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Abstract

This thesis applies evolutionary algorithms to tackle bargaining games. Evolutionary

algorithms can discover efficient and stationary strategies for various bargaining games.

Game-theoretic method requires a substantial amount of mathematical reasoning. Thus

this method restricts to simple problems. Moreover, game-theoretic solutions rest on the

crucial assumption that every player is perfectly rational. These characteristics cast doubts

on the applications of game-theoretic method to complex bargaining problems. To overcome

such limitations of game-theoretic method, we adopt an alternative method, evolutionary al-

gorithms. We assume that players are boundedly rational. We present a theoretic framework

on the basis of co-evolutionary algorithms. We develop Constraint-based Co-evolutionary

Genetic Programming system (CCGP) to simulate seven types of two-player bargaining

scenarios. On the ground of experimental observations, the co-evolutionary algorithm suc-

cessfully discovers satisfied and profitable solutions. The computational cost and human

efforts of using the co-evolutionary algorithm for bargaining problems are affordable. The

CCGP system is reusable.

In particular, this thesis

• simulates boundedly rational players’ adaptive learning in two-player bargaining games;

• investigates fitness evaluations in co-evolutionary systems;

• presents a constraint handling technique integrated into evolutionary algorithms. This

technique is able to handle situations where both hard and soft constraints exist;
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• develops Constraint-based Co-evolutionary Genetic Programming system. It generates

solutions with game-theoretic properties;

• demonstrates that artificial training makes nearly perfect.
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Chapter 1

Introduction

1.1 Background

Game theory captures essential consideration and reasoning in decision making [Wik05a]. It

explicitly explains why and how to make rational choices. A rational choice maximizes the

player’s utility. A player can be a person, an organization, a nation, an animal or a group.

Many social studies and industries benefit from game theory. Moreover, biological evidences

have shown that game theory nicely interprets some of animal behaviors too [May82].

Bargaining theory is one branch of game theory [Mut99,Nas50]. Bargaining refers to a

process of achieving an agreement on how to divide a common interest between (among)

players. Bargaining situations are ubiquitous in our social activities, ranging from political

parties’ coalition for election to negotiation between husband and wife about domestic affairs,

from threats of nuclear war to reaching new international trade agreements. In the game-

theoretic view, bargaining situations are typical dynamic games. In this thesis, we focus on

two-player bargaining problems.

Game theory, including bargaining theory, studies abstract games [Gib92]. Abstract

games are idealized and simplified models of real-world situations [NM44]. The major re-

search method of game theory is the game-theoretic method [NM44,Mut99]. This method

1



1.2 Motivations

mathematically proves efficient and stationary 1 solutions for some abstract games. Game-

theoretic solutions are justifiable under the assumption that game players are perfectly ra-

tional. Perfectly rational players have stable preferences, unlimited reasoning ability, and

complete and perfect information about the game [Sim55].

1.2 Motivations

Game-theoretic method generates perfectly rational solutions. However, this method suffers

three major weaknesses. These weaknesses confine applications of game theory to simple

games. The three major weaknesses are:

1. The assumption of perfect rationality imposed by game-theoretic method is problem-

atic. Humans are the practitioners of game theory and bargaining theory, but most of

humans are boundedly rational, i.e. they are not perfectly rational [Sim55]. Users of

bargaining theory may question whether the game-theoretic solutions are applicable

to boundedly rational players at all;

2. Game theory only considers the most important determinants in an abstract bargain-

ing game. A bargaining determinant is an influential factor that affects bargaining

outcomes [Mut99]. For example, a discount factor is a bargaining determinant which

measures a player’s bargaining cost over time. The player takes it into consideration

in bargaining. A player’s bargaining power is the sum of forces from his bargaining

determinants acting on the outcome. The bargaining power reflects a player’s impact

relative to the other player(s) on the bargaining outcome. Even for a simple abstract

game with one or two determinants, the game-theoretic method requires substantial

1Efficiency and stationarity are defined in Section 2.3.1.
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1.2 Motivations

human efforts and expertise. In complicated bargaining situations, there exist many

determinants that make various influences on bargaining outcomes. It is unlikely for

using game-theoretic method to model many determinants in one game and to mathe-

matically define the interrelationship of all these determinants. Consequently it is too

difficult to solve such complicated problems by game-theoretic method;

3. Game-theoretic proofs are not easily reusable even when well-established bargaining

models are changed slightly. The cost of providing game-theoretic solutions by this

method is high.

These weaknesses of game-theoretic method motivate us to study bargaining problems

in a different way. Recent research of biology [May82], psychology and experimental eco-

nomics [KR95] on learning and evolution inspire us to consider the power of evolution. One

of theories on human decision making suggests that in reality, it is unlikely that humans

resolve real situations by game-theoretic method [Daw76]. Most of time, humans analyze

and act through simple heuristics [GTG01]. Humans are boundedly rational. They often

have heuristic learning ability and improve their performance based on trial-and-error ex-

periences [GTG01]. Heuristics come from adaptation to the social environment where the

decision maker survives [GTG01]. Such an adaptation is a part of social evolution. This

is one of important connections between game theory and evolution, so is the theoretic

foundation in respect of sociology and psychology, of our choice of applying evolutionary

computation to bargaining problems.

3



1.3 Objectives

1.3 Objectives

To overcome the limitations of game-theoretic method, we tackle bargaining problems by

an alternative method: evolutionary algorithms. Evolutionary algorithms, a set of computa-

tional intelligence techniques, originate from natural evolution. Evolutionary algorithms are

heuristic search methods. They have solved many problems in different fields under man-

ageable time and affordable computational resources [Hol62,Gol89,Koz92,Koz94,KIAK99,

KKS+03].

In this thesis we attempt to answer following questions:

1. Are game-theoretic solutions of any use for boundedly rational players?

2. Through adaptive learning, will boundedly rational players make good decisions? Good

decisions are those of high efficiency and stationarity, according to game theory.

3. For complicated games whose game-theoretic solutions are unavailable yet, are bound-

edly rational players’ decisions efficient and stationary after evolutionary training?

4. Is the system on the basis of evolutionary algorithms easily reusable and extensible for

various bargaining problems?

5. Does the system on the basis of evolutionary algorithms require heavy computational

resources and/or long time for solving bargaining problems?

1.4 Contributions

This work advances evolutionary algorithms for game theory applications. We study three

classic bargaining problems with game-theoretic solutions and four complicated bargaining

problems whose game-theoretic solutions are not solved yet. Evolutionary algorithms are

4



1.4 Contributions

tailored to simulate players’ learning and decision-making in bargaining situations. Such

simulations assume bounded rationality on players’ behaviors. A set of new assumptions

replaces the set of perfect rationality assumptions imposed by game-theoretic method. We

establish a theoretic learning framework for these two boundedly rational bargainers. On the

basis of this framework, we develop an extensible system for tackling bargaining problems,

aiming to spend little extra efforts in handling these bargaining problems’ variations.

In details, this study

• artificially simulates boundedly rational players’ behaviors in playing interactive bar-

gaining;

• handles the existence of different types of constraints in one problem which is to be

tackled by evolutionary algorithms;

• develops an evolutionary-algorithms-based learning system which provides solutions

with game-theoretic properties;

• empirically confirms that artificial adaptive learning and training make players’ behav-

iors nearly perfect: Practice makes perfect.

The experiments demonstrate the dynamic interactions of co-evolving species (players)

in the co-evolutionary algorithm. 2 The experimental findings and observations support

the applications of evolutionary algorithms to bargaining problems. Using evolutionary

algorithms is a practical approach for finding approximate game-theoretic solutions for more

realistic bargaining problems.

2The co-evolutionary algorithm is a branch of evolutionary algorithms.
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1.5 Organization of Thesis

1.5 Organization of Thesis

The rest of thesis is organized as follows:

Chapter 2 reviews literature. It summarizes bargaining theory, evolutionary computation

and applications of evolutionary computation to games. Three classic bargaining problems,

their game-theoretic assumptions and their game-theoretic solutions are introduced.

Chapter 3 studies the basic alternating-offers bargaining problem, abbreviated as CRub82

bargaining problem. The only determinant of this bargaining problem is the bargaining cost

over time. Time is valuable. The measure of such cost is discount factor. We establish a

co-evolutionary framework to model the players’ interactive behaviors and learning. Chapter

3 details the system design based on this framework. Chapter 3 emphasizes the dynamics of

the fitness evaluation in the co-evolutionary system.

Chapter 4 reports and analyzes the experimental results generated by the co-evolutionary

system. Experimental results are measured by their game-theoretic properties and compu-

tational resources consumed. Chapter 3 and 4 form the cornerstone for extensions. Some

extensions are detailed in later chapters.

Chapter 5 addresses constraint satisfaction in CRub82 bargaining problem. How to han-

dle constraints is another main concern in appropriately defining the fitness evaluation for this

bargaining problem. Chapter 5 invents a constraint handling technique, Incentive method,

to deal with the existence of both hard and soft constraints. The concept of the Incen-

tive method is not only applicable to the CRub82 problem, but probably applicable to a

wide range of problems, for example financial forecasting [LT99]. In this chapter, the co-

evolutionary system is named as Constraint-based Co-evolutionary Genetic Programming

system. It is abbreviated as CCGP system.
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1.5 Organization of Thesis

Chapter 6 studies the role of incomplete information. In CRub82 Problem, the players

have complete information about the game before starting. Most of bargaining players in

reality are only partially informed about game-relevant information. In Chapter 6, we

explore whether the presence of incomplete information necessarily accounts for inefficient

outcomes and costly delays after evolutionary processes. Four bargaining problems having

different set-ups of incomplete information are examined.

 

Framework 
CCGP for CRub82 

 

Ch3: Design of  
Co-evolutionary 
System 

Ch4: Experimental  
Results &  
Analysis 

Ch5: Constraint 
Handling 

Ch6: Extension of 
CCGP for 
Incomplete 
Information 
Bargaining 

Ch7: Extension of 
CCGP for 
Outside Option 
Bargaining 

Ch8: Extension of 
CCGP for 
Incomplete 
Information on 
Outside Option 

Figure 1.1: Flow of Chapters

Chapter 7 considers another bargaining determinant which is often observed in reality:

outside option. Theoretically to input more determinants into a bargaining problem makes it

more realistic and more complex to be solved. Chapter 7 studies the role of players’ outside

options and the compound effects of outside options and discount factors on bargaining

outcomes.

Chapter 8 challenges CCGP system with a bargaining problem with incomplete informa-

tion on outside options and with complete information on discount factors. This problem is

so complicated that there is no game-theoretic solution known yet.

Figure 1.1 illustrates the main contents of the chapters excluding Chapter 1 Introduction,

Chapter 2 Literature survey and Chapter 9 Conclusions.

Chapter 9 concludes findings and discoveries. It summarizes the seven bargaining prob-
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Chap- Name of the Chapter Publica-

ter tions

3 Co-evolution to Tackle Alternating-Offers Bargaining [JT05a]

Problem - Theoretic Framework and Design [JT05b]

[GTJ06]

4 Co-evolution to Tackle Alternating-Offers Bargaining [JT05a]

Problem - Experimental Results and Observations [JT05b]

5 Constraint Driven Search - Incentive Method [TJ06]

6 CCGP for Bargaining Problems with Incomplete [Jin05]

Information [Jin]

7 CCGP for Bargaining Problem with Outside Options [JT06]

Table 1.1: References of our publications on the ground of the initial works of the corre-
sponding chapters.

lems studied in this thesis and the major findings. This chapter also discusses the use of

evolutionary algorithms and remarks future studies.

Earlier works of some chapters in this thesis are published. Table 1.1 lists our publica-

tions.

8



Chapter 2

Literature Survey

This chapter reviews game theory, bargaining theory, evolutionary algorithms and highly

related works to this thesis.

2.1 Game Theory and its Research Methods

This section briefly reviews the game theory and its four main research methods. These

methods are: game-theoretically analytic method, behavioral method, evolutionary game

theory approach and artificial simulations.

2.1.1 Game Theory

Game theory mathematically models and studies abstract and idealized human behaviors

as well as animal behaviors [NM44,May82]. It is an “application of mathematics to model

and analyze interactions with formalized incentive structures (“games”)” [Wik05a]. Game

theory has achieved great success not only in economics, but also in biology, politics and

computer science.

There are various types of games. A dynamic game consists of more than one subgame

[Gib92]. An infinite-horizon game is a dynamic game which can potentially last forever

[Mut99]. In a complete information game, players have complete information on each other’s

9



2.1 Game Theory and its Research Methods

preferences [Gib92]. In a perfect information game the player with the move knows the entire

history of the game [Gib92]. Other games include noncooperative and cooperative games,

symmetric and asymmetric games, zero sum and non-zero sum games, simultaneous and

sequential games, and imperfect information games [Wik05a,Gib92].

2.1.2 Game-theoretic Method

The game-theoretic method was first established by von Neumann and Morgenstern in 1940s

[NM44]. Soon after, Nash proved the existence of Nash Equilibrium for incooperative games

[Nas51], which widely broadens the domain of game theory. These works lay the foundations

of modern game theory.

The essential goal of game-theoretic analysis is to discover what equilibrium(s) are and

how to reach them. Equilibriums are recognized as the consequences of the influential

forces [oS94]. Game theorists present their theoretical solutions for rational players by math-

ematical reasoning [NM44]. It is assumed that every involver has perfect rationality as an

‘economic man’. The rationality is elaborated in Section 2.2.

Complex games probably have multiple Nash Equilibriums. How to select equilibrium

becomes a problem [Gib92]. Theorists therefore propose various definitions on rationality to

eliminate some equilibriums in order to refine the Nash equilibrium [Har62,Rub82,Gib92].

2.1.3 Behavioral Method: Experimental Economics

Unlike analytic theorists, experimental economists along with social scientists and psychol-

ogists, collect the data of humans’ responses to games through questionnaires and competi-

tions [Sim82,BCT92,KR95]. They observe and analyze actual human behaviors, trying to

explain why in some, specially simple cases, people perform rationally, as if they know the-

10
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oretical equilibriums. In some other cases, often complex situations, people give intuitively

reasonable responses, failing to make rational choices.

2.1.4 Evolutionary Game Theory: Evolutionarily Stable Strategy

Maynard Smith and Price (1973) initiated Evolutionarily Stable Strategy (ESS) which is the

most influential work since the Nash Equilibrium in game theory. Evolutionarily Stable

Strategy is mathematically defined in [May82]. Using ESS theory, one can mathematically

measure whether a strategy is robust to continually evolutionary pressures. This theory

is helpful for understanding efficiency and stability of evolutionarily stable solutions from

another angle.

ESS explain little how a population adapts to such a stable strategy [Wei95]. In practice

however, an ESS may not dominate a population during a certain period of time, due to

strong stochastic components emerging in evolutionary process. Fogel et. al [FFA97,FAF98]

show that “even in simple games, ESSs may not be stable under conditions that are pertinent

in the real-world, such as finite population size and culling selection. Under proportional

selection, large finite populations may tend to vary around an ESS, but large can be in the

order of 5000 or more individuals in a population.”

2.1.5 Artificial Simulation

Artificial simulation is an appealing technique for studying game theory in recent decades.

As our understanding of intelligence grows, it seems inevitable that artificial intelligence

plays an increasingly important role in computing theory and applications. We discuss it in

details in Section 2.4.
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2.2 Perfect Rationality and Bounded Rationality

There are two types of rationality: perfect rationality and bounded rationality. “In eco-

nomics, sociology, and political science, a decision or situation is often called rational if it is

in some sense optimal, and individuals or organizations are often called rational if they tend

to act somehow optimally in pursuit of their goals” [Wik06a]. Herbert Simon [Sim55] coins

the term“Economic Man”. An economic man is perfectly rational or hyper-rational. He has all

relevant knowledge, well-defined and stable system(s) of preferences and of utility functions,

and full computational capacity ( [Sim55] [Sim82]). Rational players know that all involvers

are rational and know the rules of the game [Sim55]. Players in many game-theoretic models

are economic men. The assumption of perfect rationality makes game-theoretic solutions

unique or makes much less equilibriums valid.

In contrast to perfect rationality, Simon models “administrative man” who is boundedly

rational and “satisfices - looks for a course of action that is satisfactory or ‘good enough.’ ”

( [Sim55] [Sim97]). Simon states “boundedly rational agents experience limits in formulating

and solving complex problems and in processing (receiving, storing, retrieving, transmitting)

information”. Humans are boundedly rational: we only have limited time, knowledge, in-

formation and computational resources. In addition, the definition of bounded rationality

actually rooms many variations of bounded rationality, varying from complete randomness

(exclusive) to perfect rationality (exclusive). Complete randomness can not be regarded as

having any rationality at all.

Because of existing variations of bounded rationality, there is no concrete outcome of

a game which is played by boundedly rational players, without fully defining the exact

behaviors that such boundedly rational players are able to do. For this reason, we define a

12
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set of assumptions of bounded rationality on bargaining players’ behaviors (see Section 3.3).

When computation is concerned, bounded rationality can be interpreted as applying a certain

algorithm, rule or program and using a certain hardware configuration for a certain period

of time 1. Our experiments and conclusions are subject to the set of assumptions defined

in Section 3.3, the evolutionary algorithms in Section 3.4 and computational resources in

Section 4.2.6.

There is a connection between (perfect) rationality and heuristics (a kind of bounded

rationality). [GTG01] argues that “rationality can be found in the use of fast and frugal

heuristics, inference mechanisms that can be simple and smart”. This term “rationality”

above can be understood as a kind of bounded rationality which approximates perfect ra-

tionality. [GTG01] further explains the reasons why such a simple heuristic exists and how

it relates to (perfect) rationality: “these heuristics are successful to the degree they are

ecologically rational”. The mind’s adaptive toolbox has “adapted to the structure of the

information in which they are used to make decisions”. Because of such an adaptive mech-

anism, heuristics as a result of adaptive learning perform fairly good in decision making

while the laws of logic and probability analysis seem playing a less important role. This

phenomenon has also been found by biologists. [Daw76] gives a few examples on how human

make decisions “unconsciously” due to our adaptation to environments.

2.3 Bargaining Problems and Game-theoretic Solutions

Generally speaking, “bargaining” is the process of reaching agreements. In the bargaining

problems of our interest, players offer and counter-offer over partition of a cake. In practice,

1For example, a boundedly rational approach to the travelling salesman problem [GBDJ54] could be
applying Branch and bound algorithm [LD60] in a C++ implementation on a Windows XP operation system
running on a Pentium IV, 3GHz machine with 1 GB RAM for 1 hour.
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bargaining may cover many complex issues and terms, such as prices, quantity of products,

deliverable time, payment methods, quality of service, compound goods and services. A

theory studies the essentials of bargaining situations is bargaining theory. It is one of the

subbranches of game theory.

Typically the bargaining theory models and studies a class of situations where partici-

pants (players) have a common interest, also called mutual benefit or surplus in game theory

literature, but they conflict over how to divide the interest between(among) them. A com-

mon interest is often symbolized as ‘a cake’. Players bargain in order to make an agreement

over the partition of a cake.

Nash bargaining model [Nas50] is the fundamental and abstract one. Researchers in bar-

gaining theory follow the general framework of Nash bargaining model, adding more realistic

components into it to study more practical situations. Rubinstein [Rub82] extends Nash bar-

gaining model, considering the cost on bargaining time and specifying the alternating-offers

bargaining procedure, also called sequential bargaining procedure. Later researchers specify

bargaining procedures, consider bargaining cost, risk of breakdown and outside and/or inside

options and investigate information completeness [Mut99].

In this thesis we study two-player bargaining problems. Two-player bargaining is fun-

damental. Game theorists often start with a two-player model, then extend to multi-player

models [Mut99]. When more and more players join in, a game becomes more and more

complicated. Darwen and Yao study multiple players playing IPD [DY94]. The results are

far more complicated than two-player IPD. Gosling and Tsang tackle the simple supply

chain model in which many buyers and sellers, together with middle men are bargaining

over various products and services [GTJ06,GT06]. Their works demonstrate many features
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in reality.

Three classic bargaining problems from game theory literature are introduced shortly.

We also present four bargaining problems which have not been treated by game theory yet.

These four bargaining games are presented in the chapters where they are attempted to be

solved.

2.3.1 Alternating-Offers Bargaining Problem - CRub82

Basic Alternating-Offers Bargaining Problem or so called Rubinstein Bargaining Problem

[Rub82], (abbreviated as CRub82) is a dynamic two-player game with complete and perfect

information. In a complete information game, all players’ information are public. In a perfect

information game, at each move the player with the move knows the full history of the game

thus far [Gib92]. Board games are perfect information games: players observe the history

of moves and states. So do the participants in most bargaining problems where each player

witnesses the offers and counter-offers made by his counterpart(s) 2.

CRub82 bargaining problem describes a bargaining scenario in which the first-move player

1 makes an offer or count-offers to the second-move player 2 on dividing a cake π = 1 at

even time t: 0, 2, 4, 6... Time t is a non-negative integer. Player 2 either accepts the offer

from player 1 immediately or rejects it immediately. If player 2 rejects this offer, after one

time interval ∆, player 2 makes a counteroffer to player 1. To make the problem simpler,

we assume ∆ is 1. Player 2 makes counter-offers at odd time 1, 3, 5, 7, .... The bargaining

process ends once an offer or a counter-offer is accepted by the other player. At any given

time when one makes an offer, the other can either accept it thus the game ends with an

agreement, or reject it then the game continues. The player who has rejected the previous

2who can be either his cooperative partner(s) or rival(s).
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offer makes a counter-offer. An offer or counter-offer on diving the cake by player i is xi for

himself and xj = 1− xi for player j. i, j ∈ {1, 2}.
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Figure 2.1: Utilities are decaying over time subject to discount factor δ.

In this problem the incentive for players to reach an agreement soon is their bargaining

costs subject to time. This incentive is termed by the discount factors. Discount factor

measures a player’s time preference. The pair of discount factors (δ1, δ2) for the two players

specifies the respective costs subject to bargaining time. The pair of discount factors is the

important determinant that determines players’ time preferences and thus their bargaining

powers. Player i’s discount factor δi is his bargaining cost per time interval, which means his

partition from a cake, for example a slide of 0.5, shrinks to 0.5× δt
i at the time t. Figure 2.1

illustrates that utilities decay over time. While t increases the cake shrinks exponentially.

δi ≡ e−ri where ri is player i’s discount rate. In theory, 0 < δi < 1. δi = 0.1 means that

a cake of size 1 shrinks to 0.1 after one time interval for player i. δi = 0.9 means that this

cake becomes 0.9 after one time interval. δi = 0.1 is a relatively lower discount factor and

δi = 0.9 is a relatively higher discount factor. A player who has a higher discount factor is

relatively more patient, while a player with a lower discount factor is less patient in waiting
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for reaching an agreement. The player with a lower discount factor compromises more in

bargaining as he pays more on bargaining cost per one time interval. The utility gained by

player i who has the share xi from the agreement that is reached at time t is determined by

the utility function: xiδ
t
i .

3

To help readers understand “discount factor”, and its relation to players’ patience, we

give an example. Consider two friends are bargaining over dividing an ice-cream cake in a

very hot summer afternoon at sunny beach, without drinking anything for hours. They are

in a hurry to make a deal because ice-cream is melting very quickly and they are thirsty,

the longer time they spend on bargaining, the less ice-cream they get in the end. This is a

case when players are impatient. If these two guys meet again to divide another ice-cream

in a wet and cold winter early morning after drinking plenty of warm juice, they do not even

bother to make any deal today or next week. In the later case, players are very patient as

there is no time pressure to make an agreement. Players in the summer case have much

smaller discount factors than players in the winter case.

Other examples about time preferences in the context of economics research are available

in [Mut99] and in a non-technical study [Mut00].

Assumptions and Subgame Perfect Equilibrium

In terms of game theory, CRub82 bargaining problem is an infinite-horizon game. All com-

binations of players’ behaviors are infinite. As stated in Section 2.2, game theorists reduce

the solution space by imposing strict assumptions on players’ rationality: each player is an

economic man. Game-theoretic solutions satisfy two game-theoretic properties [Mut99]: “no

delay” and “stationarity”. No delay means that “whenever a player has to make an offer,

3There is a subtle difference between payoff and utility in game theory literature [Mut99]. In this thesis,
“payoff” and “utility” are exchangeable in this thesis.
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her equilibrium offer is accepted by the other player”. No delay also implies the efficiency of

agreement. An efficient agreement should be reached at t = 0, so no cost is spent on bargain-

ing. Stationarity requires “in equilibrium, a player makes the same offer whenever she has to

make an offer”. Theorists mathematically proves the existence of the Subgame Perfect Equi-

librium (SPE) under such assumptions. In SPE players should offer nothing than the perfect

equilibrium partition. Surely this offer will be accepted at time 0 [Rub82,Mut99]. Partitions

thus are guaranteed before a bargain even starts, given the discounts factors. This game-

theoretic solution SPE is unique and can be expressed analytically. The Subgame Perfect

Equilibrium is the first player obtains x∗1:

x∗1 =
1− δ2

1− δ1δ2

(2.1)

x∗2 = 1− x∗1 (2.2)

The second player obtains the rest of cake, (1− x∗1).

Appendix B provides a non-technical description of game-theoretic analysis of CRub82.

It aims to help readers understand the thoughts of game-theoretic reasoning. Technical

treatments and proofs are available in [Rub82,Mut99,BF98].

2.3.2 Rubinstein Incomplete Information Bargaining Problem -
ICRub85

In an incomplete information game, at least one player is uncertain about another player’s

game-relevant information [Gib92].

Computer science contributes to understanding of incomplete information games in differ-

ent ways. [FWJ05] systematically analyzes incomplete information alternating-offers bargain-

ing models, taking discounting factors, deadlines, and reservation prices into consideration.
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In [FWJ05] three types of decision functions are discussed, namely linear, Boulware and

Conceder. Authors of [FWJ05] mathematically prove the existence of such equilibriums that

meet properties of uniqueness, symmetry and efficiency of solution. The players in [FWJ05]

are designed as economic men without any evolutionary learning ability. [BPSS02]’s simu-

lations of Poker, an incomplete information game and the modelling of the opponent of a

Poker player involve artificial neutral network. [CR03a] examines evolutionary dynamics of

agents in contribution games and subscription games under incomplete information. [Aus04]

inspects the allocative efficiency in an alternative ascending-bid auction with incomplete in-

formation. [Eym01] studies a multi-agent system considering the constraints of incomplete

information and time pressures in evolutionary learning environments.

Rubinstein Incomplete Information Bargaining Problem [Rub85], abbreviated as ICRub85

is an infinite-horizon game with incomplete and perfect information. On the basis of the

complete information alternating-offers bargaining problem CRub82, Rubinstein [Rub85]

further studies an alternating-offer bargaining problem with one-sided incomplete informa-

tion. One-sided incomplete information games refer to the situations where only one of two

players have incomplete information. ICRub85 specifies that player 1 only knows that the

value of player 2’s discount factor δ2 is either δw or δs. δs is strictly larger than δw. Player

2 knows player 1’s discount factor is δ1. The possibility of player 1’s initial belief on player

2’s type being δw is ω0.

Game-theoretic method proves that in the case of ω0 < ω∗ (the definition of ω∗ is in

Equation (2.4)), player 1 offers a division of Vs to himself and the rest to player 2. This offer

will be accepted by both 2w whose discount factor is δw, and 2s whose discount factor is δs.

The game-theoretic solution is Perfect Bayesian Equilibrium, abbreviated as PBE. In PBE,
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player 1 gets Vs and player 2 gets 1 − Vs. Interestingly, if δ2 = δs and ω0 = 0 the PBE (Vs,

1− Vs) is identical to the SPE for CRub82 bargaining problem.

Vs =
1− δs

1− δ1δs

(2.3)

ω∗ =
Vs − δ2

1Vs

1− δw + δ1Vs(δw − δ1)
(2.4)

When ω0 is high enough such that ω0 > ω∗ the unique PBE for player 2 is that player 1

offers xω0 :

xω0 =
(1− δw)(1− δ2

1(1− ω0))

1− δ2
1(1− ω0)− δ1δwω0

(2.5)

and player 2w should accept this offer and the game over. Player 2s rejects it and subsequently

makes a counter-offer: yω0 for player 1 and 1− yω0 for herself:

yω0 = 1− 1− xω0

δw

(2.6)

which will be accepted by player 1. In this PBE player 1 acquires yω0 and player 2 obtains

the rest of the cake. If ω0 = ω∗, more than one bargaining PBE are possible. From the

Perfect Bayesian Equilibria above the actual value of the δ2 has no direct effect on player 1’s

first offer. Instead player 1’s initial belief ω0 and the combination of δw and δs decide player

1’s first offer. Table 2.1 summarizes the PBE.

2.3.3 Bargaining Problem with Outside Options - COO

Binmore [Bin85] models and solves a two-player and one-cake problem with an “outside

option” pair. Outside option is a player’s alternative choice beside the bargaining. In addi-
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δ2 = δw δ2 = δs

x∗1 t∗ x∗1 t∗

ω0 < ω∗ Vs 0 Vs 0
ω0 > ω∗ xω0 0 yω0 1

Table 2.1: Player 1’ shares x∗1 in PBE agreements and the time t∗ for reaching such agree-
ments. Player 2’s share in such agreements is x∗2 = 1 − x∗1. All bargains start at time 0.

tion, the above solution is supported by Rubinstein bargaining model with an outside-option

pair. [BSS89] investigates both the game-theoretic method and human-subject experiments.

Binmore et. al [BPSS98] examines the Nash Demand game with outside options. The experi-

mental study on this game shows that human subjects make inefficient outcomes are common

phenomena. When the second player’s outside option is sufficiently large, the mutual benefit

for the bargaining often remains unexploited. Through experimental studies on demand and

ultimatum games, Kahn and Murnighan [KM93] find that human-subject experimental data

from human-entry, as a whole, argue against game-theoretic quantity predictions in terms

of opening demands, bargaining outcomes and efficiency.

One of classic outside option bargaining problems is on the basis of the complete informa-

tion alternating-offers bargaining problem CRub82. This outside option bargaining problem

is abbreviated as COO. In CRub82 and ICRub85, when a player is given an offer, he has

two choices: (1) acceptance thus ending the bargain with an agreement; or (2) rejecting the

offer and making a counter offer after one time interval. COO integrates outside option(s)

into CRub82. In the presence of an outside option, a player has one more choice besides

the two mentioned: he can choose to (3) end the bargain by taking his outside option, as

illustrated in Figure 2.2. One player has no more than one outside option. If both players

have outside options larger than 0, such a situation is called two-sided outside option. If

one player has no outside option (or having an outside option equals 0) and another has an
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outside option larger than 0, it is called one-sided outside option. We treat one-sided outside

option situations as special cases of two-sided outside option bargaining problems.
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Figure 2.2: Outside Option Bargaining Scenario

In COO bargaining problem, there are two players bargaining over a partition of a cake

of size 1. Two players are indexed by subscript i or j, i, j ∈ {1, 2}. All game related

information are public. Their bargaining costs over time are measured by discount factors

δ1 and δ2 respectively. Player 1 has his outside option w1 ∈ [0, 1) and the second player 2

has an outside option w2 ∈ [0, 1). If neither player has an outside option wi = 0 and wj = 0,

the bargaining model becomes the CRub82 bargaining model in which discount factors are

the sole determinant on bargaining powers. In this thesis, we consider cases where at least

one player has an outside option: wi > 0 or wj > 0.

To ensure that the bargaining is worth continuing and no player prefers to withdrawal

from bargaining, the conditions 0 ≤ w1 < 1, 0 ≤ w2 < 1 and 0 < w1 + w2 < 1 must be

satisfied. We include one-sided outside option cases as special cases where only one player

has an outside option, wi = 0 but 0 < wj < 1, where i 6= j.
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Values of Outside Options Outside Option Solutions

w1 > 0 AND w2 > 0 Two-sided Table 2.4

(w1 = 0 AND w2 > 0) OR One-sided Table 2.4

(w1 > 0 AND w2 = 0)

w1 = 0 AND w2 = 0 No (µ1, µ2)

Table 2.2: Values of outside option in COO

If w1 = 1, or w2 = 1 or w1 + w2 ≥ 1, there stands no mutual benefit for dividing the

cake, from the viewpoint of game-theoretic analysis. 4

When wi > 1, a player’s outside option is larger than the size of cake, there is meaningless

even to start the bargaining because player i will take his outside option anyway. We examine

the first two situations in Table 2.2, in which at least one player has an outside option larger

than 0 and no outside option is larger than the size of cake. We furthermore categorize the

outside option, according to the values of outside options in Table 2.3 and 2.4.

Each outside option stands statically since the bargaining starts and until the game ends.

When an offer xi ∈ (0, 1) is accepted at the time t (t is a non-negative integer), player i

receives an utility ui = xiδ
t
i and the other player gets (1− xi)δ

t
j. If one player i opts out the

bargaining at the time t and takes his outside option, he receives the utility wiδ
t
i and another

player j will take her outside option and gets wjδ
t
j. Note that a player’s outside option is

discounted over time subject to the same discount factor as his share of cake. This ensures

that players make decisions under time pressure 5. If both players perpetually disagree and

do not take their outside options, then both players obtain 0.

4This condition is examined in Chapter 7 to see whether an evolutionary algorithm is able to identify
the over-strong threats from outside option and explores the reasonable solutions.

5In game theory literature, outside options in some bargaining models have no connection with discount
factors.
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Category Name Outside Option

Ineffective Threats C1

Effective Threats C2

Over-strong Threats C3

Table 2.3: Types of Outside Option in COO

Game-theoretic Solutions: Subgame Perfect Equilibrium

The unique Subgame Perfect Equilibrium (SPE) solution (x∗1, x
∗
2) of the outside option bar-

gaining model is stated in the Table 2.4 where,

µ1 =
1− δ2

1− δ1δ2

(2.7)

µ2 =
1− δ1

1− δ1δ2

(2.8)

Note that (µ1, µ2) is the Subgame Perfect Equilibrium for the corresponding bargaining

problem CRub82 whose outside options are (w1, w2) = (0, 0).

Whenever a player makes an offer or a counteroffer, he only asks for the SPE share

xi (Stationarity). We assume that player 1 is the player who makes the first move. His

offer x∗1 is accepted by player 2 immediately (No delay). Player 2 gets a share 1 − x∗1 from

this agreement (except #e in Table 2.4). So the shares for player 1 and 2 from the SPE

agreement are (x∗1, 1 − x∗1). All SPE agreements should be reached at the bargaining time

t = 0. Therefore, player 1 and 2 obtain utility x∗1 and 1−x∗1 respectively. For Condition #e,

theoretically players take their outside options straightway because for at least one player,

his outside option is more beneficial than any possible share from the bargaining.
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# x∗1 Conditions (AND) C.

I II

a µ1 w1 ≤ δ1µ1 w2 ≤ δ2µ2 C1

b 1− w2 w1 ≤ δ1(1− w2) w2 > δ2µ2 C2

c δ2w1+ w1 > δ1µ1 w2 ≤ δ2(1− w1) C2

(1− δ2)

d 1− w2 w1 > δ1(1− w2) w2 > δ2(1− w1) C2

e w1 w1 + w2 > 1 - C3

Table 2.4: SPE under 5 different conditions for outside option bargaining problem. Player 1
makes the first offer. The shares in a SPE agreement is (x∗1, 1− x∗1) under the condition of
#a, #b, #c or #d. Under the condition #e, x∗1 = w1 and x∗2 = w2.

2.4 Evolutionary Algorithms

This section maps the family tree of Artificial Intelligence, with the evolutionary algorithms

(EA) focused. Two important methods in EA: GA and GP which are highly relevant to this

thesis are explained in greater details.

2.4.1 Artificial Intelligence

“Artificial intelligence (AI) is defined as intelligence exhibited by an artificial entity” [Wik05b].

AI is a science dealing with intelligent behavior, learning and adaption in machines. Typical

problems to which AI methods have been applied include patten recognition, natural lan-

guage processing, non-linear control and robotics, computer version and virtual reality, game

theory and strategic planning, game AI and computer game bot, and artificial creativity.

Figure 2.3 overviews important methods in the AI family grouped by their characteristics.

Conventional AI includes methods which are classified as machine learning [Mit97], featured

by formalism and statistical analysis. Another branch, computational intelligence involves

iterative improvement and/or learning [Wik05b].
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Figure 2.3: A simple family tree of Artificial Intelligence.
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In this thesis, the main methodology to be applied is the Evolutionary Computation.

Fogel reviews major contributions of simulated evolution to intelligence research [Fog99].

Evolutionary algorithms include a group of algorithms and methods, as seen in Figure 2.4.

Among them, we pay special attention to Genetic Programming, one of Evolutionary Algo-

rithms. Researchers also categorize methods according to their relationship to nature, see

Figure 2.5.

Research on human beings provides insights to develop computational methods: “Biolog-

ical systems such as human beings can be regarded as sophisticated information processing

systems, and can be expected to provide inspiration for various ideas to science and engi-

neering. Biologically motivated information processing systems can be classified into: brain-

nervous systems (neural networks), genetic systems (evolutionary algorithms), and immune

systems (artificial immune systems).” [Das05]

2.4.2 Evolutionary Algorithms - A Heuristic Search Method

Evolutionary Algorithms include a class of algorithms which benefit from the creative power

of natural evolution, see Figure 2.4. Natural organisms populate the world through a pro-

cess of reproduction (self-copy) and low-probability mutation. Mutation creates variation

for exploring new genetic materials. The essences of natural evolution, namely selection,

reproduction, variation and fitness measures are mechanized into evolutionary algorithms.

Evolutionary algorithms are biologically, specially genetically, motivated information pro-

cessing systems. It follows the general principles of natural evolution: the fittest survive

under natural selection; the genetic materials of the new population emerge after recombi-

nation and variation of genetic materials of their parental individuals [Hol75]. Evolutionary

algorithms feature heavily in the evolutionary simulation and have successfully solved many
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Figure 2.4: The family tree of Evolutionary Computation.
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classes of problems, including non-linear, epistatic, large search-space and multi-dimension

problems [Gol89,Koz92,LP02].

Evolutionary algorithm is a population-based self improvement mechanism. One popula-

tion consists of a set of individuals. Often individuals are candidate solutions to the problem.

Individuals are selected based on their performance (fitness). Better individuals have higher

probability to be selected as “raw material” to breed new offspring for the forthcoming gen-

eration. The offspring are then created by the genetic operators (crossover and mutation)

from the “raw” genetic materials. Selective pressure pushes individuals (more specifically,

the genetic materials) to continue improving their adaptation to the environments. Improve-

ment of individuals’ capability illustrates the process of acquiring behavior patterns adaptive

to the environments [LP02]. 6

6Although both are rooted in evolutionary biology, Evolutionary Algorithm is different from ESS in that
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In many applications of game theory, the size of the search space is huge 7, thus exhaus-

tive search is often impractical. An efficient way to search acceptable solutions within a

reasonable time is therefore heavily in demand. Evolutionary algorithm is one of such meth-

ods. Evolutionary algorithms often serve as stochastic and heuristic search methods, which

can shorten the search time. They are proposed to produce nearly optimal solutions. We

apply EA to tackle bargaining problems, not only because they have succeeded in many other

applications of games, but also because we aim to reuse the same mechanism to variations

of bargaining scenarios.

Genetic Algorithms

Natural evolution is driven by natural selection, which favors individuals best fit to their en-

vironments, discovered by Charles Darwin’s The Origin of Species. John Holland abstracts

and formalizes the adaptation in natural and artificial systems. He presents Genetic Algo-

rithm (GA) in [Hol62, Hol75]. Popular reading materials for studying Genetic Algorithms

include [Gol89, BBM93a, BBM93b]. Problems which appear to be appropriate for using

GA include timetabling, scheduling, optimization, high-dimensional problems and non-linear

problems.

The following is the Pseudo-code algorithm for evolution inspired algorithms, for instance

GA.

Create initial population Repeat

Evaluate individuals’ fitness

Select pairs of individuals to reproduce

Evolutionary Algorithm is a way of simulation. The outcomes of simulations by EA do not necessarily
converge to game-theoretic equilibriums or ESS.

7The size of search space also depends on how individuals are represented.
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Figure 2.6: Overview of the basic control flow and operations in typical GAs [Tsa92]

Breed new individual(s) through crossover and mutation

Until terminating condition

Figure 2.6 illustrates the basic control flow and operations in a typical GA. One species

has a group of individuals; similarly one population in GA consists of a set of candidate

solutions. The representation of candidate solutions in GA is normally in the format of

strings with 0s and 1s. Crossover swaps parts of two selected strings to make new strings.

Mutation randomly alters 1s to 0s or 0s to 1s, often with very low probability. Typical GA
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GA: A typical representation of candidate solution 
 

 
 
One-point crossover of two strings 
 

 
One-point mutation 
 
  

Figure 2.7: A typical way of representing a GA candidate solution with “0s” and “1s”, of
one-point crossover and of one-point mutation [Tsa92].

representation, one-point crossover and one-point mutation are shown in Figure 2.7.

The major difference between GA and GP lies in the representation of an individual. The

concept of evolutionary procedure remains identical as shown in the Pseudo-code above. In

the forthcoming subsection, GP is reviewed.

Genetic Programming

The very early experiments with Genetic Programming were reported by Stephen F. Smith

1980 [Smi80] and Nichael L. Cramer 1985 [Cra85]. Koza’s works [Koz90,Koz92] popularize

genetic programming. Individuals in Genetic programming are “general, hierarchial com-

puter programs of dynamically varying size and shape” [Koz92]. Genetic programs are

usually represented as syntax trees, unlike genetic algorithms which are represented as lines
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Figure 2.8: A syntax tree and the genetic program that it represents [LP02].

Type Examples

Arithmetic +, -, ×, ÷
Mathematical sin, cos, log, exp

Logic AND, OR, NOT

Conditional IF-THEN-ELSE

Looping FOR, REPEAT

... ...

Table 2.5: Possible types of functions in a GP function set [LP02].

of code. Figure 2.8 is an example of a genetic program, representing max(x× x, x + 3× y).

Nodes of syntax trees can be categorized as either functions or terminals, defined in

[Koz92]. A genetic program’s terminal set consists of variables and constants as nodes. In

the above example, the terminal set is {x, 3, y}. A genetic program’s functional set consists

of functions and operations which take members of the terminal set as input(s). The terminal

set is {max,×, +} in the above example. Table 2.5 lists possible types of functions in GP

and their examples. The sum of a GP’s function set and its terminal set is its primitive set,

{x, 3, y,max,×, +} in the above example. The search space of genetic programming is all

possible computer programs composed of elements from its primitive set.

A typical one-point crossover of two GP programs is illustrated in Figure 2.9. An

one-point mutation is illustrated in Figure 2.10.

Among many inventions of genetic programming, the most well-known and exciting one
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is that Genetic programming created an unique antenna for a NASA microsat experiment.

It is the first “artificially evolved” object to be launched into space, according to NASA

8. Many creations and patented inventions by genetic programming are detailed in [Koz92,

Koz94,KIAK99,KKS+03].

2.4.3 Evolutionary Algorithm Simulations and Applications

A considerable amount of research has demonstrated that artificial simulations by evolution-

inspired techniques can successfully provide ideal solutions for many games.

Axelrod [Axe87] starts the domain of interdisciplinary research of EA and games with

his remarkable Genetic Algorithm experiments on the well-known game Iterated Prisoners

Dilemma (IPD). According to [Axe87], the experimental results coincide with reciprocity

phenomena found in the most competitive human entries to IPD competitions. Miller [Mil96]

later uses automata to systematically restudy Iterated Prisoner’s Dilemma. He builds a co-

evolutionary 9 system for this problem. He concludes that cooperation is rather stable

when there is no noise in the system and that the level of cooperation decreases as the

noise increases. Gosling et al. [GJT05] study the one-population co-evolutionary system

for IPD. [GJT05] compares population based incremental learning with guided mutation

versus genetic algorithms on the iterated prisoners dilemma problem. [Koz92] employs co-

evolution in conjunction with Genetic Programming to disclose minimax strategies for a

two-player finite-size game in extensive-form under complete information. [LT99] by Tsang

et al. successfully develops a co-evolutionary system EDDIE/FGP which aids investors to

seek dealing opportunities in financial markets.

Lucas and Kendall’s [LK06] reviews evolutionary computation and games. It demon-

8NASA feature article “ ‘Borg’ Computer Collective Designs NASA Space Antenna” on 16 February 2006.
9The concept of co-evolution is introduced in the next subsection.
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strates how computational intelligence makes entertainment games so fun to play. These

games include classic board games such as chess, checkers and tic-tac-toe and real-time ar-

cade and console games, such as Quake and Pac-Man. This article also explains why the

involvement of evolution makes many games more interesting than otherwise.

2.4.4 Co-evolution

The original concept of co-evolution comes from nature. Biologists observe that, in nature,

one species modifies itself to adapt to the changes of its co-existing species in their shared

physical surrounding. Such modifications, in turn cause its co-evolving species to change

themselves accordingly. This sort of reciprocal evolutionary changes in interacting species is

known as co-evolution in biology.

Natural co-evolution is the mutually evolutionary influences between two (or more)

species. The survival skills from co-evolving species in nature inspire computer scientists

to borrow co-evolutionary principles to solve problems in which two dynamic elements inter-

act with each other. Computer scientists formalize the co-evolutionary model [Sch04]. Figure

2.11 shows in an idealized two-species situation, the species A and B are co-evolving. One

species’s fitness is its current adaptation to the other species that is evolving simultaneously.

Holland [Hol92] initiates co-evolution for an artificial ecology system, “Echo”. Co-

evolution is also successful in many fields: factory organization [Lan99], robotics [KU99],

predator-prey systems [Sim94, KU99, CM96], sorting networks [Hil90] and social sciences

[Dor98].

2.5 Comparison with Related Works

This section compares and contrast our study with its closely related literature.
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Figure 2.11: Two-species co-evolution

Axelrod [Axe87] uses genetic algorithms to simulate Iterated Prisoner’s Dilemma. It has

had a major influence on our work. The major similarities of our work to [Axe87] are:

• our work and [Axe87] both aim to understand players’ behaviors in game-theoretic

models;

• both works assume that players are boundedly rational, although [Axe87] does not

explicitly specify this. Players improve their abilities through adaptive learning;

• both studies utilize artificial simulation, more specifically evolutionary algorithms to

tackle the games.

The major differences between our work and [Axe87] are:

• Iterated Prisoner’s Dilemma and bargaining games are dynamic games which can be

split to sub-games. However, every subgame of IPD is a static game. Players make
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their decisions simultaneously. A sub-game of a bargaining game is not a static game.

Only one player makes an action at one time [Mut99];

• [Axe87] assumes that two players are so identical that they take the same strategy

even if they exchange their roles. So he evolves one population of strategies for both

players. Our work assumes that two players in bargaining games are not identical.

The first player in bargaining games may have a first-move advantage [Mut99]. Two

players are not identical especially in incomplete information bargaining problems and

outside options bargaining problem. Therefore, each player in our work has his own

population of candidate solutions;

• [Axe87] concludes that TIT-FOR-TAT and its variants are the most competitive and

stationary strategies. TIT-FOR-TAT is not the game-theoretic solutions for IPD. In

contrast our work finds that evolutionary algorithms discover efficient and stationary

strategies and/or approximate game-theoretic solutions.

Work of Braget, et al [vBGP02] shares a common interest with us in studying Rubin-

stein alternating-offers bargaining game. [vBGP00] simulates the bargaining by a multi-agent

evolving system that is implemented by real number-coded genetic algorithms. Their exper-

iments only test the situations when δ1 = 0.6 or δ1 = 0.3.

The major similarities of [vBGP02] and our work are:

• both [vBGP02] and our work study the classic bargaining model: CRub82 problem

[Rub82];

• both use evolutionary algorithms, in particular two-population co-evolution;
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• both works find that solutions from co-evolutionary algorithms approximate CRub82’s

game-theoretic solutions.

The major differences between our work and [vBGP02] are

• [vBGP02] uses genetic algorithms; we use genetic programming to implement the

co-evolutionary system;

• [vBGP02] only measures the experimental results under δ1 = 0.3 and δ1 = 0.6; we

cover the whole game-setting space δ1× δ2 = {0.1, 0.3, 0.5, 0.7, 0.9}×{0.1, 0.3, 0.5, 0.7,

0.9} with 25 evenly distributed game settings;

• besides CRub82 bargaining problem, we thoroughly study bargaining problems with

incomplete information and outside options. We are in a better position to generalize

our claims.

Fatima, Wooldridge and Jennings [FWJ05] examine incomplete information bargaining

problems. The major similarities of our work to [FWJ05] are:

• our work and [FWJ05] both study incomplete information bargaining models, including

Rubinstein incomplete information bargaining problem [Rub85];

• both consider multi-determinants: incomplete information and outside options.

The major differences between ours and [FWJ05] are:

• different research approaches: [FWJ05] mathematically proves the existence and unique-

ness of equilibriums - using human intelligence. We apply evolutionary algorithms -

using artificial intelligence;
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• [FWJ05] takes three kinds of bidding functions into consideration. These three types

of bidding functions are analyzed in Section 3.5. We choose the Conceder type of

bidding function because the bargaining time pressure, measured by discount factor,

forces bargainers to concede quickly in order to reach an agreement as soon as possible

thus to reduce costs 10.

10Details are available in Section 3.5.
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Chapter 3

Co-evolution to Tackle
Alternating-Offers Bargaining
Problem - Theoretic Framework and
Design

3.1 Introduction

This chapter 1 aims to demonstrate how the Rubinstein [Rub82] alternating-offers bargaining

problem, abbreviated as CRub82, can be tackled by an evolutionary algorithm, in particular

the co-evolution algorithm.

CRub82 bargaining problem has one determinant on bargaining power, discount factor.

Its game-theoretic assumptions and solutions are surveyed in Section 2.3.1 and is recapped

shortly in Section 3.1.1. The computational complexity of this bargaining problem is ana-

lyzed in Section 3.2. This bargaining problem is so complicated that it is unlikely to be solved

by an exhaustive search. A set of assumptions of bargaining players’ bounded rationality

sets up in Section 3.3.

The theoretic framework is established in Section 3.4. The system design and experiment

design are in Section 3.5. Due to the complexity of the fitness function, this chapter focuses

1Most parts of this chapter have been published in [JT05a] and [JTng].
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on the game fitness function which is a player’s utility gained from playing a bargaining

game. We leave the technical treatment for controlling constraints to Chapter 5.

Experimental results and observations are analyzed in the next Chapter.

3.1.1 Recapitulation of Alternating-Offer Bargaining Problem CRub82

Section 2.3.1 details the CRub82 bargaining problem. This subsection briefly recaps this

problem and its game-theoretic solution.

CRub82 bargaining problem is a two-player dynamic game. Players have complete and

perfect information about the game. Players’ preferences are determined by their bargaining

costs per time interval, termed as discount factors δ1 for player 1, and δ2 for player 2.

While bargaining, players’ utilities are discounted over time, so both players have incen-

tives to strike a deal as soon as possible. Player 1 starts bargaining over the divisible common

interest (a cake) of the size 1 at the time t = 0. Two players make offers and counteroffers in

a strictly alternating manner. An offer is either accepted immediately or rejected and after

one time interval counter-offered. Once an offer xi is accepted, an agreement is reached with

a share xi for player i and a xj for player j, xi + xj = 1. If this agreement is reached at time

t, the two players attain the utilities ui = xiδ
t
i and uj = xjδ

t
j respectively. The length of one

bargaining period is one time interval ∆. To make things simple, we assume ∆ = 1.

In the unique Subgame Perfect Equilibrium (SPE), player 1 obtains:

x∗1 =
1− δ2

1− δ1δ2

(3.1)

x∗2 = 1− x∗1 (3.2)

The second player, player 2 obtains the rest of cake, (1− x∗1).
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3.2 Computational Complexity of CRub82 Bargaining

Problem

CRub82 bargaining problem is intractable if an exhaustive search method is in use. One

player can make infinitely possible offers. Moreover, from the definition of infinite-horizon,

the bargaining procedure can last forever. To simplify this problem, we limit that a bargain-

ing only lasts 10 time intervals at the maximum 2 and that any division of the cake is in 10−2

precision. Thus at any time, the offering or counter-offering player has 100 options (the cake

size 1 is divided by 100) while the another player has two options: acceptance or rejection.

So at a particular time, there are 100 × 2 = 200 possible outcomes. For 10 time intervals

or 11 time points, there are 20011 ≈ 1025 possibilities. If a machine tests possibilities at the

rate of one possibility per nano-second (10−9 second), it requires 1016 seconds, or more than

200 million years to test all possibilities for an instance of CRub82 bargaining problem.

This bargaining problem has only one determinant, discount factor. Imagine when more

bargaining determinants are taken into consideration while an exhaustive search is used, the

complexity goes beyond the time constraint we can ever afford. On the other hand, game

theorists spend years to solve such a problem 3. Game-theoretic method requires excessive

human efforts and expertise. Therefore an alternative method which is more efficient is

heavily in demand. Artificial intelligence as a complementary method of human reasoning,

in particular evolutionary algorithms as a heuristic search method, is hoped to generate fairly

good solutions for bargaining problems within affordable time and computational expenses.

2The reasons of using 10 time intervals limitation are explained in Section 3.5.
3Rubinstein published the theoretic solution for CRub82 bargaining problem in 1982 [Rub82]. He later

extended the CRub82 bargaining problem to the incomplete information bargaining problem in which one
of two players has incomplete information. He published the game-theoretic solutions for the incomplete
information bargaining problem in 1985 [Rub85]. We can not therefore conclude that he spent three years
to solve one extension of CRub82 bargaining problem but can infer that it is not easy for a game theorist to
work out game-theoretic solutions.
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We will demonstrate the use of evolutionary algorithms on bargaining problems.

3.3 Assumptions of Players’ Boundedly Rationality

In most of game-theoretic models, all players are perfectly rational “economics men”. For the

CRub82 bargaining problem, its game-theoretic assumptions imposed for obtaining Subgame

Perfect Equilibrium are subject to perfect (unbounded) rationality hence other equilibriums

and possibilities, which may arise in more realistic circumstances are ruled out. The perfect

rationality and bounded rationality are reviewed in Section 2.2.

The beauty of perfect rationality is seldom seen in the real world. Boundedly rational

players are common. It is of great interest to see whether players with bounded rationality

also prefer SPE. Ordinary players often enable to learn from experiences and surely aim

to maximize their utilities if possible. Individuals’ adaptive learning modelled in evolution-

ary algorithms match these characteristics. The desire of assuming bounded rationality on

bargaining players’ behaviors is another main reason for using evolutionary algorithms.

This thesis does not intend to study human decision making in terms of their economic

and social implications. Instead, we limit our attention to artificial simplification of humans.

These artificial players are boundedly rational and much simpler than human beings. They

are equipped with simplified adaptive learning ability. The learning mechanism that we will

use is an evolutionary algorithm which is supposed to capture essentials of human adaptive

learning at an abstract level.

This section specifies the assumptions on players’ behaviors under bounded rationality.

In fact, any assumption that is not perfect rationality, can be regarded as a form of bounded

rationality. This set of assumptions is applicable to bargaining problems in this thesis. The

mathematical descriptions of these assumptions and the theoretic framework are detailed in
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Section 3.4 and 3.5.

A player can have many strategies. We assume that players learn on the basis of evolu-

tionary algorithms: at beginning players offer, reject or accept partitions of cake randomly

and after evolutionary process they offer, reject and/or accept such partitions that can be

quickly accepted by the other player. Please note that in this work, a strategy does not

learn. In terms of evolutionary algorithms, a player can be thought as a population full of

candidate solutions (strategies in games). Commonly, in evolutionary algorithms, candidate

solutions (also called individuals) in a population at a specific generation are static, which

do not learn or change within that specific generation [Gol89] [Koz92]. It is two strategies,

each from a player that play instances of the game. Table 3.2 gives an example of two

strategies playing a bargaining game.

• A-1: A player tries to maximize his utility. A perfect utility maximizer in game-

theoretic settings reasons its strategies not only on known utilities but also on players’

preferences and other player’s possible reactions [Rub85]. Unlike a perfect utility max-

imizer, the boundedly rational players use such strategies that merely take the option

with the ‘superficially’ highest utility. A player’s strategy does not do any further

deliberation, such as possible delay and the possibility of the acceptance of the offer by

the other player’s strategy. Provided with two options of action α and β with u(α) and

u(β) as i’s utilities of α and β respectively, player i’ strategy chooses the action that

rewards larger utility: if u(α) > u(β), this strategy takes α. If u(α) = u(β), it takes

the action which makes an agreement sooner. Equation ( 3.5) in the next sub-section

instantiates this assumption.

• A-2: A player’ behaviors not only respond to but also influence the other’s behaviors
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over evolutionary learning time. This means that a player’s best strategy is determined

by what strategies the other player has. Co-evolution captures this interdependent

relationship between two players’ strategies. A strategy’ performance is explicitly

expressed in the fitness function of the co-evolutionary framework as in Table 3.1.

• A-3: Players learn through trial-and-error training. Players improve their strategies’

performance through playing bargaining games with the other player’s strategies. Bet-

ter strategies are reused or modified then reused with higher possibility. Definition 3.

State Transaction Equation in the next section mathematically defines the process of

players’ learning and improvement.

• A-4: Players are assumed to be equipped with almost the same set-up. In terms of

evolutionary algorithms, a player’s strategy representation, operators and parameters

of evolutionary algorithms are the same for both players. The system set-up of CRub82

bargaining problem is detailed in Section 3.5 and Table 3.3.

The following assumptions A-5 to A-8 clarify what players are unable to do:

• A-5: Players’ strategies are incapable of game-theoretic reasoning. The strategy rep-

resentation in Equation (3.4) and (3.5) of Section 3.5 shows that players’ strategies

simply compare the utility from the current offer versus the possible utility from the

counter-offer one time interval after, and then take the action which rewards the player

higher utility (as A-1). The ability of telling the larger one from two values is far sim-

pler than the game-theoretic reasoning.

• A-6: A player’s strategy is unable to identify the other player’s strategies. From

the strategy representation in Equation (3.5), when player i’s strategy is trying to
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make a decision, it only measures its player’s possible utilities from his own bidding

function b(gi) and from xj offered by other player j’s strategy. Player i’s strategies

have neither information of j’s strategies nor intention to identify j’s strategies. Player

i’s strategies are unable to predict what j’s strategies will do if player i’s strategies

accept or counter-offer.

• A-7: Player i’s strategy has no memory of its own moves and the moves by player j’s

strategy. A strategy does not take actions of its own and of the other’s strategy in

past into consideration. As in Equation (3.5) of strategy representation, t − 1 is not

a component, which means that when player i’s strategy makes a decision, it never

considers his own actions nor j’s actions 4.

• A-8: A strategy can not modify itself to respond the other strategy’ actions during one

bargaining encounter. Equation (3.5) clearly shows that a player i’s strategy s(gi) is

defined before the bargaining starts and remains unchanged throughout the bargaining

encounter. It also shows that i does not change strategy s(gi) whatever action s(gj)

takes.

• A-9: In this work, adaptive learning refers to the learning in the time frame of species-

level, not the learning during the life-time of a single individual. Learning in an

individual (strategy)’s life-time is theoretically feasible and is seen in playing games in

reality. In this thesis, we assume that players learn. From the game-theoretic prospect,

a bargaining agreement is inefficient if it is settled at any time t > 0. Strategies that

make agreements very soon have higher utility and thus higher fitness so they are

4In literature, IPD players in [Axe87] [DY94] [GJT05] have the memory of the last three moves of both
players. IPD players try to infer the other’s strategy from the other’s actions in preceding moves.
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more likely to survive. In experiments we set the maximal bargaining time as 10 time

intervals. Strategies do not know this maximal time and they play games as if the game

can last forever. Definition 3. State Transaction Equation formulates players’ learning

mechanism. The upgrading of genetic materials and of strategies only happens at the

time from one generation to another. Equation (3.5) further confirms that no learning

ever conducts during the life time of a strategy. Further discussions on the learning

time frames are available in [Mit97]. Learning in an individual’s life-time is interesting,

but is not studied in this thesis.

This set of assumptions is very simple in terms of intelligence. In short (1) a strategy is

able to choose the better one from two choices provided with the utilities of these choices;

(2) a player with a set of strategies adaptively learns on the basis of evolutionary algorithms.

Other bargaining problems in this thesis are more complicated than CRub82, in the

sense of bargaining scenarios, bargaining determinants and players’ information. Therefore

assumptions A-1 or A-4 may need modifications for other bargaining problems. Such mod-

ifications only have marginal effects on the implementation of the system; but they have

almost no impact on the theoretic framework.

3.4 Theoretic Framework of Co-evolution

In CRub82 bargaining problem, both players try to deploy the best response to the other’s

strategy. Both are learning how to find the best response through playing this bargaining

game with the other. This co-adaptive learning relationship fits well with dynamics in co-

evolutionary algorithms. The theoretic concept of co-evolutionary algorithms is reviewed in

Section 2.4.4.
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3.4.1 A Learning Problem

Machine learning broadly speaking “includes any computer program that improves its perfor-

mance at some task through experience” [Mit97]. Learning of artificial players in bargaining

games under Assumptions A-1 to A-9 is a kind of machine learning.

We now define a machine learning problem, assuming that bargaining players learn from

experiences with respect to the task and performance measure.

• Task: Player 1 and player 2 play a bargaining game;

• Training Experience: Player 1 and player 2 play such a bargaining game;

• Performance Measure: an important measure of a player’s ability is his utility from

agreements, i.e. his gains from the mutual benefit. Efficiency and stationarity of

agreements are game-theoretic properties. So they are also important measures.

3.4.2 Training and Learning through Co-evolution

We design a co-evolutionary system. In this system, each player has a population of individ-

uals that are strategies for the player. The two players’ strategies evolve simultaneously. The

strategies aim to maximize their player’s utility from agreements. Individuals (strategies) in

a population independently undergo selection based on their performance (fitness). Better

performed individuals have higher probability to be taken as “raw materials” which are ge-

netically modified in order to breed new individuals for the forthcoming generation. Newly

created individuals bargain with individuals in the updated co-evolving population that has

gone through a similar evolutionary process. This system simulates the trial-and-error learn-

ing and co-adaptation specified in Assumption A-2 and A-3. During one generation, there

is nothing changed for improvement. Learning develops not in an individual’s life time but

50



3.4 Theoretic Framework of Co-evolution

in the species (population)’s evolutionary time, as assumed in A-9. The co-evolving process

is illustrated in Figure 3.1.

Definition 3.1. Populations of Co-evolution. A population P is a set of individuals or

candidate solutions for that player. P1 is the population for player 1. P2 is the population

for player 2. Two populations Pi and Pj directly interact in such way that individuals in one

population are assessed dependently on individuals in the other population.

The sequence of training examples are controlled by designer not by learners. Playing

bargaining games provides direct training examples. Training examples are identical to the

test examples: CRub82 bargaining game, over which the training is later to be tested.

Training is to give appropriate responses or feedbacks to guide subjects to the target

5. To achieve the goal of training, the design of an appropriate response is the key. In

the co-evolutionary learning framework, appropriate responses refer to appropriate fitness

functions; the target refers to the state of co-adaption; and the guiding force is the principle

of evolution, in particular the selective pressure. The next subsection details the fitness

functions in co-evolutionary systems.

3.4.3 Relative and Absolute Fitness in Co-evolution

This section analyzes how to measure a player’s adaptation (fitness) in co-evolution.

In evolutionary algorithms, individuals are evolving against static objectives. The abso-

lute fitness [Koz92] (also called objective fitness) evaluates the fitness upon static targets.

Using the absolute fitness is implicit in applications of evolutionary algorithms where the

5“The law of effect is a principle of psychology described by Edward Thorndike in 1898. It holds that
responses to stimuli that produce a satisfying or pleasant state of affairs in a particular situation are more
likely to occur again in the situation. Conversely, responses that produce a discomforting, annoying or
unpleasant effect are less likely to occur again in the situation. The law of effect [Her70] is important in
understanding learning, especially as it relates to operant conditioning. ” [Wik06b].
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objective function is assumed to be identical over all generations, independent of the evolu-

tionary time.

In most of applications of the co-evolutionary algorithms, absolute fitness functions usu-

ally are unavailable. For example, in the case of two-player bargaining games, the set of a

player’s possible strategies is huge in size. Any strategy cannot be judged properly in ab-

sence of the other player’s behaviors. The fitness of a player’s strategy depends on the other

player’s strategy. Because of the difficulty of discovering underlying objectives for a class

of problems, researchers turn to use co-evolution to solve problems for which static objec-

tives are unknown, whereas a kind of “reciprocally interactive” relationship between/among

species (players in games) can be assumed. Koza [Koz92] terms relative fitness. It is also

called “subjective fitness” which measures how much co-evolving species adapt to each other.

de Jong and Pollack [dP04] examine fitness measure in co-evolution in great details.

Relative fitness functions are dynamic, updating over evolutionary time. In other words,

individuals in different generations are evaluated by probably different objectives. As we

assume, bargaining strategies are learning and improving their performance against dynamic

objects (the other player’s strategies), therefore their fitness should also be dynamic. The

relative fitness measure is such a dynamic assessment subject to co-evolving population(s).

Applications have shown that co-evolutionary algorithms using relative fitness functions are

successful as surveyed in Section 2.4.4.

Researchers pay less attention to the use of absolute fitness functions in studying co-

evolutionary algorithms. The property of absolute fitness attracts our attention to investigate

whether the absolute fitness can behave as a monitor of a co-evolutionary system. Absolute

fitness may provide information concerning the co-adaptive process.
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To illustrate these two fitness concepts, “the classic analogy is the co-evolutionary arms

race (in nature): a plant species has chemical defenses and an insect species evolves the

biochemistry to detoxify these compounds. The plant in turn evolves new defenses that the

insect in turn ‘needs’ to further detoxify” [Koz92]. The (relative) fitness of the insect depends

on the evolutionary state of the plant, so the relative fitness directs the insect to adjust its

behaviors to detoxify the plant’s current chemical defenses. From the insect’s and the plant’s

relative fitness, we know the degree of co-adaptation of these two species at certain time. To

discover how the insect adapts to the plant progressively, it is necessary to investigate the

insect’ biochemistry (the insect’s absolute fitness) at every stage of the co-evolution.

In nature it is the relative fitness that motivates the co-evolutionary improvement. In

the plant-and-insect example, to detoxify the plant’s present chemical defenses is what the

insect tries to do now. On the other hand, the absolute fitness records the co-evolutionary

history: at different evolutionary times, the insect has different biochemistry materials. It is

unlikely to transform a relative fitness into an absolute one or vice versa, because the relative

fitness is always a function of time and is generation-dependent, but the absolute fitness is

not. Only if the time is frozen at a certain moment, can the relative fitness at that time be

also interpreted as the absolute fitness at that time.

Recent researches disclose that under certain conditions, the absolute fitness may provide

the same information as the relative fitness. de Jong and Pollack [dP04] have shown that a

complete evaluation set exists which provides ideal evaluation, meaning objective evaluation.

If one could evolve against a complete evaluation set (CES), this would have the same effect

as having a single, fixed, objective fitness function as in normal GA’s. However, the question

is how to find a CES. The delphi algorithm approximates the CES. Meanwhile, there are
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new algorithms such as the Nash memory and IPCA which guarantee monotonic progress

for co-evolution. One purpose of introducing this ideal evaluation is to avoid inaccuracy

in co-evolutionary algorithms. Luke and Wiegand [LW03] argue the possibility of existing

an objective measure that may make evolutionary algorithms exhibit similar dynamics and

generates similar results to a single-population co-evolution. Our work tries to analyze the

absolute fitness and relative fitness, and furthermore to understand the behaviors of co-

evolving strategies and their adaptive learning in a bargaining scenario.

Two studies on the well-known controversy of Iterated Prisoners’ Dilemma are good

expositions of how an absolute fitness function and a relative fitness function can generate

different results for the same problem. Axelrod’s GA experiments [Axe87] evolve player’s

strategies against a fix environment, “eight representatives”. The set of these eight chosen

representatives is an absolute fitness function that is independent of the evolutionary time

6. His GA experimental results support the claim that TIT FOR TAT and its variants

are the best responses to IPD problem. However, this claim is questioned by the results

from co-evolutionary experiments where a relative fitness function is adopted. Darwen and

Yao [DY94] follow the strategy representation by Axelrod’s [Axe87] , but the fitness of a

strategy is the scores it achieves from playing IPD against all the other strategies in its

population. This set-up is a typical one-population co-evolution with the use of a relative

fitness evaluation. At the end of their experiments, “only cooperative strategies survive”

[DY94]. Moreover some behavioral patterns claimed to be parts of TIT FOR TAT such

as “Be provocable” and “accept a rut” which play defections, have not been discovered

in [DY94].

6 [Axe87] uses eight representatives rather than a co-evolving population as the fitness evaluation was
probably a consequence of the very expensive computational cost in 1980s.

54



3.4 Theoretic Framework of Co-evolution

Player 1’s Player 2’s
Fitness Function Fitness Function

P1 − P2 f1(g1, P2(n)) f2(g2, P1(n))

Table 3.1: Fitness Functions of the two-population Co-evolution

3.4.4 Relative Fitness Evaluation for Two-Population Co-evolution

We now formalize the relative fitness in co-evolution. Suppose in a simple co-evolutionary

system, two species exist in a stable physical environment. The two populations (P1, P2)

are the sets of individuals of these two species which are simultaneously co-evolving over

evolutionary time. Assume these two species start evolving at the same time and spend

exactly same length of time per generation.

For each population in the two-population co-evolution, we adopt the relative fitness

assessment. Thus the evaluation of individuals’ performance is subject to co-evolving objects,

not to static one(s).

Definition 3.2. Formalization of Fitness Functions of two-population Co-evolution. We

denote the relative fitness functions of species i and of species j as fi, and fj respectively. gi

is an individual in the population for species i. The non-negative integer n is designated to

the evolutionary time.

In this co-evolutionary system the relative fitness function fi of an individual gi ∈ Pi is

a function of gi and of the state of the other population Pj: fi(gi, Pj). If the generation is

specified, we get: fi(gi, Pj(n)). It simply tells that the individual gi’s relative fitness depends

on the evolutionary time n and Pj that is changing over time. In Table 3.1, f2(g2, P1(n)) is

interpreted as: the relative fitness of species 2’s strategy g2 is determined by the state of the

population P1(n) at the same generation, in other words, by species 1’s individuals at time

n.
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3.4 Theoretic Framework of Co-evolution

Unlike the relative fitness function fi, the absolute fitness function f ′ evaluates an indi-

vidual gi not in connection with the co-evolving Pj but upon a static objective f ′(gi) which

is independent of the time n.

The selection operates on the basis of individuals’ performance. The recombination of

selected individuals produces new offsprings. The formal definition of the state transaction

from one generation n to the next generation n + 1 of the two-population co-evolution is as

follows.

Definition 3.3. State Transaction Equations of the two populations from n to n + 1.

V ar is the variation operation in evolution (mutation and/or crossover). Sel is the selection

operation. Then the state transaction equation of two-population co-evolution is:

∣∣∣∣
P1(n + 1)
P2(n + 1)

∣∣∣∣ =

∣∣∣∣
V ar(Sel(P1(n), f1(P2(n))))
V ar(Sel(P2(n), f2(P1(n))))

∣∣∣∣ . (3.3)

It is interpreted as: P1(n) at generation n are selected on the basis of their relative fitness

against individuals in P2(n) at the same generation n: Sel(P1(n), f1(P2(n)). After selection,

mutation and crossover are conducted. This is a generic expression for a two-population

co-evolution. The coming section instantiates this expression for the CRub82 bargaining

problem.

One-population co-evolution for CRub82

We have considered one-population Co-evolution for CRub82 bargaining problem, because of

the symmetric property of players’ information and of the game-theoretic solution SPE. Play-

ers then are assumed to use the same strategy if they swap their roles. Thus strategies could

be identical for both players. In the one-population co-evolutionary system, one population

consists of candidate solutions suitable for both players. We have executed experiments to
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3.5 System and Experiment Design

examine the effectiveness of both the one-population system and the two-population system

for CRub82 problem. The experimental study on CRub82 problem by the one-population

co-evolutionary system is reported in Appendix C. Experimental results convince us that

the two-population system generates more effective results than the one-population system.

Moreover, the two-population system enables different strategies to be evolved for different

players. The first player may have a first-move advantage [Mut99] so that player 2’s strategy

may not be suitable for player 1. Moreover, the two-population co-evolutionary system is

extensible for more realistic situations: for example, one player has more information rele-

vant to the game than the other. So the two-population system as a more general framework

for two-player bargaining problems is finally chosen.

3.5 System and Experiment Design

This section specifies the co-evolutionary system for CRub82 bargaining problem with respect

to strategy representation, fitness function, GP set-up, the system’s parameters and the game

settings.

3.5.1 Strategy Representation

An individual gi ∈ I is a candidate solution in player i’s population I. GP trees could

be evaluated once prior to the start playing an instance of game given the discount factors

(δ1, δ2). For example, assume the genetic program g1 = δ1 − (1− δ2). If (δ1, δ2) = (0.9, 0.5),

the g1 = 0.4.

Although SPE does not explicitly involve time, time is an important element in any

bargaining. We define a time-dependent bidding function: player i bids b(gi) at time t:
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b(gi) = gi × (1− ri)
t (3.4)

where t is the bargaining time, a non-negative integer. ri is the discount rate δi ≡ exp(−ri).

So in the example of g1 = 0.4, this strategy will offer 0.4 at t = 0 and accept player 2’s

counter offers if they are larger than 0.4× (1− r1)
t.

The part of (1− ri)
t guarantees that players bid decreasing offers and counteroffers while

time elapses. This is a kind of conceder function. We have considered linear, boulware

and conceder types of strategies. [FWJ05] discusses these three types of functions: in the

boulware type of function “the initial offer is maintained until time is almost exhausted,

when the agent concedes up to its reservation value”. Using the conceder type of function,

“the agent goes to its reservation value very quickly”. Using the linear type of function,

shares in offers are increased linearly. Conceder type is more practical for the CRub82

bargaining problem than the other two, because both players are under the exponentially

increasing pressures of bargaining costs over time measured by discount factors. Figure 2.1

in Section 2.3.1 clearly illustrates such exponential increase of bargaining costs. Thus while

bargaining time goes, players are more eager to make an deal. Eagerness forces players to

increasingly concede on their shares over time. The conceder function (1− ri)
t captures this

property of the discount factor δi.

A strategy determines what action (acceptance or making a counter- offer) a player takes

at time t. gi’s corresponding strategy is s(gi). s(gi) accepts or rejects an offer from player j

on dividing the cake as (1− xj, xj) at time t:
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s(gi) =





accept :
if (1− xj)δ

t
i ≥ b(gi)(t+1)δ

t+1
i

counteroffer at (t + 1) :
if (1− xj)δ

t
i < b(gi)(t+1)δ

t+1
i

(3.5)

When player i with strategy s(gi) receives an offer (1 − xj) from the other player j who

asks for xj as her share, player i compares the utility (1 − xj)δ
t
i of this offer (1 − xj) with

the possible utility that he expects if his counter-offer b(gi)(t+1) is accepted at time t + 1. If

the utility from the later choice is not higher than that from the former choice, the offer of

the former choice is accepted by player i. Just as the assumption A-1 states, players try

to maximize their utilities. This strategy expression also conforms to the assumptions A-5,

A-6, A-7 and A-8. s(gi) has neither the ability of game-theoretic reasoning nor a memory

storage. It cannot identify the other player’s strategies nor change its own strategy during

a bargaining encounter.

An example of two strategies s(g1) and s(g2) playing a bargaining game is give as in

Table 3.2. The discount factors δ1 = 0.9 and δ2 = 0.7. The superscripts indicate the

order of actions by the two players. This example shows that two strategies make a division

of cake as player 1 gets a 0.7337 slide of the cake and player 2 gets 0.2663. Because the

agreement is reached at time 3, so the utilities of two strategies obtained are 0.5348 and

0.0913 respectively.

3.5.2 Genetic Programming Set-up

There are a few algorithms in the family of evolutionary algorithms, as shown in Figure 2.4.

Genetic Programming is not the only way to implement the design of the two-population co-

evolutionary system. We choose it because it copes well with the representation of functions

and variables.
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Bargaining b(g1) s(g1)’s b(g2) s(g2)’s

Time t = action Action

0 1.0000 ask 1.0000 1 1.0000 reject 2

1 0.8946 reject 4 0.6433 ask 0.6433 3

2 0.8004 ask 0.8004 5 0.4139 reject 6

3 0.7161 accept: GAME OVER 8 0.2663 ask 0.2663 7

4 0.6406 0.1713

5 0.5731 0.1102

6 0.5127 0.0709

7 0.4587 0.0456

8 0.4104 0.0293

9 0.3671 0.0189

10 0.3285 0.0121

Table 3.2: An example of two genetic programs g1 and g2 playing an instance of CRub82
bargaining game. δ1 = 0.9 δ2 = 0.7. The superscripts indicate the order of actions.

Firstly the game-theoretic solutions SPE consists of variables and arithmetic functions.

We propose to compare the experimental results with the game-theoretic solutions. The

structures of experimental results consisting of variables and functions therefore are preferred.

GP fulfills this purpose.

Another reason GP is chosen is that GP implementation can have more extensions on

various bargaining problems. In CRub82 bargaining problem, there are two game variables

δ1 and δ2. In ICRub85 incomplete information bargaining problem, one of these two variables

has two possible values. In the outside option bargaining problem four game variables need

to be handled. We plan to establish a general system which should manage more variables.

This demand favors the choice of GP.
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GP Operators and Parameters

GP operators (selection method, crossover and mutation methods) and parameters (for in-

stance, function set, terminal set, population size and number of generation) are stated in

Table 3.3.

An individual in a population is a genetic program: gi for player i, i ∈ {1, 2}. gi is

constructed with the function set {+, - , × and ÷ (protected) } and the terminal set {1,

-1, δi, δj }. Players both have complete information relevant to CRub82 bargaining game,

therefore their information is {δ1, δ2}. Added the size of cake 1 and the −1 to change the

sign, the terminal set for gi is {δ1, δ2, 1,−1}. We choose arithmetic functions {+,−,×,÷} as

the function set, because firstly they are fundamental and secondly, SPE is expressed arith-

metically. So arithmetic functions should be sufficient for CRub82 problem. By changing

the function and terminal sets, we could create different gis. For example, if adding time t

and if − then− else into the terminal set, we would evolve the overall strategies s(gi).

There are more than one feasible way to represent genetic programs for solving this

bargaining problem. We only evolve gi in most parts of this thesis. We have tried to include

the bargaining time t into the terminal set and evolve the overall strategy. The experimental

results of evolving the overall strategies are assessed against those results of evolving gi.

Details of evolving the overall strategies are reported in Appendix D. Appendix D justifies

our choice of evolving gi. It is clear that when the variable t is also a member of the terminal

set in genetic programs, the evolutionary stability is difficult to maintain under the same

computational resources. It is probably because adding t into the terminal set expands the

search space dramatically. t is not one variable but a vector of [0, 10]. Moreover, experimental

results by using GP with t in its terminal set display less rational behaviors than those by
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GP parameters Values

Terminal set {δ1, δ2, 1,−1}
Functional set {+,−,×,÷}

(÷ is Protected)

Population Size 100

Number of Generations 300

Initial Max Depth 5

Maximum nodes

of a GP program 50

Initialization Method Grow

Selection Method 3-member

Tournament

Crossover Method [Koz92]

Crossover rate (0, 0.1)

Mutation Method Sub-tree Mutation

Mutation rate (0.01, 0.3)

Table 3.3: Summary of the Genetic Programming Parameters and Operators. The two
populations have the exactly same GP set-up for solving CRub82 bargaining problem. For
other bargaining problems, the terminal sets of two populations are not necessarily the same.
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evolving gi. We explain the reasons of such results in Appendix D.

“The depth of a tree is defined as the longest non-backtracking path from the root to an

endpoint. ” [Koz92]

The initialization method used is the “grow method”. We select one function from the

functional set at random to be the root of the tree. To select a function as the root guarantees

that the tree consists of more than one nodes [Koz92].

When a node in a tree is labelled with a function, an element from the primitive set (from

the functional set or from the terminal set) is randomly selected to be one endpoint of this

node (for example, the root). According to the members in the functional set in this thesis,

each function takes two arguments as its endpoints. An argument can be a member from

the terminal set or from the functional set. If a member of the terminal set is selected as

the endpoint of a functional node (for example, the root). The terminal node has no further

arguments as its inputs [Koz92].

This process recursively grows a tree from left to right until the maximum depth reaches

or until all endpoints are nodes from the terminal set. The grow method generates trees

have variably shaped, under the constraint of the maximum depth.

We use 3-member tournament selection. A group of 3 random individuals is created.

The individual with the highest fitness in the group is selected, the others are discarded

(tournament).

We adopt the method of crossover in [Koz92], as seen in Figure 2.9. In sub-tree crossover,

we randomly select a crossover point in each of two parent trees and swap the sub-trees rooted

at the crossover points. The crossover points are selected 90% of the times at functions and

10% of the times at the nodes. [LS97] presents a systematic study on the effectiveness of
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this crossover method. [LP02] introduces and discusses another type of crossover where only

sub-tree with same depth can be swaped.

Sub-tree Mutation: Mutation randomly selects a mutation point in a tree and substitutes

the sub-tree rooted there with a randomly generated sub-tree. Mutation is sometimes imple-

mented as crossover between a program and a newly generated random program (headless

chicken crossover). We make sure that the randomly generated sub-tree has the same depth

as the subtree cut.

The values of genetic operators of any evolutionary algorithm can affect the performance

of the algorithm in a significant way [HME97]. As many researchers do, we choose values of

parameters and of operators through experimentation. We try the values of GP operators

suggested by [Koz92, LP02], and test them on the bargaining problem. Some researchers

suggest other ways to find appropriate parameter values, surveyed in [HME97].

Under the GP setup in Table 3.3, it is typical that the fitness of two populations tends

to be stabilized before 200 generations 7. To ensure the stabilization and limited by compu-

tational resources, we terminate a run at the evolutionary time of 300th generation.

According to the assumption A-4, the two players have the same level of learning ability.

In terms of evolutionary algorithms, this means that the same genetic operators and the

same values of parameters are employed for both populations.

3.5.3 Operators of Co-evolutionary System

In general, a co-evolutionary system is more sensitive to the values of genetic operators

than an evolutionary system. In an evolutionary system, search undergoes against a static

landscape. A high mutation rate or a low selective pressure, scatters the individuals in a

7Figure 4.6, 4.7, 4.8, and 4.9 illustrate the evolutionary stabilization process.
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wider space and/or take longer time to converge.

By contrast, in the two-population co-evolutionary system, the search is conducted on

two dynamic landscapes, both changing over generations. Each population is its co-evolving

population’s landscape. Any modification on one co-evolving population Pi updates its co-

evolving population Pj’s landscape, making improvement of Pj more difficult. In return such

difficulty causes more uncertainty for Pi to cope with Pj that is Pi’s landscape. Therefore,

even a slight modification on one population magnifies its effects through dynamics and co-

adaptation of the landscapes. So we should use smaller crossover, low selective pressure and

mutation rates in a co-evolutionary system than those suitable for an evolutionary system.

This analysis is supported by our experimental results. A range of crossover rate, mu-

tation rate and selection methods are tested to reduce their biases on experiential results.

We find that high crossover rate and/or high mutation rate cause radical changes of genetic

programs in a population. The fluctuations of landscapes are so massive that bargaining

players receive heavily noisy responses from each other. As a result, it becomes difficult to

co-adapt. High crossover and mutation rates are also the reason of of taking long time to

stabilize. Low crossover and mutation rates are ideal for co-evolution, as long as they are

large enough for players to do some learning. Selection methods with low selective pressures

contribute to keeping landscape less dynamic. Our system performs relatively stable while

the crossover rate is within 0 to 0.1, the mutation rate ranges from 0.01 to 0.3 and uses

3-member tournament selection method.

3.5.4 Relative and Absolute Fitness Functions for CRub82

One crucial part of successful applications of evolutionary algorithms is to design the fitness

function properly. The features of the fitness function for this co-evolutionary system are
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emphasized.

First of all, the dynamic interactions between two players: co-evolutionary relation. We

formally define the absolute and relative fitness function in co-evolutionary systems in Sec-

tion 3.4. This section instantiates the relative and absolute fitness functions for the CRub82

bargaining problem. What roles they play in co-evolution is to be investigated. Experiments

are designed to answer this question.

Another important feature is the constraint handling. The constraints in CRub82 bar-

gaining problem need to be integrated into the fitness function. We design the Incentive

method to adjust individuals’ relative fitness, according to their satisfaction to constraints

(see Section 5.4). We present the fitness function F (gi) shortly after presenting the con-

straint handling technique. Bear in mind that the co-evolutionary experiments in this and

the next chapter are executed either using the F (gi) or using absolute fitness functions.

Relative Fitness Evaluation for CRub82

A player’s goal is to maximize his utility. So the utility from bargaining agreements is an

ideal measure of a player’s ability to bargain and to obtain benefit from the mutual interest.

Game Fitness of a strategy s(gi) from population I, denoted by GF (s(gi)) is defined as

the average of s(gi)’s utilities from agreements with individuals in the other population J .

J is a set of m number of genetic programs which satisfy the constraint that g(i) ∈ (0, 1],

j ∈ J :

GF (s(gi)) =

∑
j∈J us(gi)→s(gj)

m
(3.6)

where us(gi)→s(gj) is the utility gained by s(gi) from an agreement with s(gj). s(gj) receives

us(gj)→s(gi). In theory if players perpetually disagree, both players obtain utility 0. In exper-
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iments, if players do not agree after 10 time intervals, both get utility 0. 8

GF (s(gi)) returns the average utility that gi receives from bargaining with either the

co-evolving player or the monitor (the fixed representatives of absolute fitness functions).

When J is a co-evolving population, GF (s(gi)) calculates the relative fitness of gi at the

evolutionary time when J emerges. If J is static, GF (s(gi)) returns gi’s absolute fitness.

On the basis of the relative fitness GF (s(gi)), the fitness function F (gi) which drives

the co-evolutionary system is established in Section 5.4. A constraint handling technique

is imposed into the fitness function F (gi). This constraint handling technique controls one

hard constraint: any share on the partition of cake should be a value within the size of cake:

xi ∈ (0, 1] and two soft constraints: everything else being equal, the higher discount factor a

player i has, the larger share xi he obtains; everything else being equal, the higher discount

factor the other player j has, the smaller share xi player i gets. The constraint handling

technique together with the fitness function F (gi) will be fully specified in Section 5.4.

A strategy’s performance depends on the strategies with whom it is bargaining. Another

choice of designing the fitness function is to use the absolute fitness function: a group of

fixed representative strategies. This design has a risk that co-evolution may exploit the

weaknesses of the pre-defined representatives, but may perform poorly against others. So

the fitness of a strategy should be evaluated by its performance against the individuals in

the co-evolving population. In other words, the relative fitness evaluation is an appropriate

choice to address the fact that both players continually improve their co-adaptation.

8The reasons of limiting the bargaining time to 10 time intervals in experiments are explained in Sec-
tion 3.5.5.
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Absolute Fitness Evaluation for CRub82

Using the relative fitness function, the individuals in the populations at the end of evolu-

tionary time are supposed to be co-adapted under a particular bargaining setting. Finding

co-adaptive genetic programs are inadequate to answer questions that are important in ob-

serving the co-adapting process and in evaluating the co-adaptive strategies’ performance.

How does a population develop in order to find the best responses to its co-evolving popula-

tion? Can co-adapted strategies out-perform the theoretical solution? During the evolution-

ary time, does co-evolutionary learning help players to adapt to more diverse environments,

or only perform well to its co-adapted population J , a dynamic but known environment?

Taking into account the property of the absolute fitness and the knowledge of game-

theoretic solutions, we design two absolute fitness functions to continually assess the co-

adapting individuals, without replacing the relative fitness measure from the co-evolutionary

system. At every generation, each co-evolving population is evaluated against the two ab-

solute fitness functions which serve as external indicators: the set of SPE strategies and the

static set of randomly generated strategies.

To differ notations used for the relative fitness, we use an alternative set of notations

for absolute fitness evaluations, as shown in Table 3.4. First-move player 1’s co-evolving

population AC starts from a randomly generated initial population AR. AP is his SPE

strategy. Similarly, player 2’ BC , BR, and BP refer to player 2’s co-evolving population, ran-

dom population and SPE strategy respectively. Random genetic programs make offers and

counter-offers uniformly distributed in the range of [0, 1). The following sets of experiments

are to be executed, in which the symbol “◦” means “to bargain with”:

• AC ◦ BR and AR ◦ BC : random strategies bargain with co-evolving strategies;
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Notations Explanation
A The first player 1’s population
AC The first player 1’s evolving population
AP The first player 1’s population full of

SPE strategies
AR The first player 1’s population with randomly

generated but static genetic programs
B The second player 2’s population
BC The second player 2’s evolving population
BP The second player 2’s population full of

SPE strategies
BR The second player 2’s population with randomly

generated but static genetic programs
◦ two populations evaluate each other through

playing bargaining games

Table 3.4: Notations used for absolute fitness evaluations

• AC ◦ BP and AP ◦ BC : co-evolving strategies bargain with SPE strategies.

3.5.5 Game Parameters

We select 25 game settings for testing, δ1, δ2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The combinations of

selected δ1 and δ2 evenly distribute over the space δ1×δ2. 100 runs each with different random

sequences are conducted for every pair of (δ1, δ2). 100-run is considered to be statistically

sufficient to collect samples.

In experiments, a bargaining procedure lasts at most 10 time intervals. The reasons for

limiting bargaining time to 10 intervals are:

• players pay the bargaining cost subject to time. When a bargaining process lasts 10

time intervals, player i pays xi(1 − δi)
10 as the bargaining cost. For example, assume

player 1 even wins the whole cake x1 = 1 and he pays very low bargaining cost per

time interval δ1 = 0.95. After 10 time intervals, he only gets about 60% of his original

share x1 = 1 or his utility u1 ≈ 0.6. Therefore, an agreement reached after 10 time
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intervals is very inefficient. Strategies that make agreements after long bargaining

time receive relatively low utilities and thus low game fitness and fitness, so they have

limited chance to survive in evolution.

• the game-theoretic solution SPE is achieved at time 0.

• we have limited computational resources, therefore we must focus on more efficient

solutions.

• experimental results show that few best-of-generation genetic programs at the end of

co-evolution make agreements at time t > 4 (Table 4.3). Details about bargaining time

in experimental results are reported in the next chapter.

Limiting bargaining time to 10 time intervals is practical for solving bargaining problems

having discount factors. Running games forever is not realistic in reality nor in computational

resources. However, it might change the infinite bargaining game to an finite game. In theory,

infinite games and finite games are very different [Gib92] [Mut99]. To make sure such a

limitation on bargaining time has the minimal impacts on the experimental outcomes, we

further ensure that: in experiments,

• players in the co-evolutionary system do not know that the maximal bargaining time

is 10 time intervals;

• if players do not make an agreement after 10 time intervals, both gets 0 utility.

3.6 Summary

Bargaining problems are of high degree of computational complexity. Exhaustive search

requires excessive computational resources. In addition, it is unclear on what extent the
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game-theoretic solutions apply to boundedly rational players.

We set up a set of assumptions on the bounded rationality of bargaining players’ be-

haviors. Under such assumptions, we establish a theoretic framework and design a co-

evolutionary system to simulate bargaining players’ behaviors. In this co-evolutionary sys-

tem, there are two populations, each for a player. These two populations are co-evolving,

interacting and learning through bargaining experiences. Relative and absolute fitness of

the co-evolutionary system are carefully designed. The coming chapter reports and analyzes

experimental results of the CRub82 bargaining problem generated by the co-evolutionary

system.

71



Chapter 4

Co-evolution to Tackle
Alternating-Offers Bargaining
Problem - Experimental Results and
Observations

4.1 Introduction

In the previous chapter, we design the theoretic framework and a co-evolutionary system to

deal with CRub82 bargaining problem. We assume that bargaining players are boundedly

rational. System design and experimental set-up are described in great detail in Chapter 3.

This chapter reports and analyzes the experimental results. Experimental results are

compared with game-theoretic Subgame Perfect Equilibrium. Additionally, the impact of

discount factors on the divisions of the cake and on bargaining time are studied. Players’

adaptive learning in a co-evolutionary system and computational resources are examined 1.

4.1.1 Statistic Measures

In this thesis, the major statistic measures to analyze the relationship between experimental

results and game-theoretic solutions are t-test and the linear regression.

t-test

1Parts of this chapter have been published in [JT05b] and [JT05a].
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We describe t-test here for clarifying the meanings of two terms: t-statistic value and

t-critical value.

There are two samples. Each sample is a set of real numbers. One set is M , m ∈ M and

the mean of M is µM . Another set is L, l ∈ L and the mean of L is µL. n is the size of

two sets. The integer i, 1 ≤ i ≤ n is the index of the real numbers in both sets. The null

hypothesis is that M is statistically same in pairs with L, in other words, µM − µL = 0.

Let the set N has n elements. Each element is xi = li −mi, xi ∈ N . The mean of this

set is µ, the variance is σ2 and the standard deviation is σ.

σ2 =
Σn

1 (xi − µ)2

n− 1
(4.1)

The t-statistic value is defined as:

tsv =
µ×√n

σ
(4.2)

t-critical value (two tail) under the 95% confidence level is notated as tc. If |tsv| < |tc|, the

difference between two samples M and L is insignificant, so the null hypothesis can not be

rejected.

Linear Regression

Linear regression examines the relationship between two variables X and Y . A linear

regression creates the equation Y = a + bX. The slope of the line is b. The intercept is a

which is the value of Y when X = 0. R-squared value R2 is the square of the correlation

coefficient. The correlation coefficient is a measure of the reliability of the linear relationship

between the X and Y values. R2 is a value between -1 and 1 indicating the strength of
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the association of the observed data for the two variables X and Y . A R2 value close to 1

indicates an excellent linear reliability between X and Y .

We plan to test whether there is a relationship between the game-theoretic solutions x∗

and experimental results x̄. The linear regression helps us to investigate whether there is a

significant association between x∗ and x̄.

4.2 Experimental Results and Observations

Generally speaking, the experimental results from the co-evolutionary system can be judged

in two ways:

1. compare and contrast experimental results of the co-evolutionary system with game-

theoretic properties and/or game-theoretic solutions;

2. compare and contrast experimental results of the co-evolutionary system with human

behaviors observed in experimental economics. Findings and observations in literature

of experimental economics vary greatly. These experiments were typically done on

human subjects. Humans have different utility functions. Humans may change their

minds so their utility functions are not stable. The differences in experimental subjects’

age, educational level, culture and geographical location cause great discrepancies in

findings. Therefore, there lacks commonly accepted conclusions, for example in [BSS89,

GS93]. It deserves long-term studies.

In this thesis we mainly evaluate our experimental results by the first way and very briefly

evaluate them by the second way. We leave the latter for future work.

This section analyzes experimental results. Bargaining theory emphasizes the properties

of game-theoretic solutions at three aspects:
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• Partition 2 of the cake: how the cake is split [Mut99].

• Efficiency of the agreement: whether the cake is solely split by two players so the

agreement is the most efficient one. If players spend any portion of cake that he obtains

for bargaining cost, the agreement is not efficient (also in Section 2.3.1 and [Mut99]).

• Stationarity of agreement: whether players intend to unilaterally withdraw from such

an agreement (also in Section 2.3.1 and [Mut99]). Put it another way, if players want

to make the same agreement next time, this agreement is stationary.

We regard these three aspects as the major points to investigate experimental data. Besides

these three aspects, the adaptive learning in co-evolutionary process and the computational

resources of using the co-evolutionary algorithm are also analyzed.

4.2.1 Partition of Cake in Agreement

In one run, x1 is player 1’s share from an observed agreement made by the pair of the

best-of-generation (highest fitness) strategies, one from the population 1 and another from

population 2, at the end of evolution (300th generation in our experiments). x̄1 is the average

of 100 x1s from 100 runs for a given (δ1, δ2). The results of x̄2 is not reported for CRub82

problem because it is merely the complement of x̄1.

We execute 100 runs with different random seeds for each game setting (δ1, δ2). Totally

25 game settings are tested.

The SPEs of the first players (x∗1s) are shown in Table 4.1. The differences between SPE

x∗1 and x̄1 is: (x∗1−x̄1) shown in Table 4.2. The t-test on the null hypothesis (x∗1−x̄1 = 0) can

not be rejected with 95% confidence where t-critical value two-tail = 2.0639 and t-statistic

2Some game theorists [Mut99] use the term “distribution” to refer partition.
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The SPE values
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.1 0.9091 0.9278 0.9474 0.9677 0.9890
0.3 0.7216 0.7692 0.8235 0.8861 0.9589
0.5 0.5263 0.5882 0.6667 0.7692 0.9091
0.7 0.3226 0.3797 0.4615 0.5882 0.8108
0.9 0.1099 0.1370 0.1818 0.2703 0.5263

Table 4.1: The SPE solutions: x∗1s.

value = −0.8513. There is no statistical evidence to show that the experimental results are

different from the game-theoretic solutions.

From the linear regression analysis on the results in Table 4.2, the correlation coefficient

R2 of the association between x∗1s and x̄1s is 0.9928, which is very close to 1. The linear

regression’s coefficient variable is 0.9588 and its coefficient intercept is 0.0257. These two

values tell on what extent SPEs are approximated by experimental results. In this case,

the regression equation is x∗1 = 0.9588 × x̄1 + 0.0257. SPE is linearly approximated by the

experimental results. The strength of the relationship between x∗1s and x̄1s is illustrated in

Figure 4.1. This scatter plot indicates an increasing trend. So the linear regression provides

a useful model for this association 3.

We observe the distribution of x1s. After 300 generations, the 100 x1s cluster around

SPE, having a minority of exceptions found. For most of the 25 tested game settings, the

SPEs are within the distributions of experimental x1s, for example, shown in Figure 4.4 and

Figure 4.5. In Figure 4.4 and Figure 4.5 the x1s of 100 runs are plotted according to their

frequencies in the range of [0, 1]. Shown in Figure 4.4, 48% of the x1s of 100 runs are in

the range of [0.65, 0.70]; the 50% the x1s of 100 runs are in the range of [0.70, 0.75]. The

SPE x∗1 = 0.6667 is in the range of [0.65, 0.75]. Shown in Figure 4.5, 90% of the x1s of 100

3If there appears no association between x∗1 and x̄1 variables (i.e., the scatter-plot does not indicate any
increasing or decreasing trends), then fitting a linear regression model to the data probably will not provide
a useful model.
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Figure 4.1: Linear regression of x∗1 and x̄1. The horizontal axis is x̄1 and the vertical axis is
x∗1.

runs are in the range of [0.98, 1.00]. The SPE x∗1 = 0.9890 is in the range of [0.98, 1.00].

Therefore it is very likely that the co-evolutionary system generates exactly same solutions

as SPE, at a certain level of precision.

In Table 4.2, when δ2 < 0.3∪ (δ2 = 0.5∩ δ1 ≤ 0.5), the (x∗1− x̄1)s are negative, meaning

that x̄1s are larger than x∗1s. For the rest of game settings, x̄1s are smaller than x∗1s. Figure

4.2 demonstrates how (x∗1 − x̄1) changes over the space δ1 × δ2. For a given δ1 the tendency

is that while δ2 increasing, (x∗1 − x̄1) starts with a negative value nearly 0. It deepens until

it across a certain point around δ2 = 0.5. Then (x∗1− x̄1) increases gradually and becomes a

positive value. After some points around δ2 > 0.7, (x∗1 − x̄1) approaches to 0 again. Figure

4.3 displays (x∗1 − x̄1)s over the space δ2 × δ1. When δ2 < 0.5 (x∗1 − x̄1)s are below 0; When

δ2 = 0.5, (x∗1 − x̄1) increases from negative to positive values; when δ2 > 0.5, (x∗1 − x̄1) > 0.

These patterns exhibit that two discount factors have different influences on x̄1s.
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(x∗1 − x̄1)
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.1 -0.0135 -0.0715 -0.0520 -0.0308 -0.0098
0.3 -0.2775 -0.2308 -0.1741 -0.1075 -0.0371
0.5 -0.1606 -0.0963 -0.0087 0.0841 0.1643
0.7 0.0002 0.0258 0.1016 0.2287 0.1266
0.9 0.0821 0.0280 0.0780 0.0001 0.0122

Table 4.2: The differences between SPE x∗1s and experimental x̄1s.
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Figure 4.2: (x∗1 − x̄1)s over the space δ1 × δ2
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Figure 4.4: The frequency distribution of x1s when δ1 = 0.5 and δ2 = 0.5. The vertical line
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Figure 4.5: The frequency distribution of x1s when δ1 = 0.9 and δ2 = 0.1. The vertical line
is SPE x∗1 = 0.9890. The horizontal axis is x1 and the vertical axis is x1’ frequency.
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4.2.2 Bargaining Time and Efficiency of Agreement

In addition to the partition of cake, the time for reaching agreements is also important. A

cake is divided most efficiently when the agreement is reached at t = 0. In such an agreement,

the cake is solely shared by the two players and players spend nothing on the bargaining

costs. The longer the bargaining time, the more bargaining costs are incurred and therefore

the less efficiency of an agreement. t is an indicator of the efficiency of an agreement. Any

t > 0 implies delay and inefficiency.

In SPE, all deals settle down at t = 0. In one run, t is the bargaining time for reaching

an agreement by the best-of-generation individuals each from one of the two populations

at the 300th generation. t̄ is the average of 100 ts of 100 runs for a given (δ1, δ2). t̄s and

their corresponding discount factors are reported in Table 4.3. In experiments, not every

agreement is settled at the time t = 0. There is a tendency in t̄s: when both δ1 and δ2

are small enough (≤ 0.5), delays never happen. Moreover δ2 has more influence on the t̄

than δ1 in that δ1 ≥ 0.9 does not necessarily lead to delays, but δ2 ≥ 0.9 does certainly.

Delays (t > 0) emerge as a consequence of players’ preferences to higher utilities and of

their expectations that higher utilities will obtain in future. This is especially true for more

patient players who have large discount factors. Impatient players on the other hand, are

eager to agree as soon as possible to avoid any delay otherwise they will afford relatively

higher costs than that of patient players would.

4.2.3 Stationarity of Agreement

Game-theoretic equilibriums are stationary. In theory stationarity means that players have

no intention to unilaterally withdraw from such an equilibrium [Mut99]. In game theory

stationarity strictly constrains to the exactly game-theoretic solution(s).
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Experimental Bargaining Time t̄
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.10 0.00 0.00 0.00 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.30
0.70 0.21 0.02 0.00 0.27 0.64
0.90 0.14 0.04 0.22 0.96 3.74

Table 4.3: The average of bargaining time t̄ for a (δ1, δ2).

In experiments, due to the stochastic nature of evolutionary algorithms, we measure the

stationarity by the deviation of the behaviors of genetic programs in a population at the

last generation. If in a population, all genetic programs make the same or similar offers

and counter-offers, this population and its player’s behaviors are stationary. If both players’

behaviors are stationary, the agreements that they achieve are certainly stationary as well.

Moreover we assume that when the deviation is smaller than 0.05 the agreement made by

the best-of-generation genetic programs is stationary.

There is a relevant concept “stability of evolutionary system” [LP02]. Strictly speaking

when a population converges, individuals in the population have almost the same genotypes

[Daw76]. This population is evolutionarily stable. Genotype in biology refers to the structure

of DNA 4. In genetic programming genotype refers to the structure of the syntax tree of a

genetic program. Phenotype in biology is the characteristics and behaviors of an individual

5. The phenotype of a genetic program in the co-evolutionary system is its player’s behaviors

in a bargaining game. Two individuals may have very similar genotypes, but they may have

4“The genotype is the specific genetic makeup (the specific genome) of an individual, in the form of DNA.
Together with the environmental variation that influences the individual, it codes for the phenotype of that
individual.” [Wik06c]

5“The phenotype of an individual organism is either its total physical appearance and constitution or
a specific manifestation of a trait, such as size, eye color, or behavior that varies between individuals.
Phenotype is determined to some extent by genotype, or by the identity of the alleles that an individual
carries at one or more positions on the chromosomes. Many phenotypes are determined by multiple genes
and influenced by environmental factors. Thus, the identity of one or a few known alleles does not always
enable prediction of the phenotype.” [Wik06d]

81



4.2 Experimental Results and Observations

very different phenotypes.

We consider for bargaining games, the convergence of genetic programs’ phenotypes is

more important. To use the convergence of individuals’ phenotype implies that we do not fo-

cus on the individuals’ genotypes. In the co-evolutionary system, we measure the stationarity

of agreements by how different the phenotypes of genetic programs are in a population at the

last generation. For evolutionary stability of the co-evolutionary system, as long as genetic

programs make the same offers and counteroffers in the bargaining game, the co-evolving

landscapes hardly change even if these genetic programs have very different genotypes.

In short for both the measure of evolutionary stability of the co-evolutionary system

and the measure of stationarity of agreements, we adopt the measure on the phenotypes of

genetic programs in populations at the end of evolution.

We use the deviation σ of x1s as the statistic measure of the difference among phenotypes

of genetic programs in a population. The value of σ also reflects the stability of the co-

evolutionary population. σ is the indicator of both evolutionary stability and stationarity

of agreements. We assume that when both populations have σ ≤ 0.05, the co-evolutionary

system is evolutionarily stable and agreements are stationary.

We report the σs for x1s. The σs for x2s are not reported because they are found to be

very similar to σs of x1s under the same (δ1, δ2). In the initial generations, the deviation σs

can be as high as 103. As in Table 4.4, at the end of evolution, the deviation σs are relatively

small: 19 out of 25 deviations are less than 0.05. 3 σs out of the rest are less than 0.09. Only

3 of 25 have deviations between 0.1 and 0.12. Such data indicate that the final populations

remain evolutionarily stable even when the mutations apply on both populations and that

observed agreements are of high stationarity.
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Deviation σ of x1s
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.1 0.0308 0.0037 0.0030 0.0052 0.0030
0.3 0.0030 0.0000 0.0054 0.0079 0.0094
0.5 0.0128 0.0139 0.0271 0.0272 0.0847
0.7 0.1170 0.0397 0.0091 0.1148 0.0838
0.9 0.0288 0.0223 0.0432 0.0773 0.1194

Table 4.4: The values of deviations σs.
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Figure 4.6: A typical run: the best-of-generation genetic programs for player 1, notated as
A. The pair of discount factors is (0.9, 0.4). The line y = 0.9375 is the SPE of player 1. The
overlaps of share x1, p1 (player i’s utility), and g1 imply that agreements are settled down
at time t = 0. No bargaining cost incurs.
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Figure 4.7: A typical run: the best-of-generation genetic programs for player 2, notated as
B. The pair of discount factors is (0.9, 0.4). The line y = 0.0625 is the SPE of player 2.

4.2.4 Adaptive Learning Driven by Relative Fitness

Besides the partition of cake, the efficiency and stationarity of agreement, we are interested

in how players learn to make efficient agreements from naive players at the beginning. The

co-evolutionary system opens a window to observe the process of adaptive learning over

evolutionary time. Neither can game-theoretic solution nor ESS provide such information.

In Figure 4.8 and 4.9, two players’ discount factors are (δ1, δ2) = (0.5, 0.5). The horizontal

line in Figure 4.8 is 0.6667 and the horizontal line in Figure 4.9 is 0.3333. They are SPEs

for player 1 and 2 respectively. The other values displayed are the shares in agreements xis

and the utilities uis. xis and uis are achieved by the best-of-generation genetic programs of

every generation. Genetic programs continually update themselves over evolutionary time

to co-adapt each other and come up with relatively stable xis and uis.

We comment now on modifications of phenotypes of genetic programs in this typical run

in Figure 4.8 and 4.9. In the initial populations, genetic programs are generated randomly.
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This means that a player obtains roughly 50% of the cake in average. Soon after player

1 learns that he can obtain more. He changes his first offer to as much high as he can in

order to maximize his utility. In Figure 4.8, after 100 generations player 1’s shares x1s and

utilities u1s overlap SPE. He approaches the minimal value that player 2 accepts. It is very

close to SPE. In the mean time, player 2 learns that she has to secure an agreement as soon

as possible because it is not worthy for her to wait. So player 2 decreases her counter-offers

and the acceptable shares. Thus players finally reach at the point where both of them are

willing to agree at time 0 with no bargaining costs paid. No player wants to unilaterally

withdraw from this agreement. This is verified by the fact that both utilities and shares in

agreements stabilize and are very close to SPE horizontal lines. Players’ behaviors after the

evolutionary training fit nicely with the theoretical explanation.

Figure 4.6 and 4.7 illustrate another typical run with discount factors (0.9, 0.4). It tells

a similar story.

4.2.5 Learning Process Monitored by Absolute Fitness

The above findings from analyzing experimental results on partition of cake, efficiency of

agreement and stationarity of agreements demonstrate that experimental results from the

co-evolutionary system convincingly approximate the game-theoretic solution. These experi-

mental results are generated by using the fitness function on the basis of relative fitness eval-

uation GF (s(gi)). This indicates that the relative fitness successful guides the co-evolving

players to perform nearly subgame perfect equilibrium strategies. It is also important to

know what role the absolute fitness evaluation plays in this co-evolutionary system.

The experiments by using absolute fitness are designed in Subsection 3.5.4 with notations

in Table 3.4. Two example runs are used to illustrate how absolute fitness functions work.
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Figure 4.8: Player 1’s shares and utilities by the best-of-generation genetic programs in
Population 1 over 300 generations. (δ1 =0.5 and δ2 = 0.5). In the notation box, the first
is x1 which notates player 1’ share from the agreement made by the best-of-generation
individuals; the second is u1 which is the utility corresponding to x1; the third is x∗1 which
is SPE solution.
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Figure 4.9: Player 2’s shares and utilities by the best-of-generation genetic programs in
Population 2 over 300 generations. (δ1 =0.5 and δ2 = 0.5). In the notation box, the first
is x2 which notates player 2’ share from the agreement made by the best-of-generation
individuals; the second is u2 which is the utility corresponding to x2; the third is x∗2 which
is SPE solution.
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Figure 4.10: The highest and the average relative fitness of AC , and the highest and the
average absolute fitness of AP , both against the co-evolving BC . The average AC does not
display because it is much smaller than the other three values.

In a typical run shown in Figure 4.10, it is observed that in a very short period of time

immediately after the beginning, the best-of-generation in the co-evolving population 1: AC ,

performs better than AP . It is because SPE is unable to exploit inexperienced strategies in

BC who offer or accept a partition of cake less than the x∗2 in SPE. But some strategies in

AC can take advantage of these weakly performed strategies in BC by asking lager shares

than SPE.

After first twenty of generations the average absolute fitness of AP declines and stabilizes

after around 150th generation. This suggests that AC ’s co-evolving BC is learning to gain

more utilities than BC did at the beginning when BC had no experience. Importantly BC ’

such improvement does not reflect on his relative fitness against his co-evolving opponent

AC . Figure 4.10 tells that AC ’s relative fitness remains stable after the 100th generation.

Therefore, it is the absolute fitness AP or AR that provides information concerning a co-
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Figure 4.11: The highest and the average absolute fitness of AR and the relative fitness of
AC against BC .

evolving population’s (BC ’s) adaptation and improvement. Relative fitness of AC tells little

about how BC improves.

Another absolute fitness function for studying the co-evolving population BC is a static

and randomly generated population AR. In Figure 4.11, the highest absolute fitness of AR

almost overlaps the highest relative fitness of AC . Both values quickly decline from 3.5 to

3.27. This implies that BC quickly discovers the approximation to SPE and also improves its

competitive strength against both AC and AR. Due to the diversity property of the random

population AR, the absolute fitness of AR is less indicative on BC ’s adaptation than the

absolute fitness AP is.

Let summarize the observations of relative and absolute fitness. In the application of the

co-evolutionary algorithm to the bargaining problem CRub82, we analyze the co-adapting

process of two populations through observing development of individuals’ relative and abso-

lute fitness. We gain insights into not only the empirical justification to the game-theoretic
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SPE, but also the importance of adopting absolute evaluations to the co-evolutionary adap-

tive system. On the ground of experimental observations, the relative fitness continues push-

ing individuals to co-adapt. The absolute evaluation, on the other hand, provides information

on the co-evolving process. Absolute fitness monitors the development of co-evolution. Hav-

ing analyzed the learning behaviors of strategies based on their absolute fitness, we explain

how co-evolving populations stabilize at the perfect equilibrium.

4.2.6 Computational Resources

We implement the co-evolutionary system by JAVA version “1.4.2” and use GNU Compiler

for the Java Programming Language (GCJ). This Java compiler is developed by Sun. A

Linux machine with an athlon2400 processor executes about 1 hour to test a game setting

(δ1, δ2) with 100 runs. We only spent about a day to run experiments for 25 sets of game

settings. Compared with either an exhaustive search or an ordinary human user of game

theory, the artificial simulation, in particular evolutionary simulations, is dramatically more

efficient for solving CRub82 problem.

4.2.7 Evolve Genetic Programs for All Game Settings

The design of experiments in Section 3.5 aims to evolve genetic programs for a specific game

setting (δ1, δ2). We have tried to evolve genetic programs which adapt to all 25 game settings.

It was hoped that the exact functions of game-theoretic solutions will be found.

A report about this experiments is detailed in Appendix H.

4.3 Concluding Summary

We treat the game-theoretic solutions as the benchmark, comparing them verse experimen-

tal results on the division of cake, on the efficiency of agreement and on stationarity of
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agreement. Comparative studies discover exciting findings as well as new understanding of

co-evolution. Under the assumptions of players’ bounded rationality, experimental results

statistically approximate game-theoretic solutions. Experimental results also display rela-

tively high efficiency and stationarity. It is confirmed that the relative fitness essentially

drives co-evolution towards perfect equilibrium.

In addition, this study investigates the players’ adaptive learning in the co-evolving pro-

cess. The trial-and-error training experiences under the co-evolutionary framework guide

both players to improve their adaptation to each other. Relative fitness is the driving force

of co-evolution; absolute fitness plays the role of a monitor of adaptive learning. From ex-

perimental results, we understand whether and how the absolute fitness contributes to the

development of co-adaptation.

The computational costs we have spent are rather low. It is much lower than the cost by

using the game-theoretic method or an exhaustive search.

The next chapter concentrates on specifying the constraint satisfaction in the CRub82

problem. We invent a constraint handling technique, called the Incentive method, to manage

the constraints. Then the relative fitness function is to be integrated by Incentive method.
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Chapter 5

Constraint Driven Search - Incentive
Method

5.1 Introduction

We establish a theoretic co-evolutionary framework and apply it to the CRub82 bargaining

problem in the previous two chapters. The fitness function is so complicated that we need

to elaborate one of its features in one chapter. Chapter 3 focuses on the co-evolutionary

interactions and the relative fitness of individuals. This chapter aims to address another

important concern of the fitness function on handling constraint satisfaction.

The CRub82 bargaining problem can be viewed as a multi-constraint optimization prob-

lem. It has both hard and soft constraints. Existing constraint handling techniques in

evolutionary algorithms are to be surveyed in Section 5.1.1. Most of existing constraint

handling techniques are not purposely designed for dealing with problems which have both

hard and soft constraints at the same time. How to deal with such problems motivates us

to design a constraint handling technique - Incentive method.

Section 5.2 formally defines the Incentive method. This method aims to handle both

hard and soft constraints in an evolutionary algorithm.

Section 5.3 specifies both the hard and the soft constraints in CRub82 bargaining prob-
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lem. Section 5.4 applies the Incentive method to the co-evolutionary system for CRub82

bargaining problem. Section 5.5 names the Constraint-based Co-evolutionary Genetic Pro-

gramming System.

In Section 5.6, experimental results using Incentive method are compared with results

using a penalty method and with results using a co-evolutionary algorithm without constraint

handling technique. We end this chapter with the conclusion that on the ground of statistic

analysis, the Incentive method is a more effective method than the other two techniques for

the CRub82 problem 1.

5.1.1 Common Constraint Handling Techniques

Many optimization problems involve constraints. The well known constraints handling tech-

niques used in evolutionary algorithms include: penalty methods; repair algorithms; multi-

objective functions [Coe99, Mic95, MJ96] and co-evolutionary models [Coe02, CR03b]. We

explain more on the penalty methods and repair methods. The penalty method [RPLH89,

CEM01,CEvH03], penalizes infeasible or unfavorable individuals. In general, it transforms

a constrained optimization problem “max f(x) subject to w(x) ≤ C” to an unconstrained

problem “max Y (x) = f(x) − Penalty(x)” by defining the penalty function Penalty(x).

Given the same value of f(x)−Penalty(x), we can not differ one f(x1)−Penalty(x1) which

has a high value of f(x1) and a high value of Penalty(x1) from another f(x2)−Penalty(x2)

which has a low value of f(x2) and a low value of Penalty(x2).

A death penalty method rejects any infeasible individual. Repair methods use domain

specific operators to modify infeasible individuals to feasible ones. Repair methods have been

used for solving many combinatorial optimization problems ( [LV90, LP91, Mic95, MJ96]).

1Initial work of this chapter has been published in [TJ06].
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Brown et al. [BLCF04] examine constraint satisfaction for multiple adversaries who have

different objectives. Little [LFC03] shows that a multi-objective constraint optimization

problem can be viewed as multiple-player game playing.

5.2 Formal Definition of the Incentive Method

There are two types of constraints in some optimization problems. Hard constraints describe

feasibility of solutions. Soft constraints describe preferences, which often encode users’ partial

knowledge about good solutions. Candidate solutions can be classified into three qualitatively

different sets: feasible, infeasible and preferred. The preferred set is not necessarily a subset

of the feasible set. 2 No matter how many soft constraints a candidate solution satisfies, its

satisfaction to hard constraints still has the first priority. Soft constraints may have different

priorities among themselves. For such complicated problems, it is sometimes difficult to

define penalties for penalty methods or to repair solutions to satisfy hard constraints while

still taking soft constraints into consideration. It is also difficult to decide which of the many

soft constraints can be sacrificed to ensure that the hard constraint(s) is (are) satisfied.

We present the Incentive method as a complementary method to penalty, repair methods

and hybrid methods, to handle multiple constraints in evolutionary algorithms. By intro-

ducing the Incentive method, we attempt to deal with each type of constraints individually,

through differentially rewarding individuals (candidate solutions) depending on the level of

constraints they satisfy. Moreover, the Incentive method is designed to enable us to integrate

2There is an informal example to help understand the idea of hard and soft constraints. The optimization
problem is to have a drink. “I am not allowed to drink in the seminar room by the department’s regulation”
is the hard constraint; “I prefer Coke to Pepsi” is a soft constraint. Coke is a preferred choice, no matter I
am in the seminar room or not. In this simple case, the best choice is (a) “stay outside the seminar room
and have a Coke”. It satisfies both the hard and soft constraint. (b) “stay outside the seminar room and
drink Pepsi” is the second order choice which satisfies the hard constraint but is not preferred; (c) “stay
inside the seminar room” is the last choice as I can not achieve the goal of having a drink.
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5.2 Formal Definition of the Incentive Method

extra problem-specific knowledge into fitness functions. Constraints are used to guide the

search [Tsa93], as opposed to being seen as obstacles to the search.

The Incentive method is especially suitable for problems whose solutions can be cate-

gorized into different groups by the nature of constraints. The main idea of the Incentive

method is to define the relevance of each type of constraints to the quality of a solution.

Thus all candidate solutions can be categorized into partially ordered sets. For example,

the set of solutions violate hard constraints are definitely less favorable to the set of solu-

tions that only violate some soft constraints, which are in turn less favorable to solutions

that violate no constraints. Note that some soft constraints may not be strictly ordered.

The partial order of the constraints is translated into the fitness function. Thus evolution

rewards favorable candidate solutions according to this partial ordering mechanism. This

helps to guide the evolutionary search to allocate more effort to the search areas that are

more promising, without totally denying access to other areas.

The formal definition of Incentive method is below:

Definition 5.1: Incentive Method: An optimization problem has hard constraint(s) that

define feasibility of solutions, and soft constraint(s) that define preference properties in so-

lutions. The problem is to find x ∈ S to optimize f(x) where x can be a number, a vector or

a computer program. Let S be the search space and E ⊆ S be the set of feasible solutions.

Further, let Q ⊆ S be the set of solutions that meet soft constraints, i.e. the set has preferred

individuals. Q may not be a subset of E.

R(x) =





f(x) + C if x ∈ E ∩ x ∈ Q
k(x) if x ∈ E ∩ x /∈ Q
h(x) if x /∈ E

(5.1)

To instantiate R(x), users must define the functions k and h. Functions k and h must
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satisfy the condition h(x) < k(x) < f(x) + C where C is a constant. C is not strictly

necessary; it is included so that k and h do not have to return negative values to meet the

condition h(x) < k(x) < f(x) + C. Problem-dependent knowledge is required to define k(x)

and h(x) in the Incentive method. Effective definitions of k(x) and h(x) help the search to

allocate its effort more effectively. Therefore, the definition of k(x) and h(x) can be seen as a

burden on users, but it can also be seen as an opportunity for channelling domain knowledge

into the search method.

The conditions in Equation (5.1) ensure that solution sets are strictly ordered. Even if a

feasible solution violates many soft constraints, it is still preferred than any infeasible one.

A solution x that violates no constraints at all is preferred to a feasible solution x′ that

violates one or some soft constraints, whatever the values of f(x) or f(x′) is. The Incentive

method does not prevent a search from considering infeasible regions of the search space.

This is because infeasible solutions may contain valuable genetic materials that are needed

for finding global optimal solutions. However, the Incentive method discourages candidate

solutions in infeasible regions to produce offspring.

5.3 Constraints in CRub82

The CRub82 bargaining problem implies a hard constraint: any offer or counter-offer of

diving the cake must be within the size of cake. Any offer or counter-offer that does not

obey this constraint is infeasible. Besides, the common sense tells that the player has a

relatively higher discount factor (lower bargaining cost per time interval) is in a stronger

position to bargain. This is because one time-interval delay costs him less than the same

delay costs to the other player.

We list the hard constraint C1 and two soft constraints C2 and C3:
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C 1. Any share on the partition of cake should be a value within the size of cake: xi ∈ (0, 1];

This constraint must be satisfied.

C 2. Everything else being equal, the higher discount factor a player i has, the larger share

xi he obtains. This constraint is derived from problem-specific knowledge.

C 3. Everything else being equal, the higher discount factor the other player j has, the

smaller share xi player i gets. This constraint is derived from problem-specific knowledge.

5.4 Incentive Method in Fitness Function for CRub82

Success of applying evolutionary algorithms relies on appropriate fitness functions that eval-

uate performance of individuals. The relative fitness for CRub82 bargaining problem is

defined in Section 3.5.4. How to integrate the constraints into the fitness function is the

main purpose of this section. We apply Incentive method to fulfil the purpose.

The game fitness GF (gi) is designed for feasible individuals which satisfy C1. The

features of soft constraints C2 and C3 help define k(x) and h(x) in Equation (5.1).

Sensibility Measure and Evaluation of Attribution

Obviously not all genetic programs meet the C1, C2 and C3 constraints, especially when

the genetic programs are created randomly at the initial generation. Sensibility Measure

SM is invented to measure whether a genetic program characterizes C2 and/or C3. Let

gi(p, q) be the instantiation of a genetic program gi with δi being substituted by p and δj

being substituted by q. An arbitrary real numbers α ∈ (0, 1).

Definition 5.2: Sensibility Measure of a genetic program gi
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SMi(δi, δj, α) =





−gi(δi,δj)−gi(δi×(1+α),δj)

gi(δi,δj)

if δi × (1 + α) < 1;
gi(δi,δj)−gi(δi×(1−α),δj)

gi(δi,δj)

if δi × (1 + α) ≥ 1;

(5.2)

SMj(δi, δj, α) =





gi(δi,δj)−gi(δi,δj×(1+α))

gi(δi,δj)

if δj × (1 + α) < 1;

−gi(δi,δj)−gi(δi,δj×(1−α))

gi(δi,δj)

if δj × (1 + α) ≥ 1;

(5.3)

SM describes C2 and C3 in a mathematical manner: when player i’s discount factor

increases from δi to (δi × (1 + α)) ∈ (0, 1), the genetic program gi that positively correlates

to δi should be rewarded. The amount of reward depends on the degree of the increment

from gi(δi, δj) to gi(δi× (1 + α), δj). In the case of α is too large to make δi× (1 + α) satisfy

the definition δ ∈ (0, 1), we decrease the discount factor δi to δi × (1 − α). The value of gi

should decrease accordingly. So gi(δi, δj) should be larger than gi(δi× (1−α), δj) under C2.

When the other player j’s discount factor is taken into consideration, the genetic program

gi that negatively correlates to δj should be rewarded. SMj(δi, δj, α) returns such rewards.

In short, positive values returned from SMi(δi, δj, α) and SMj(δi, δj, α) indicate that the

genetic program gi satisfies the constraints C2 and C3, respectively.

Definition 5.3: Evaluation of Attribution (ATT ) defines the incentive value to the genetic

program gi whose Sensibility Measures are SMi and SMj. The incentive is calculated by

gi’s satisfaction to constraints.

ATT (i) =





1
if SMi(δi, δj, α) > 0

−e
1

SMi(δi,δj ,α)

if SMi(δi, δj, α) ≤ 0

(5.4)
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ATT (j) =





1
if SMj(δi, δj, α) > 0

−e
1

SMj(δi,δj ,α)

if SMj(δi, δj, α) ≤ 0

(5.5)

When SMi or SMj returns a positive value, meaning that it satisfies the soft constraint,

ATT (i) or ATT (j) gives the highest incentive value 1. When SMi or SMj returns a non-

positive value, ATT gives an incentive less than 0. The exact incentive value depends on how

close SMi or SMj is to 0. The closer SMi or SMj to 0, the higher incentive value is given by

the ATT (i) or ATT (j). Here we adopt the function −e
1

SM to control this incentive rewarding

algorithm. For a non-positive value of SM, ATT is always negative in the range between

(−1, 0). For SM → 0−, ATT goes quickly to nearly 0. For SM < −1 and SM → −∞,

ATT goes quickly to −1. The function −e
1

SM is problem-dependent and is not the only way

to implement the idea of incentive rewarding. It is chosen here for its simple structure.

Fitness Function

A genetic program gi that satisfies the constraint C1 is converted to a bargaining strategy

s(gi). Strategies pair-wisely play the CRub82 bargaining game. An individual’s game fitness

depends on the composition of the other player’s co-evolving population. Thus its game

fitness against a co-evolving population is its relative fitness, changing over evolutionary

time. Just recap that Game Fitness GF (s(gi)) to the co-evolving population is defined as

the average utility of the strategy s(gi) gained from bargaining against every s(gj) in the

co-evolving j’s population 3.

Definition 5.4: Fitness Function F (gi) incorporated with the Incentive Method determines

the overall fitness of gi whose Sensibility Measures are SMi and SMj and whose Evaluation

3Definition of s(gi) is in Section 3.5.4.
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of Attribution are ATT (i) and ATT (j).

F (gi) =





GF (s(gi)) + 3
if gi ∈ (0, 1] ∩ SMi > 0 ∩ SMj > 0

GF (s(gi)) + ATT (i) + ATT (j)
if gi ∈ (0, 1] ∩ (SMi ≤ 0 ∪ SMj ≤ 0)

ATT (i) + ATT (j)− e
−1
|gi|

if gi /∈ (0, 1]

(5.6)

This is the top-level fitness function which integrates the Incentive method. It is applied

to all genetic programs in both populations. It instantiates the formal definition of the

Incentive method R(x) in Equation (5.1): f(x) + C = GF (s(gi)) + 3 returns the fitness

value of any genetic program which meets the hard constraint gi ∈ (0, 1] and the two soft

constraints SMi > 0 ∩ SMj > 0. Genetic programs that satisfy all three constraints are

rewarded a bonus of 3 plus their game fitness GF (s(gi)). This ensures that they dominate

the rest of genetic programs that fail to meet all three constraints and thus encourages

desired genetic programs to propagate. Integer 3 is an experimental value. Other integers

might be possible. If this value is too small, it may be insufficient to differentiate the genetic

programs with the feasible and preferred features from the rest of them. From experimental

results, the integer 3 is an appropriate value.

In Equation(5.6), k(x) = GF (s(gi))+ATT (i)+ATT (j): genetic programs that satisfy the

constraint C1, but do not meet C2 and/or C3, are still eligible for playing bargaining games.

Their fitness are their game fitness adding a value (ATT (i)+ ATT (j)). (ATT (i)+ ATT (j))

reflects how close genetic programs satisfy these two soft constraints. h(x) = ATT (i) +

ATT (j) − e
−1
|gi| : such genetic programs that violate the constraint C1 are not eligible for

playing bargaining games. Instead they are allocated a fitness solely based on the structures

of their genetic programs assessed by SM and ATT . Their fitness is definitely lower than

any genetic program that satisfies at least C1. In F (gi), GF (s(gi)) + 3 > GF (s(gi)) +
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ATT (i) + ATT (j) > ATT (i) + ATT (j)− e
−1
|gi| .

5.5 Constraint-based Co-evolutionary Genetic Program-

ming - CCGP

So far we have elaborated the three major features of the co-evolutionary system for the

CRub82 problem: Constraint-based, co-evolutionary interactions and using genetic pro-

gramming. This system therefore is named as Constraint-based Co-evolutionary Genetic

Programming, or CCGP. The CCGP is designed to be extensible and modifiable for various

two-player bargaining problems. The following three chapters witness adaptation of CCGP

to six other bargaining problems.

5.6 Experimental Results and Observations

This section reports and compares the experimental results generated by the co-evolutionary

system under three constraint handling techniques: Incentive method, Penalty method and

imposing no constraints.

5.6.1 Results from using Incentive Method

Two statistic methods measure the experimental results using Incentive method:

(1) Reported in Section 4.2 for experimental results of the 25 tested game settings, a

t-test over the hypothesis (x∗1 − x̄1 = 0) is done. The result of the t-test shows that there

is no statistically significant difference between the experimentally observed x̄1s and game-

theoretic x∗1s, with 95% level of confidence. A linear regression test shows that there is a

strong linear correlation between x∗1s and x̄1s.

(2) Two types of variations are defined below to measure the difference between x∗1 and
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experimentally observed x̄1 of a given game setting 4.

Definition 5.5: Absolute Variation (av) is an unsigned difference between the SPE x∗1 and

experimentally observed x̄1 for a given (δ1, δ2).

av = |x∗1 − x̄1| (5.7)

Definition 5.6: Relative Variation (rv) is an unsigned relative increment of x̄1 over x∗1.

rv =
|x∗1 − x̄1|

x∗1
=

av

x∗1
(5.8)

The reasons that we adopt two variation measures are that (i) for absolute variation, |x∗1 −

x̄1| = |x∗2− x̄2| is true. But for relative variation,
|x∗1−x̄1|

x∗1
=

|x∗2−x̄2|
x∗2

is always not true. Relative

variation may produce two different results for analyzing one experimental run; (ii) absolute

variation alone is insufficient to express the variation on the basis of the target point: SPE.

For example, two sets (x∗1 = 0.05, x̄1 = 0.06) and (x∗1 = 0.95, x̄1 = 0.96), both have the same

absolute variation av = 0.01, but the former set has a rv = 0.17 increment based on x∗1 and

the latter set has only a rv = 0.01 increment based on x∗1. In this sense, the relative variation

is more informative and indicative. For these two reasons we use both absolute and relative

variations.

The absolute variations of experimental results by the Incentive method are given in

Table 5.1. Most majority of the absolute variations avs are very small, especially for game

settings reported in Table 5.5. The relative variations by the Incentive method are in Ta-

ble 5.2.

Having obtained a general view on the results in Chapter 4, we further look into the

effectiveness of the Incentive method. The questions to be answered are: whether does

4The term “difference” is used for (x∗1 − x̄1), see Section 4.2. Here we use “variation” to notate |x∗1 − x̄1|
or |x∗1−x̄1|

x∗1
.
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Incentive Method (|x∗1 − x̄1|)
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.1 0.0135 0.0715 0.0520 0.0308 0.0098
0.3 0.2775 0.2308 0.1741 0.1075 0.0371
0.5 0.1606 0.0963 0.0087 0.0841 0.1643
0.7 0.0002 0.0258 0.1016 0.2287 0.1266
0.9 0.0821 0.0280 0.0780 0.0001 0.0122

Table 5.1: Absolute Variation by the Incentive Method (x∗1 is the SPE. x̄1 is the average of
x1s).

Incentive Method (|x∗1 − x̄1|/x∗1)
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.1 0.0149 0.0771 0.0549 0.0318 0.0100
0.3 0.3845 0.3000 0.2114 0.1213 0.0387
0.5 0.3051 0.1638 0.0131 0.1094 0.1807
0.7 0.0007 0.0679 0.2201 0.3889 0.1562
0.9 0.7472 0.2045 0.4292 0.0004 0.0232

Table 5.2: Relative Variation by the Incentive Method (x∗1 is the SPE. x̄1 is the average of
x1s).

the Incentive method outperform some other constraint-handling techniques, for instance,

widely applied Penalty method? Does the Incentive method produce better results than an

evolutionary algorithm having no constraint handling technique?

5.6.2 Results from using a Penalty Method

To evaluate the performance of the Incentive method, a control experiment using a penalty

method is conducted. The penalty method integrates to the fitness function F (gi)
′. It

penalties infeasible genetic programs. To be fairly comparable to the fitness function F (gi)

in which the Incentive method is used, F (gi)
′ implements the penalty function for infeasible

genetic programs as ATT (i) + ATT (j)− e
−1
|gi| .

Definition 5.7: Fitness Function F (gi)
′ incorporated with Penalty Method

F (gi)
′
=





GF (s(gi)) + ATT (i) + ATT (j)
if gi ∈ (0, 1]

ATT (i) + ATT (j)− e
−1
|gi|

if gi /∈ (0, 1]

(5.9)
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Penalty Method (|x∗1 − x̄1|)
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.1 0.0909 0.0722 0.0526 0.0323 0.0110
0.3 0.2784 0.2308 0.1765 0.1139 0.0411
0.5 0.1625 0.0986 0.0058 0.0813 0.1555
0.7 0.0066 0.0238 0.1025 0.2356 0.0855
0.9 0.0765 0.0184 0.0458 0.0021 0.0252

Table 5.3: Absolute Variation by Penalty Method (x∗1 is the SPE. x̄1 is the average of x1s).

Penalty Method (|x∗1 − x̄1|/x∗1)
δ2 value δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7 δ1 = 0.9

0.1 0.1000 0.0778 0.0556 0.0333 0.0111
0.3 0.3857 0.3000 0.2143 0.1286 0.0429
0.5 0.3088 0.1676 0.0087 0.1057 0.1710
0.7 0.0203 0.0627 0.2221 0.4005 0.1055
0.9 0.6965 0.1340 0.2516 0.0079 0.0479

Table 5.4: Relative Variation by Penalty Method ( x∗1 is the SPE. x̄1 is the average of x1s).

The same sequence of random seeds, the same genetic operators and the same sets of

discount factor pairs as those for experiments using the Incentive method are used in this

control experiment. The experimental results of F (gi)
′ on absolute variation and relative

variation are reported in Table 5.3 and Table 5.4.

Table 5.5 lists the average absolute variations of the Incentive method and those of the

penalty method, grouped by three ranges, namely av < 0.15, av < 0.10 and av < 0.05.

Table 5.6 lists the average relative variations of the Incentive method and those of the

penalty method, grouped by three ranges, namely rv < 0.15, rv < 0.10 and rv < 0.05. A

clear pattern displays: for all these three groups, both on absolute variation and on relative

variation, the Incentive method yields smaller variations than the penalty method does. x̄1s

found by Incentive method approximate better to SPE than those found by the penalty

method. Therefore, the Incentive method is more effective than the Penalty method in this

case. Moreover, counting the number of game settings, we find that for much more game
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Method Average of Average of Average of
Absolute Absolute Absolute
variations variations variationsP

av
m

P
av

m

P
av

m

when when when
0 ≤ av < 0.15 0 ≤ av < 0.10 0 ≤ av < 0.05

Incentive Method 0.0509 0.0394 0.0166
m 19 16 10

Penalty Method 0.0519 0.0453 0.0212
m 19 16 10

Table 5.5: Average of absolute variations (av in Equation(5.7)) under the specified ranges.
“m” is the number of avs in the specified range, amongst the 25 game settings.

Method Average of Average of Average of
relative relative relative
variations variations variationsP

rv
n

P
rv

n

P
rv

n

when when when
0 ≤ rv < 0.15 0 ≤ rv < 0.10 0 ≤ rv < 0.05

Incentive Method 0.0433 0.0302 0.0166
n 13 11 8

Penalty Method 0.0628 0.0426 0.0246
n 15 11 7

Table 5.6: Average of relative variations (rv in Equation(5.8)) under the specified ranges.
“n” is the number of rvs in the specified range, amongst the 25 game settings.

Absolute Incentive Tie Penalty
Variations Method better Method better
Number of 16 1 8
Game Settings

Relative Incentive Tie Penalty
Variations Method better Method better
Number of 16 1 8
Game Settings

Table 5.7: The number of game settings which Incentive method performs better than the
penalty method, amongst the 25 game settings.
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settings, Incentive method perform better than the penalty method, see Table 5.7.

5.6.3 Results from imposing No Constraint

To examine the effectiveness of the Incentive method, we further do experiments whose

fitness functions control none of the three mentioned constraints C1, C2 and C3. A genetic

program’s fitness function is its game fitness GF (gi). All genetic programs in populations

play the bargaining game. Under this non-constrained fitness function GF (gi), experimental

results show that for a given game setting (δ1, δ2), the majority of the 100 runs end with

genetic programs that offer x1s which are within the cake size, i.e. satisfying the hard

constraint. However, their average value x̄1 may have very large absolute and/or relative

variations. x̄1 deviates far away from the SPE, because a few runs might end up with some

x1s being exceptionally large or exceptionally small (including negative) values. For example,

in 100 runs of experiments on game setting (0.9, 0.1), 17 x1s out of 100 x1s end with asking

for x1 > 1. The highest x1 = 8× 1014. The rest of 83 runs end with 0 < x1 < 1. The reason

is that the search probably had no chance to enter the area of (0, 1]. The average value

of 100 runs, x̄1 thus does not meet the hard constraint xi ∈ (0, 1]. Therefore, imposing no

constraint into the fitness function is impractical in this case.

The co-evolutionary algorithm is one of constraint handling techniques [Coe02,CR03b].

In this study of two-player bargaining problems, the purpose of using co-evolution is not for

constraint handling but for simulating the two-player interactive behaviors.

5.7 Concluding Summary

This chapter introduces the Incentive method, which is a novel constraint handling technique

in evolutionary algorithms.
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The main idea of the Incentive method is to modify the fitness function by awarding

differential incentives according to the defined qualitative preferences. Solution sets are

divided by their satisfaction to constraints. The Incentive method uses constraints to help

allocating heuristic search effort more effectively. The Incentive method does not exclude

individuals in evolutionary algorithms the right to access such search spaces that violate

some or even all constraints.

We integrate the Incentive method into the game fitness of the co-evolutionary system.

We test this integrated fitness function to CRub82 bargaining problem. We compare the

experimental results from using incentive-based fitness function with those from using a

penalty-based fitness function and with those from a fitness function without any constraint

handling. We measure experimental results from different constraint handling techniques on

how close their solutions approximate SPE. Analytic results suggest that the fitness function

integrated with the Incentive method finds the best approximation to SPE than the other

two fitness functions, one with penalty method and another with no constraint handling.

This finding encourages us to apply the Incentive method to other bargaining problems and

some optimization problems with similar constraints features.

This chapter names the co-evolutionary system incorporated with the Incentive method

and implemented by genetic programming as Constraint-based Co-evolutionary Genetic Pro-

gramming, or CCGP. CCGP system is reused in later chapters as the general system for

tackling two-player bargaining problems.
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Chapter 6

CCGP for Bargaining Problems with
Incomplete Information

6.1 Introduction

It is well recognized that incomplete information situations are common occurrences in real

world bargaining scenarios. The existence of incomplete information captures an essential

aspect of realistic bargaining. In few circumstances players are fully informed about the

other players’ game relevant information.

The two-player bargaining problems that we attempt to study in this chapter are dynamic

games in the presence of incomplete information and perfect information. The main purpose

of this chapter is to empirically study the impact of players’ information completeness on

the outcomes in bargaining games. We aim to examine how players’ information affects bar-

gaining outcomes and whether the Constraint-based Co-evolutionary Genetic Programming

generates inefficient or disadvantageous solutions for a player who is not fully informed.

To address these issues, we introduce four bargaining problems imposed by different in-

puts on the players’ information. We restrict our attention to the problems having minor

modifications on the basis of the complete information bargaining problem CRub82 in or-

der to compare experimental results of incomplete information problems with those of the
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6.2 Incomplete Information Bargaining Problems

complete information problem. These four bargaining problems differ from each other on

players’ information. The bargaining scenario and utility functions remain unchanged.

We apply CCGP to solve four incomplete information bargaining problems and investi-

gate the experimental results on partition of cake in agreements, the efficiency of agreements

and the stationarity of agreements.

We modify the CCGP system to adapt these bargaining problems. The remainder of

this chapter firstly recaps CRub82 and ICRub85 bargaining problems and then introduces

three incomplete information bargaining problems in Section 6.2. The bounded rationality

assumptions on players’ behaviors are discussed in Section 6.3. Constraints are specified in

Section 6.4. The adaption of CCGP to fit the assumptions and constraints for incomplete

information bargaining problems is described in Section 6.5. Experimental results 1 are

analyzed in Section 6.6. Findings are discussed in Section 6.7 and it concludes in Section 6.8

2.

6.2 Incomplete Information Bargaining Problems

These incomplete information bargaining problems of interest together with CRub82 are

outlined in Table 6.1. The incomplete information studied in this chapter is static. For

example, in the Bilateral Ignorance Information bargaining problem, abbreviated as BGI, a

player j does not know the other player i’s time preference which is captured by the discount

factor δi. δi exists as a constant.

The computational complexity of any one of these four incomplete information bargaining

problem is higher than that of CRub82 bargaining problem (Section 3.2). The existence of

1The raw data of experimental results are available in Appendix E.
2Initial work of this chapter has been published in [Jin05].

108



6.2 Incomplete Information Bargaining Problems

Type Full names of bargaining Abbreviation Descriptions
problems in Chapter

Unilateral Rubinstein Bargaining 1985 [Rub85] ICRub85 2
Incomplete Unilateral Imprecise Information UII 6
Information Unilateral Ignorance Information UGI 6
Bilateral Bilateral Ignorance Information BGI 6
Incomplete
Information

Complete Rubinstein Bargaining 1982 [Rub82] CRub82 2
Information

Table 6.1: Four incomplete information bargaining problems and their comparable complete
information bargaining problem.

incomplete information increases the number of possible offers and counter-offers during a

bargaining encounter.

6.2.1 Recapitulation of CRub82 and ICRub85

For the purpose of measuring the impact of incomplete information on bargaining outcomes,

we use the experimental results in Chapter 4 of the comparable complete information bar-

gaining problem CRub82. It is solved by CCGP. In CRub82 problem, both players’ discount

factors are publicly known. Its game-theoretic solution, the Subgame Perfect Equilibrium is

the unique point where “no delay” and “stationarity” properties hold. In SPE player 1 offers

x∗1 =
1− δ2

1− δ1δ2

(6.1)

Player 2 certainly accepts this offer x∗1 and receives (1− x∗1) of the cake at t = 0. Therefore,

two players’ utilities are u1 = x∗1 and u2 = 1− x∗1. There is no bargaining cost spent.

ICRub85 bargaining problem and its game-theoretic solutions are introduced in great

detail in Section 2.3.2. Table 6.2 lists the game variables and their properties. Player 1 only

knows that the value of player 2’s discount factor δ2 is either δw or δs. δs is strictly larger

than δw. Player 2 knows player 1’s discount factor is δ1. The possibility of player 1’s initial
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6.2 Incomplete Information Bargaining Problems

Player Variable Explanation Privacy

1 δ1 Play 1’s discount factor Public

2 δ2 Player 2’s real Private
discount factor

2′ δ′2 Incorrect player 2’s Private
discount factor

2s δs = MAX{δ2, δ
′
2} Public

Strong type
2w δw = MIN{δ2, δ

′
2} Public

Weak type

ω0 Player 1’s initial belief Public
of the possibility
of δ2 = δw

Table 6.2: Notations of Variables in ICRub85.

δ2 = δw δ2 = δs

x∗1 t∗ x∗1 t∗

ω0 < ω∗ Vs 0 Vs 0
ω0 > ω∗ xω0 0 yω0 1

Table 6.3: Player 1’ share x∗1 and bargaining time t∗ for reaching the PBE agreement. Player
2’s share in the PBE agreement is x∗2 = 1− x∗1. Bargaining starts at time 0.

belief on player 2’s discount factor being δw is ω0. Table 6.3 summarizes the game-theoretic

solutions Perfect Bayesian Equilibrium (PBE), where

Vs =
1− δs

1− δ1δs

(6.2)

ω∗ =
Vs − δ2

1Vs

1− δw + δ1Vs(δw − δ1)
(6.3)

xω0 =
(1− δw)(1− δ2

1(1− ω0))

1− δ2
1(1− ω0)− δ1δwω0

(6.4)

Player 1 correctly guesses the value of δ2 when ω0 = 1 and δ2 = δw or when ω0 = 0 and

δ2 = δs.

The other three incomplete information bargaining problems are presented in the coming
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6.2 Incomplete Information Bargaining Problems

subsections. They are in the scope of bargaining over a divisible interest, infinite-horizon and

incomplete information about time preferences (discount factor). They do not have known

game-theoretic solutions yet. Therefore we exclude them from Chapter 2 Literature survey.

6.2.2 Unilateral Imprecise Information - UII

The unilateral imprecise information bargaining problem, abbreviated as UII interests us in

that player 1 has imprecise information about δ2, knowing that δ2 is drawn from a Gaussian

distribution. Player 1 in UII has less precise information on player 2’s discount factor than

player 1 in ICRub85 where δ2 only has two possible values.

[OR86] analyzes a bargaining game where players learn others’ specific characteristics

(bargaining powers) which are drawn from a probability distribution. The major differences

between the incomplete information bargaining problems in [OR86] and the UII are at two

key aspects (1) [OR86] has several sellers. The buyer can switch sellers. Instead the UII

is designed for two players, one of them only knows the other’s discount factor is from a

distribution. (2) In [OR86], sellers and the buyer have correlated values on the indivisible

object. Their valuations to the object are partially private. The buyer wants to learn

the sellers’ valuations as well as their bargaining powers [FLT85]. By contrast, in UII the

bargaining object, the cake, is public information. The sole purpose of learning is to discover

the other player’ discount factor. [GP85] also analyzes an incomplete information bargaining

game on an indivisible object and the buyer’s type is from a probability distribution.

6.2.3 Unilateral Ignorance Information - UGI

We introduce another incomplete information bargaining problem based on CRub82 problem.

Player 1 has no information about the value of δ2. However, player 2 knows the value of δ1.
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6.3 Assumptions of Players’ Boundedly Rationality

We call this problem the unilateral ignorance information bargaining problem, abbreviated

as UGI.

[FT83] solves a two-person two-period bargaining problem under incomplete information.

A buyer and a seller bargain over an indivisible object. The valuation of the seller to the

object is common knowledge but the buyer’s valuation is private. [FT83] proves the existence

of an unique Perfect Bayesian Equilibrium.

ICRub85, UII and UGI are one-sided incomplete and asymmetric information bargain-

ing problems. One-sided incomplete information means that only one of two players has

incomplete information about the game. Asymmetric information means that two players

have different information about the game. The following one is a two-sided incomplete

information problem.

6.2.4 Bilateral Ignorance Information - BGI

In the bilateral ignorance information bargaining problem, abbreviated as BGI, no player

has any information about each other’s discount factor. [FT83] studies a similar bargaining

problem where neither player knows his opponent’s valuation to the bargaining object. [FT83]

proves that there are multiple equilibria for the two-sided incomplete information problem.

[FT83] bargaining problem is different from BGI in that the cake in BGI is divisible and

players in BGI have time pressures to make an agreement soon.

6.3 Assumptions of Players’ Boundedly Rationality

The set of assumptions on players’ bounded rationality in Section 3.3 is fundamental for

players in incomplete information bargaining problems as well.

Assumptions A-1 to A-9, excluding A-4, are applicable to the CCGP system for incom-
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6.4 Constraints in Incomplete Information Bargaining Problems

plete information bargaining problems. The A-4 for CRub82 problem assumes that both

players have complete information about the game. In incomplete information problems

however, at least one of two players does not have complete information about the game.

Accordingly their terminal sets of genetic programs are different from each other. We update

the A-4 in Section 3.3 to the following:

The two bargaining players have different information. In terms of evolutionary algo-

rithms, terminal sets in GP set-ups (Table 3.3) of the two populations of CCGP system

are not the same. The strategy representation, learning mechanism and the game fitness

functions of the two populations are the same. Players should still be regarded as having

the same level of learning ability after such a modification on assumptions.

6.4 Constraints in Incomplete Information Bargaining

Problems

The constraints of CRub82 bargaining problem are defined in Section 5.3. For an incomplete

information problem, some features of these constraints change. In incomplete information

bargaining problems, even a perfectly rational economic man having a larger discount factor

is likely to get a smaller portion of a cake than a player who has a lower discount factor. The

reason is that incomplete information may reversely influence a player’s bargaining power.

Therefore, the constraint properties for incomplete information bargaining problems are:

The hard constraint C 1 xi ∈ (0, 1] is sustained in that a share of partition more than a

cake or negative is impossible.

The soft constraints C 2 and C 3 are still valid, but their effects on the bargaining

outcomes become unclear without substantial game-theoretic knowledge and analysis.
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6.5 System and Experiment Design - Adaptation of CCGP

6.5 System and Experiment Design - Adaptation of

CCGP

Constraint-driven Co-evolutionary Genetic Programming system (CCGP) is used to evolve

co-adapted strategies for CRub82 bargaining problem and is designed to adapt the variations

of CRub82 bargaining problem. The CCGP system is modified, mainly on the genetic pro-

grams’ terminal sets and the fitness functions to match the specifications of four incomplete

information bargaining problems.

The easy adaptation of CCGP to incomplete information bargaining problems demon-

strates again the choice of adopting the two-population co-evolutionary system instead of

the one-population co-evolutionary system, especially when two players have different infor-

mation. Other reasons of choosing two-population system are detailed in Section 3.4 and

Appendix C.

6.5.1 GP Terminal Sets

The four incomplete information bargaining problems and CRub82 complete information

bargaining problem differ from each other on the players’ information completeness about

the other player’s discount factor. For the ICRub85, player 1 with the probability ω0,

believes that player 2’s actual discount factor is δw. Player 1’s information set is therefore

{δ1, δw, δs, ω0}. Added the size of cake 1 and the −1 to change the sign, the terminal set for

the genetic programs in player 1’ s population is {δ1, δw, δs, ω0, 1,−1}. Similarly, for the UGI

problem player 1 has no information about player 2’s discount factor and he has to guess

the value of δ2 from random. So his information set is {δ1, r2}. r2 is a random variable.

Table 6.4 lists the information sets of the two players in these bargaining problems.

Information sets adding {1,−1} become the terminal sets. In terminal sets, r1, r2 and r′ are
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6.5 System and Experiment Design - Adaptation of CCGP

Bargaining Player 1’s Player 2’s
Problems Information Information

set set

CRub82 {δ1, δ2} {δ1, δ2}
ICRub85 {δ1, w0, δw, δs} {δ1, δ2}
UII {δ1, r

′} {δ1, δ2}
UGI {δ1, r2} {δ1, δ2}
BGI {δ1, r2} {r1, δ2}

Table 6.4: Information sets for the two players in the five bargaining problems. GP Terminal
sets are the information sets added {1,−1}.

real and random variables.

r1 and r2 return values from an uniform distribution in the range of greater than or equal

to 0.0 and less than 1.0. r′ is from an approximative Gaussian distribution with the mean δ2

and the deviation 0.1 but limited to the constraint 0 < r′ < 1. The value of r′ is generated

by sampling Gaussian values until a value within (0, 1) is sampled. Values of variables r1, r2

and r′ keep as constants once created. A random variable has only one value in a genetic

program and may have different values in different genetic programs. Mutation or crossover

may bring new random values, but do not change the values of those existing.

The bargaining process remains unchanged. The strategy representation, the utility

function and the game fitness function are the same as those defined in Section 3.5 and

3.5.4. The definition of Game Fitness of a strategy s(gi) is the average utility of what s(gi)’s

gains from the agreements with strategies in the co-evolving population J which satisfy the

hard constraint:

GF (s(gi)) =

∑
j∈J us(gi)→s(gj)

m
(6.5)

In theory if two players perpetually disagree, both players obtain utility 0. In experiments,

if players do not agree after 10 time intervals, both get utility 0.
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6.5.2 Fitness Function

The application of the Incentive method to the fitness function can reduce the search space

by integrating problem-specific knowledge on both hard and soft constraints (Section 5.4).

According to the constraints in incomplete information bargaining problems in Sec-

tion 6.4, we continue using Sensibility Measure and Evaluation of Attribution. Both are

formally defined in Section 5.4. For incomplete information bargaining problems, Sensibility

Measure and Evaluation of Attribution do not play the role of separating the preferred indi-

viduals from the rest. Instead, they are used to give incentive values to infeasible individuals.

For an incomplete information bargaining problem, a genetic program’s fitness F (gi) is:

F (gi) =





GF (s(gi)) + 3
if gi ∈ (0, 1]

ATT (i) + ATT (j)− e
−1
|gi|

if gi /∈ (0, 1]

(6.6)

where ATT (i) + ATT (j)− e
−1
|gi| is restricted within [0, 2] as we explain in Section 5.4. Thus

genetic programs satisfy the hard constraint are guaranteed to obtain higher fitness values

than the rest.

From the analysis above, we can see that only the fitness function and the terminal sets

of GP set-up need to do minor changes. The rest of the system can be inherited directly.

This saves our time and efforts. Comparably, it is much harder for game theorists to reuse

the game-theoretic proofs for variant bargaining problems.

6.6 Experimental Results and Observations

For an incomplete information bargaining problem, each of its game setting is tested with

100 runs starting with different random sequences.
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Raw Analyzed Raw Analyzed Raw Analyzed
Problem x̄1 x̄1 t̄ t̄ σ σ

ICRub85 Table E.1, Table 6.10 Table E.4 Table 6.11 Table E.1 Table 6.12
E.2, E.3 E.5, E.6 E.2, E.3

UII Table E.7 Table 6.10 Table E.7 Table 6.11 Table E.7 Table 6.12
UGI Table E.8 Table 6.10 Table E.8 Table 6.11 Table E.8 Table 6.12
BGI Table E.9 Table 6.10 Table E.9 Table 6.11 Table E.9 Table 6.12

Table 6.5: Summary of locations of the raw and the analyzed experimental results for these
four incomplete information problems. The raw experimental data are in Appendix E. The
analyzed data are inserted within this chapter.

The experimental results of ICRub85 are compared with its game-theoretic solutions

PBE in Subsection 6.6.1. Game-theoretic solutions of UII, UGI and BGI are unknown, so

their experimental results are compared with two benchmarks: the experimental results of

CRub82 as well as the experimental results of ICRub85. Such comparisons are taken on

three statistic results:

• x̄1, the observed shares of agreements ( Subsection 6.6.2);

• t̄, the average bargaining time and efficiency of agreements (Subsection 6.6.3);

• σ, stationarity and evolutionary time for stabilization (Subsection 6.6.4).

Table 6.5 lists the locations of the raw data and the analyzed data for four incomplete

information problems.

6.6.1 Experimental Results of ICRub85

This subsection measures the relationship between the experimental results of ICRub85 and

the game-theoretic solutions PBE.

Measures of the experimental results of ICRub85

For this specific problem, the experimental results x̄1s are examined as follows:
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1. According to the game-theoretic analysis, given a game setting (δ1, δ2, δ
′
2, ω0), there

exists an unique PBE x∗1. The experimental results x̄1 should be compared with its

corresponding x∗1.

2. To understand whether and/or how δ′2 and ω0 contribute to the experimental results

x̄1, the relationship of x̄1 and the equilibria Vs, xω0 and yω0 need be examined on three

contingencies: (1) ω0 < ω∗; (2)δ2 = δs and ω0 > ω∗; (3) δ2 = δw and ω0 > ω∗. For

ω0 = ω∗, [Rub85] does not provide the game-theoretic solutions, therefore we do not

examine this condition.

3. There are three possible equilibriums Vs, yω0 , and xω0 as in Table 6.3. The unique

PBE is chosen from them on the condition of ω0 > ω∗ and the real value of δ2. We

plan to analyze the association between the experimental results and the three possible

equilibriums Vs, yω0 , and xω0 .

Notations

δ2 is player 2’s actual discount factor. δ′2 is another possible value of player 2’s discount

factor in player 1’ initial belief. δ′2 ∈ {δw, δs}. ω0 is the possibility of player 1’s belief of

2’s type being MIN(δ2, δ
′
2). Experimental result x1 is player 1’ share from the bargaining

agreement which is made by the best-of-generation genetic programs at the 300th generation.

x̄1 is the average of x1s of 100 runs of a given game setting. t̄ is the average bargaining time

for reaching agreements of 100 runs of a given game setting. σ is the deviation of the x1s of

100 runs for a given game setting.

Definition 6.1: Experimental results select the equilibrium if this equilibrium has the

minimal absolute variations from the observed shares x̄1.
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x̄1 chooses Vs if MIN(|x̄1 − Vs|, |x̄1 − xω0|, |x̄1 − yω0|) = |x̄1 − Vs|;

x̄1 chooses xω0 if MIN(|x̄1 − Vs|, |x̄1 − xω0|, |x̄1 − yω0|) = |x̄1 − xω0|;

x̄1 chooses yω0 if MIN(|x̄1 − Vs|, |x̄1 − xω0|, |x̄1 − yω0|) = |x̄1 − yω0|;

Observations

We test 54 game settings for the ICRub85 problem. δ1 ∈ {0.1, 0.5, 0.9}, δ2 ∈ {0.1, 0.5, 0.9},

δ′2 ∈ {0.1, 0.2, 0.4, 0.8, 0.9}, and ω0 ∈ {0.1, 0.5, 0.9} 3. Tables E.1, E.2 and E.3 in Appendix

E list the raw experimental results of x̄1s, their σs and x∗1s in PBE. Tables E.4, E.5 and

E.6 list the bargaining time of PBE agreements t∗ and of the experiments t̄.

Association between x̄1 and PBE x∗1 and between x̄1 and SPE x∗1

For the 54 tested game settings, x̄1s approximate PBE x∗1s. Hypothesis (x̄1 − x∗1) = 0 on

the total 54 game settings cannot be rejected with 95% confidence ( see #1 in Table 6.6).

This means that there is no statistical evidence to show that observed x̄1s are significantly

different from PBE x∗1s. Please note that for a particular game setting x̄1 may not ideally

approximate x∗1 but the set of x̄1s approximate the set of x∗1s for the 54 tested game settings.

In detail, we split the 54 game settings into two groups and have t-test on each group: (i)

when ω0 < ω∗ (30 game settings), x̄1s approximate PBE x∗1s (see #1.1 in Table 6.6). (ii)

when ω0 > ω∗ (24 game settings), x̄1s approximate PBE x∗1s (see #1.2 in Table 6.6).

Linear regression tests are used to further measure the correlation between x∗1 and x̄1.

The linear regression statistics over x∗1 and x̄1 ( see #1 in Table 6.6) R2 = 0.5364 show that

x̄1 and PBE x∗1 are not in a linear correlation.

3The full combination of δ1 × δ2 × δ′2 × ω0 has totally 135 possibilities. Considering the computational
resources, we only choose two values from the set of δ′2 for every combination of δ1 × δ2 × ω0. The principle
of choosing δ′2 is that one value of δ′2 is close to δ2 and another one is far from δ2. So the number of the total
tests is δ1 × δ2 × 2× ω0 = 54.
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Moreover, x̄1s also approximate SPE x∗1s of the CRub82 bargaining problem. Hypothesis

(x̄1 − SPEx∗1) = 0 can not be rejected with 95% confidence. In addition the linear regres-

sion statistics of 54 game settings ICRub85 x̄1 over CRub82 SPE x∗1 suggest a weak linear

correlation between x̄1 and SPE x∗1 (see #3 in Table 6.6). When player 1 correctly guesses

δ2, the theoretic solution PBE of this incomplete information bargaining problem coincides

the SPE of the CRub82. Experimental results exhibit a strong consistency with the SPEs

as if player 1 correctly guesses the value of δ2 before bargaining begins or when ω0 = 1 if

δ2 = δw or ω0 = 0 if δ2 = δs.

Association between x̄1 and three possible equilibriums

Table 6.7 and 6.8 display the number of and the frequency of a game-theoretic equilib-

rium chosen by experimental results. From them, we find that some game-theoretic equilibria

are less frequently chosen by experimental results.

1. For 82% game settings of PBE yω0s, experiments choose Vss. This implies that after the

evolutionary process player 1 discovers that the type of player 2 is δs, so he shifts the

equilibrium from yω0 to Vs to increase the efficiency of agreements from one time delay

yω0 to no delay Vs. For example: Table E.1 #9. PBE x∗1 = 0.0561 and the experimental

result x̄1 = 0.6356. This x̄1 approximates to xω0 = 0.6224. This shows that experiments

of this game setting do not choose the PBE but another possible equilibrium. From

the summary of theoretic solutions in Table 6.3, xω0 and Vs theoretically achieves at

time 0 but x∗1 (here yω0) arrives at time 1. When an agreement settles at time 1, both

players pay bargaining costs. This agreement is inefficient. This example and other 8

tested game settings whose experiments choose Vss rather than PBE yω0s show that

experiments tend to choose more efficient equilibriums.
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# Observations Statistic evidence(s)
from experiments

1 Observed x̄1s approximate PBE x∗1s Hypothesis (x̄1 − x∗1) = 0 can not be
(54 game settings) rejected with 95% confidence.

( tsv = -1.5801 and tc = 2.0057)
Linear Regression Statistics
R2 = 0.5364.

1.1 x̄1s approximate PBE x∗1s Hypothesis (x̄1 − x∗1) = 0 can not be
when ω0 < ω∗ (30 game setting) rejected with 95% confidence.

( tsv = -1.1259 and tc = 2.0017 )

1.2 x̄1s approximate PBE x∗1s Hypothesis (x̄1 − x∗1) = 0 can not be
when ω0 > ω∗ (24 game settings) rejected with 95% confidence.

( tsv = 0.01392 and tc = 2.0129)

2 The behavior of the final populations For a game setting, the deviation of
remain evolutionary stable. the results x̄1 of 100 runs is very small

(less than 0.05). see Table E.1, E.2 and E.3

3 x̄1s approximate SPE x∗1s of the Hypothesis (x̄1−SPEx∗1) = 0 can
CRub82. not be rejected with 95% confidence.

( tsv = -0.4199 and tc = 1.9826)
Linear Regression Statistics
R2 = 0.9403.

4 Results of shares ICRub85 x̄1 Hypothesis (CRub82 x̄1−ICRub85 x̄1) = 0
are significantly similar to results can not be rejected with 95%
CRub82 x̄1. confidence.
ICRub85 x̄1s and CRub82 x̄1s (tsv = -0.5586 and tc = 1.9826)
are strongly linearly related. Linear Regression Statistics

R2 = 0.9939.

Table 6.6: Observations and Statistic evidence(s) from experiments. tsv is the t-Statistic
value; tc is the t-Critical value; PBE is the Perfect Bayesian Equilibrium for ICRub85; SPE
is Subgame Perfect Equilibrium for CRub82; ω∗ is the threshold value defined in Equation
(6.3).

x̄1 PBE x∗1 x̄1

choose Vs xω0 yω0 subtotal

Vs 8 0 9 17
xω0 18 12 1 31
yω0 4 1 1 6

PBE subtotal 30 13 11

Table 6.7: For ICRub85, the number of PBE x∗1 chosen by x̄1.
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x̄1 PBE x∗1
choose Vs xω0 yω0

Vs 27% 0% 82%
xω0 60% 92% 9%
yω0 13% 8% 9%

Table 6.8: For ICRub85, the percentage of PBE x∗1 equilibriums chosen by x̄1.

2. That 92% of PBE xω0s are chosen by experiments. Encountering a 2w, the best offer

for player 1 is xω0 , xω0 > MAX{Vs, y
ω0}. xω0 is the largest shares for player 1 among

the three equilibria, and it should be also acceptable to player 2w. That more than

90% experiments whose PBE is xω0s choose xω0s suggests that the actual type of player

2 being δw, is uncovered by player 1 after the evolutionary training.

3. Theoretically bargaining with 2w, the best equilibrium for player 1 is xω0 . Bargaining

with 2s the best equilibrium for player 1 is Vs. As the PBE Vs can be accepted by

both δw and δs, 2w takes advantage of player 1 when player 1 mistakenly thinks 2 is

2s. From the 30 game settings whose PBE is Vs, there are 18 game settings that have

δ2 = δw from which 9 choose xω0 , 7 choose Vs and 2 choose yω0 . There is an example.

The game setting #4 in Table E.1 : (δ1, δ2, δ
′
2, ω0) = (0.1, 0.1, 0.9, 0.1) tells that at

the beginning, player 1 believes that very likely player 2 is 2s, but actually player 2

is 2w whose discount factor is δw. In theory, player 1 prepares to encounter 2s, so he

uses Vs which is accepted by both 2s and 2w. The experimental result x̄1 = 0.9273 do

not choose the PBE (Vs) but instead choose xω0 = 0.9009. Why? From Table 6.3 we

know that theoretically, Vs is efficient for both δ2 = δw or δ2 = δs. xω0 is efficient for

δ2 = δw. Experiments help player 1 to choose the equilibrium which reflect the real

value of player 2’s discount factor δ2 = δw = 0.1 and δ′2 = δs = 0.9. Such results show

that evolution is capable of reducing player 1’s disadvantage caused by his incomplete

122



6.6 Experimental Results and Observations

information on the type of player 2.

From the above analysis, experimental results do not always choose the PBE, and some

times choose one of the other two possible equilibriums. One reason that experimental results

choose one of other equilibriums but not the PBE, is probably that the other equilibrium

may be more efficient (less bargaining time so less bargaining cost) than the PBE or that

the other equilibrium is more likely to survive under selective pressures. Let take this point

a bit further, evolution of population 1 actually discovers the real value of δ2. After learning

by means of the co-evolutionary algorithm, genetic programs in the first player population

behave as if they know the actual type of player 2 simply because these genetic programs per-

form better than those which do not guess correctly about δ2. Under the selection pressure,

such genetic programs that correctly guesses out δ2 survive and dominate the population.

Summary of ICRub85 Experimental Results

Observations and explanations suggest that after evolutionary training, the privilege of know-

ing more over the other player shows less impact in experiments than what is expected by

game theory. Instead, that the efficiency of solutions has a higher priority in the evolutionary

system than the information incompleteness, is observed in experiments.

6.6.2 Partition of Cake in Agreement

Game-theoretic equilibriums for UII, UGI and BGI problems have not been solved yet.

Their experimental results are evaluated against the experimental results of ICRub85 and

the experimental results of CRub82. In this subsection, the averages of shares, x̄1s in the

observed agreements across these five problems are investigated.

Table 6.9 lists the x̄1s for the 5 problems. Each pair of discount factors is the actual
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Game C IC UII UGI BGI
Setting Rub82 Rub85
(δ1, δ2) x̄1 x̄1 x̄1 x̄1 x̄1

0.1 , 0.1 1.0000 0.9162 0.9495 0.9517 0.9517
0.1 , 0.5 0.6886 0.6273 0.6405 0.6407 0.6413
0.1 , 0.9 0.1967 0.1486 0.1538 0.1452 0.1502
0.5 , 0.1 0.9993 0.9304 0.9522 0.9524 0.9524
0.5 , 0.5 0.6782 0.6309 0.6459 0.6468 0.6468
0.5 , 0.9 0.1137 0.1072 0.1099 0.1077 0.1073
0.9 , 0.1 0.9967 0.9269 0.9562 0.9594 0.9594
0.9 , 0.5 0.7479 0.7151 0.7266 0.7287 0.7304
0.9 , 0.9 0.4902 0.4708 0.4838 0.4819 0.4965

Table 6.9: For the five listed problems, each pair of discount factors is the actual values of
δ1 and δ2. We examine whether the actual (δ1, δ2) make decisive roles in dividing the cake.
Other values on player 2’s discount factor are excluded.

R2 Values

ICRub85 0.99750
UII 0.99801
UGI 0.99760
BGI 0.99699

Table 6.10: R2 values of linear regression tests. The x̄1s of CRub82 are the input y range.
The x̄1s for a specified incomplete information problem are the input of x range.

values of δ1 and δ2. Other values on player 2’s discount factor are excluded. An obvious

pattern displays: given the real values of discount factors, the x̄1s across the five problems

are very close to each other. From the linear regression statistics, the R2 on the 5 sets of

x̄1s yield significantly high values nearly 1 as shown in Table 6.10. They are strongly linear

correlated among them. As we know, the essential difference among these problems are

players’ information completeness. Thus the information completeness does not attribute

much to the similarity of solutions among the five problems. Instead, such observations

suggest that the actual values of δ1 and δ2 which are applied to the utility functions x1δ
t
1

and x2δ
t
2 ultimately determine the bargaining outcomes on partition of cake.

When there is one unique equilibrium, the experimental results are attracted to that
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equilibrium, for example the experimental results of CRub82 problem shown in Chapter 4.

If there exist multi-equilibria for a problem, for instance ICRub85 and probably for UGI, UII

and BGI, the experimental results probably converge to one of equilibria where u1 + u2 = 1

holds (ui is the utility that player i receives from an agreement). This is one of the most

efficient equilibriums.

6.6.3 Bargaining Time and Efficiency of Agreement

Bargaining cost increases exponentially over time. This causes utilities to decrease. The

bargaining time therefore determines the efficiency of agreements. Any delay (t > 0) causes

bargaining costs to both players. Thus the sum of players’ utilities is less than the size of

cake, which means that the cake is not divided efficiently. If the sum of two players’ utilities

in an agreement is the exact size of the cake, this happens only if t = 0, the agreement is

the most efficient one. The most efficient agreement reaches at the moment when the game

starts thus no bargaining cost is incurred.

Tables E.4, E.5 and E.6 report experimental results on bargaining time of ICRub85

problem. Table 6.11 summarizes the average bargaining time t̄ for the five problems. The

bargaining time t̄s of the game settings (0.1, 0.1) (0.5, 0.1) and (0.9, 0.1) are all 0s across all

the five problems. It is interesting to note that these three game settings all have δ2 = 0.1,

although δ1 varies from 0.1 to 0.9. Increasing the value of δ2, the t̄ correspondingly rises.

This can be confirmed by comparing the t̄ values inside the groups where each group has

its δ1 keeps unchanged: {(0.1, 0.1), (0.1, 0.5), (0.1, 0.9)},{(0.5, 0.1), (0.5, 0.5), (0.5, 0.9)} or

{(0.9, 0.1), (0.9, 0.5), (0.9, 0.9)}. When δ2 = 0.9, t̄s of { (0.1, 0.9), (0.5, 0.9) and (0.9, 0.9)}

only increase greatly when δ1 approaches 0.9. Furthermore, when both δ1 and δ2 are not

large enough (less than 0.9 in experiments shown), the impact of δ1 on bargaining time t̄ is
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Game C IC UII UGI BGI
Settings Rub82 Rub85
(δ1, δ2) t̄ t̄ t̄ t̄ t̄

0.1 , 0.1 0.00 0.00 0.00 0.00 0.00
0.1 , 0.5 0.00 0.04 0.03 0.04 0.04
0.1 , 0.9 0.14 0.34 0.35 0.38 0.30
0.5 , 0.1 0.00 0.00 0.00 0.00 0.00
0.5 , 0.5 0.00 0.05 0.04 0.03 0.03
0.5 , 0.9 0.13 0.20 0.34 0.28 0.30
0.9 , 0.1 0.00 0.00 0.00 0.00 0.00
0.9 , 0.5 0.28 0.32 0.30 0.31 0.25
0.9 , 0.9 3.82 3.99 4.05 3.90 3.32

Table 6.11: The average bargaining time t̄s of five bargaining problems. Each pair of discount
factors is the actual values of δ1 and δ2.

relatively small. In such cases, all t̄s are less than 0.35, so most agreements are settled at

the time 0. By contrast when both δ1 and δ2 are large enough, the bargaining time prolongs

dramatically. Shown in Table 6.11 when the δ2 rises from 0.5 to 0.9 while δ1 = 0.9, the

bargaining time t̄s go about 10 times longer. A large discount factor makes the efficiency of

agreements decrease, but not to an extraordinary degree due to the players’ very low costs

on time. For example, t of one run of the game setting (0.9, 0.9) is 3, then the average

bargaining cost of a strategy in player 2’ population is therefore (1 − 0.9)3 = 0.001. t of

another run of (0.1, 0.9) is 0.20, then the average cost of a strategy in player 2’ population is

(1− 0.9)0.2 = 0.63. These two examples show that even the average bargaining time of (0.9,

0.9) is 15 times longer than that of the (0.1, 0.9), the average bargaining cost of a player 2’

strategy in (0.9, 0.9) is only 0.16% of the cost of a player 2’ strategy in (0.1, 0.9).

Having found that t̄s highly associate with the discount factors, we notice that given

(δ1, δ2), it hardly distinguishes the type of players’ information completeness from the differ-

ence of the experimental data t̄s. In summary, the bargaining time is more likely influenced

by the actual values of discount factors than by the players’ information completeness.
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Problem Average σ Maximal σ Minimal σ

ICRub85 0.0264 0.0416 0.0172
UII 0.0272 0.0581 0.0051
UGI 0.0260 0.0641 0.0026
BGI 0.0295 0.0643 0.0088

Table 6.12: Average σs, maximal σs and minimal σs of four incomplete information problems.

6.6.4 Stationarity of Agreement

Stationarity of Agreements and Evolutionary Stability

From experimental results, players’ behaviors in the final populations remain stationary. For

a game setting of ICRub85 bargaining problem, the deviation σ of 100 x1s from 100 runs is

very small, less than 0.05, see Table 6.12. The raw data of σs are in Table E.1, E.2 and

E.3. This indicates the players’ stationary behaviors at the end of the co-evolving processes.

No player (population) prefers to withdrawal from the chosen equilibrium (co-adaptation)

even in the presence of other possible offers or counter-offers (mutations).

Similarly for UII, UGI and BGI bargaining problems, their average σs, maximal σs

and minimal σs are very small (Table 6.12), showing that agreements made by the final

populations are stationary.

Evolutionary Time to Stabilize

Evolutionary algorithms are used as a stochastic search method. The search process starts

from random points scattered over the search space and gradually confines into the more

promising spaces. Usually precise and sufficient information about the problems helps an

efficient and effective search. Having the full information about each other, the experimental

results of CRub82 are expected to converge to equilibrium(s) more quickly and more precisely

than does an incomplete information bargaining problem.
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Figure 6.1: The game fitness of the best-of-generation genetic programs in player 2’s popu-
lation of a CRub82. 5 runs are shown. δ1 = 0.1, δ2 = 0.1
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Figure 6.2: The game fitness of the best-of-generation genetic programs in player 2’s popu-
lation of a BGI bargaining problem. 5 runs are shown. δ1 = 0.1, δ2 = 0.1
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Two sets of examples are given to address this concern. The first example includes

a CRub82 bargaining problem and a BGI problem, both with the same discount factors

(δ1 = 0.1, δ2 = 0.1). The second example is a CRub82 problem and a BGI problem with

the same discount factors (δ1 = 0.9, δ2 = 0.4). Five runs are plotted. Experiments of two

bargaining problems in each set of above examples use the same sets of random sequences.

Figure 6.1 and 6.2 are for the first example, illustrating the game fitness of the best-of-

generation genetic programs in player 2’ populations. In Figure 6.1, both players have the

complete information. The game fitness is around 0.8 ∼ 0.9 at the very beginning, quickly

dropping down to the area 0.05 ∼ 0.15 and fluctuates in the proximity of SPE x∗2 = 0.0909.

Surprisingly, Figure 6.2 shows the similar phenomenon, although neither player has any

information about the other at all. In this example, the information about the other player

has little effect on the time for finding out the co-adaptive strategies and stabilization. For

the second example, Figure 6.3 and Figure 6.4 illustrate the game fitness of the best-of-

generation genetic programs in player 1’ population. It is interesting to see that, from as

early as the first generations, the five runs of BGI leap to the point at which the population

stabilizes for 300 generations. Some runs for the CRub82, however spend a significantly

longer time to reach it: approaching the SPE in a series steps. This observation is probably

due to the fact that for the BGI problem, a large number of random values as terminal

nodes in the genetic programs of initial populations provide a greater diversity, scattering

over much larger search space. In contrast, the terminal set of genetic programs for CRub82

only has δ1 and δ2, which restricts the diversity.
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Figure 6.3: The game fitness of the best-of-generation genetic programs in player 1’s popu-
lation of a CRub82. 5 runs are shown. δ1 = 0.9, δ2 = 0.4
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Figure 6.4: The game fitness of the best-of-generation genetic programs in player 1’s popu-
lation of a BGI bargaining problem. 5 runs are shown. δ1 = 0.9, δ2 = 0.4
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6.7 Discussion

6.6.5 Computational Resources

The computational resources require for running experiments for incomplete information

bargaining problems are almost the same as those for complete information bargaining prob-

lem: a Linux machine with an athlon2400 processor runs about 1 hour to test a game setting

with 100 runs.

6.7 Discussion

The common sense tells us that if a player has more game-related information he should at-

tain more advantages in dividing a cake. However, the experimental results by co-evolutionary

algorithms display no apparent indication that the amount or precision of information af-

fects bargaining outcomes on partitions of the cake. Moreover, from the viewpoint of game-

theoretic analysis, bargaining problems under both one-sided and two-sided incomplete in-

formation imply delay and inefficiency [FLT85]. But experimental results on bargaining

time provide no convincing evidence that delays are the consequences of the incomplete

information.

Equilibria selected by experiments are always the most efficient ones for the evolutionary

systems. They are reached because, through the selection and variation mechanism (genetic

learning), the information that exists but is unknown to the other population is induced via

fitness evaluations and then embedded in the individuals at a genetic level. This means that

the co-evolutionary process prefers (selects for reproduction) those genetic programs that

act as if they were fully informed about all aspects of the game, because these individuals

perform better.

The power of evolutionary algorithms achieve high efficiency and stationarity. This fea-
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ture may cast doubts on applying evolutionary algorithms to one-off games. Some economists

tend to believe that in one-off games, incomplete information certainly make inefficient de-

lays, cheating, wrong signalling, unstable and/or unfair agreements possible. However, such

a belief does not refute the existence of honest and fair players who make efficient and stable

agreements.

On the other hand, although one of the efficient and stationary equilibria has always been

experimentally found for a bargaining game, other possible equilibria have been discarded.

This characteristic may limit the applications of evolutionary algorithms from such games

that need to emphasize the importance of more than one feasible and preferable solutions.

In addition, evolutionary algorithms’ ability to discover private information restricts its

potential applications from observing special features of some one-off games where the chance

and time for learning are extremely limited and random elements play a strong role. Jin [Jin]

further discusses the modelling and the applications of evolutionary algorithms for incomplete

information games.

6.8 Concluding Summary

In summary, this chapter investigates incomplete information bargaining problems by means

of co-evolutionary algorithms and by using the established CCGP system with minor mod-

ifications. As observed, experimental results demonstrate that evolutionary populations al-

ways successfully approximate one of the most efficient and stationary equilibria for ICRub85

problem. Moreover, the experimental results of the four incomplete information problems ex-

hibit linear correlations among them as well as with the experimental results of the CRub82

complete information problem in terms of the partition of cake in agreements, irrespective of

players’ information completeness. The bargaining time is more likely associated with actual
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values of discount factors than player(s)’ information on the values of discount factors. In

particular, the experiments of ICRub85 choose the equilibria which ensure the high efficiency

of agreements as if the player’s initial belief about the other player’s discount factor is always

correct. Moreover, it is unnecessarily to spend longer time in finding out such equilibria in

the absence of complete information.

Experimental results on partition of cake stabilize at (one of) the most efficient and

stationary equilibria. This approach therefore, is capable of providing reasonably good solu-

tions for those bargaining problems that have no game-theoretic solutions available yet due

to their complexity. The game-theoretic method can only find solutions for simple bargaining

problems. When these bargaining problems are extended and modified even slightly, game

theorists need considerable efforts to solve them. In contrary, the co-evolutionary system, in

particular CCGP can be easily reused to deal with variants of bargaining problems within

an affordable budget of human efforts, computational resources and time.

133



Chapter 7

CCGP for Bargaining Problem with
Outside Options

7.1 Introduction

In the previous chapters, we develop a Constraint-based Co-evolutionary Genetic Program-

ming, CCGP system and use it to study five bargaining problems. In any of these five

problems, there is only one bargaining determinant: discount factor. The CCGP system gen-

erates experimental results that are efficient and stationary and approximate game-theoretic

solutions.

This chapter studies a bargaining problem with two determinants: discount factors and

outside options. Besides discount factors, outside options also influence bargaining outcomes.

Players have complete information on discount factors and outside options. We abbreviate

this problem as COO bargaining problem.

We aim to investigate whether the CCGP system is able to reuse and generate efficient

and stationary solutions for COO bargaining problem which has two determinants.

In the remainder of this chapter, first of all the outside option bargaining problem and its

game-theoretic solutions are recaped in Section 7.1.1. The assumptions on players’ bounded

rationality and the constraints of COO bargaining problem are specified in Section 7.2 and
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7.3 respectively. CCGP is supposed to adapt to such differences on assumptions and con-

straints from those of bargaining problems studied in the previous chapters.

The experimental design to modify CCGP is presented in Section 7.4. We measure

whether the experimental results from CCGP approximate game-theoretic solutions and

whether such solutions exhibit efficiency and stationarity. Followed by experimental results

and observations in Section 7.5, this chapter ends with concluding summary in Section 7.6

1.

7.1.1 Recapitulation of Outside Option Bargaining Problem - COO

The outside option bargaining problem (COO) and it game-theoretic solutions are introduced

in Section 2.3.3. They are recaped as follows.

In COO outside option bargaining scenario, when a player i encounters an offer or a

counter-offer from player j, he can choose one of three choices: (1) acceptance thus an

agreement is settled; (2) rejecting this offer and making a counter offer after one time interval;

(3) quitting bargaining and taking his outside option wi.

The existence of outside options potentially threats bargaining players with withdrawal

and ending up with nothing from the undergoing bargaining [Bin85]. The idea of outside

option can be illustrated by the following example bargaining scenario, which is originally

given in [Mut99]. Imagine University A and academic economist B is bargaining over B’s

annual salary. B has been offered a job by another institution with a fixed and nonnegotiable

salary wB. wB is B’s outside option. To make this problem simpler, let’s assume that

University A does not have an outside option (of replacing B) at the point of bargaining.

The bargaining between University A and academic economist B is used to exemplify how

1Initial work of this chapter has been published in [JT06].
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# x∗1 Conditions (AND) Category

I II

a µ1 w1 ≤ δ1µ1 w2 ≤ δ2µ2 Category 1

b 1− w2 w1 ≤ δ1(1− w2) w2 > δ2µ2 Category 2

c δ2w1+ w1 > δ1µ1 w2 ≤ δ2(1− w1) Category 2

(1− δ2)

d 1− w2 w1 > δ1(1− w2) w2 > δ2(1− w1) Category 2

e w1 w1 + w2 > 1 - Category 3

Table 7.1: SPE under 5 different conditions for COO bargaining problem. Player 1 makes
the first offer. The shares in a SPE agreement is (x∗1, 1−x∗1) under the condition #a, #b, #c
or #d. Under the condition #e, x∗1 = w1 and x∗2 = w2. Detailed explanation is available in
Section 2.3.3.

the existence of and the values of outside options affect the bargaining outcome throughout

this chapter.

The unique Subgame Perfect Equilibrium (SPE) solution x∗1 of outside option bargaining

problem is stated in the Table 7.1 where,

µ1 =
1− δ2

1− δ1δ2

(7.1)

µ2 =
1− δ1

1− δ1δ2

(7.2)

The share player 2 gets from a bargaining agreement is (1 − x∗1). If any player takes

his outside option, x∗1 = w1 and x∗2 = w2. Player 1 and 2’ discount factors are δ1 and δ2

respectively.

The computational complexity of COO bargaining problem is higher than that of CRub82

bargaining problem which is analyzed in Section 3.2. This is because that in COO bargaining

problem one player has one more choice of action at a bargaining time: taking his outside

136



7.2 Assumptions of Players’ Boundedly Rationality

option.

7.2 Assumptions of Players’ Boundedly Rationality

The set of assumptions on players’ bounded rationality in Section 3.3 is fundamental for

players in COO bargaining problem as well.

Assumptions A-2 to A-9 continue to apply to COO bargaining players in the CCGP

system. Both players in COO bargaining problem, have three options to respond an offer or

a counter-offer: accept, reject and quit. So assumption A-1 is changed to: player i’s goal

is to maximize his utility. Provided with three action choices, a player chooses the action

which brings him the largest utility. Player i’s three possible choices of action are: α, β

and γ. u(α), u(β) and u(γ) are i’s utilities of α, β and γ respectively. Player i takes the

action which rewards him the highest utility, MAX(u(α), u(β), u(γ)). If two or three actions

return the same utility, player i takes the action which ends the bargaining soonest. This

modification on A-1 is an extension to the original idea of A-1 in Section 3.3.

7.3 Constraints in Outside Option Bargaining Problem

The constraints of CRub82 bargaining problem are defined in Section 5.3. In COO bargaining

problem, the properties of constraints change: even a perfectly rational economic man having

a larger discount factor can get a smaller portion of a cake than a player having a lower

discount factor, because outside option(s) might have a reverse influence on the bargaining

power. Therefore the constraint properties for COO bargaining problem change to:

The hard constraint C 1 xi ∈ (0, 1] is still valid. Any offer, counter-offer or a share of an

agreement should not be larger than the size of the cake and should not be negative.

The soft constraints C 2 and C 3 are still valid, but their effects on the bargaining
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outcomes become unclear without substantial game-theoretic knowledge and analysis.

7.4 System and Experiment Design - Adaptation of

CCGP

The CCGP system successfully applies to CRub82 bargaining problem and to the four incom-

plete information bargaining problems. Although the mathematical proofs of game-theoretic

solutions for CRub82, for ICRub85 incomplete information bargaining problems and for

COO outside option bargaining problem are different from each other, the CCGP system

established in Chapter 3 is designed to be extensible and modifiable for various bargaining

problems. We modify it to satisfy the specifications of the COO outside option bargaining

problem at the following three aspects:

• Bargaining Scenario: the existence of an outside option provides an alternative choice

for a player when he makes decisions. The bargaining procedure in CCGP needs to be

consequently changed to allow a player to secede after refusing an offer and then to

take up his outside option;

• GP Terminal Set: outside options are one of the two determinants on bargaining

outcomes. The values of outside options need to be included into the terminal sets of

genetic programs of both populations;

• Utility Function: a player’s utility function becomes xiδ
t
i if an agreement is settled at

t or wiδ
t
i if player i takes up his outside option wi at t.

In the coming subsections, these three specifications are treated and CCGP is modified

accordingly.
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7.4.1 Bargaining Procedure

As in Section 3.5, a genetic program gi’s corresponding time-dependent bidding function is

defined as b(gi) = gi × (1 − ri)
t, where ri is the discount rate, δi ≡ exp(−ri). b(gi) ensures

that player i bids decreasing shares over time. The nonnegative integer t is the bargaining

time.

Player i’s strategy s(gi) determines what action player i takes at time t to respond the

offer or the counter-offer by player j on dividing the cake as (1− xj, xj):

s(gi) =





Accept : xi = 1− xj

if (1− xj)δ
t
i ≥ MAX(b(gi)(t+1)δ

t+1
i , wiδ

t
i)

Opt-out : xi = wi

if wiδ
t
i > MAX(b(gi)(t+1)δ

t+1
i , (1− xj)δ

t
i)

Counteroffer at (t + 1) :
if b(gi)(t+1)δ

t+1
i > MAX((1− xj)δ

t
i , wiδ

t
i)

(7.3)

s(gi) expresses a player’s decisions in order to maximize his utility. A player chooses the

most beneficial one among the three possible options: accepting the current offer immedi-

ately, so his utility will be (1 − xj)δ
t
i ; taking his outside option now, so his utility will be

wiδ
t
i ; or making a counter-offer after one time interval, so his utility will be b(gi)(t+1)δ

t+1
i if

this counter offer is accepted by player j. If accepting the current offer brings no less utility

than the other two options, the player accepts this offer; if taking his outside option returns

higher utility than the other two options, the player takes his outside option; if counter-

offering after one time interval will probably bring him higher utility than accepting now

and taking his outside option now, the player counter-offers.
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7.4.2 GP Terminal Sets

In CCGP system, each player has a population of genetic programs. Both players of the COO

bargaining problem have complete information about the game, therefore their information

set should be {δ1, δ2, w1, w2}. Added the size of cake 1 and the −1 to change the sign, the

terminal set for gi is therefore {δ1, δ2, w1, w2, 1,−1}. The function set, values of GP operators

and the experimental set-ups keep the same as those defined in Table 3.3 and in Section 3.5.

7.4.3 Fitness Function

gi’s utility from an agreement with gj in player j’s population, or from taking player i’s

outside option, is notated as us(gi)→s(gj). If both players agree with a division of the cake as

(xi, xj) = (xi, (1 − xi)) at the bargaining time t, gi gets xi × δt
i ; if one of players decides to

take his outside option, gi gets wi × δt
i .

us(gi)→s(gj) =





xi × δt
i

if agreement made
wi × δt

i

if wi taken

(7.4)

The game fitness of gi, GF (s(gi)) is the average utility that s(gi) gains from agreements

or from taking his outside option after bargaining with genetic programs in the co-evolving

population J which is a set of m genetic programs, j ∈ J . Such genetic programs satisfy the

hard constraint. The integer m is an experimental parameter.

GF (s(gi)) =

∑
j∈J us(gi)→s(gj)

m
(7.5)

In theory if players perpetually disagree and do not take their outside options, both

players obtain utility 0. In experiments, if players do not agree and do not take their outside
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options after 10 time intervals, both get utility 0.

According to the analysis of the constraints in COO bargaining problem in Section 7.3,

the hard constraint C 1: xi ∈ (0, 1] must be satisfied. If this constraint is satisfied, an extra

value 3 is added on the top of its game fitness. This encourages feasible genetic programs

to propagate in the new population. For genetic programs violate this hard constraint, a

function ATT (i) + ATT (j) − e
−1
|gi| is applied. The constraint handling technique and the

fitness function for COO can directly inherit those of the CCGP for incomplete information

bargaining problems in Section 6.5:

For COO bargaining problem, gi’s fitness function F (gi) is:

F (gi) =





GF (s(gi)) + 3
if gi ∈ (0, 1]

ATT (i) + ATT (j)− e
−1
|gi|

if gi /∈ (0, 1]

(7.6)

7.4.4 Game Settings

We test 115 game settings, covering all five conditions of the three categories defined in

Table 7.1. It is necessary to group experiments according to their conditions. We study

experimental results under three categories below. They are divided by the values of outside

options and by outside options’ relationship to discount factors, see Table 7.1.

1. Category 1: Ineffective Threats: the condition #a in the Table 7.1: the situations

where w1 ≤ δ1µ1 and w2 ≤ δ2µ2. The existence of outside option(s) have no impact on

bargaining outcomes because these outside options are too small to be considered by

both players.
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2. Category 2: Effective Threats: the conditions #b, #c and #d in Table 7.1. Outside

option(s) change players’ bargaining powers but both players still prefer a mutually

agreeable bargaining outcomes than taking outside options.

3. Category 3: Over-Strong Threats: condition #e in Table 7.1, including the situations

where (w1 + w2 > 1) ∩ (0 < w1 < 1) ∩ (0 < w2 < 1), and the situations where

(w1 = 1) ∩ (0 < w2 < 1); (0 < w1 < 1) ∩ (w2 = 1). For at least one player, outside

option(s) is better than any possible bargaining outcome.

Values of game settings are chosen as follows: δ1 and δ2 ∈ {0.1, 0.5, 0.9}, representing

small, middle and large discount factors. w1 ∈ {0, 0.01, 0.03, 0.1,

0.2, 0.4, 0.5, 0.7, 1} and w2 ∈ {0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.4, 0.5, 0.7, 1}. These values

are not fully combined.

For a game setting, we execute 100 runs, starting with different random seeds. We

record (1) the average experimental shares x̄1 and x̄2 of 100 runs. If x̄1 + x̄2 = 1, only x̄1 is

reported. For the situations of x̄1 + x̄2 6= 1, as expected for the condition #e, both x̄1 and

x̄2 are reported; (2) the average bargaining time t̄ in experiments and; (3) the deviations σs

of x̄1s and x̄2s, which examine the stationarity of agreements.

7.5 Experimental Results and Observations

Comparing experimental results with game-theoretic solutions, we measure their differences

with respect to partition in agreements, bargaining time and stationarity of agreements. In

addition, to demonstrate the efficiency of CCGP, the computational resource required is

reported.
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# t Statistical value t Critical two-tail

tsv tcv

a 0.4592 2.0423

b 0.9112 2.0049

c 0.4020 2.0154

d 0.4704 2.0739

e -1.6506 1.9769

Table 7.2: t-test results under 5 different conditions for COO outside option bargaining
problem. The 95% confidence level applies.

7.5.1 Partition of Cake in Agreement

Experiments are split into three categories with five conditions as in Table 7.1. We make

t-tests on the hypothesis x∗1−x̄1 = 0 for these five conditions. The hypotheses under all these

five conditions are accepted with 95% confidence. The results of t-tests are in Table 7.2. So

there is no statistical evidence showing that x∗1s are significantly different from x̄1s.

From the linear regression test on x∗1s and x̄1s, R2 is 0.9777. In summary, the R2 is nearly

1, showing a strong linear relationship between x∗1s and x̄1s. The statistic evidences from

t-tests and from the linear regression test demonstrate that x̄1s ideally approximate x∗1s.

Now we analyze the compound impacts of the two determinants: discount factors and

outside options on bargaining outcomes according to experimental results.

