
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

500 | P a g e  

www.ijacsa.thesai.org 

Hybrid Genetic-FSM Technique for Detection of 

High-Volume DoS Attack 

Mohamed Samy Nafie1, Hassan Abounaser3 

Department of Computer Engineering 

Arab Academy for Science, Technology and Maritime Transport (AASTMT), Cairo, Egypt 

Khaled Adel2 

Department of Computer Science 

Ain Shams University 

Cairo, Egypt 

Amr Badr4 

Department of Computer Science 

Cairo University  

Giza, Egypt 

 

 
Abstract—Insecure networks are vulnerable to cyber-attacks, 

which may result in catastrophic damages on the local and global 

scope. Nevertheless, one of the tedious tasks in detecting any type 

of attack in a network, including DoS attacks, is to determine the 

thresholds required to discover whether an attack is occurring or 

not. In this paper, a hybrid system that incorporates different 

heuristic techniques along with a Finite State Machine is 

proposed to detect and classify DoS attacks. In the proposed 

system, a Genetic Programming technique combined with a 

Genetic Algorithm are designed and implemented to represent 

the system core that evolves an optimized tree—based detection 

model. A Hill-Climbing technique is also employed to enhance 

the system by providing a reference point value for evaluating 

the optimized model and gaining better performance. Several 

experiments with different configurations are conducted to test 

the system performance using a synthetic dataset that mimics 

real-world network traffic with different features and scenarios. 

The developed system is compared to many state-of-art 

techniques with respect to several performance metrics. 

Additionally, a Mann-Whitney Wilcoxon test is conducted to 

validate the accuracy of the proposed system. The results show 

that the developed system succeeds in achieving higher overall 

performance and prove to be statistically significant. 

Keywords—Denial of Service (DoS); Evolutionary Algorithms 

(EA); Finite State Machine (FSM); Genetic Algorithm (GA); 

Genetic Programming (GP); Hill-Climbing Search 

I. INTRODUCTION 

In 1969, ARPANet invented the first link between two 
computers, which was the main predecessor of the Internet 
that appeared in 1983 [1]. Since then, computer networks have 
been in rapid development. Nowadays, they are continuously 
growing in size, complexity and efficiency, thus becoming one 
of the most important daily aspects of people’s lives. For 
instance, people can use computer networks to send electronic 
e-mails, communicate via Voice over IP (VoIP) or transfer 
money via online bank portals instead of sending postal 
letters, making phone calls or going to the bank. Moreover, 
they can use it to access video streaming services, read news 
feeds, subscribe to online foreign exchange markets and many 
others things[2]. In addition to the basic services, new 
emerging technologies such as the Internet of Things (IoT) 

and Software Defined Networks (SDN) make use of computer 
networks to accomplish their goals [3],[4]. 

Consequently, such vital services have to be available for 
the end-users, allowing them to acquire and exchange 
information in an agile, easy and pervasive way on a daily 
basis. From another perspective, a major security concerns is 
for such services to become unavailable in a way that can 
vastly and adversely affect users. Denial of Service (DoS) is 
one type of network attacks, which threatens the availability of 
the victim’s network by disrupting it, hence disabling any 
legitimate users from reaching the desired services. Another 
form of DoS attack is the Distributed Denial of Service 
(DDoS). DDoS attacks are usually launched with the aid of 
botnets [5]. A botnet is a set of compromised hosts controlled 
by a malicious attacker, which are instructed to perform illegal 
and malicious actions. 

To support the availability and resiliency of computer 
networks and protect them from DoS attacks, a network 
monitoring approach such as NetFlow can help by providing 
flow analysis rather than standalone packet analysis, grasping 
a wider picture of the network’s behavior. NetFlow is a 
protocol that captures and collect the flow of data entering and 
exiting network devices such as routers and switches. A flow 
data includes both source and destination IP addresses and 
ports, and transport protocol type. The Internet Engineering 
Task Force (IETF) currently standardizes it under the name IP 
Flow Information Export (IPFIX) [6]. 

Since insecure networks are vulnerable to cyber-attacks 
that may lead to catastrophic damages, improving Intrusion 
Detection System (IDS) is one of the hot topics that are widely 
researched. Different techniques are used to enhance the 
detection rate of attacks. Some of these techniques are 
Statistical Analysis, Clustering, Soft Computing such as 
Artificial Neural Networks (ANN), Support Vector Machines 
(SVM), Evolutionary Algorithms (EA) and others [7]. 
Additionally, it is proven that hybrid classifiers are capable of 
boosting the weakness of the single classifiers, hence 
producing better overall outcomes. Therefore, a hybrid 
detection approach is preferred [8],[9]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

501 | P a g e  

www.ijacsa.thesai.org 

Genetic Algorithm [10] and Genetic Programming [11] are 
well-known meta-heuristic evolutionary algorithms that 
encompass the behavior of the natural selection of the fittest 
[12]. Both operate on a population of randomly initialized 
individuals, named chromosomes. Each chromosome 
resembles a possible solution for the required objective. The 
basic genetic operators are selection, crossover and mutation. 
By applying these operators, there is a chance that the 
individuals will be enhanced with each generation, producing 
finer solutions. To evaluate the finesse of each individual, a 
fitness function that generates a fitness-based value is 
computed. A number of generations is sustained until the 
termination criteria is met. 

Hill-Climbing is a variant generate-and-test heuristic 
algorithm which follows the approach of trial and error by 
starting with an arbitrary solution and keeps iterating by 
making incremental changes[13]. It continuously tests newly 
generated solutions until an optimal one is reached. Hill-
Climbing is sometimes called greedy local search because it 
aims towards a better solution in hope of finding the optimal 
one. The Hill-Climbing technique has three different types 
known as Simple, Stochastic and Steepest-Ascent, and these 
are applicable to both discrete and continuous search 
spaces[14]. Each type differs in how it approaches the 
neighboring nodes during the testing phase. 

Many expert systems used for DoS detection rely on a 
predetermined threshold of certain parameters to determine 
whether there is an attack occurring inside the network or not. 
These approaches can yield a higher false-positive rate as well 
as a low detection accuracy. Often, these values are 
interleaved and depend on the type of network; thus, the 
manual calibration of such values are exhaustive due to an 
extremely large search space[14],[15]. Hence, it is very 
important to find an effective technique capable of detecting 
the occurrences of  high-volume DoS attacks[16].  In this 
research, a system combining different heuristic techniques 
along with a Finite State Machine is proposed to detect the 
occurrences of high-volume DoS attacks. 

The rest of this paper is organized as follows. Section II is 
a review of related work in detecting denial of service and 
presents different anomaly classification techniques. 
Section III demonstrates the algorithms and techniques 
proposed by this research. In Section IV, the preparation 
details of the utilized dataset are explained, and the obtained 
results of the conducted experiments are discussed. Finally, 
Section V concludes this work. 

II. RELATED WORK 

Network reliability is important for both consumers and 
administrators. DoS attacks are common due to the fact that 
they can be easily launched in addition to their potential to 
cause catastrophic impacts on large scale networks[17]. 
Therefore, sophisticated and effective detection methods are 
considered as a priority to combat such attacks. 

In [18], the authors have used supervised Artificial Neural 
Networks (ANNs) to detect the occurrences of DoS attacks. 
Each ANN is used to analyze the pattern of packet headers 
sent to a specific IP address if the number of packets is larger 

than a certain threshold. The system then deduces the packet 
threat level based on the majority of votes among multiple 
trained ANNs. The authors created their own dataset and 
environment to simulate the attacks and they compared their 
results with Chi-squared, Probabilistic Neural Networks and 
SVM, and proved to provide better detection results. 

In [19], the authors used Hidden Markov Models (HMM) 
to represent different states of the network according to 
various features and behaviors. The system is composed of 
multiple HMM for each feature vector, including source and 
destination ports, source and destination IP addresses, and 
length of packets. Based on the HMMs output, the system 
calculates the suspicion level for the packets. The authors 
generated their test suite using OpenFlow to evaluate the 
accuracy of detection. The system showed good results in 
flagging malicious packets. One advantage of this system is 
that HMM can readily adapt to changes that happen to the 
networks without re-training. 

In [20], the authors proposed a system that uses a 
modification of Holt-Winters named Holt-Winters for Digital 
Signature (HWDS), which generates a Digital Signature of 
Network Segment using Flow Analysis (DSNSF) for seven 
analyzed dimensions of the IP flow. Their system compares 
the collected flows, which differ from the generated DSNSF, 
with signatures of known attacks such as DoS and DDoS. 
Finally, a game-theoretic approach is used to mitigate the 
impact of the attacks. 

In [21], the authors also used the concept of DSNSF to 
encapsulate six analyzed dimensions for each IP flow. The 
system monitors the network and extracts traffic 
characterization to the standard IPFIX form. The authors have 
used unsupervised GA to generate the DSNSF from the 
network information. Afterwards, the DSNSF is passed to a 
Fuzzy Logic classifier that assigns an anomalous score for 
each dimension in the real collected DSNSF using a Gaussian 
membership function. The scores are aggregated and a flow is 
labeled anomalous if that total score surpasses a certain cutoff 
value. The authors compared their results with Outlier 
Detector, SVM, CkNN, and the system provided better results 
in terms of detection accuracy. 

In [22], the authors proposed a hybrid classification 
technique based on Artificial Bee Colony (ABC) and Acritical 
Fish Swarm (AFS) to enhance the detection accuracy of IDS. 
Additional techniques such as Fuzzy C-Means Clustering 
(FCM) and Correlation-based Feature Selection (CFS) are 
employed to split the training dataset and remove insignificant 
features. CART technique is implemented to generate If-Then 
rules that distinguish the normal and malicious records. 
Finally, the proposed hybrid system is trained via the 
generated rules. 

III. PROPOSED SYSTEM 

This section aims to find an effective supervised-learning 
technique capable of automatically detecting the occurrences 
of high-volume DoS attack. To address this issue, a hybrid 
system of different heuristic techniques, along with a Finite 
State Machine (FSM) is proposed. The core of this system is a 
nested technique composed of a Genetic Algorithm (GA) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

502 | P a g e  

www.ijacsa.thesai.org 

representing the outer layer and a Genetic Programming (GP) 
representing the inner layer. The GP technique is designed and 
implemented to evolve the detection model for the attacks 
whereas the GA technique is designed and implemented to 
optimize the coefficients of this model. In details, the role of 
the GP technique is to evolve a tree-based mathematical 
expression capable of detecting the occurrences of DoS 
attacks whereas the role of the GA technique is to fine-tune 
the coefficients of this expression. The system produces two 
final models; one is for classifying the DoS attack entries 
while the other is for classifying the legitimate ones. 

Fig. 1 illustrates the structure of one GA chromosome and 
a set of assigned GP chromosomes. All GP nodes that have a 
letter k denote the used coefficients from the GA 
chromosomes, while those that have a letter v denote different 
features used from the provided dataset. 

The system starts by generating and initializing a random 
population for the outer-layer GA and the inner-layer GP 
according to the specified sizes n1 and n2 respectively. The 
random population of the GA acts as a feed for the GP 
expressions, where each value inside the GA genes can be 
sourced to the GP chromosomes. This is governed as a multi-
to-multi relationship where each gene value of each GA 
chromosome can be utilized multiple times inside the same 
GP. This happens across different GP chromosomes within the 
population and can be completely neglected. 

Each GA chromosome is assigned with a number of GP 
chromosomes. Afterwards, the GP starts its own evolution 
process based on the previously assigned values from the GA 
and runs for a number of g2 generations. The final fitness 
value for each iteration is calculated based on the best fitness 
value resulting from all the inner-layer GP chromosomes. The 
whole process is repeated for an overall of g1 generations. 

Fig. 2 illustrates the core operation which is described 
above for the proposed system and shows the interfacing 
between the outer-layer GA and inner-layer GP techniques. It 
also displays how the overall fitness value is calculated for 
each iteration. 

A. Hill-Climbing 

As previously mentioned, a reference point is required for 
the fitness function to be able to evaluate the fitness of GP 
chromosomes. Since there is no predetermined value to use, 
the Hill-Climbing technique is employed to calculate a pivot-
point that acts as a reference value to overcome this issue. The 
algorithm utilizes an initial value, an acceleration factor, 
acceleration directions and step size parameters. The initial 
value is the starting point from where the search begins and 
the acceleration direction determines whether the search will 
accelerate, decelerate or stop. It also provides the direction of 
the search and whether the pivot-point should increase or 
decrease according to the selected acceleration factor. A step 
size decides how far the search should hop into the search 
space. A large step size helps in discovering a larger space, 
but it can delay the algorithm from reaching a stable point 
[23]. 

For each iteration, all the acceleration directions are tested 
by generating random chromosomes and evaluating them 

using the testing dataset, then finally returning the best fitness. 
If the best fitness is accompanied with a stopping direction, 
then the step size would decrease which narrows the search 
plane, implying that the search is yielding positive results 
towards a satisfactory pivot-point. In contrast, if the stopping 
direction is not accompanied with the best fitness, then the 
step size increases according to both the acceleration direction 
and factor. This technique will run for a certain number of 
iterations until the final value is obtained. 

 

Fig. 1. Structure of GA and GP Chromosomes. 

 

Fig. 2. Structure of the Proposed System. GA is Highlighted in Red and the 

GP is Highlighted in Blue. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

503 | P a g e  

www.ijacsa.thesai.org 

B. Outer-Layer Genetic Algorithm (GA) 

The chromosome consists of k genes; each one is a 
floating-point value. The crossover operator uses the standard 
single-point method, where two separating points are 
randomly assigned to the selected parents, and the genes 
between them are swapped. The selection operator uses the 
traditional roulette-wheel operator to select the fittest parents 
according to their fitness, in such a way that a parent 
chromosome with a higher fitness value will have a higher 
probability of being selected for crossover. 

The mutation is carried in a non-uniform fashion as it 
depends on the value of best and average fitness of the current 
generation. The lower the average fitness of the population 
compared to the best fitness, the higher the mutation 
probability by a maximum of 50% probability. Non uniform 
mutation has proved to provide higher fitness values compared 
to the uniform fashion[24]. Elitism is also implemented and 
used to make sure that the fittest individual from a previous 
generation is transferred to the newer generation, so that the 
fitness value for the newest generation is either sustained or 
increased. 

The objective of the of outer-layer GA is to fine-tune the 
performance of the inner-layer GP, in such a way that per each 
generation, a number of iterations for the inner-layer GPs are 
tested. The fitness function consists of a formula that selects 
the fittest individual from within the assigned GPs to each 
chromosome respectively. 

C. Inner-Layer Genetic Programming (GP) 

As mentioned earlier, the GP technique represents the core 
of the developed system along with the GA technique. It is 
designed and implemented to evolve a mathematical 
expression that can be used to classify the network traffic into 
DoS attacks, legitimate traffic or anomalous traffic. The tree 
structure of the inner-layer GP technique has a pre-determined 
depth d. Each GP chromosome is designed to encode a single 
tree representing a mathematical expression. Each gene 
represents a tree node that may hold a dataset feature, a 
mathematical operator or a coefficient value passed from the 
assigned GA chromosome of the currently evolving outer-
layer GA generation. 

A roulette-wheel operation is used to select two candidate 
parents that for the crossover operation. Then, according to a 
given probability value, the crossover operation will combine 
the genetic information in the parents to produce two new 
offspring. This is accomplished by generating a random cut-
off point that is bounded by the tree dimension of the selected 
parents, around which, the two sub-trees are interchanged. 
Fig. 3 illustrates the crossover operation in inner-layer GP 
between the individuals GP1 and GP2. 

The mutation probability value is calculated in the same 
non-uniform fashion utilized by the GA; however, the 
mutation operator itself is completely different. It can be a 
simple mutation or a subtree mutation. Simple mutation 
involves the modification of an individual gene, where the 
contents can be altered or expanded. Subtree mutation creates 
a new subtree initialized and grown from the mutating gene, 
taking into account the maximum allowable depth. Both 

mutation operators take into consideration the semantic and 
syntax limitations of the expression. 

As for the fitness function, the fitness is computed based 
on the count of the correctly predicted entries. Each candidate 
model is compared to the pivot-point that has been previously 
calculated using Hill-Climbing technique. The system begins 
with classifying the DoS attacks aiming to produce a model 
for detecting them. If the evaluation of the mathematical 
model is found to be higher in value than the pivot-point, the 
system considers the entry to be an attack; otherwise, it is not. 
This prediction is compared to the expected label from the 
dataset. If it is correct, it is counted towards the fitness value, 
alternatively it is not counted. After the specified number of 
generations ends, the whole developed technique is repeated 
for the legitimate entries using the evaluation process. 
However, it differs in such a way that if the result of 
evaluating the mathematical model is found to be lower in 
value than the pivot-point, it is considered legitimate; 
otherwise, it is not.  

D. Finite State Machine (FSM) 

The finite state machine is responsible for interfacing all 
the outputs of the GP expressions into a single system 
developed to decide whether the output class is classified as 
attack, normal or anomalous. The FSM consists of three states 
corresponding to each of the output classes, along with an 
initial starting state. Each entry in the testing dataset is fed to 
the FSM. The FSM examines the entry by taking each 
attribute and assigning it to the corresponding parameter found 
in the GP expression. According to the evaluation of the 
expression against the previously found pivot-point, the FSM 
decides which state it will switch to. Fig. 4 illustrates the 
interfacing of the GP expressions into the FSM. 

 

Fig. 3. Crossover Operation between two GP Chromosomes. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

504 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 4. Design of FSM. 

IV. RESULTS AND DISCUSSION 

The following results were obtained from a series of 
experiments conducted using the developed system described 
above to acquire an optimized detection model. The 
experiments were performed on an Intel Core i5-3750K 
overclocked at 4.2 GHz CPU, with a 64-bit edition of 
Windows 10 and 16GB of RAM. A Nvidia 1080 GTX GPU 
conjointly with AleaGPU[25] software was used to handle all 
the computation of fitness function evaluation utilizing the 
power of parallel computing using CUDA. The full code has 
been implemented using C# on Microsoft Visual Studio 2017 
with the Accord.NET [26] framework installed. 

A. Dataset Description and Prepration 

The experiments are conducted on the following dataset 
named CICIDS2017, provided by the Canadian Institute for 
Cybersecurity (CIC), University of New Brunswick (UNB). 
The original dataset contains 12 different types of attacks and 
80 extracted network features [27]. However, since this 
research mainly focuses on high-volume DoS attacks, which 
are labeled “Attack”, all other non-DoS attacks are out of our 
scope of research, and thus, they were removed from the 
dataset. The remaining DoS attack types are labeled 
“Anomaly”. They are Heartbleed, Slowloris, GoldenEye and 
slowhttptest. Finally, the legitimate traffic is labeled 
“Normal”. 

For the system to work as intended, features fed to the 
system are required to be represented quantitatively. 
Volumetric features such as duration, number of packets and 
bytes are numerical; however, IP addresses and ports 
information are nominal. To extract the properties of these 
features, Shannon Entropy is employed. Shannon Entropy 
measures the uncertainty associated with the randomness of a 
variable. When the variable distribution is concentrated, the 
entropy value tends to be minimal, while it is completely zero 
when all the variables are same. In contrast, the value tends to 
be high in case of discrepancy and fluctuations. The Shannon 
entropy value is usually between zero and one[28].  Given a 
set of features X = *              +, the Shannon Entropy is 
defined by: 

 ( )    ∑        (  

 

   

) 

where    is the probability of distribution of each feature 
from the set X. To calculate the probability of distribution, the 
frequency of occurrences of feature i is calculated by: 

    
  

∑   
 
   

 

Entries are aggregated based on the timestamp, source IP 
address, destination IP address, and source port in a similar 
way to how NetFlow aggregates data flows. Employing such 
an aggregation scheme creates an aggregated flow for each 
destination IP address in correspondence to every source IP 
juxtaposed with its source port for each time interval. This can 
help the system to effectively detect attacks[29]. Quantitative 
features are aggregated, while qualitative features are 
calculated separately. Table I shows the features used in the 
training process for each entry. 

B. Performance Analysis 

The results are obtained by running the dataset 5 times 
using 16 different configurations, and the output is then 
averaged to obtain a more accurate representation. The size of 
the GA chromosome utilized is 10 genes and the depth of the 
GP chromosomes utilized ranges between 3 and 5. The 
number of the generations for the outer-layer GA and inner-
layer GP techniques are 25 and 50 respectively. Table II 
illustrates the number of training and testing entries in the 
dataset. Table III illustrates the settings used to train and test 
the system. Table IV lists the configurations for the common 
settings used to train and test the system. These configurations 
are sorted according to the number of GA and GP population 
sizes n1 and n2 respectively. 

TABLE I. FEATURES USED IN THE TRAINING AFTER PRE-PROCESSING 

Feature Explanation 

Duration The duration of the flow activity in minutes. 

# of source 

packets 

Total number of packets sent from source IP address to a 

destination IP address. 

# of destination 

packets 

Total number of packets sent from destination IP 

address to a source IP address. 

# of source bytes 
Total number of bytes sent from source IP address to a 

destination IP address. 

# of destination 

bytes 

Total number of bytes sent from destination IP address 

to a source IP address. 

IP Entropy Shannon Entropy calculated for source IP address(es). 

Port Entropy Shannon Entropy calculated for destination port(s) 

Source to 

Destination 

Packet Ratio 

Ratio between total number of source packets to 

destination packets 

Label Attack, Normal, Anomaly 

TABLE II. NUMBER OF TRAINING AND TESTING ENTRIES IN THE 

DATASET 

Labels Training Entries Test Entries 

Attack 110992 47568 

Normal 257084 110180 

Anomaly 13356  5724 

Attack  

State 

Normal 

State 

Initial 

State 

Anomaly 

State 

𝑖𝑓 𝑀𝑛𝑜𝑟𝑚𝑎𝑙 ≤ 𝑃𝑖𝑣𝑜𝑡 𝑃𝑜𝑖𝑛𝑡 𝑖𝑓 𝑀𝑎𝑡𝑡𝑎𝑐𝑘 ≥ 𝑃𝑖𝑣𝑜𝑡 𝑃𝑜𝑖𝑛𝑡  

𝑖𝑓 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝐴𝑡𝑡𝑎𝑐𝑘 𝑛𝑜𝑟 𝑁𝑜𝑟𝑚𝑎𝑙 𝑎𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

505 | P a g e  

www.ijacsa.thesai.org 

TABLE III. LIST OF SETTINGS USED FOR TRAINING AND TESTING 

Setting GA / GP Crossover % GA / GP Population Size 

S1 30% / 30% 24 / 240 

S2 30% / 30% 24 / 480 

S3 30% / 30% 48 / 240 

S4 30% / 30% 48 / 480 

S5 30 % / 60% 24 / 240 

S6 30 % / 60% 24 / 480 

S7 30 % / 60% 48 / 240 

S8 30 % / 60% 48 / 480 

S9 60 % / 30 % 24 / 240 

S10 60 % / 30 % 24 / 480 

S11 60 % / 30 % 48 / 240 

S12 60 % / 30 % 48 / 480 

S13 60 % / 60%  24 / 240 

S14 60 % / 60% 24 / 480 

S15 60 % / 60% 48 / 240 

S16 60 % / 60% 48 / 480 

TABLE IV. LIST OF CONFIGURATIONS SHOWING THE COMMON SETTINGS 

Configuration Settings 

C1 S1, S5, S9, S13 

C2 S2, S6, S10, S14 

C3 S3, S7, S11, S15 

C4 S4, S8, S12, S16 

Fig. 5 shows the convergence response for the training 
phase using the preselected configurations. Each one of these 
graphs illustrates the results for both normal and attack 
scenarios, showing the calculated fitness value across different 
generations. By inspecting the results, it is evident that those 
with a lower initial fitness value tend to converge faster than 
those with a higher initial fitness. This phenomenon is 
attributed to the fact that the system utilizes a non-uniform 
mutation function as already mentioned. Also, it is clear that 
the fitness values achieved after the run has finished is almost 
the same for all settings, which means that all settings are 
capable of properly training the system, but each with 
different performance. For instance, the settings with 
increased number of populations for both the GA and the GP 
yielded a fitness response with a higher initial value, which in 
turn, delivered better convergence output. 

This trend can be associated with the fact that an elitism-
based selection operator is performed by the system; therefore, 
those initially high values are always either improving or 
getting transferred to the newer generations. This way, starting 
with a relevant higher fitness value will positively influence 
the convergence performance. Table V shows the results of 
testing the proposed system. The testing phase involves testing 
the entries in the dataset against the output of the GA/GP and 
interfacing the output to the FSM, which is responsible for 
producing the final decision about whether the given entry 
signifies attacking, normal or anomalous behavior. 

(a1) Attack convergence 

 for settings S1, S5, S9 and S13 

(n1) Normal convergence 

 for settings S1, S5, S9 and S13 

(a2) Attack convergence 

for settings S2, S6, S10 and S14 
(n2) Normal convergence 

for settings S2, S6, S10 and S14 

(a3) Attack convergence 

for settings S3, S7, S11 and S15 

(n3) Normal convergence 

for settings S3, S7, S11 and S15 

(a4) Attack convergence 

for settings S4, S8, S12 and S16  
(n4) Normal convergence 

for settings S4, S8, S12 and S16 

Fig. 5. The Convergence Performance for the Training phase using different 

Configurations. 

By inspecting the relative standard deviation (RSD) and 
the mean fitness values, it is clear that almost all 
configurations have yielded very close final outputs. This 
means that varying the probability of crossover, mutation and 
the initial number of populations does not significantly affect 
the fitness value, but it mainly shapes the performance of the 
convergence process. Also, it is noticeable that setting S2 
yielded the best testing accuracy while S11 yielded the worst 
results. This has occurred because the number of assigned GP 
chromosomes per GA chromosome were 20 GPs and 5 GPs 

368K

370K

372K

374K

376K

378K

380K

382K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

S1

S5

S9

S13

361K

362K

363K

364K

365K

366K

367K

368K

369K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

S1

S5

S9

S13

368K

370K

372K

374K

376K

378K

380K

382K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

S2

S6

S10

S14

365K

366K

367K

368K

369K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

S2

S6

S10

S14

368K

370K

372K

374K

376K

378K

380K

382K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
v

a
lu

e
 

Generations 

S3

S7

S11

S15

362K

363K

364K

365K

366K

367K

368K

369K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

al
u
e 

Generations 

S3

S7

S11

S15

368K

370K

372K

374K

376K

378K

380K

382K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

S4

S8

S12

S16

365K

366K

366K

367K

367K

368K

368K

369K

369K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

S4

S8

S12

S16



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

506 | P a g e  

www.ijacsa.thesai.org 

for the settings S2 and S11, respectively. It can be observed 
that the diversity of the GP population per GA chromosome 
had a role into the final accuracy of the training phase. 
Therefore, these two settings will be the subject of further 
testing below. 

Interpreting the output of the inner-layer GP, which 
consists of mathematical formulas and a reference point, is 
another major issue as it is mainly used to validate the 
decision with the supervision labels. As already mentioned, 
the key was to determine a pivot-point value that can be used 
as the reference point. To solve this issue, a Hill-Climbing 
technique is employed and tested with the aforementioned two 
settings, S2 and S11 based on their accuracy results. The 
results are illustrated in Table VI. 

We can infer two important pieces of information from the 
table above. The first one is the significance of the Hill-
Climbing technique in calculating the pivot-point value. A 
continuous sweeping range of values was tested as starting 
points for the Hill-Climbing technique. The calculated points 
were generated based on the difference between the highest 
and lowest values initially computed for the 100-interval 
pivot-point. Therefore, three different pivot-points based on 
this value were included. It can be seen that the values around 
the 100-interval gave the most accurate results. Fig. 6 shows 
the convergence performance of the system using the three 
pivot-points for the already declared best and worst settings. 

TABLE V. THE 5-RUN AVERAGE FITNESS AND THE RELATIVE STANDARD 

DEVIATION OF THE TESTING PHASE FOR EACH CONFIGURATION 

Config Setting  Average Fitness RSD (%) Accuracy (%) 

C1 

S1 160.67K 0.621 % 98.318 % 

S5 161.09K 0.521 % 98.611 % 

S9 160.48K 0.383 % 98.175 % 

S13 160.88K 0.671 % 98.418 % 

C2 

S2 161.44K 0.289 % 98.761 % 

S6 161.28K 0.287 % 98.662 % 

S10 160.66K 1.090 % 98.283 % 

S14 161.31K 0.244 % 98.678 % 

C3 

S3 160.02K 0.840 % 97.889 % 

S7 160.39K 0.630 % 98.116 % 

S11 159.79K 0.798 % 97.752 % 

S15 160.61K 0.513 % 98.252 % 

C4 

S4 160.78K 0.550 % 98.357 % 

S8 161.24K 0.242 % 98.639 % 

S12 161.02K 0.379 % 98.505 % 

S16 161.34K 0.651 % 98.701 % 

TABLE VI. OUTPUT ACCURACY USING DIFFERENT PIVOT-POINTS AND THE 

NUMBER OF GP GENERATIONS FOR THE BEST (S2) AND WORST SETTINGS 

(S11) 

Pivot\GP 

Generations 

1 25 50 

Best Worst Best Worst Best Worst 

60 93.9% 87.5% 98.3% 98.1% 98.5% 98.3% 

100 95.2% 90.6% 98.6% 98.1% 98.8% 98.3% 

140 92.6% 87.0% 98.5% 98.0% 98.5% 98.2% 

It is also worth mentioning that from all the runs that have 
been conducted, the Port Entropy were the most prominent 
feature appearing across all the produced models for the 
attack. This indicates that this feature has a special 
significance in the classification process. Entropy values tend 
to fluctuate higher during attacks, rendering the system more 
sensitive to such fluctuations[30]. 

It is evident that the implementation of the Hill-Climbing 
method has helped in increasing the convergence 
performance. It can be seen from the graphs that the settings 
that were tested with the 100 pivot-point yielded a highest 
initial fitness value and continued to converge competitively 
quicker than the other two pivot-points, which means that the 
selection of the pivot- point is critical and can contribute to 
better results. To validate the results, a confidence interval 
metric based on a 95% confidence level is implemented. The 
confidence value is calculated based on the average accuracy 
of five different runs for each setting. It means that if the 
experiments are to be repeated, the output of the accuracy 
value will still fall between the calculated confidence interval 
ranges. Fig. 7 shows the results of implementing the 
confidence metric of detection accuracy for the attack, 
anomaly and normal classes. 

 (a1) Attack convergence with 1 inner-

layer GP generations 

 

(n1) Normal convergence with 1 inner-

layer GP generations  

(a2) Attack convergence with 25 

inner-layer GP generations 

 

(n2) Normal convergence with 25 

inner-layer GP generations  

(a3) Attack convergence with 50 

inner-layer GP generations  

(n3) Normal convergence with 50 

inner-layer GP generations  

Fig. 6. Convergence Performance for the GP using the Three Pivot-Points 

with the Best (S2) and Worst (S11) Settings. 

290K

310K

330K

350K

370K

390K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

PP 60 - Best

PP 100 - Best

PP 140 - Best

PP 60 - Worst

PP 100 - Worst

PP 140 - Worst
300K

320K

340K

360K

380K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

PP 60 - Best

PP 100 - Best

PP 140 - Best

PP 60 - Worst

PP 100 - Worst

PP 140 - Worst

368K

373K

378K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

PP 60 - Best

PP 100 - Best

PP 140 - Best

PP 60 - Worst

PP 100 - Worst

PP 140 - Worst
350K

352K

354K

356K

358K

360K

362K

364K

366K

368K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

PP 60 - Best

PP 100 - Best

PP 140 - Best

PP 60 - Worst

PP 100 - Worst

PP 140 - Worst

370K

375K

380K

385K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

s 
V

a
lu

e
 

Generations 

PP 60 - Best

PP 100 - Best

PP 140 - Best

PP 60 - Worst

PP 100 - Worst

PP 140 - Worst
364K

365K

366K

367K

368K

369K

1 3 5 7 9 11 13 15 17 19 21 23 25

F
it

n
es

 V
a

lu
e
 

Generations 

PP 60 - Best

PP 100 - Best

PP 140 - Best

PP 60 - Worst

PP 100 - Worst

PP 140 - Worst



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

507 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 7. Confidence Interval of 95% for the, Attack, Anomaly and Normal 

Labels. 

It can be seen from the results in the figure above that the 
confidence interval for testing the developed system using the 
common settings C2 and C4 yielded the least error rates with 
0.06% and 0.08% respecitvely for the attack detection. These 
two settings compared to the remaining settings, have the 
highest number of GP population, which means that the GP 
positively contributed to the consistency and coherence of the 
results, due to the higher diversity of the possible solutions, 
regardless of the final accuracy value. 

C. Comparitive Study 

Supplementary tests were carried out to evaluate the 
performance of the developed system. The system is 
compared to four state-of-art supervised learning techniques. 
These techniques are Fuzzy Hybrid Genetic Based Machine 
Learning (FH-GBML)[31], Genetic Programming-based 
learning of Compact and Accurate Fuzzy rule based 
classification for High Dimensional Problems (GP-COACH) 
[32] and Genetic Programming with AdaBoost (GPBoost) 
[33]. All of the previously mentioned techniques are 
implemented in well-known data mining tools  such as KEEL 
[34] and WEKA [35]. 

FH-GBML is a Fuzzy Rule-Based Classification System 
(FBRCS) that establishes a combination of Michigan and 
Pittsburgh style methods. Additionally, it implements Genetic 
Cooperative Competitive Learning (GCCL) [36]. The GCCL 
approach mainly encodes a single fuzzy rule per individual. 
The main idea of FH-GBML is to generate a random 
population of rule sets using the Pittsburgh approach followed 
by one iteration applying the genetic operators. Then a pre-
defined probability is calculated to decide whether to perform 
a single Michigan iteration for the whole rule set or not. Those 
new rules generated by the Michigan iteration replace the 
original rule set. Finally, all the rule sets generated during the 
Pittsburgh process replace the whole population by applying 
Elitism. GFS-Adaboost is a similar system to FH-GBML but 
makes use of Adaboost to boost the fuzzy rules along with the 
iterative genetic algorithm tuning [37]. 

While FBRCS provides high accuracy, the generated rule 
sets are usually complex and substantial, which may render 
them impractical for systems where execution speed is a 
crucial factor. GP-COACH simplifies the generated rule sets 
with minimal loss in accuracy incorporating Genetic 
Programming. 

GP-COACH aims to compress the rule set after the 
learning phase. It uses the GCCL approach while employing 
token competition to promote diversity. Rules are codified in a 
context-free grammar fashion that enables new children to be 
corrected, maintaining the validity of the population. The 
population is then evaluated according to a global fitness 
function that promotes both accuracy and interpretability. 

GPBoost uses Genetic Programming in conjunction with a 
boosting algorithm known as AdaBoost. Boosting algorithms 
are suitable for binary classification problems because they are 
capable of finding highly accurate classifications by 
combining many weaker classifiers, each of which is accurate. 
In each iteration, the algorithm updates the weights of the 
training examples based on those which have been already 
classified correctly using the current classifiers. GP can 
provide reasonably accurate models, which can act as weak 
classifiers for AdaBoost. Combining boosting with GP always 
provides better results compared to the results obtained with 
standalone GP. In this version of GPBoost, AdaBoost is 
extended to support multiclass classifications [38]. Each 
algorithm has been run 5 times and the average accuracy value 
along with the 95% confidence interval are calculated. The 
parameters used for each algorithm are the ones recommended 
by their original authors. 

Accuracy (Acc.), Sensitivity (Sen.) and Precision (Pre.) are 
used as performance metrics for attack (TK), normal (NR) and 
anomaly (AM) labels. These metrics are commonly used in 
the evaluation of binary classifications in soft computing, but 
can also be used for multi-class classifications[39]. Table VII 
presents the evaluation results for the proposed system, FH-
GBML, GP-COACH, GFS-AdaBoost and GPBoost. 

The developed system achieved the highest accuracy 
among all the labels compared to the other four techniques. It 
also achieved the highest recall value for the anomaly label, 
thus correctly detecting the highest number of anomaly 
instances. FH-GBML achieved a similar performance 
compared to our approach in terms of attack and normal 
instance classification; however, achieving a precision of 
100% and sensitivity of 0% signifies that it failed to detect any 
anomaly instances. This also proves the 96.5 ± 0% confidence 
interval for the anomaly accuracy. Additionally, it is evident 
that all methods that implement fuzzy logic have the best 
confidence interval values for the attack label due to the 
ability of fuzzy systems to tolerate imprecisions and 
uncertainties [40]. GFS-AdaBoost has benefited from the 

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

C1 C2 C3 C4

A
cc

u
ra

cy
 

Attack Anomaly Normal



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

508 | P a g e  

www.ijacsa.thesai.org 

boosting, improving its ability to detect a few anomaly 
instances in comparison to the FH-GBML and GP-COACH 
which detected none. 

GPBoost is the closest competitor to the proposed system 
in terms of design structure. It achieved lower scores than the 
proposed system in all classes. This implies that the outer-
layer GA layer was successfully able to fine-tune the inner-
layer GP expressions yielding better results. The use of FSM 
also decreased the total number of GP expressions required by 
one, in contrast to GPBoost that requires an expression for 
each label. GP-COACH has the lowest overall performance 
among all the tested techniques. It is apparent that it is the 
most sensitive method for attacks. This means it has a very 
low false negative rate. On the other hand, it achieved the 
lowest precision value indicating a high false positive rate. 

To further validate the results of the proposed system, a 
Two-Sample Mann–Whitney–Wilcoxon (MWW) test is 
conducted. MWW is a nonparametric statistical test that is 
best suited for evaluating evolutionary algorithms due to their 
non-deterministic nature [41]. Table VIII shows that the 
proposed system has the best overall accuracy with a high 
confidence value, displaying statistically significant results (P 
< 0.05). 

TABLE VII. COMPARISON BETWEEN ACCURACY, SENSITIVITY AND 

PRECISION OF EACH LABEL FOR THE DIFFERENT ALGORITHMS 

Metric Label 
Proposed 

System 

FH-

GBML 

GP- 

COACH 

GFS-

AdaBoost 

GP 

Boost 

Acc. 

(%) 

TK 
99.77 ± 

0.3 % 

99.48 ± 

0.18 % 

95.9 ± 

0.25 % 

97.21 ± 

0.16 % 

98.72 ± 

1.04 % 

NR 
98.63± 

0.48 % 

96.6 ± 

0.25 % 

95.28 ± 

0.34 % 

98.16 ± 

0.73 % 

97.09 ± 

0.38 % 

AM 
98.8 ± 

0.24 % 

96.5 ± 

0 % 

96.5 ± 

0 % 

97.16 ± 

0.13 % 

97.37 ± 

0.31 % 

Sen. 

(%) 

TK 
99.74 ± 

0.02 % 

99.76 ± 

0.01 % 

99.79 ± 

0.02 % 

99.65 ± 

0.14 % 

98.55 ± 

2.2 % 

NR 
98.93 ± 

0.69 % 

99.79 ± 

0.05 % 

95.95 ± 

0.11 % 

98.65 ± 

0.54 % 

98.8 ± 

0.82 % 

AM 
81.63 ± 

8.31 % 

0 ± 

0 % 

0 ± 

0 % 

21.82 ± 

2.09 % 

58.1 ± 

6.63 % 

Pre. 

(%) 

TK 
99.48 ± 

1.01 % 

98.49 ± 

0.61 % 

87.71 ± 

0.45 % 

91.49 ± 

0.48 % 

97.55 ± 

1.92 % 

NR 
98.98 ± 

0.44 % 

95.37 ± 

0.3 % 

96.76 ± 

0.42 % 

98.62 ± 

0.58 % 

96.98 ± 

1.15 % 

AM 
84.03 ± 

4.27 % 

100 ± 

0 % 

100 ± 

0 % 

88.07 ± 

7.91 % 

77.4 ± 

11.99 

% 

TABLE VIII. OVERALL ACCURACY AND SIGNIFICANCE OF THE PROPOSED 

SYSTEM AND OTHER ALGORITHMS 

Metric 
Proposed 

System 

FH-

GBML 

GP- 

COACH 

GFS-

AdaBoost 

GP 

Boost 

Overall 

Accuracy 

(%) 

98.6 % ± 

0.48 % 

96.29 % 

± 0.04 % 

93.92 % 

± 0.37 % 

96.26 % ±  

0.46% 

96.20% 

±  

0.99% 

P-Value - < 0.05 < 0.05 < 0.05 < 0.05 

V. CONCLUSION 
In this research, a hybrid system consisting of Genetic 

Algorithms (GA), Genetic Programming (GP) and Finite State 
Machine (FSM) for the detection of high-volume DoS attacks 
along with anomalous DoS events was developed. Hill-
Climbing was employed to search for a suitable pivot-point to 
be used for the evaluation of the GP expression. A synthetic 
dataset that mimics a real-word network traffic has been used 
to test the proposed system in comparison with several state-
of-the-art techniques. The results show that the developed 
system achieved better overall performance in terms of 
accuracy, sensitivity and precision with 95% confidence 
intervals. MWW is applied for further validation, achieving a 
P-value of < 0.05, rendering the proposed system statistically 
significant. 

For future work, it is suggested to test the system with a 
larger dataset containing a larger number of attack labels and 
validate it by comparing it to more state-of-the-art techniques 
other than the ones used. A mitigation system applying the 
findings of the detection system should still be implemented 
into different types of networks, to assess how the system will 
perform when dealing with various types of network features 
and topologies. Also, the chromosomes of the GP can be 
further investigated in terms of mathematical formulation, 
which in turn, can establish a rigorous mathematical 
framework for the proposed system. 

REFERENCES 

[1] L. Roberts, “The Arpanet and computer networks,” Proc. ACM Conf. 
Hist. Pers. Work., pp. 51–58, 1986. 

[2] C. HAYTHORNTHWAITE, “Introduction: The Internet in Everyday 
Life,” Am. Behav. Sci., vol. 45, no. 3, pp. 363–382, 2001. 

[3] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can 
heterogeneous internet of things build our future: A survey,” IEEE 
Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2011–2027, 2018. 

[4] E. Molina and E. Jacob, “Software-defined networking in cyber-physical 
systems: A survey,” Comput. Electr. Eng., vol. 66, pp. 407–419, 2018. 

[5] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in DDoS 
Attacks: Trends and Challenges,” IEEE Commun. Surv. Tutorials, vol. 
17, no. 4, pp. 2242–2270, 2015. 

[6] A. Pras, R. Sadre, A. Sperotto, T. Fioreze, D. Hausheer, and J. 
Schönwälder, “Using NetFlow/IPFIX for network management,” J. 
Netw. Syst. Manag., vol. 17, no. 4, pp. 482–487, 2009. 

[7] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network 
anomaly detection techniques,” J. Netw. Comput. Appl., vol. 60, pp. 19–
31, 2016. 

[8] A. A. Aburomman and M. B. I. Reaz, “A survey of intrusion detection 
systems based on ensemble and hybrid classifiers,” Comput. Secur., vol. 
65, pp. 135–152, 2017. 

[9] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine 
Learning Methods for Cyber Security Intrusion Detection,” IEEE 
Commun. Surv. Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016. 

[10] D. E. Goldberg and J. H. Holland, “Genetic Algorithms and,” Machine 
Learning, vol. 3, no. 2–3, pp. 95–99, 1988. 

[11] J. R. Koza, “Genetic programming as a means for programming 
computers by natural selection,” Stat. Comput., vol. 4, no. 2, pp. 87–
112, 1994. 

[12] C. Darwin, The origin of species by means of natural selection: or, the 
preservation of favoured races in the struggle for life and the descent of 
man and selection in relation to sex. Modern library, 1872. 

[13] A. Rosete-Suárez, A. Ochoa-Rodríguez, and M. Sebag, “Automatic 
Graph Drawing and Stochastic Hill Climbing,” Proc. of the {G}enetic 
and {E}volutionary {C}omputation {C}onf. {GECCO}-99, pp. 1699–
1706, 1999. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

509 | P a g e  

www.ijacsa.thesai.org 

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. 

[15] E. M. Knorr and R. T. Ng, “A Unified Notion of Outliers: Properties and 
Computation,” in Proceedings of the Third International Conference on 
Knowledge Discovery and Data Mining, 1997, pp. 219–222. 

[16] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS 
defense mechanismsMirkovic, J., & Reiher, P. (2004). A taxonomy of 
DDoS attack and DDoS defense mechanisms. ACM SIGCOMM 
Computer Communication Review, 34(2), 39. 
https://doi.org/10.1145/997150.997156,” ACM SIGCOMM Comput. 
Commun. Rev., vol. 34, no. 2, p. 39, 2004. 

[17] G. Fernandes, J. J. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi, 
and M. L. Proença, “A comprehensive survey on network anomaly 
detection,” Telecommun. Syst., vol. 70, no. 3, pp. 447–489, Mar. 2019. 

[18] A. Saied, R. E. Overill, and T. Radzik, “Detection of known and 
unknown DDoS attacks using Artificial Neural Networks,” 
Neurocomputing, vol. 172, pp. 385–393, 2016. 

[19] T. Hurley, J. E. Perdomo, and A. Perez-Pons, “HMM-based intrusion 
detection system for software defined networking,” Proc. - 2016 15th 
IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2016, pp. 617–621, 2017. 

[20] M. V. De Assis, A. H. Hamamoto, T. Abrao, and M. L. Proenca, “A 
game theoretical based system using holt-winters and genetic algorithm 
with fuzzy logic for DoS/DDoS mitigation on SDN networks,” IEEE 
Access, vol. 5, pp. 9485–9496, 2017. 

[21] A. H. Hamamoto, L. F. Carvalho, L. D. H. Sampaio, T. Abrão, and M. 
L. Proença, “Network Anomaly Detection System using Genetic 
Algorithm and Fuzzy Logic,” Expert Syst. Appl., vol. 92, pp. 390–402, 
2018. 

[22] V. Hajisalem and S. Babaie, “A hybrid intrusion detection system based 
on ABC-AFS algorithm for misuse and anomaly detection,” Comput. 
Networks, vol. 136, pp. 37–50, 2018. 

[23] D. Yuret, “Massachusetts Institute of Technology From Genetic 
Algorithms To Efficient Optimization,” Artif. Intell., no. 1569, 1994. 

[24] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and 
mutation in genetic algorithms,” IEEE Trans. Syst. Man. Cybern., vol. 
24, no. 4, pp. 656–667, 1994. 

[25] QuantAlea AG, “Alea GPU.” 2017. 

[26] C. R. Souza, “The Accord.NET Framework.” São Carlos, Brazil, 2014. 

[27] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward 
Generating a New Intrusion Detection Dataset and Intrusion Traffic 
Characterization,” Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., no. Cic, 
pp. 108–116, 2018. 

[28] K. Li, W. Zhou, S. Yu, and B. Dai, “Effective DDoS attacks detection 
using generalized entropy metric,” in International Conference on 
Algorithms and Architectures for Parallel Processing, 2009,pp. 266–280. 

[29] T. Ding, A. Aleroud, and G. Karabatis, “Multi-granular aggregation of 
network flows for security analysis,” 2015 IEEE Int. Conf. Intell. Secur. 
Informatics Secur. World through an Alignment Technol. Intell. 
Humans Organ. ISI 2015, pp. 173–175, 2015. 

[30] J. David and C. Thomas, “DDoS attack detection using fast entropy 
approach on flow-based network traffic,” Procedia Comput. Sci., vol. 
50, pp. 30–36, 2015. 

[31] H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Hybridization of fuzzy 
GBML approaches for pattern classification problems,” IEEE Trans. 
Syst. Man, Cybern. Part B Cybern., vol. 35, no. 2, pp. 359–365, 2005. 

[32] F. J. Berlanga, A. J. Rivera, M. J. del Jesus, and F. Herrera, “GP-
COACH: Genetic Programming-based learning of COmpact and 
ACcurate fuzzy rule-based classification systems for High-dimensional 
problems,” Inf. Sci. (Ny)., vol. 180, no. 8, pp. 1183–1200, 2010. 

[33] A. T. R. P. Luzia Vidal de Souza and Anselmo C. Neto and Joel M. C. 
da Rosa, “We are IntechOpen , the world ’ s leading publisher of Open 
Access books Built by scientists , for scientists TOP 1 % Control of a 
Proportional Hydraulic System,” Intech open, vol. 2, p. 64, 2018. 

[34] A. F. Ernández, J. L. Uengo, and J. D. Errac, “KEEL: A software tool to 
assess evolutionary algorithms for Data Mining problems (regression, 
classification, clustering, pattern mining and so on),” J. Mult. Log. Soft 
Comput., vol. 17, pp. 255–287, 2011. 

[35] E. Frank, M. A. Hall, and I. H. Witten, The WEKA workbench. Online 
Appendix for “Data Mining: Practical Machine Learning Tools and 
Techniques,” 4th ed. 2016. 

[36] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation of 
fuzzy classifier systems for multidimensional pattern classification 
problems,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 29, no. 
5, pp. 601–618, 1999. 

[37] M. J. Del Jesus, F. Hoffmann, L. J. Navascués, and L. Sánchez, 
“Induction of fuzzy-rule-based classifiers with evolutionary boosting 
algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 296–308, 2004. 

[38] Y. Freund and R. R. E. Schapire, “Experiments with a New Boosting 
Algorithm,” Int. Conf. Mach. Learn., pp. 148–156, 1996. 

[39] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond Accuracy, F-
Score and ROC: A Family of Discriminant Measures for Performance 
Evaluation,” in AI 2006: Advances in Artificial Intelligence, 2006, pp. 
1015–1021. 

[40] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,” 
Commun. ACM, vol. 37, no. 3, pp. 77–84, 2002. 

[41] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on 
the use of nonparametric statistical tests as a methodology for comparing 
evolutionary and swarm intelligence algorithms,” Swarm Evol. 
Comput., vol. 1, no. 1, pp. 3–18, 2011. 


