Skip to main content

Advertisement

Log in

Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper discusses the evaluation of liquefaction potential of soil based on standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). The liquefaction classification accuracy (94.19%) of the developed liquefaction index (LI) model is found to be better than that of available artificial neural network (ANN) model (88.37%) and at par with the available support vector machine (SVM) model (94.19%) on the basis of the testing data. Further, an empirical equation is presented using MGGP to approximate the unknown limit state function representing the cyclic resistance ratio (CRR) of soil based on developed LI model. Using an independent database of 227 cases, the overall rates of successful prediction of occurrence of liquefaction and non-liquefaction are found to be 87, 86, and 84% by the developed MGGP based model, available ANN and the statistical models, respectively, on the basis of calculated factor of safety (F s ) against the liquefaction occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alavi, A.H., P. Aminian, A.H. Gandomi, and M.A. Esmaeilli (2011), Genetic-based modeling of uplift capacity of suction caissons, Expert Syst. Appl. 38,10, 12608–12618, DOI: 10.1016/j.eswa.2011.04.049.

    Article  Google Scholar 

  • Cetin, K.O., R.B. Seed, A.D. Kiureghian, K. Tokimatsu, L.F. Harder, Jr., R.E. Kayen, and R.E.S. Moss (2004), Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential, J. Geotech. Geoenviron. Eng. 130,12, 1314–1340, DOI: 10.1061/(ASCE) 1090-0241(2004)130:12(1314).

    Article  Google Scholar 

  • Das, S.K., and P.K. Basudhar (2008), Prediction of residual friction angle of clays using artificial neural network, Eng. Geol. 100,3–4, 142–145, DOI: 10.1016/j.enggeo.2008.03.001.

    Article  Google Scholar 

  • Das, S.K., and P.K. Muduli (2011), Evaluation of liquefaction potential of soil using genetic programming. In: Proc. Golden Jubilee Indian Geotechnical Conference, 15–17 December 2011, Kochi, India, 2, 827–830.

    Google Scholar 

  • Gandomi, A.H., and A.H. Alavi (2012a), A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems, Neural Comput. Applic. 21,1, 171–187, DOI: 10.1007/s00521-011-0734-z.

    Article  Google Scholar 

  • Gandomi, A.H., and A.H. Alavi (2012b), A new multi-gene genetic programming approach to nonlinear system modeling. Part II: geotechnical and earthquake engineering problems, Neural Comput. Applic. 21,1, 189–201, DOI: 10.1007/s00521-011-0735-y.

    Article  Google Scholar 

  • Giustolisi, O., A. Doglioni, D.A. Savic, and B.W. Webb (2007), A multi-model approach to analysis of environmental phenomena, Environ. Modell. Softw. 22,5, 674–682, DOI: 10.1016/j.envsoft.2005.12.026.

    Article  Google Scholar 

  • Goh, A.T.C. (1994), Seismic liquefaction potential assessed by neural networks, J. Geotech. Eng. ASCE 120,9, 1467–1480, DOI: 10.1061/(ASCE)0733-9410 (1994)120:9(1467).

    Article  Google Scholar 

  • Goh, A.T.C., and S.H. Goh (2007), Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data, Comput. Geotech. 34,5, 410–421, DOI: 10.1016/j.compgeo.2007.06.001.

    Article  Google Scholar 

  • Hanna, A.M., D. Ural, and G. Saygili (2007), Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data, Soil Dyn. Earthq. Eng. 27,6, 521–540, DOI: 10.1016/j.soildyn.2006.11.001.

    Article  Google Scholar 

  • Hwang, J.H., and C.W. Yang (2001), Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data, Soil Dyn. Earthq. Eng. 21,3, 237–257, DOI: 10.1016/S0267-7261(01)00002-1.

    Article  Google Scholar 

  • Idriss, I.M., and R.W. Boulanger (2010), SPT-based liquefaction triggering procedures, Report No. UCD/CGM-10/02, Department of Civil and Environmental Engineering, College of Engineering, University of California, Davis.

    Google Scholar 

  • Javadi, A.A., M. Rezania, and M.M. Nezhad (2006), Evaluation of liquefaction induced lateral displacements using genetic programming, Comput. Geotech. 33,4–5, 222–233, DOI: 10.1016/j.compgeo.2006.05.001.

    Article  Google Scholar 

  • Johari, A., G. Habibagahi, and A. Ghahramani (2006), Prediction of soil-water characteristic curve using genetic programming, J. Geotech. Geoenviron. Eng. 132,5, 661–665, DOI: 10.1061/(ASCE)1090-0241(2006)132:5(661).

    Article  Google Scholar 

  • Juang, C.H., C.J. Chen, T. Jiang, and R.D. Andrus (2000), Risk-based liquefaction potential evaluation using standard penetration tests, Can. Geotech. J. 37,6, 1195–1208, DOI: 10.1139/t00-064.

    Article  Google Scholar 

  • Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Krammer, S.L. (1996), Geotechnical Earthquake Engineering, Pearson Education, India.

    Google Scholar 

  • Ku, C.-S., D.-H. Lee, and J.-H. Wu (2004), Evaluation of soil liquefaction in the Chi-Chi, Taiwan earthquake using CPT, Soil Dyn. Earthq. Eng. 24,9-10, 659–673, DOI: 10.1016/j.soildyn.2004.06.009.

    Article  Google Scholar 

  • Liao, S.S.C., D. Veneziano, and R.V. Whitman (1988), Regression models for evaluating liquefaction probability, J. Geotech. Eng. ASCE 114,4, 389–411, DOI: 10.1061/(ASCE)0733-9410(1988)114:4(389).

    Article  Google Scholar 

  • MathWorks Inc. (2005), MatLab User’s Manual, Version 6.5, The MathWorks Inc., Natick.

    Google Scholar 

  • Pal, M. (2006), Support vector machines-based modelling of seismic liquefaction potential, Int. J. Numer. An. Met. Geomech. 30,10, 983–996, DOI: 10.1002/nag.509.

    Article  Google Scholar 

  • Rezania, M., and A.A. Javadi (2007), A new genetic programming model for predicting settlement of shallow foundations, Can. Geotech. J. 44,12, 1462–1473, DOI: 10.1139/T07-063.

    Article  Google Scholar 

  • Samui, P. (2007), Seismic liquefaction potential assessment by using Relevance Vector Machine, Earthq. Eng. Eng. Vib. 6,4, 331–336, DOI: 10.1007/s11803-007-0766-7.

    Article  Google Scholar 

  • Samui, P., and T.G. Sitharam (2011), Machine learning modelling for predicting soil liquefaction susceptibility, Nat. Hazard. Earth Sys. Sci. 11, 1–9, DOI: 10.5194/nhess-11-1-2011.

    Article  Google Scholar 

  • Searson, D.P., D.E. Leahy, and M.J. Willis (2010), GPTIPS: an open source genetic programming toolbox from multigene symbolic regression. In: Proc. Int. Multi Conf. of Engineers and Computer Scientists, 17–19 March 2010, Hong Kong.

    Google Scholar 

  • Seed, H.B., and I.M. Idriss (1971), Simplified procedure for evaluating soil liquefaction potential, J. Soil Mech. Found. Div. 97,9, 1249–1273.

    Google Scholar 

  • Yang, C.X., L.G. Tham, X.T. Feng, Y.J. Wang, and P.K.K. Lee (2004), Twostepped evolutionary algorithm and its application to stability analysis of slopes, J. Comput. Civil. Eng. 18, 145–153, DOI: 10.1061/(ASCE)0887-3801(2004)18:2(145).

    Article  Google Scholar 

  • Youd, T.L., I.M. Idriss, R.D. Andrus, I. Arango, G. Castro, J.T. Christian, R. Dobry, W.D.L. Finn, L.F. Harder, Jr., M.E. Hynes, K. Ishihara, J.P. Koester, S.S.C. Liao, W.F. Marcuson III, G.R. Martin, J.K. Mitchell, Y. Moriwaki, M.S. Power, P.K. Robertson, R.B. Seed, and K.H. Stokoe II (2001), Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, J. Geotech. Geoenviron. Eng. 127,10, 817–833, DOI: 10.1061/(ASCE)1090-0241(2001)127:10(817).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradyut K. Muduli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muduli, P.K., Das, S.K. Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model. Acta Geophys. 62, 529–543 (2014). https://doi.org/10.2478/s11600-013-0181-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0181-6

Key words

Navigation