Skip to main content

Towards Incorporating Human Knowledge in Fuzzy Pattern Tree Evolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12691))

Abstract

This paper shows empirically that Fuzzy Pattern Trees (FPT) evolved using Grammatical Evolution (GE), a system we call FGE, meet the criteria to be considered a robust Explainable Artificial Intelligence (XAI) system. Experimental results show FGE achieves competitive results against state of the art black box methods on a set of real world benchmark problems. Various selection methods were investigated to see which was best for finding smaller, more interpretable models and a human expert was recruited to test the interpretability of the models found and to give a confidence score for each model. Models which were deemed interpretable but not trustworthy by the expert were seen to be outperformed in classification accuracy by interpretable models which were judge trustworthy, validating that FGE can be a powerful XAI technique.

The authors are supported by Research Grants 13/RC/2094 and 16/IA/4605 from the Science Foundation Ireland and by Lero, the Irish Software Engineering Research Centre (www.lero.ie). The third and fourth authors are partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  3. Azad, R.M.A., Ryan, C.: The best things don’t always come in small packages: constant creation in grammatical evolution. In: Nicolau, M., et al. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 186–197. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44303-3_16

    Chapter  Google Scholar 

  4. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Doran, D., Schulz, S., Besold, T.R.: What does explainable AI really mean? A new conceptualization of perspectives. arXiv preprint arXiv:1710.00794 (2017)

  7. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)

  8. Dou, R., Zong, C., Li, M.: Application of an interactive genetic algorithm in the conceptual design of car console. Tianjin University (2014)

    Google Scholar 

  9. Fitzgerald, J., Ryan, C.: Exploring boundaries: optimising individual class boundaries for binary classification problem. In: Proceedings of the 14th annual conference on Genetic and evolutionary computation, pp. 743–750 (2012)

    Google Scholar 

  10. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on data science and advanced analytics (DSAA), pp. 80–89. IEEE (2018)

    Google Scholar 

  11. Goertzel, T.: The path to more general artificial intelligence. J. Exp. Theoret. Artif. Intell. 26(3), 343–354 (2014)

    Article  Google Scholar 

  12. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)

    Google Scholar 

  13. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 93 (2018)

    Google Scholar 

  14. Huang, Z., Gedeon, T.D., Nikravesh, M.: Pattern trees induction: a new machine learning method. Trans. Fuzzy Syst. 16(4), 958–970 (2008). https://doi.org/10.1109/TFUZZ.2008.924348

    Article  Google Scholar 

  15. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141–154 (2011)

    Article  Google Scholar 

  16. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2419–2426. IEEE (2008)

    Google Scholar 

  17. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    Google Scholar 

  18. Krakovna, V., Doshi-Velez, F.: Increasing the interpretability of recurrent neural networks using hidden Markov models. arXiv preprint arXiv:1606.05320 (2016)

  19. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint arXiv:1606.03490 (2016)

  20. Marcus, G.: Deep learning: a critical appraisal. arXiv preprint arXiv:1801.00631 (2018)

  21. Moore, A., Murdock, V., Cai, Y., Jones, K.: Transparent tree ensembles. In: The 41st International ACM SIGIR Conference on Research & #38; Development in Information Retrieval, SIGIR 2018, pp. 1241–1244. ACM, New York (2018). https://doi.org/10.1145/3209978.3210151, https://doi.org/10.1145/3209978.3210151

  22. Murphy., A., Ali., M.S., Dias., D.M., Amaral., J., Naredo, E., Ryan., C.: Grammar-based fuzzy pattern trees for classification problems. In: Proceedings of the 12th International Joint Conference on Computational Intelligence - Volume 1: ECTA, pp. 71–80. INSTICC, SciTePress (2020). https://doi.org/10.5220/0010111900710080

  23. Murphy, A., Ryan, C.: Improving module identification and use in grammatical evolution. In: Jin, Y. (ed.) 2020 IEEE Congress on Evolutionary Computation, CEC 2020. IEEE Computational Intelligence Society, IEEE Press (2020)

    Google Scholar 

  24. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive crossover in genetic programming. Adv. Genet. Program. 2, 111–134 (1995)

    Google Scholar 

  25. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  26. Patten, J.V., Ryan, C.: Attributed grammatical evolution using shared memory spaces and dynamically typed semantic function specification. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 105–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_9

    Chapter  Google Scholar 

  27. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  28. Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In: GECCO, pp. 142–145. AAAI (2003)

    Google Scholar 

  29. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  30. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  31. Ryan, C., O’Neill, M., Collins, J.: Handbook of Grammatical Evolution, 1st edn., p. 497. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6

    Book  Google Scholar 

  32. dos Santos, A.R., do Amaral, J.L.M.: Synthesis of fuzzy pattern trees by cartesian genetic programming. Mathware Soft Comput. 22(1), 52–56 (2015)

    Google Scholar 

  33. Schneider, J., Handali, J.: Personalized explanation in machine learning: a conceptualization. arXiv preprint arXiv:1901.00770 (2019)

  34. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  35. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

    Article  Google Scholar 

  36. Yi, Y., Fober, T., Hüllermeier, E.: Fuzzy operator trees for modeling rating functions. Int. J. Comput. Intell. Appl. 8, 413–428 (2009)

    Article  Google Scholar 

  37. Zou, J., Schiebinger, L.: AI can be sexist and racist–it’s time to make it fair (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murphy, A., Murphy, G., Amaral, J., MotaDias, D., Naredo, E., Ryan, C. (2021). Towards Incorporating Human Knowledge in Fuzzy Pattern Tree Evolution. In: Hu, T., Lourenço, N., Medvet, E. (eds) Genetic Programming. EuroGP 2021. Lecture Notes in Computer Science(), vol 12691. Springer, Cham. https://doi.org/10.1007/978-3-030-72812-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72812-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72811-3

  • Online ISBN: 978-3-030-72812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics