorithm selection and tuning. Although traditional direct tracking approaches provide the perfect phylogenetic record, sexual recombination complicates management and analysis of this data. Taking inspiration from biological science, this work explores a reconstruction-based approach that uses end-state genetic information to estimate phylogenetic history after the fact. We apply recently developed “hereditary stratigraphy” genome annotations to lineages with sexual recombination to design devices germane to species phylogenies and gene trees. As shown through a series of validation experiments, the proposed instrumentation can discern genealogical history, population size changes, and selective sweeps. Fully decentralized by nature, these methods afford new observability at scale, in particular, for distributed EC systems. Such capabilities anticipate continued growth of computational resources available to EC. Accompanying open-source software aims to expedite the application of reconstruction-based phylogenetic analysis where pertinent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reported experiments used 64-bit fingerprint values, which will exhibit even lower collision probabilities. However, numerical considerations impede precise calculation.

  2. 2.

    The smallest representable floating point value was set for fitness advantage treatment 0.0 so the introduced gene could be differentiated from the background gene. This value was small enough to have no meaningfully detectable effect on selection.

References

  1. Avise, J.C.: Gene trees and organismal histories: a phylogenetic approach to population biology. Evol. 43(6), 1192–1208 (1989)

    Article  Google Scholar 

  2. Burke, E., Gustafson, S., Kendall, G., Krasnogor, N.: Is increased diversity in genetic programming beneficial? an analysis of lineage selection. In: CEC ’03., volume 2, vol. 2, pp. 1398–1405 (2003)

    Google Scholar 

  3. Burlacu, B., Affenzeller, M., Kommenda, M., Winkler, S., Kronberger, G.: Visualization of genetic lineages and inheritance information in genetic programming. In: GECCO Conference Companion Proceedings, pp. 1351–1358 (2013)

    Google Scholar 

  4. Cock, P.J., et al.: Biopython. Bioinform. 25(11), 1422 (2009)

    Google Scholar 

  5. Dolson, E.L., Vostinar, A.E., Wiser, M.J., Ofria, C.: The modes toolbox: measurements of open-ended dynamics in evolving systems. Artif. Life 25(1), 50–73 (2019)

    Article  Google Scholar 

  6. Estabrook, G.F., McMorris, F., Meacham, C.A.: Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units. Syst. Zool. 34(2), 193–200 (1985)

    Article  Google Scholar 

  7. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. ML Res. 13, 2171–2175 (2012)

    MathSciNet  Google Scholar 

  8. Gentle, J.E.: Generation of Random Numbers, pp. 305–331. Springer (2009)

    Google Scholar 

  9. Godin-Dubois, K., Cussat-Blanc, S., Duthen, Y.: Apoget: automated phylogeny over geological timescales. In: ALIFE 2019 (MethAL workshop) (2019)

    Google Scholar 

  10. Gropp, W., Snir, M.: Programming for exascale computers. Comput. Sci. & Eng. 15(6), 27–35 (2013)

    Article  Google Scholar 

  11. Hermisson, J., Pennings, P.S.: Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genet. 169(4), 2335–2352 (2005)

    Article  Google Scholar 

  12. Lalejini, A., et al.: Data standards for artificial life software. In: The 2019 Conference on Artificial Life, pp. 507–514. MIT Press (2019)

    Google Scholar 

  13. Lalejini, A., Moreno, M.A., Hernandez, J.G., Dolson, E.: Phylogeny-informed fitness estimation. In: GPTP XX. Springer (2023)

    Google Scholar 

  14. McPhee, N.F., Donatucci, D., Helmuth, T.: Using graph databases to explore the dynamics of genetic programming runs. In: GPTP XIII, pp. 185–201 (2016)

    Google Scholar 

  15. McPhee, N.F., Finzel, M.D., Casale, M.M., Helmuth, T., Spector, L.: A detailed analysis of a PushGP run. In: GPTP XIV, pp. 65–83 (2018)

    Google Scholar 

  16. Moreno, M.A., Dolson, E., Ofria, C.: Hereditary stratigraphy: genome annotations to enable phylogenetic inference over distributed populations. In: ALIFE 2022: the 2022 Conference on Artificial Life. MIT Press (2022a)

    Google Scholar 

  17. Moreno, M.A., Dolson, E., Ofria, C.: hstrat: a python package for phylogenetic inference on distributed digital evolution populations. J. Open Source Softw. 7(80), 4866 (2022)

    Article  Google Scholar 

  18. Moreno, M.A., Dolson, E., Rodriguez-Papa, S.: Toward phylogenetic inference of evolutionary dynamics at scale. In: ALIFE 2023: Proceedings of the 2023 Artificial Life Conference, p. 79. MIT Press (2023)

    Google Scholar 

  19. Murphy, G., Ryan, C.: A simple powerful constraint for genetic programming. In: Genetic Programming, pp. 146–157. Springer (2008)

    Google Scholar 

  20. Sand, A., et al.: tqdist. Bioinform. 30(14), 2079–2080 (2014)

    Google Scholar 

  21. Smith, M.R.: Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic trees. Bioinform. 5007–5013 (2020)

    Google Scholar 

  22. Sokal, R., Michener, C.: A Statistical Method for Evaluating Systematic Relationships, p. 40. University of Kansas science bulletin, University of Kansas (1958)

    Google Scholar 

  23. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  24. Terelius, H., Varagnolo, D., Johansson, K.H.: Distributed size estimation of dynamic anonymous networks. In: IEEE Conference on Decision and Control (CDC), pp. 5221–5227 (2012)

    Google Scholar 

  25. Varagnolo, D., Pillonetto, G., Schenato, L.: Distributed statistical estimation of the number of nodes in sensor networks. In: IEEE Conference on Decision and Control (CDC), pp. 1498–1503 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Andres Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno, M.A. (2024). Methods for Rich Phylogenetic Inference Over Distributed Sexual Populations. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds) Genetic Programming Theory and Practice XX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-8413-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8413-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8412-1

  • Online ISBN: 978-981-99-8413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics