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Abstract. This paper shows empirically that Fuzzy Pattern Trees (FPT)
evolved using Grammatical Evolution (GE), a system we call FGE, meet
the criteria to be considered a robust Explainable Artificial Intelligence
(XAI) system. Experimental results show FGE achieves competitive re-
sults against state of the art black box methods on a set of real world
benchmark problems. Various selection methods were investigated to see
which was best for finding smaller, more interpretable models and a
human expert was recruited to test the interpretability of the models
found and to give a confidence score for each model. Models which
were deemed interpretable but not trustworthy by the expert were seen
to be outperformed in classification accuracy by interpretable models
which were judge trustworthy, validating that FGE can be a powerful
XAI technique.

Keywords: Grammatical Evolution · Fuzzy Logic · Explainable AI.

1 Introduction

The number of machine learning (ML) applications has expanded massively since
the turn of the millennium. ML algorithms these days have access to massive
amounts of data and can run on massively parallel high-performance hardware.
ML frameworks and systems now achieve near-perfect performance, which can
outperform human agents. This has led to headline-grabbing AI success stories
in chess and Go [34]. Global spending on artificial intelligence is estimated to
hit $50 billion a year.

These results are not without their critics, though [20]. There often exists
a trade-off between high accuracy and transparency. These models are referred
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to as ‘black box’ (BB) models. They do not allow their internal workings to be
understood. They simply return input and output pairs. No knowledge of how a
decision is made can be obtained from the system. A user, expert or otherwise,
has no means to understand how a model arrived at a conclusion. This inability
to interpret and check that the model has ‘common sense’ makes trusting the
model difficult as well as making debugging and error checking an impossibility.
These shortcomings have, too, been headline-grabbing and shown AI systems
can exhibit racist and sexist behaviour [37].

To tackle these issues, a new area of research was spawned, XAI [1,2]. XAI
aims to create interpretable models and methods that can somehow explain
themselves without, or with minimal, impacting performance [4].

A recent addition to XAI has been Fuzzy Pattern Trees (FPTs) [14,36].
Based on fuzzy set theory, a FPT is a hierarchical tree structure. This is in
contrast to most other fuzzy-based systems which use rules as representations.
As a fuzzy model, it is easily interpretable due to its usage of linguistic labels.
This interpretability, obviously, depends on the tree size not being excessively
large. Grammatical Evolution has shown it can be a very effective approach for
evolving accurate, and, crucially, small FPTs [22].

This paper sets out to validate the claim that these FPTs are intrinsically
interpretable in their own right. It further wishes to show this interpretability
can aid in the evolutionary process by finding faults in the best performing indi-
viduals found by the search. The system was tested on various real-live fairness
benchmarks. The results show that FPTs may allow the identification of data
or algorithmic bias that may be present in final models.

The remainder of this paper is organized as follows: Section 2 reviews the
main background concepts GE, Fuzzy GE and XAI. Section 3 explains the pro-
posals and describes the paper’s contributions in more detail. Next, Section 4
presents the experimental set-up. It outlines all performance measures which
were investigated. Section 5 presents the main results of the experiments de-
scribed in 4. Finally, Section 6 summarises the research and discusses future
work suitable for investigation.

2 Background

2.1 XAI

Papers and conference talks in the area of XAI and computer model interpretabil-
ity has grown and is continuing to grow rapidly [1,13]. However, these conferences
talks and papers have existed in a space where the term ‘interpretability’ has not
been agreed upon or even well-defined [1,6,7,10]. There is not yet a consensus
when exactly as to when a model has been ‘explained’ fully or indeed what an
‘explanation’ even is [6]. The terms interpretable, understandable and intelligible
are often used interchangeably or without distinction [19]. In different contexts,
interpretability may have differences; for example, a loan approving system may
simply need to show that it is not discriminatory against any group, whereas a
safety-critical system may need to describe every step in its internal logic [7].
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Many of the explanations put forward in papers require some machine learn-
ing expertise [18]. They may look incomplete to somebody with no machine
learning experience, while others may require some domain knowledge to inter-
pret the results [21]. While a user of the model will undoubtedly have some
domain knowledge, it is unclear if defining a model as interpretable implies that
the user does have this knowledge.

