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Abstract: Motion data is required for realistic animation of physics-based animal models. This data is expensive
to acquire for a single animal and in herd situations, the large variation in animal shape and consequent motion
increases this expense. We propose a method in which data measured from a single horse can be used to animate
horses of different age, breed and conformation. The construction and animation of a physics-based horse is
described. Details of an application, which automatically generates horse models of a user-specified age, are
also presented. We compare two approaches in which Grammatical Evolution is used to optimise a generated
model’s motion parameters, to produce realistic motion. In one approach, the constant coefficients of a model’s
spring-damper based muscle system are optimised prior to the gait optimisation. We contrast this method with
a parallel optimisation of both spring-damper constants and gait. The sequential approach was found to be the
most successful for gait optimisation.
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1 Introduction

Animations of large herds of animals are often required for the entertainment industry. The diversity of shape
and size of the animated herd’s population must be as found in nature, if the scene is to be considered realistic
by a viewer. As such, many different-shaped animal models must be constructed and animated.

Physics-based animations of animal models are highly realistic, given a well constructed model and ap-
propriate motion data. Accurately constructing a physics-based model can be time consuming and requires
information pertaining to the model’s real-life animal equivalent. For realistic movement, motion data mea-
sured from a real-life animal, or specifically optimised or generated for the model, is also required. Assembling
this data for a single model is expensive. When multiple models are required, as in a herd situation, the data
collection cost can become prohibitive.

We describe a technique for constructing and animating physics-based horse models. To produce the variety
of models required for a herd scene, we have developed an application that can generate novel horse models of
a user-specified age. The breed and body proportions of the generated models are determined by user supplied
animal data files. When a model is constructed, motion data is optimised for that model using a Grammatical
Evolution based gait optimisation technique. However, the large range of body shapes and sizes that can be
generated is problematic, as each novel model requires a bespoke set of spring-damper constant coefficients for
the simulation application’s muscle force calculations.

To produce motion, torques are applied about the joints of the model. These torques are calculated as spring-
damper forces, according to a pattern specified by input motion data. The use of spring-damper equations for
muscle force emulation requires that spring-damper constant coefficients be assigned appropriate values so that
the bones of the model move in a smooth manner. This is traditionally a non-trivial problem for this type
of physics-based model. A common solution involves a time-consuming manual tuning of the constants, in a
trial-and-error fashion. While this may be acceptable when animating a single animal, the diversity of body
segment proportion and mass in the automatically generated models demands an automated approach. In this
paper, we explore how the spring-damper constant coefficients can be optimised both prior to and during the
gait cycle optimisation process.

Details of the physics-based horse model construction and animation, and the technique for generating novel
models, can be found in Section 3 and 4 respectively. Section 5 provides an overview of how Grammatical
Evolution is used for both gait and spring-damper constant optimisation. The results of the spring-damper
constant optimisation experiments are then presented and discussed in Section 6 and 7. The following section
describes related work.



2 Related Work

The animation of animals in motion is a well-addressed topic in the computer graphics field. Advances in animal
animation and simulation also often come as a by-product of robotics research. As horses are so ubiquitous in
our everyday lives, there is a large demand for animations of them in the entertainment industry. The use of
measured motion data for horse animations is described in [1][2] while [3][4] details the use of optimisation for
stable gait generation.

To produce a realistic physics-based animal, data measured or estimated from the model’s real-life animal
equivalent must be available. Data pertaining to an animal’s anatomy is often available in biological and
veterinary publications however, detailed data on equine body segment mass and inertial properties is hard to
find with one notable exception in [5]. When data is unavailable, estimation of body attributes is made possible
via data presented in studies on growth-rate and intra-breed conformational variations [6][7].

Animal motion data is essential for realism. Joint-angle data plots taken from horses in motion are found
in [8]. The high-speed photographs of Muybridge have been a valuable, albeit crude, source of motion data for
many animators throughout the last century [9]. Studies of animal motion have, for years, explored why animals
transition between gaits at particular velocities. Dynamic similarity theory describes how the characteristics of
an animal’s gait can be predicted based on its velocity and hip-height [10].

Regardless of the large pool of knowledge on animal locomotion, manual production of stable gaits for physics-
based animal models and quadruped robots remains a non-trivial task. Gaits for quadruped robots have been
generated using Genetic Algorithms in [11][12]. In [16] Grammatical Evolution is used for the optimisation of
horse gait data.

A major factor in any gait optimisation is the gait data representation. The form this takes depends largely
on the physics-based model’s construction and the technique used to animate it. The following section describes
the construction of a horse model, its locomotion system and motion data representation.

3 Physics-Based Horse Model

In physics-based animation, the laws of physics are used to determine the behaviour of a computer constructed
scene or model. A physics engine controls the physical simulation of a model through integration of its equations
of motion. The resulting animations are realistic and remove the need for an artist to hand-animate the frames
of motion. In the following sections, we discuss how a physics-based animal model is constructed and animated.

3.1 Model Construction

We have manually constructed a horse model using data for individual body segments obtained from [5]. This
data includes values for mass, centre of mass, density and inertial tensor for 26 body segments of Dutch
Warmblood horses. The data is physically measured from six dissected animals and an average of the results
is presented. Body segment dimensional data, such as bone length, was also obtained in part from [5]. Other
dimensional and positioning information is not provided however. Joint inclination angle values of a horse at
stance are manually measured from detailed illustrations in [14]. Neck positioning information was estimated
from the high-speed photographs in [9].

The data is used to construct the horse model using the Open Dynamics Engine (ODE) [15]. The model
is constructed from multiple interconnected ODE supplied rigid bodies (bones). Each bone corresponds to a
segment of the horse and is modelled as a cylinder capped at each end with hemispheres. Each of these bones
has attributes such as length, mass, centre of mass and moment of inertia. The physics engine ensures that the
bones react in a physically realistic manner to gravity, friction, collisions, applied forces and torques. These
bones are connected together by joints, which have constraints imposed upon them ensuring that they do not
rotate past some specified threshold or about an impermissible axis.

Forces and torques applied to the bones produce linear and angular accelerations. Forces applied to a single
rigid body may propagate throughout the rigid body system allowing for full body locomotion, as described in
the following section.

3.2 Model Motion

For intra-limb movement, torques of specic magnitude and direction are applied by motion controllers about
each of the joints in a limb to produce bone rotation. The resultant limb movement must be aesthetically
realistic and propel the model at the expected velocity. Inter-limb motion timing is also crucial.

The torques required to rotate each of the bones to some target joint-angle, are calculated using a spring-
damper equation based on Hooke’s law, as shown in Equation 1.



F = −kx − bv (1)

Where F is the calculated force, k is the spring constant, x is the current displacement from the bone’s
target joint-angle, b is the damping constant and v is the current angular velocity of the bone. The greater the
distance between the current joint-angle and the target angle, the greater the magnitude of torque required to
move the bone to its target position. Providing the spring and damper constants are set correctly, the motion
controllers can keep the joints moving tightly to the angles suggested by the target data.

Spring and damper constant tuning is a non-trivial task. We have applied Genetic Programming to the
task of automatically calculating spring-damper constants based on model mass, model hip-height, bone length,
bone mass and position in the hierarchy. Attempts to produce an equation for the entire model, and each joint
respectively, were unsuccessful, most probably due to the large amount of variables.

A larger goal of our research involves the retargeting of gaits between different species, as proposed in [13].
Efforts to date have been hindered by the constant need to retune the spring-damper constants for a continuously
changing model morphology. A more intuitive and automatic method of defining the constants based on
a particular model’s attributes would be ideal, however, we currently use a simple numerical optimisation
approach, which although time-consuming, produces good results.

Even with perfectly set spring-damper constants, to produce realistic movement, the motion controllers must
be given some gait cycle data as input. Without this data, the motion controllers have no way of calculating the
magnitude of torque required, and when to apply it. A description of the motion data representation follows.

3.3 Motion Data and Representation

The magnitude and direction of the torques mentioned above are calculated from motion data. Motion data
measured from a walking horse is published as joint-angle plots in [8]. These plots are discretised and a Fourier
analysis is performed on the data, decomposing the joint-angle curves into their consituent sinusoidal functions.
Functions which fall below an amplitude threshold are discarded and the remaining are recombined. The motion
data for an animal’s gait cycle is therefore represented as a set of minimal summations of sinusoidal functions.

Each summation of functions represents the motion of a single joint for a single gait cycle. To produce
motion in the model, motion data for a single gait cycle, i.e. a set of sinusoidal functions, must be supplied.
If this single gait cycle is optimised for use with a particular model, its periodic nature allows it to be used
repeatedly, producing stable locomotion.

4 Multiple Horse Model Generator

We have developed an application which automatically generates a horse model of user-specified age. The breed
of horse generated is determined by user supplied growth-rate data, which defines how different aspects of an
animal’s body grow in relation to each other, as the animal ages. Accurate anatomical data for a single horse
(base model) must also be provided.
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Figure 1: Growth-rate equations (left) and example model values (right).



The growth-rate data is supplied in the form of power equations pertaining to the rate of increase in body
mass, hip-height, body length, chest girth and chest width for a particular breed of horse. The growth equation
plots presented in Fig. 1 (left) are taken from a study of thoroughbred horses, whose attributes were measured
from birth to 588 days old [6]. The data is published as a set of values measured at a consistent range of ages
from a large sample of horses. The values are extracted and approximated by a power equation.

The actual model values that are calculated using these growth-rate equations, are fractions of the base
horse model data, as can be seen in Fig. 1 (right). The base model data is measured from Warmblood horses
[5]. There is an age and breed mismatch between the growth-rate equation horses and our base horse. This is
because published studies regarding growth-rates and anatomical data for specific breeds are often unavailable.
The small variance between the two sets of data is acceptable for proof of concept.

The variety of models that can be generated is only limited by the data available to a particular user. As
well as age, factors such as breed, conformation, sex and deformity could be included in the model generation
process. Once a model is generated, gait data must be optimised for use with that model. The following section
describes the gait generation process and introduces the problem of spring-damper constant coefficient tuning.

5 Grammatical Evolution Optimisations

To produce stable motion in the generated physics-based models, some motion data must be optimised for that
model. Manual optimisation and tuning of motion data is difficult and time consuming. The problem domain
is complex and the multivariable nature of the problem motivates our use of Genetic Programming (GP).

Although the low-level joint motions of an animal’s gait may be too complex for a human to easily fabricate,
there is much domain knowledge available. Muscles tend to relax and contract in a sinusoidal manner leading
to smooth joint motion, while skeletal structure and musculature impose limits on a joint’s motion. These
constraints are easily expressible using grammar-based GP. Grammatical Evolution (GE) is a popular form of
grammar-based GP. Easy grammar specification make it an ideal choice for a gait optimisation problem where
the level of constraint required is undefined. The following section introduces the gait optimisation technique.

5.1 Gait Optimisation Process

The gait optimisation process involves the concatenation of sinusoidal functions onto seed data, which is in
the summation of sinusoidal functions format, as described in Section 3.3. A full explanation of this gait
optimisation technique can be found in [16]. It was concluded experimentally that the most efficient and flexible
gait optimisation technique involves numerical optimisation of seed data onto which sinusoidal functions are
concatenated. This approach ensures that the optimisation remains constrained to the realism of the supplied
data, whilst allowing scope to deviate, thus accomodating different morphologies.

The seed data is included in the grammar as a set of triples having amplitude, frequency and phase values.
Each of these values is then optimised within a 25% range. Sine and Cosine functions are added or subtracted
to the seed data. The functions that may be appended have a set frequency range of 1 to 8Hz and an amplitude
range determined by the Fourier analysis mentioned in Section 3.3.

Once a candidate phenotype is generated from the grammar it is passed to the simulation application for
evaluation. The model, for which the gait is being optimised, is constructed in the physics engine environment.
Using the generated phenotypic gait cycle data, the model moves for a few cycles. The outcome of this simulation
run is then scored by a fitness function and that scored is passed back to the GE system.

The fitness function for a gait optimisation is based on energy efficiency, distance travelled, relative stride
length and the percentage of each cycle that a hoof was in contact with the ground (duty factor). We can predict
the characteristics a gait cycle should exhibit based on dynamic similarity theory, mentioned in Section 2. The
score each fitness component achieves for a gait cycle is a function of its measured error from the predicted value
and its weight in the function. A lower score implies a better gait cycle however, a score of zero is impossible due
to the always positive energy component. An extra fitness component is also included in situations involving
the optimisation of spring-damper constant coefficients, as discussed in the following section.

5.2 Spring-Damper (S-D) Constant Optimisation Process

As mentioned in Section 3.2, the tuning of the spring-damper (s-d) constant coefficients is of vital importance.
As previously stated, attempts to automate the s-d constant calculations have been unsatisfactory. As manual
tuning of the s-d constants is unsuitable on this occasion, a numerical optimisation approach is used.

The general range of s-d values, which will allow a model to move, are linked to the mass of that model
however, the model’s skeletal structure is also influential. Setting the spring constant too low will not allow
the model to apply the necessary torques to move according to the motion data. Setting the spring constant



too high can cause the simulation to explode and crash. The risk of an invalid simulation run due to a single
extreme value prevents us from running a numerical optimisation on an unconstrained range of values.

Our solution is to determine an appropriate range by running a rapid series of tests to ascertain a range of
values that will provide the most stable gait cycle given some sample motion data, albeit it unoptimised for
that particular model. A numerical optimisation is then performed within that range.
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Figure 2: Flow chart of spring-damper (s-d) constant coefficient and gait optimisation process. Note: The two
distinct approaches investigated in this paper are distinguished by the fork in the flow chart.

The entire optimisation process is illustrated in Fig. 2 . Prior to commencement, an s-d base range, sufficient
for base model motion, is experimentally established. As all generated models will be smaller in mass and
dimensions, it is assumed that each model’s ideal s-d constant range will fall beneath this maximum value.

The process begins with a rapid test to determine what s-d value range is appropriate for the generated
model. The gait used to test each value is data pre-optimised for the base model. This gait cycle should
not produce perfectly stable motion as the generated models differ in proportion. However, the gait cycle is
sufficiently stable enough to provide an indication of performance, given a certain set of constants. At this
point the fitness function in the simulation application is weighted to score only based on how well the set of s-d
values being tested allow the model’s joints to move according to the gait cycle data. The score is a weighted
function of the error between the gait cycle data and the motion actually produced.

The generated model is automatically tested with a set resolution of increments of the s-d base range values.
Each joint in the model is set with the same double of s-d constants. For a more stable gait, each joint will
require its own double of values but at this stage, the uniform values tested here simply indicate an acceptable
range. The values which give the most stable gait throughout the testing dictate the range of values used for
the s-d constant numerical optimisation, and are passed into the GrammarWriter application. A grammar is
automatically written to allow for a numerical optimisation within a set range. In these experiments, the range
allowed by the grammar spans from 0.5 up to 1.25 times the passed-in values. This range is divided into 50
even increments and this set of numbers are written into the grammar. Once the numerical optimisation range
is established, there are two separate approaches to the optimisation, as detailed in the following section.

Table 1: GE parameters.
Parameter Value

Generations 50
Population 75

Max. wrapping 3
Replacement generational

Elite size 7
Selection Tournament (3)

Initialisation RampedFullGrow
Max. depth 10
Grow prob. 0.5

Crossover prob. 0.9
Crossover point fixed
Mutation prob. 0.02



6 Spring Constant and Gait Optimisation Experiments

We investigate two approaches to the s-d optimisation problem. In the first, indicated by the upper path after
the fork in Fig. 2, we perform a numerical optimisation to establish the s-d constants. We then optimise the
gait cycle data. The second experiment on the lower path, optimises the s-d constants and gait in parallel.

Each of the experiments presented in this section are performed using a java-based Grammatical Evolution
implementation called GEVA [17]. Each optimisation run uses the parameters presented in Table. 1. For each
approach, we present results for two generated models, corresponding to models I and II as shown in Fig. 1.

6.1 Sequential Spring-Damper Constant and Gait Optimisation
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Figure 3: Best fitness and average fitness for spring-damper (s-d) constant optimisation (models I and II, 30
runs).

The s-d constant optimisation process uses the base model-optimised gait cycle data and the fitness function
described in Section 5.1. The results are presented in Fig. 3. The plots show variance in fitness across the
runs. The variance is most obvious for model II. In the earliest generations, both best and average fitness scores
are higher for model II than for model I. This may be because model II is a younger horse. Being younger,
it is therefore more different in body proportion to the base model, than the older model I, as implied by the
growth-rate curves in Fig. 1. As the gait cycle used for these s-d constant optimisations is optimised for the
base model, it is assumed that the more a model differs from the base model, the less stable the gait. Less
stability implies a worse fitness score, and this may explain these results.

The average of the best and average fitness scores is shown in Fig. 4. What is somewhat surprising is the
best fitness score of model II is significantly better than model I despite it starting off worse. Model II may be
scoring highly because the s-d constant optimisation is compensating for the unstable gait through its evolution
of s-d constants. Although interesting, this is undesirable as we wish to evolve the best constants for future
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Figure 4: Best fitness and average fitness for spring-damper (s-d) constant optimisation (models I and II,
averaged 30 runs). Standard deviation values are included for the averaged best and average fitness scores. The
generated s-d values for all 30 runs were averaged and scored for comparison.

gait optimisation, rather than values that provide stable motion from an unsuitable gait cycle. It can be seen
from the average fitness plots that model II’s average fitness score was worst overall. Model II’s average fitness
standard deviation is significantly higher than model I’s. This high disparity in average score between runs
again indicates the high level of instability caused by the base model’s inappropriate gait.

Once the s-d constant optimisation is complete, the best performing set of s-d values is returned and the
gait optimisation process begins. The best and average fitness results of the gait optimisation are presented
in Fig. 5. The results are discussed in Section 7 in relation to the parallel s-d constant and gait optimisation
experiment, a brief overview of which follows.

6.2 Parallel Spring-Damper Constant and Gait Optimisation

In this second experiment, the s-d constant values are optimised in parallel with the gait cycle data. Once the
best performing s-d constant range is established, the GrammarWriter writes the grammar in exactly the same
way as in Section 6.1. This time however, the grammar includes the gait optimisation terms as well. The
same value ranges as stated before are used, but instead of having two sequential runs of 50 generations, the
optimisation is performed in a single run of 50 generations. The results are presented in Fig. 5.

7 Comparison and Conclusions

A comparison between the sequential and parallel gait optimisation approaches is shown in Fig. 5. It can
be seen that the sequential optimisation approach to s-d constant and gait optimisation has won in terms of
best fitness scores. The average fitness scores show that both experiments with model II scored worse than
their model I equivalent, regardless of optimisation approach. The sequential approach overall had double the
computational time than the parallel approach however, further experiments in which the parallel approach was
given equivalent time did not show much of an improvement.

The sequential approach performs well however, the fact that the s-d constant is performed with gait cycle
data, which may not be stable for a diverse range of models, is a potential problem. This problem would be
resolved by using the parallel optimisation approach however, this has performed poorly, perhaps due to the large
number of variables in the optimisation. In future, the parallel approach could be improved by imposing certain
constraints during the optimisation in an attempt to reduce the number of free variables. The best solution
may be to try a combination of both sequential and parallel approaches using both approaches inter-changibly
during the optimisation process.

In conclusion, we have successfully developed an application that can automatically produce distinct horse
models according to a user’s specifications. Using our s-d constant and gait optimisation technique, it is then
possible to optimise a single piece of motion data for use with each of these models. Although neither of the
approaches to the s-d optimisation problem presented here are completely appropriate to the problem, a future
hybrid of the two approaches may be successful.
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