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Abstract

Artists and scientists require tools to construct physics-based animal models. However, animating these models
requires motion data for realistic movement. Motion data may either be measured from real-life animals-in-motion
or generated using an optimisation approach. We propose a solution for retargeting gait data from one animal to
another. The retargeted gait cycles are generated using a Grammatical Evolution optimisation approach and the
search space is constrained based on dynamic similarity principles.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Physics-based animation uses the laws of physics to gov-
ern the movement of computer-constructed models. For an-
imals, some motion data must be input for realism. Artists
can generate motion data manually, but this is prohibitively
expensive, as is capturing data from an animal. Optimisation
approaches can prove computationally prohibitive.

To reduce the expense involved in generating motion data,
we propose to retarget gait data from one animal to another.
The target animal’s gait cycle is generated via a series of
hybrid models. We treat an animal’s muscle groups as terms
in a Fourier analysis and use an evolutionary algorithm to
optimise them. Each optimisation is seeded with available
gait data and constrained by dynamic similarity principles.

2. Problem

A physics-based animal model is constructed from rigid
bodies (bones) connected by joints. A physics engine makes
the bones react in a realistic manner to gravity, friction, and
other forces. A small number of parameters are used to com-
pute the joint torque forces, which generate desired motion.

The motions thus generated are discrete approximations
of a gait cycle: the pattern of a limb’s motion. Data for a sin-
gle cycle is then repeated to sustain locomotion. Data can be
acquired from photographs, videos or publications. Extract-
ing and standardising this data is expensive. Data for many

animals is unavailable. This lack of data motivates the need
for an inexpensive gait retargeting solution.

3. Related work

Gait retargeting modifies one animal’s gait cycle data to an-
other. Popovíc & Witkin [ PW99] use an intermediate model
to map animation from one biped to another. Monzani et
al. retarget biped motion using an intermediate skeleton in
[MBBT00]. Marsland & Lapeer retarget a kinematic ani-
mation of a trotting horse to a dynamic model in [ML05].
This work, however, retargets between animals of the same
species, rather than between species.

Gait retargeting is possible through use of gait gener-
ating optimisation approaches, such as those presented in
[vdPL95, HvS02]. The optimisation process is performed
using computer simulations of animal locomotion, such as
those presented in [HM01, vdB89]. Use of evolutionary al-
gorithms for gait generation is gaining popularity, especially
in the robotics field [KKW∗02,GH06].

Evolutionary algorithms involve the simulation of evolv-
ing populations of solutions, guided by a fitness function to-
wards an optimal solution. We propose to apply a relatively
new type of evolutionary algorithm called Grammatical Evo-
lution to gait retargeting. It has been successfully employed
for financial prediction [OBRC01], but has not been applied
to gait generation to date.

c© The Eurographics Association 2008.



J. Murphy, H. Carr & M. O’Neill / Grammatical Evolution for Gait Retargeting

3.1. Grammatical Evolution

Grammatical Evolution (GE) adapts principles from molec-
ular biology [OR03] to optimisation problems by evolving
solutions from one generation to the next. In particular, GE
applies evolutionary computation to a genotype rather thana
phenotype, as in nature. Here, the phenotype is the solution
in the problem domain, while the genotype is an abstraction
into a more compact form. Thus, unlike other evolutionary
algorithms, GE separates the search space and solution space
for higher efficiency.

GE genotypes are typically either binary or integer strings
that describe solutions, as DNA describes proteins. A gram-
mar expands the genotype into a phenotype in the same way
as DNA is expanded to a protein. GE then applies operators
to each generation of genotypes to produce the next, evalu-
ating the fitness of each solution in the problem domain - i.e.
at the phenotypic level. High fitness solutions are preferen-
tially transferred to the next generation, ahead of low fitness
solutions. Because GE adopts a grammar-guided genotype-
phenotype mapping, constraints may be applied to the fitness
function to increase optimisation efficiency.

3.2. Dynamic similarity

We propose to constrain GE with observations from natural
evolution and principles of dynamic similarity. These prin-
ciples, demonstrated by Alexander & Jayes in [AJ83], ob-
serve that animals moving at equal values of the dimension-
less Froude number have similar gaits.

While the Froude number does not predict properties of a
gait pattern, if gait characteristics for one animal travelling
at a particular Froude number are known, then those char-
acteristics should hold for another animal travelling at the
same number. Characteristics of interest include limb phase
relationship, relative stride lengths and duty factors.

4. Solution components

An animal’s skeletal dimensions and musculature have grad-
ually adapted to its environment over millions of years
through evolution [Fut79]. As such, cursorial quadrupeds
have highly similar skeletal structures, most obviously dif-
fering in bone proportions.

To accomplish gait retargeting, we propose a constrained
gait generation optimisation based on the naturally incre-
mental nature of evolution. By retargeting gaits via a series
of hybrid models, whose bone lengths change gradually, the
optimisation remains close to a global minimum at all times.

To demonstrate this approach, we will retarget a horse’s
motion to a dog model through a series of horse-dog hybrid
models (Figure1). Each discrete hybrid model is a linear
interpolation between the horse and dog. As the gait retar-
geting process proceeds, the bone proportions of subsequent
hybrid models tend towards those of the target animal.
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Figure 1: Incremental gait retargeting with Grammatical
Evolution (GE). Optimisations are performed on a series of
intermediate horse-dog hybrid models.

GE is first used to generate an optimal gait cycle for a
pure horse model from measured data. This gait cycle then
becomes a seed for a hybrid model, and GE generates a new
optimal gait cycle. This process is repeated until a pure dog
model is reached and optimised.

Optimality is judged on energy efficiency, since an ani-
mal’s musculoskeletal system has evolved to minimise en-
ergy expenditure. Differences in musculature and bone pro-
portions between species result in different gaits. As the in-
cremental optimisation process progresses, each newly gen-
erated gait will further resemble the target model’s real-life
equivalent gait, due to the energy efficiency scoring system.

This proposed retargeting solution has two major compo-
nents: the application in which a physics-based quadruped
model can be simulated, and the optimisation approach.

4.1. Simulation environment

The core work to date is a horse simulation and gait de-
velopment application (Figure2). This takes skeletal data
as input and constructs a 3D model using the Open Dy-
namics Engine [Smi06]. Skeletal data is acquired from the
biomechanics literature [BSSB97] and joint inclination val-
ues from Muybridge [Muy85].

To produce movement, motion controllers apply torques
about the joints. Torques are based on joint-angle data ex-
tracted from plots in the veterinary literature [BC01]. Mo-
tion curves are stored as discretised smooth approximations,
where each value is a target angle at a given time. The torque
required is then calculated using Hooke’s law. These torques
are not analogous to the forces applied by real-life muscle
groups. Rather, successive “push” and “pull” torques move
each bone towards its target orientation at each time step.
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Figure 2: A screenshot of the simulation application shows an interactive physics-based horse animation alongside motion data
visualisations. The user configures visualisation displays to show a combination of the following: current vs. target joint-angle
data, target data in edit mode, limb extension plots, hoof-lift plot, hoof contact and timing visualisation.

4.2. Gait cycle representation

Gait data is stored as samples from a time varying func-
tion. Each sample is an optimisation parameter, resulting in
a huge search space, which we reduce by applying Fourier
analysis to the gait cycle to reduce the number of parameters.
We can do so because locomotion involves muscles contract-
ing and relaxing in a sinusoidal fashion. Thus, the gait cycle
naturally lends itself to Fourier analysis.

Fourier analysis decomposes motion data into sinusoidal
functions for a range of frequencies (Figure3). The most
influential peaks are recombined to form the minimal gait
representation. Smaller peaks are discarded, as they are as-
sumed to be unimportant. Representing a joint’s motion as a
sum of phase and amplitude values reduces the search space
and works well with GE.

4.3. Gait generation with Grammatical Evolution

To generate gaits, we apply GE to Fourier gait genotypes,
initialising with random variations of a seed gait cycle.
These random variations may be more or less efficient than
the seed, but GE will cause efficient solutions to dominate
over time, leading to an optimal solution.

A grammar translates the genotypic strings into pheno-
typic Fourier terms, which vary by frequency, amplitude and
phase. Thus, compact genotypes are converted to complex
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Figure 3: Fourier analysis decomposes gait data into a num-
ber of sinusoidal functions whose parameters are used to
represent the gait.

phenotypic gait cycles which can be used for locomotion, as
illustrated in Figure4.

Each gait is tested in the simulation application and eval-
uated by a fitness function, based on energy efficiency of
the gait. Energy efficiency is calculated in a manner simi-
lar to [KKW∗02]. A valid solution must result in the animal
travelling a set distance, in the required time whilst not vio-
lating any motion constraints.
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Grammar:

<start>     ::= <expr>
<expr>     ::= <expr><op><expr>  
             | <pre-op> ( <freq> )     
             | <var>            
<op>      ::= + | *
<pre-op> ::= sin | cos
<freq>   ::= <var> * t
<var>       ::= 1.0 | 2.0 | 3.0 | 4.0 | 5.0

11100001   01100010   10010010   00110011   11001101   01110000   01011001

225

Binary String:

Integer String:

 98 146  51 205 112  89

<start>

<expr>

<expr><op><expr>

<var>

2.0

2.0

*

*

<pre-op> ( <freq> )

sin 

sin 

(<var>   *   t )

(   5.0      *   t ) Solution:

Transcription

Translation

Translation Example:

<expr> has 3 production rules
225 MOD 3 = 0
Choose rule 0 

Figure 4: Generating a sinusoidal function from a binary
string using a simple grammar.

4.4. Constraints for gait generation

An animal model’s numerous joints present a huge search
space of potential solutions. By exploiting knowledge of the
problem domain, the optimisation can be constrained and the
search space reduced. The dynamic similarity principles in-
troduced in Section3.2can provide such a constraint.

As we retarget a gait cycle from one animal to another, the
dynamic similarity hypothesis predicts that the target’s opti-
mal gait will share characteristics with the source gait. The
limb phase differences of the source gait will be imposed on
all target model simulations via the motion controllers. Dur-
ing the optimisation process, any potential solution that does
not exhibit duty factors and relative stride lengths compa-
rable to the source gait is rejected. The use of intermediate
hybrid models minimise the variance between source gait
and the generated gaits. In addition to this, the dynamic sim-
ilarity constraints ensure that resources are not wasted onthe
exploration of unacceptable solutions.

5. Future work

In future, we intend to adapt the horse simulation applica-
tion to arbitrary quadrupedal and hybrid skeletal data files.
The Fourier gait representation will then be incorporated,as
well as fitness calculations based on energy efficiency. This
application will then be used as the fitness function for the
evolution of populations of animations, using GE.

Dynamic similarity constraints will be implemented as a
simple acceptance test associated with the GE fitness func-
tion. Although some constraint data is available through
published sources, constraints for a full range of motion may
require some video or motion capture data.
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