Some work has been done to develop a rigid framework to define and evaluate
interpretability [7]. They stress that human evaluation or abstraction is essential
to any idea of judging interpretability.

Others argue that it is not enough for models to be interpretable and com-
prehensible but that they must also have logic and put forward some form of
rationale to the user as to how a particular decision was arrived at [6].

Trust in a model or system is an often overlooked and important feature [27].
It may not be sufficient for a model to show high accuracy for a user to accept
its outputs. A user may require sufficient evidence that the decisions are fair
or ethical or legal. If the model is a BB or its logic is presented in a way that
makes it difficult for a human to abstract knowledge from its results, they may
refuse to use it, or may not be allowed to under the General Data Protection
Regulation, GDPR, [12].

If a domain expert is working in collaboration with a model, knowledge of its
logic or internal workings may enable them to know when the model will predict
something sub-optimally. More importantly, perhaps, it may also allow them to
know in what areas the model will fail and its outputs can be discarded.

For a model to be useful, usable and fully ‘explained’ this paper proposes
it should have the following properties: it must be transparent in its workings;
have similar or better accuracy to any other model; be cogent in its statements
(particularly for finding complex relationships); be able to incorporate domain
knowledge; and deterministic.

2.2 Grammatical Evolution

Grammatical Evolution (GE) [30], often thought of as a variant of genetic pro-
gramming (GP) [17], is a popular evolutionary computation technique. As with
many evolutionary algorithms, GE’s inspiration comes from nature and genetics.
GE creates computer programs by mapping a binary string using a grammar. A
key point to note is GE can produce programs in any arbitrary language, usually
specified using a Backus-Naur Form (BNF) grammar [29,25] or Attribute Gram-
mar (AG) [26]. The evolutionary operators of crossover and mutation do not
occur on the actual computer program, but on the string which, combined with
the grammar, creates the program. Therefore any representation the user wishes
to use for the solution to aid interpretability is possible. The most popular way
to represent the solutions is to use tree structures [31], which have been shown
to be the most easily interpretable representations [15] and makes them quite
transparent.

Therefore GE, or GP in general, may represent a better ML algorithm to
leverage a humans ability to generalize/abstract with the strengths of computers.
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GE finds solutions which best minimise (or maximise depending on the goal)
an objective function. GE, however, allows much more knowledge and nuance to
be built into its objective function than typical test set accuracy. Multi-objective
[5] and many objective [16] optimisation are common in EAs. It would be easy
to find explicitly what trade-off, if any, had to be made to accommodate this
interpretability by creating a Pareto front, an attractive feature pointed out by
[7]. The user has their pick of solutions. This allows the programs to have the
highest possible fidelity while at the same time being interpretable to whomever
is using them. GE can be trained to be highly accurate on particular cases if
they are of important to the user. The objective function allows the user to
personalize their goals more than traditional ML models by including ethics,
fairness, legality, profit etc. as a component of the search.

Ideas like fairness are vague and hard to define. This allows the user to define
these concepts in a way which is important to them. GE also allows for the human
factors to be built into the solution [8]. If combined with an interactive GA [35],
in which the person is directly responsible for giving a fitness score, solutions
could take the form which maximises the utility of the person using them. That
is to say, the search would look for a solution in the form which would be most
suitable to the user interacting with it. This creates a personalized explanation,
seen as a key facet in Machine Learning going forward [33].

This would normalise the concept of interpretability to the user and allow
accuracy to be improved instead of trying to improve the vague idea of inter-
pretability while keeping accuracy high. GE can have the user involved at every
stage of the machine learning process. Before the search begins the user may set
up the grammar and specify the objective. During run time they may impart
domain knowledge in the form of subtrees or modules [23]. The user would be
the main architect of the form of the solutions. All this would help build ‘trust’
in the model to the user, if it is needed.

2.3 Fuzzy GE

FPTs which use GE as their search technique were recently introduced [22]. This
approach, FGE, showed competitive performance against black box methods
and was shown to outperform another GP variant, Cartesian GP, on a set of
benchmark classification problems [32].

In order to perform classification using FGE a set of FPTs are needed, one for
each class that exists in the problem. These FPTs serve as the logical description
of the class. This sets FGE apart from traditional classification approaches in
GE which only require one expression to be evolved, regardless of the number of
classes in the problem. To classify an individual a boundary or boundaries are
decided upon. The output of the tree is then compared against this boundary
and a decision is made about its classification. There are many downsides to
this approach, much time, effort and expertise is required to optimise these
boundaries [9].

FGE evolves one, large solution and treats the subtrees of this solution as
it’s FPTs, as seen in Figure 1. The FPT which yields the largest output for an
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individual is declared the winner and that individual is designated as belonging
to that class. This is illustrated in Figure 2. The root node of the tree is respon-
sible for this process. Representing each FPT as subtrees of one large solution
combined with GE’s inbuilt separation between search space and program space
leads to another major advantage FGE experiences. No special or protected op-
erators are needed for crossover or mutation. A simple grammar augmentation
is all that is needed to tackle different problem specifications.

WTA

Fig. 1. Pictorial representation of a multi-classifier evolved by FGE, where FTc is the
fuzzy tree for each available class, and at the root the winner take all (WTA).

d1

d2

Feature space                                                               1-dimensional space ([0,1]) 
ScS

FT FTc

Fig. 2. Graphical depiction of the mapping process from the feature space to a 1-
dimensional space [0,1] using a set of fuzzy trees FT1 to FTc.

3 Explainable GE

3.1 Reducing size of Trees

A FPT serves as a class descriptor in each benchmark problem. It is therefore
paramount for FPTs to be interpretable. This interpretability is only achieved
if their size is kept as small as possible. It was seen previously that standard
GE may be bloating individuals, leading to trees which are excessively large
and contain worthless material. The addition of a simple parsimony pressure
was seen to greatly reduce the size of individuals without having a noticeable
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effect on their fitness. It was not established if this simple procedure was the
most effective at producing smaller, accurate FPTs. In this paper we investigate
various methods for producing smaller trees were investigated and compared
against standard GE and against each other, and consider both their size and
accuracy. Each method is outlined below.

Intron Removal In the context of GP, an intron is a section of an individual
which does not have an effect on that individual’s output. That is to say, it is
a redundant piece of the individual. Despite their lack of involvement they can
play an important part in evolution [24]. However, when trying to interpret an
individual it is necessary to remove them as they may lead to confusion.

Strict/Easy Regularization Two types of regularisation were used. The first
was an easy regularization where a small penalty to fitness was applied based
on the maximum depth of the solutions found. The second was a strict regular-
ization. This procedure set the fitness to 0 if the max depth exceeded a certain
threshold. Fitness was set as usual if it was below this threshold.

Double Tournament The final procedure for bloat control implemented was
double tournament. This strategy conducts 2 tournaments, one of which chooses
the individual with the highest fitness while the other chooses the one with
the smallest size. Both potential orders of series were investigated, that is, first
fitness and secondly size, and vice versa.

3.2 FPT Representation

A FPT differs from other fuzzy based classifiers by adopting a hierarchical, tree
structure. The leaf nodes of these trees are the fuzzified problem variables and
the inner nodes are fuzzy logical and arithmetic operators. The information
is propagated from the bottom to the top, similar to a regular GP classifier.
The output of the tree is in the [0,1] interval. More formally, a FPT maps
fi(x) : <n → [0,1], where x are the input variables.

The following operators are used, where a and b are the inputs to the oper-
ator:

WTA = IF{}()..ELSE() (1)

MAX = max(a, b) (2)

MIN = min(a, b) (3)

WA(k) = ka + (1− k)b (4)

OWA(k) = k ·max(a,b) + (1− k)min(a,b) (5)

CONCENTRATE = a2 (6)

DILATE = a
1
2 (7)

COMPLEMENT = 1− a (8)
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where WTA, WA & OWA denote Winner Takes All, Weighted Average
and Ordered Weighted Average, respectively, and k is a randomly created
value in (0,1).

Figure 3 shows an example of an FPT which was trained on the Heart
benchmark dataset. It represents the fuzzy concept – a fuzzy criterion for –
the presence of heart disease. This tree was picked as it was considered as very
interpretable by a domain expert, who was also very confident in the logic of
this model.

Fig. 3. Tree representing the interpretable class ”Presence of Heart Disease”, showing
each variable with different color.

An interpretation of this tree could be:
The presence of heart disease is strongly determined by three criteria. The

first criteria is that a reversible defect was found while conducting a Thallium
Stress Test. The second is that the number of major vessels coloured by fluo-
roscopy was moderate. The third criteria is the slope of the peak exercise ST
segment was flat. Criteria I and II are the major contributors to the decision
roughly contributing equally, with criterion III has a small but not insignificant
effect.

3.3 Human in the loop

The goal of many ML processes is to replace a human agent by a model which
makes as good as, or better, decisions than a human would. The main obstacle
is a machines inability to reason or abstract. The goal of so-called strong AI is
to develop systems that possess this ‘common sense’ [11]. However, until such
time as that is available it is reasonable to add this common sense into a model
through human interaction. Therefore, a solution to the short comings of modern
ML models and interpreting them lies in creating models which are transparent,
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unambiguous and which place humans prominently in their design, a human in
the loop ML algorithm.

In order to create a fully Explainable GE system, meeting all the criteria
highlighted above, it is essential a human is incorporated in the evolutionary
cycle as much as possible. However, it is first necessary to empirically validate
that FPTs are, in fact, interpretable. The depth at which FPTs cease to become
interpretable also requires investigation. This required an extra operation to be
performed. This involved giving each model to a domain expert who ranked each
model’s interpretability.

4 Experimental Setup

The hypothesis that FGE meets all, or most, of the criteria of an interpretable
model was tested. That is to say, FGE provides a transparent model which
can be understood and attains accuracy comparable to other, black box ML
approaches. Five selection methods were tested on six benchmark problems.
These benchmark datasets were chosen as they have been identified as problems
which often produce models containing bias or discrimination. Insight into the
logic of any model trained on this data would, therefore, be very useful.

The grammar used can be seen in Figure 4. The FPTs for each class are
contained within the WTA node, the < exp > non-terminals. To extend the
grammar for multi-class classification, the simple addition of more < exp >
symbols in the expression are needed. For example, three classes would need the
addition of one more < exp > symbol and so on. Constants were created using
digit concatenation [3].

< start >::=WTA(< exp >,< exp >)

< exp >::=max(< exp > , < exp >) |
min(< exp > , < exp >) |
WA(< const > , < exp > , < exp >) |
OWA(< const > , < exp > , < exp >) |
concentrate(< exp >) |
dilation(< exp >) |
complement(< exp >) |
x1 | x2 | x3 |...

< const >::=0. < digit >< digit >< digit >

< digit >::=0 | 1 | 2 |....

Fig. 4. Grammar used to evolve a Fuzzy Pattern Tree. Extra < exp >, as needed, can
be added in the WTA node to make it a multi-class grammar.
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4.1 GE Parameters

The experiments were run with a population size of 500 and for 50 generations.
For each run, Sensible Initialisation was used to create the initial population and
effective crossover was also employed [28]. At the beginning of each run, the data
was split randomly 75% for training and the remaining 25% for test. This was
repeated so each run had a different, randomized training and test data. The
exception was Census Income, which came with the data already partitioned
and was used as such. There was a total of 30 runs per experiment.

Two selection methods were employed. Tournament selection and double
tournament selection. Double tournament selection involved performing two,
nested tournaments. For experiments FGEDT1, the first tournament winner was
decided by fitness with the second tournament winner being the individual with
the smaller size. FGEDT2 was the inverse of this, the first tournament considered
size while the second was determined by an individual’s fitness.

Table 1. List of parameters used for FGE

Parameter Value

Runs 30
Total Generations 50
Population 500
Elitism Best Individual
Selection Tournament, Double Tournament
Crossover 0.9 (Effective)
Mutation 0.01
Initialisation Sensible

4.2 Fitness function

The fitness function used for each experiment, except FGEL1 & FGEL2, was 1
- RMSE. That is to say, FGE, FGEDT1 and FGEDT2 use the fitness function
shown in Eq. 9.

F = 1−RMSE (9)

The fitness function for FGEL1, is calculated to penalise solutions with a
large size. It is computed as follows;

FL1 = 1−RMSE −MaxDepth× 0.001 (10)

Finally, the fitness function for FGEL2, is calculated to allow solutions attain
a max depth of 2. It is computed as follows;

FL2 =

{
1−RMSE, if MaxDepth < 3

0, otherwise
(11)
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The max depth of a solution is the largest path which exists in any FPT of
an individual.

4.3 Fairness Benchmarks

The experiments are run on six binary classification benchmark datasets, all of
which can be found online in the UCI repository. A summary of all the datasets
can be seen in Table 2. These datasets are often used as benchmarks in AI
fairness experiments, an area XAI could prove fruitful in.

Table 2. Benchmark datasets for the classification problems, taken from the UCI
repository.

Datasets Short Class Vars Instances

Bank Marketing Bank 2 20 41,188
Census Income Census 2 14 45,222
German Credit Credit 2 20 1,000
ProRepublica Recidivism Recid 2 52 7,214
ProRepublica Violent Recidivism V/Recid 2 52 4,743
Heart Disease Heart 2 13 303

4.4 Expert Validation

An expert was sought out to empirically validate the interpretability of the
FPTs. A domain expert, a doctor working in a local hospital, was sought out to
examine the results from the Heart experiments. The best individual from each
run was saved and parsed into a tree. This gave 150 graphs of the trees, 30 for
each of the 5 selection methods. These trees were then presented to the domain
expert over Zoom. The evaluation consisted of two steps. The expert was first
asked to evaluate the trees in terms of interpretability. Afterwards, the expert
was asked to score the logic of the model. That is to say, do the variables and
operators in the make sense medically. Both of these were scored from 1, lowest,
to 5, highest.

5 Results

The experimental results are summarized in Table 3 showing the best perfor-
mance from 30 runs of FGE and the various selection methods as well as other
ML approaches.

The first five columns show the results for FGE, FGE with fitness function in
equation 10 applied, FGE with fitness function in equation 11 applied, FGE with
double tournament selection, first considering size then fitness, and finally FGE
with double tournament selection, first fitness then size. The sixth column shows
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Table 3. Classification performance comparison of each selection method used with
FGE, showing the classification accuracy on the test data for the best solution found
averaged across the 30 runs.

Dataset FGE FGEL1 FGEL2 FGEDT1 FGEDT2 SVM RF LR

Bank 0.89 0.89 0.89 0.89 0.89 0.91 0.91 0.84
Census 0.79 0.78 0.81 0.80 0.78 0.85 0.85 0.79
Credit 0.71 0.70 0.71 0.70 0.70 0.73 0.76 0.71
Recid 0.71 0.72 0.69 0.72 0.70 0.74 0.74 0.56
V/Recid 0.83 0.83 0.83 0.83 0.83 0.84 0.84 0.54
Heart 0.79 0.77 0.77 0.77 0.75 0.82 0.82 0.81

the results for Support Vector Machine (SVM) and seventh Random Forest (RF).
Finally, column eight shows the result of a Logistic Regression (LR).

No one selection method for FGE was seen to outperform any other selec-
tion method with respect to accuracy. Among all FGE experiments, FGEDT1

found the best solutions on 4/6 benchmark problems. However, it also achieved
the worst performance on the Recid problem. No selection method was seen to
statistically significantly outperform any other.

A Friedman test was carried out on the data to compare the performance
of all the classifiers. This test showed evidence that the RF classifier was sta-
tistically significantly better than all others, achieving or matching the best
performance on each problem. As a BB model, though, it does not allow any
further knowledge to be extracted. FGE was able to achieve very competitive
results against the BB approaches. FGE was outperformed by 5% on the Credit
dataset, achieving 71% in both FGE and FGEL2 compared to the best perform-
ing technique RF which found 76%. FGE accomplished 81% accuracy on the
Census problem, 4% worse than both SVM and RF which obtained 85% accu-
racy. For the Bank, Recid and V/Recid problems, FGE evolved solutions which
were within 2% of those found by either SVM or RF.

On all but one problem FGE was seen to outperform the interpretable ML
algorithm considered, LR. FGE significantly exceed the performance of LR on
the Bank, Recid and V/Recid problems. FGE found better solutions on the
Census dataset by 2%, 81% vs 79%, while both achieved parity on the Credit
dataset, attaining 71% accuracy. The Heart problem was the sole exception to
this, it was seen to favour LR by 2%.

At the end of each run, the best of run individual underwent an intron removal
process, outlined above, to remove any bloat which may exist in the program.
The mean size of the FPTs in the final individual found in each of the 30 runs
are shown in Table 4. The best results (smallest trees) are highlighted in bold.
Unsurprisingly, as the most rigid selection technique, FGEL2 finds by far the
smallest individuals. FGEL1 and FGEDT2 are next best at finding small indi-
viduals. They are, however, more than double the size of the solutions found by
FGEL2 on average.



12 A. Murphy et al.

Table 4. Size comparison between each approach. Best results are in bold.

Dataset FGE FGEL1 FGEL2 FGEDT1 FGEDT2

Bank 7.90 2.82 1.83 8.33 4.70
Census 10.13 6.70 1.96 9.80 8.03
Credit 10.63 7.53 2.00 12.90 10.67
Recid 10.90 5.33 2.00 10.13 10.33
V/Recid 8.17 3.97 2.00 9.40 8.57
Heart 10.63 5.85 2.00 9.40 8.57

The results of the human expert’s analysis can be seen in Table 5. FGEL2

was the best performing method for finding interpretable solutions, with all 30
runs finding trees attaining scores of 4 or 5. The next best performing method
was FGEL1, with 8/30 being scored 4 or 5, followed by FGEDT1, having 6 in-
terpretable solutions. The worst performing methods were FGEDT2 and FGE,
both only finding 4 interpretable solutions in their 30 runs. A plot showing the
decrease in interpretability as depth increases is seen in Figure 5. The plot sug-
gests that any reasonable indication of interpretability disappears after trees
have exceeded depth 5 or 6.

Table 5. Count of Interpretability scores for the best individual in each run for each
selection type. There are 30 individuals for each selection type.

Interpretability Score

Selection Type 1 2 3 4 5

FGE 19 2 5 4 0
FGEL1 14 3 5 5 3
FGEL2 0 0 0 2 28
FGEDT1 20 1 3 4 2
FGEDT2 19 1 6 3 1

To validate that the FPTs were indeed transparent and clear in their state-
ments, the logic of the models deemed interpretable (those scoring 4 or 5) was
examined by the domain expert. This gave 52 of the original 150 models. Any
models flagged as having ‘incorrect’ logic, that is to say the confidence score
was 1 or 2, were separated from the population. Similarly, models with marginal
trust, those with a confidence score of 3, were separated.

This left 24 models, described in Table 6, which were deemed interpretable
and inspired confidence. The mean accuracy of those models is 77.1%, shown in
Table 7. When marginal models were included, those with confidence score of 3,
the number of models jumps to 39, as shown in Table 6, and the mean accuracy
marginally increased to 77.3%, as seen in Table 7. Models which have been
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Fig. 5. Decrease in Human Interpretability as the Maximum Depth of the Model In-
creases

deemed to have ‘correct’ logic perform ∼2% better than those adjudged to have
‘incorrect’ logic. This is despite both groups containing almost identical fitness
on the training data. By investigating the models and judging their logic, an
expert is able to improve the overall performance of the population by identifying
models which are likely to be over-trained. This process is also an effective way
for an expert to build trust in the models which are being evolved.

Table 6. Selection Methods of FGE Models with Interpretability Score ≥ 4.

Confidence Score FGE FGEL1 FGEL2 FGEDT1 FGEDT2

≤ 2 (Incorrect Logic) 2 2 5 2 2
≥ 4 (Correct Logic) 0 3 19 1 1

≥ 3 (Correct & Marginal Logic) 2 6 25 4 2
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Table 7. Accuracy of FGE Models with Interpretability Score ≥ 4.

Confidence Score Number Accuracy

≤ 2 (Incorrect Logic) 13 75.2%
≥ 4 (Correct Logic) 24 77.1%

≥ 3 (Correct Logic & Marginal Logic) 39 77.3%

6 Conclusion

This paper empirically evaluates the suitability of FGE as an XAI approach by
analysing the Fuzzy Pattern Trees it produced.

The experimental results show that FGE has a competitive performance on
real world classification tasks. These models were then presented in comprehen-
sible terms to a human domain expert, a medical doctor. This expert was able to
validate the interpretablity of the models and to extract the knowledge obtained
in the learning process of the model. This was validated by comparing the per-
formance of models which the domain expert labeled their logic as ‘incorrect’ vs
those the domain expert labeled as ‘correct’. Models with ‘incorrect’ logic were
seen to perform worse than those deemed as ‘correct’.

The next major step in this work is the inclusion of the human expert in more
stages of the evolutionary process. Pre-processing by picking membership func-
tion values, encapsulating information into modules and incorporating domain
knowledge in the grammar, setting maximum depth size of the individuals, being
involved in the selection process are some of the many possibilities going forward.
This would enable GE to tailor its search to the expertise and capabilities of the
user.
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wood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo, J.J., Rivas Santos, V.M.,
Sim, K. (eds.) Genetic Programming. pp. 186–197. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

4. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine Learning Interpretability:
A Survey on Methods and Metrics. Electronics 8(8), 832 (2019)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6(2),
182–197 (2002)



Towards incorporating Human Knowledge in Fuzzy Pattern Tree Evolution 15

6. Doran, D., Schulz, S., Besold, T.R.: What does explainable AI really mean? A new
conceptualization of perspectives. arXiv preprint arXiv:1710.00794 (2017)

7. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

8. Dou, R., Zong, C., Li, M.: Application of an interactive genetic algorithm in the
conceptual design of car console. Tianjin University (2014)

9. Fitzgerald, J., Ryan, C.: Exploring boundaries: optimising individual class bound-
aries for binary classification problem. In: Proceedings of the 14th annual confer-
ence on Genetic and evolutionary computation. pp. 743–750 (2012)

10. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: An overview of interpretability of machine learning. In: 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA). pp.
80–89. IEEE (2018)

11. Goertzel, T.: The path to more general artificial intelligence. Journal of Experi-
mental & Theoretical Artificial Intelligence 26(3), 343–354 (2014)

12. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. AI Magazine 38(3), 50–57 (2017)

13. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM computing surveys
(CSUR) 51(5), 93 (2018)

14. Huang, Z., Gedeon, T.D., Nikravesh, M.: Pattern trees induction: A new
machine learning method. Trans. Fuz Sys. 16(4), 958–970 (Aug 2008).
https://doi.org/10.1109/TFUZZ.2008.924348

15. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decision Support Systems 51(1), 141–154 (2011)

16. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: A short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence). pp. 2419–2426. IEEE (2008)

17. Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers
by means of natural selection, vol. 1. MIT press (1992)

18. Krakovna, V., Doshi-Velez, F.: Increasing the interpretability of recurrent neural
networks using hidden markov models. arXiv preprint arXiv:1606.05320 (2016)

19. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint
arXiv:1606.03490 (2016)

20. Marcus, G.: Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631
(2018)

21. Moore, A., Murdock, V., Cai, Y., Jones, K.: Transparent tree ensembles. In: The
41st International ACM SIGIR Conference on Research &#38; Development in
Information Retrieval. pp. 1241–1244. SIGIR ’18, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3209978.3210151, http://doi.acm.org/10.1145/
3209978.3210151

22. Murphy., A., Ali., M.S., Dias., D.M., Amaral., J., Naredo, E., Ryan., C.: Grammar-
based fuzzy pattern trees for classification problems. In: Proceedings of the 12th In-
ternational Joint Conference on Computational Intelligence - Volume 1: ECTA,. pp.
71–80. INSTICC, SciTePress (2020). https://doi.org/10.5220/0010111900710080

23. Murphy, A., Ryan, C.: Improving module identification and use in grammatical
evolution. In: Jin, Y. (ed.) 2020 IEEE Congress on Evolutionary Computation,
CEC 2020. IEEE Computational Intelligence Society, IEEE Press (2020)

https://doi.org/10.1109/TFUZZ.2008.924348
https://doi.org/10.1145/3209978.3210151
http://doi.acm.org/10.1145/3209978.3210151
http://doi.acm.org/10.1145/3209978.3210151
https://doi.org/10.5220/0010111900710080


16 A. Murphy et al.

24. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive
crossover in genetic programming. Advances in genetic programming 2, 111–134
(1995)

25. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evolutionary Compu-
tation 5(4), 349–358 (2001)

26. Patten, J.V., Ryan, C.: Attributed grammatical evolution using shared memory
spaces and dynamically typed semantic function specification. In: Genetic Pro-
gramming - 18th European Conference, EuroGP 2015, Copenhagen, Denmark,
April 8-10, 2015, Proceedings. pp. 105–112 (2015). https://doi.org/10.1007/978-3-
319-16501-1 9, https://doi.org/10.1007/978-3-319-16501-1_9

27. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. pp. 1135–1144. ACM
(2016)

28. Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In:
GECCO. pp. 142–145. AAAI (2003)

29. Ryan, C., Collins, J.J., O’Neill, M.: Grammatical evolution: Evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP. Lecture Notes in Computer Science, vol. 1391, pp. 83–96. Springer
(1998)

30. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: Evolving programs
for an arbitrary language. In: European Conference on Genetic Programming. pp.
83–96. Springer (1998)

31. Ryan, C., O’Neill, M., Collins, J.: Handbook of Grammatical Evolution. Springer
(2018)

32. dos Santos, A.R., do Amaral, J.L.M.: Synthesis of Fuzzy Pattern Trees by Cartesian
Genetic Programming. Mathware & soft computing 22(1), 52–56 (2015)

33. Schneider, J., Handali, J.: Personalized explanation in machine learning: A con-
ceptualization. arXiv preprint arXiv:1901.00770 (2019)

34. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., et al.: A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science 362(6419),
1140–1144 (2018)

35. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of ec
optimization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296
(2001)
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