1. Category 1: Ineffective Threats w1 ≤ δ1µ1 and w2 ≤ δ2µ2: condition #a in Table 7.1.

Theoretically the values of these outside options are too small to make any credible

threats on the bargaining outcomes at all. Bargaining agreements are better off than

players’ outside options. Thus no player considers his outside option. Bargaining

continues as if there is no outside option. The game-theoretic solution to this condition

is the same as the SPE for CRub82 bargaining problem whose outside option are
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both 0s. Both SPE for CRub82 and SPE for COO bargaining problem under #a are

(µ1, 1 − µ1). Let return to our bargaining example of University A and economist B.

Suppose B’s current salary is £50, 000 and University A obtains £50, 000 from having

B working at University A. The size of cake is £100, 000. A and B each now has 50%

of the cake. If B’s alternative job offer provides a salary £49, 999 ( B’ outside option

wB). B’s threat to quit in order to get higher salary from A is incredible because

University A just ignores this threat. Experimental results support the game-theoretic

analysis. The raw experimental data are in Appendix F. For example, Table F.1: #2

(δ1, δ2, w1, w2) = (0.1, 0.9, 0, 0.7) where player 1 has no outside option and player 2’

outside option seems to be a threatening one w2 = 0.7. The observed x̄1 is 0.1104

(SPE x∗1 = 0.1099). We compare SPE of COO problem with SPE of CRub82 problem

in which both outside options are 0, to see whether the existence of a positive outside

option makes any difference on bargaining outcomes. For the bargaining situation

having no outside option (δ1, δ2, w1, w2) = (0.1, 0.9, 0, 0), its CRub82 SPE x∗1 is 0.1099.

It is clear that in the example #2, the bargaining outcome does not change because

of the existence of the outside option w2 = 0.7. Compared with the discount factors

(δ1, δ2), the w2 = 0.7 is too small to increase player 2’ bargaining power. Why? Player

1 has a very low discount factor and has no (creditable) outside option. These force

him to accept a small slide of cake. He gives up so much that player 2 obtains a higher

utility than if player 2 takes her outside option.

2. Category 2: Effective Threats The conditions #b, #c and #d in Table 7.1. Theoreti-

cally such outside options effectively account for the increase of one player’ bargaining

power while both players still prefer dividing the cake to taking their outside options.
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Players do not take up their outside options and remain at negotiation table, but the

presence of outside option(s) influences the partition of cake. “Credible threats and

credible promises matter.” [Mut00]. Suppose this time, economist B receives a job offer

wB = £55, 000. B’s threat to quit is now credible and he increases his bargaining power

due to the value of wB. University A compromises to the extent that A only needs to

increase B’s salary to the exact value of wB in order to keep B working here. Univer-

sity A does not need to give £1 extra more than wB = £55, 000. One example in the

experimental data in Appendix F is Table F.2: #1 (δ1, δ2, w1, w2) = (0.1, 0.1, 0, 0.7).

The observed x̄1 is 0.2663. For the bargaining situation having no outside option but

have the same discount factors (δ1, δ2, w1, w2) = (0.1, 0.1, 0, 0), the CRub82 SPE x∗1 is

0.9091 (so x∗2 = 0.0909). In this example, the existence of the outside option w2 = 0.7

makes great difference on the bargaining outcome. w2 significantly increases player 2’s

bargaining power from obtaining a 0.0909 slide of the cake to getting an offer from

player 1 who instead offers 0.7337 to player 2 (in COO SPE x∗2 = 0.7), the same value

as player 2’s outside option 0.7. Player 1’s bargaining power decreases accordingly.

The only difference on game setting between this example Table F.2 #1 and the pre-

vious example Table F.1 #2 is the value of player 2’ discount factor: 0.1 and 0.9

respectively. Because player 2 in Table F.1 #2 has a discount factor so high that w2

makes relatively less impact. Player 2 in Table F.2 #1 has a discount factor so low

that w2 makes more influential impact on the outcome.

3. Category 3: Over-Strong Threats 0 < w1 < 1, 0 < w2 < 1, and w1 + w2 > 1:

condition #e in Table 7.1. The game-theoretic analysis expects that at least one of

players prefers his outside option to bargaining, so in equilibrium both players take
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their outside options. If economist B is offered a job with the salary wB = £100, 000,

it is intuitive that B will walk away from the negotiation table. So does University

A. If increase B’s salary equal to his outside option £100, 000, University A obtains

nothing from keeping B, because there is indifferent between to have B working here

and to have nobody working for his position at all. This is a situation where there

is no mutual benefit of bargaining: the cake disappears. Experimental results on the

partition of cake agree with game theoretic solutions. From the experimental data in

Appendix F, for example, Table F.5: #2 (δ1, δ2, w1, w2) = (0.1, 0.1, 0, 1), player 2’s

outside option is the same size as the cake. The observed x̄1 is 0 and x̄2 is 1. Obviously,

player 2 just takes his outside option, no point to carry out bargaining.

7.5.2 Bargaining Time and Efficiency of Agreement and Decision

To analyze the resulting bargaining time t̄ and stationarity σ in experiments, we regroup

experimental results by their game settings under “#a, #b, #c and #d” or “#e”. The reason

is that in theory, bargaining under conditions “#a, #b, #c and #d” ends up with bargaining

agreements. Bargaining under #e ends up with taking outside options.

In theory, for all conditions #a, #b, #c, #d and #e, the SPE solutions implies t = 0.

The bargaining time t∗ in COO SPE for all game settings are 0. As shown in the utility

function ui = xi× δt
i or ui = wi× δt

i , the utility deteriorates exponentially while t increases.

When an agreement or a decision of taking outside option is made at t = 0, this agreement

or decision is the most efficient one. Any t > 0 suggests inefficiency because players pay

the cost for delays. Experimental results of average bargaining time are stated in Table 7.3.

Generally speaking the experimental results t̄s are very small. When threats from outside

options are over strong, (condition #e), players learn to take their outside option almost
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range of t̄ Probability of t̄s corresponding to the left range under

under Conditions #a, #b, #c and #d #e

t̄ = 0 47% 67%

0 < t̄ < 0.05 20% 17%

0.05 < t̄ < 0.10 16% 8%

0.10 < t̄ < 0.50 14% 8%

0.50 < t̄ < 4.00 3% 0%

Average value of t̄s Condition #a, #b, #c and #d #e

Average t̄ = 0.1237 0.0229

Table 7.3: Average bargaining time t̄s under the five different conditions of COO outside
option bargaining problem.

σ Percentage of tests under under

Condition #a, b, c and d #e

Average 0.0209 0.0139

Maximum 0.0430 0.0759

Table 7.4: Deviation σ of x̄1s under conditions #a, b, c, d or #e of COO outside option
bargaining problem.

immediately: the large probability of t̄ = 0 and the low average t̄ value. When players

prefer to bargaining they spend slightly longer time to reach agreements. In Chapter 2, we

survey related studies in the field of experimental economics on outside option bargaining

problems. These studies find that outcomes of human decisions are inefficient in general.

Compared with decisions made by human subjects, those by artificial players demonstrate

higher efficiency. Inefficiency observed in our experiments is so small that it can be considered

mainly as the consequence of the stochastic property of an evolutionary algorithm.
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7.5.3 Stationarity of Agreement and Decision

We measure the stationarity of agreements by means of examining the deviation σ of x1s.

Experimental results of σs are shown in Table 7.4. Both the average and maximal values of

deviations are very small, showing that no player wants to withdraw from such agreements

under the conditions #a, #b, #c and #d or to take any choice other than outside options

under the condition #e.

7.5.4 Computational Resources

The computational resource for tackling COO problem is almost the same as that for tackling

CRub82 bargaining problem. Adding another determinant into the bargaining problem does

not make it more difficult nor computationally more expensive to be solved by CCGP.

7.6 Concluding Summary

This chapter studies the COO bargaining problem which has outside options and discount

factors. Having two determinants, this bargaining problem is complicated and therefor more

difficult to be solved by game-theoretic method. We investigate whether the CCGP system is

able to generate fairly good solutions for COO bargaining problem. CCGP system is reused

with slight modifications to conform with the specification of outside options.

From experimental results, the mutual benefits (the cakes) are partitioned in a way that

approximate the Subgame Perfect Equilibrium. The compound effects of discount factors

and outside options on bargaining outcomes demonstrated in experiments, support the game-

theoretic analysis. The observed average bargaining time is very small, meaning that the

agreements in experiments are of nearly perfect efficiency. Additionally, observed players’

behaviors in making agreements or decisions show high stationarity.
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The experimental results and observations enhance our assertion that the evolutionary

algorithm, particularly the CCGP system is capable of finding out nearly perfect solutions

within manageable computational resources and reasonable time for a variety of two-player

bargaining problems.
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Chapter 8

CCGP for Bargaining Problem with
Incomplete Information on Outside
Options

8.1 Introduction

The previous chapters discover that CCGP provides efficient and stationary solutions for

• complete information bargaining problem having one determinant, discount factors

(CRub82);

• bargaining problems with incomplete information on discount factors (ICRub85, UGI,

UII and BGI);

• complete information bargaining problem with two determinants: discount factors and

outside options (COO).

Among them, the CRub82, ICRub85 and COO bargaining problems have game-theoretic

solutions. Experimental results from CCGP approximate their game-theoretic solutions.

This chapter challenges CCGP with a bargaining problem with complete information on

discount factors and with incomplete information on outside options. This bargaining prob-

lem is abbreviated as ICOO. The challenge of ICOO problem is that firstly its game-theoretic
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solution is not known yet; secondly it has complete information on one determinant and has

incomplete information on another determinant. We attempt to provide such solutions from

CCGP system that may inspire game theorists to reason equilibriums in near future.

The next section introduces the ICOO bargaining problem. Assumptions and constraints

are specified in Section 8.3 and Section 8.4 respectively. Section 8.5 reuses the CCGP system

for ICOO bargaining problem. Section 8.6 analyzes experimental results.

8.2 Bargaining Problem with Incomplete Information

on Outside Option - ICOO

We present a bargaining problem with complete information on discount factors and with

incomplete information on outside option, abbreviated as ICOO. In ICOO, one player has

incomplete information on the another player’s outside option, while his own outside option

is publicly known.

We set that the uninformed player 1 knows that player 2’s outside option is either wl

(large) or ws (small) 1. This model is supposedly easy for game-theoretic analysis. Another

option of defining an incomplete information on outside option is the situation when one

player’s information is totally unknown. For this option the complexity of incomplete infor-

mation is completely out of the control of game-theoretic analysis at the time being. We

therefore prefer the simple structure of incomplete information of ICOO. Hopefully, game

theorists will be able to solve ICOO problem within one or two years so that game-theoretic

equilibriums can soon be compared with CCGP experimental results.

In details, in ICOO bargaining problem, there are two players bargaining over a partition

of a cake of size 1. Except player 2’s outside option, all other game related information are

1The information structure over a probability distribution is similarly designed to the incomplete infor-
mation structure on discount factor δ as in ICRub85 problem [Rub85].
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Player Variable Explanation Privacy

1 δ1 Player 1’s discount factor Public

2 δ2 Player 2’s discount factor Public
1 w1 Player 1’s outside option Public

2 w2 Player 2’s outside option Private
2 wl = MAX{wl, ws} Public

a possible value of w2

2 ws = MIN{wl, ws} Public
another possible value of w2

ω′0 The possibility Public
of w2 = ws in
player 1’s initial belief

Table 8.1: Notations of Variables in ICOO bargaining problem

known by both players. Their bargaining costs over time are measured by discount factors

δ1 and δ2 respectively. Player 1 has his outside option w1 and the second player 2 has

her outside option w2. Player 1 knows that player 2’s outside option is either wl (a larger

outside option) or ws (a smaller outside option). wl > ws. The actual w2 ∈ {wl, ws}. Player

1 initially believes that player 2’s outside option is ws with ω′0 possibility. Table 8.1 outlines

the game variables and their properties of privacy.

These outside options w1, w2, wl and ws are static during one bargaining. The bargaining

scenario is the same as what we define in Section 2.3.3 for COO bargaining problem. When

an offer or a counter-offer xi is accepted at the time t, player i receives utility xiδ
t
i and

the other player gets utility (1 − xi)δ
t
j. If player i opts out the bargaining at the time t

and takes his outside option, he receives wiδ
t
i and player j gets wjδ

t
j. In theory if they

both perpetually disagree and do not take their outside options, both players obtain 0. In

experiments, if players do not make an agreement and do not take their outside options after

10 time intervals, both get utility 0.

The computational complexity of ICOO bargaining problem is higher than that of COO
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bargaining problem which is analyzed in Section 7.1.1. This is because in ICOO bargaining

problem one player has incomplete information on the other’s outside option. Therefore the

number of possible outcomes increases.

8.3 Assumptions of Players’ Boundedly Rationality

The assumptions on players’ bounded rationality: A-2 to A-9 in Section 3.3, excluding A-1

and A-4, continue to serve for the CCGP system for the ICOO bargaining problem. Due to

the complexity of ICOO problem, A-1 and A-4 need to update:

One of two players in ICOO does not have complete information about the game. There-

fore two players have different information. A-4 is changed to: the two players in ICOO

bargaining problem have the same level of learning ability. Only the terminal sets of the GP

set-ups of two populations in CCGP system are not completely the same. The rest of GP

set-up of the two populations are the same.

In a bargaining problem with outside options, each player has three options upon an offer

or a counter-offer: accept, reject and quit. So the assumption A-1 is changed to : a player

tries to maximize his utility. Player i has three possible choices of action, α, β and γ. u(α),

u(β) and u(γ) are i’s utilities of α, β and γ respectively. Player i takes the action which

rewards him the highest utility, MAX(u(α), u(β), u(γ)). If two or three actions bring the

same utility, player i takes the action which ends the bargaining sooner.

Players’ behaviors are still boundedly rational after the updates on A-1 and A-4 as-

sumptions.
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8.4 Constraints in ICOO Bargaining Problem

The three constraints of CRub82 bargaining problem are defined in Section 5.3. But for

ICOO problem, even a perfectly rational economic man having a larger discount factor is

likely to get a smaller portion of a cake than a player with lower discount factor. This

is because incomplete information and/or outside option(s) might reverse the influence of

discount factors on the outcome. Therefore, the constraint properties for ICOO bargaining

problem are:

The hard constraint C 1 xi ∈ (0, 1] is still valid, because any offer, any counter-offer or

a share of an agreement should not be larger than the size of the cake and should not be

negative.

The soft constraints C 2 and C 3 are still valid, but their impacts on bargaining outcomes

are unclear without substantial game-theoretic analysis.

8.5 System and Experiment Design - Adaptation of

CCGP

We reuse the CCGP system which solves the COO bargaining problem in the last chapter.

We modify it to meet the requirements of the incomplete information on outside options.

8.5.1 Bargaining Procedure

We know that the bargaining procedure of ICOO is identical to that of COO bargaining

problem. Therefore player i’s strategy s(gi) for ICOO problem can be directly copied from

the s(gi) for COO in Section 7.4.
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8.5.2 GP Terminal Sets

Player 1’s information set is {δ1, δ2, w1, ω
′
0, wl, ws}. Added the size of cake 1 and −1 to

change the sign, the terminal set for g1 is {δ1, δ2, w1, wl, ws, ω
′
0, 1,−1}. Player 2 has complete

information relevant to bargaining game, therefore she knows all what player 1 knows. Her

information set is {δ1, δ2, w1, 1,−1}. The rest of values of GP parameters and operators are

the same as those listed in the Table 3.3.

8.5.3 Fitness Function

The ICOO fitness function inherits the fitness function for COO bargaining problem. COO

and ICOO bargaining problems share the same utility function us(gi)→s(gj), game fitness

GF (s(gi)), the properties of constraints and the fitness function F (gi). us(gi)→s(gj), GF (s(gi))

and F (gi) are formally defined in Section 7.4.

In terms of game-theoretic knowledge, the ICOO bargaining problem is much more com-

plicated than either the COO bargaining problem which has complete information on outside

options or the incomplete information bargaining problems which have no outside option.

The increasing complexity does not make it more difficult for CCGP to adapt to. The CCGP

version for solving COO problem only needs to update the terminal sets in order to solve the

ICOO. In addition, the way to deal with incomplete information is similar to that in CCGP

version for solving incomplete information bargaining problems. The reusability of CCGP

is a great advantage.

8.6 Experimental Results and Observations

For each game setting, we execute 100 runs. Runs start with different random seeds. The

average of player 1’s shares x1s from the agreements by the best-of-generation genetic pro-
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grams in the 300th generations of 100 runs is notated as x̄1. We test 36 sets of game settings

as shown in Appendix G: Tables G.1 and G.2. The properties of efficiency of agreements,

stationarity of agreements and computational resources are examined.

8.6.1 Partition of Cake in Agreement

In theory as player 1 has incomplete information about player 2’s outside option, he is

presumably to have a disadvantage on the partition of the cake.

There is no game-theoretic solution for ICOO problem yet. We treat COO x̄1s as a

reference to understand the impacts of the incomplete information of outside options on

ICOO’s x̄1s. The experimental results x̄1s of ICOO are compared with the experimental

results x̄1s of COO under the same (δ1, δ2, w1, w2). The last two columns of Table G.3

display the ICOO x̄1s and COO x̄1s. t-test on the hypothesis ICOOx̄1 − COOx̄1 = 0 can

not be rejected with 95% confidence level. A linear regression test on these two compared

data sets results in R2 = 0.9953. x̄1 and COO x̄1 display a strong linear correlation.

Readers may ask why we do not directly compare the experimental results of ICOO

bargaining problem with the game-theoretic solutions of COO. Such a comparison may not

be justifiable because in theory ICOO and COO are different games and they have different

structures of game settings. Bargaining problems with incomplete information are expected

to have multiple equilibriums. It is inferred from the fact that CRub82 bargaining problem

has an unique game-theoretic solution SPE and its corresponding incomplete information

bargaining problem ICRub85 has multiple equilibriums PBEs. Therefore we only study the

relationship between experimental results of COO and those of ICOO. The experimental

results stand on the common co-evolutionary framework and CCGP so they are comparable.

156



8.6 Experimental Results and Observations

Experimental Results
t̄ σ

Average 0.02 0.02
Max 0.08 0.06
Min 0.00 0.0064

Table 8.2: Experimental results on the average, maximal and minimal values of t̄ and σ for
ICOO bargaining problem.

8.6.2 Bargaining Time and Efficiency of Agreement and Decision

Bargaining time t is highly associated with the efficiency of an agreement or a decision

(Section 4.2). The most efficient agreements or decisions of taking outside option should be

made at time t = 0. Experimental results on bargaining time t̄s in Tables G.1 and G.2 are

very small. Their statistically analytic results are reported in Table 8.2. In Table 8.2, the

average of bargaining time t̄s from the experimental results of the 36 tested game settings

is 0.02 and the maximal value among them is 0.08. It implies that most of agreements or

decisions for taking outside options are made at t = 0 in experiments. The bargaining cost

on time therefore is very small. This demonstrates that most of agreements and decisions in

experiments are very efficient.

8.6.3 Stationarity of Agreement and Decision

The stationarity of agreements and decisions is measured by the deviation σ of x1s from 100

runs of a given game setting. Experimental results of the deviation σs are very small, see

Tables G.1 and G.2. From Table 8.2, the average of deviation σs of the 36 tested game

settings is as low as 0.02 with their maximal value 0.06. Such statistic results show that

most of observed agreements and decisions are very stationary. Moveover, genetic programs

in the final populations are evolutionarily stable.
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8.6.4 Computational Resources

The computational resource for tackling ICOO problem is almost the same as that for tack-

ling CRub82 bargaining problem. Adding another determinant and incomplete information

into the bargaining problem does not make it more difficult nor computationally more ex-

pensive to be solved by CCGP.

8.7 Concluding Summary

We only spent a few days to convert the CCGP system for solving COO bargaining problem

to the CCGP system for solving ICOO bargaining problem. It takes about two days to

execute the experiments of 36 game settings for ICOO bargaining problem.

On the basis of the above analysis on the experimental results, we conclude that CCGP

system generates such solutions for ICOO bargaining problem that demonstrate the game-

theoretic properties: efficiency and stationarity.

About the partition of cake in agreements, experimental results x̄1s of ICOO and x̄1s of

COO are statistically similar. This fact together with ICOO results’ high efficiency and high

stationarity, suggest that COO SPE should be efficient and stationary to ICOO problem too.

This further infers that COO SPE is probably one of game-theoretic solutions for ICCO 2.

We are hoping that game theorists solve the ICOO bargaining problem soon, then our

expectation that the partition of cake between two players approximate one of the game-

theoretic solutions will be further confirmed.

2CRub82’s game-theoretic solution SPE is one of multiple equilibriums of ICRub85’s game-theoretic
solutions PBE: (Vs, 1− Vs) when δ2 = δs and ω0 = 0.

158



Chapter 9

Conclusions

9.1 Importance and Motivations

Bargaining is one of fundamental activities in economics, politics and many other social

aspects of the society. Bargaining theory represents an idealization of important aspects of

bargaining activities [Mut00]. The game-theoretic method mathematically derives perfect

solutions for abstract bargaining games [Mut99]: game-theoretic equilibriums as rational

choices. Game-theoretic analysis is based on idealized assumptions, such as perfect rational-

ity, and their mathematical consequences. Perfect rationality is seldom observed in humans’

decision making. Humans behave boundedly rationally. The use of perfect rationality by

game-theoretic method leads to the question of the suitability of game-theoretic methods for

more realistic applications. This argument urges researchers to investigate whether game-

theoretic solutions are still applicable to boundedly rational players at all when boundedly

rational players play game-theoretic games.

Typically, game theory models one or two essential determinant(s) in a bargaining prob-

lem, then examines how these one or two determinant(s) make impact on bargaining out-

comes, outcomes’ efficiency and outcomes’ stationarity. It is rare to examine more than three

determinants in one game-theoretic model. This is largely due to the high complexity that
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multiple determinants cause. When bargaining models increase the number of determinants,

their complexity quickly goes beyond human’s ability of mathematical reasoning.

Another weakness of game-theoretic method is that even for a simple game, game-

theoretic method demands substantial human intelligent effort and expertise in order to

prove game-theoretic equilibriums. Analytic complexity increases rapidly when more deter-

minants are taken into account. One the other hand, the more determinants involved the

more realistic a bargaining model is. The applications of bargaining theory demand the

integration of multiple determinants.

The critical analysis of the limitations of game-theoretic method on its assumption of

rationality, its capability and its cost of solving complex problems motivates us to consider

an alternative method: computational intelligence. In this thesis, the computational intel-

ligence comes from evolutionary algorithms. The applications of evolutionary algorithms in

many fields successfully demonstrate that they are able to deal with many learning tasks

and optimization problems which are impractically treated by traditional methods, for exam-

ple mathematical proofs [Koz92,LP02]. Evolutionary algorithms are especially suitable for

problems which are non-linear, having large search space ( for instance NP hard problems),

multi-dimensional and dynamic problems [LP02]. Bargaining problems are dynamic, having

a large search space (Section 3.2) and non-linear. Evolutionary algorithms are suitable for

solving such problems.

9.2 Innovations

This section summarizes how we overcome these limitations of game-theoretic method and

how we solve seven bargaining problems.

Bounded Rationality

160



9.2 Innovations

Bounded rationality is defined as not perfect rationality. There is no commonly accepted

formal definition of bounded rationality. We define a set of assumptions A-1 to A-9 in

Section 3.3 to model boundedly rational bargaining players. This set of assumptions is

under the co-evolutionary learning principles. We equip artificial bargaining players with

basic adaptive learning ability, a form of bounded rationality. Such ability is far from the

perfect rationality assumed by the game-theoretic method.

Theoretic Framework

We establish the theoretic co-evolutionary framework for two-player bargaining problems.

These artificial players learn how to make mutually acceptable agreements quickly from

bargaining training experiences. Such training is patterned after simulated evolution.

CCGP system for Seven Bargaining Problems

On the basis of the assumptions and the theoretic framework, we develop Constraint-

based Co-evolutionary Genetic Programming system. CCGP adapts the specifications of

variant bargaining problems and solve:

• complete information bargaining problem having one determinant, discount factors

(CRub82);

• bargaining problems with incomplete information on discount factors (ICRub85, UGI,

UII and BGI);

• complete information bargaining problem with two determinants: discount factors and

outside options (COO);

• bargaining problem with complete information on discount factors and with incomplete

information on outside options (ICOO).
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Determinants Complete Incomplete Information
Information One-sided Two-Sided

Discount Factors CRub82 * ICRub85 * BGI
( 3, 4, 5) UII ( 6)

UGI
( 6)

Discount Factors COO * ICCO ♦
+ Outside Options ( 7) ( 8)

Table 9.1: Seven bargaining problems are studied in this thesis. Problems with * are prob-
lems that have game-theoretic solutions. The numbers in the brackets are the numbers of
chapters which examine corresponding bargaining problems. CRub82: Rubinstein complete
information bargaining problem having one determinant, discount factors. ICRub85: Rubin-
stein incomplete information bargaining problem having one determinant, discount factors.
UII: Unilateral Imprecise Information Bargaining Model. UGI: Unilateral Ignorance Infor-
mation Bargaining Model. BGI: Bilateral Ignorance Information Bargaining Model. COO:
Complete Information Outside Option Bargaining Model. ICOO: Incomplete Information
on Outside Option Bargaining Model. Bargaining problems with two-sided uncertainty on
outside options (♦) can be done relatively easily, but it does not enhance our conclusions.

We thoroughly examine seven types of bargaining problems as shown in Table 9.1. These

problems are in the scope of sequential bargaining procedure, infinite-horizon dynamic, com-

plete or incomplete information and perfect information. They have one or two bargaining

determinants: discount factors and outside options.

Relative and Absolute Fitness Functions

We formalize the relative and absolute fitness functions for co-evolution. We instantiate

the relative and absolute fitness functions for bargaining problems. Then we investigate their

features and the roles that these two types of fitness functions play in co-evolution.

Constraint Handling

We present the constraint handling technique for evolutionary algorithms, namely In-

centive method. The Incentive method enables us to deal with hard constraints and soft

constraints simultaneously. The seven bargaining problems all have the hard constraint and
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soft constraints. Chapter 5, Section 6.6, Section 7.5 and Section 8.6 demonstrate the use of

the Incentive Method for CRub82, Incomplete information bargaining problems, COO and

ICOO bargaining problems respectively.

9.3 Discoveries

The experimental results and our conclusions are subject to the set of assumptions of bounded

rationality defined in Section 3.3, the theoretic co-evolutionary framework in Section 3.4 and

computational resources in Section 4.2.6.

The experimental results of CCGP are measured by their game-theoretic properties 1:

efficiency (how much bargaining costs spent) and stationarity (whether players have inten-

tions to withdraw from agreements unilaterally). For those bargaining problems that have

game-theoretic solutions available, we also compare and contrast experimental results with

their game-theoretic equilibriums.

We have made significant progress towards efficiently solving bargaining problems with

evolutionary algorithms. With reference to the objectives set in Section 1.3, we are ready to

answer questions arisen in Introduction.

Approximation to Game-theoretic Solutions

We have found that the experimental results generated by CCGP system statistically

approximate game-theoretic solutions. This finding suggests that after certain artificial

training, boundedly rational players behave surprisingly similar to perfectly rational players

especially in relatively simple games.

Q1. Are game-theoretic solutions of any use for bounded rational players? Answer:

Yes. On the ground that the experimental results statistically approximate game-theoretic

1The definitions of these properties are in Section 4.2
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solutions (Section 4.2 for CRub82; Section 6.6.1 for ICRub85 and Section 7.4 for COO), we

conclude that even boundedly rational players behave in ways that resemble what game-

theoretic solutions suggest. So game-theoretic solutions apply to certain boundedly rational

players.

Game-theoretic Properties

Furthermore, experimental results of the seven bargaining problems exhibit game-theoretic

properties (Section 4.2): efficiency and stationarity. In game theory stationarity strictly

constrains to the exact game-theoretic solution(s). In experiments (Section 4.2), due to the

stochastic nature of evolutionary algorithms, we measure the stationarity by the deviation

of the phenotypes of genetic programs in the population at the last generation. Moreover

we assume that when the deviation is smaller than 0.05 the agreement made by the best-of-

generation genetic programs is stationary.

The observations indicate that evolutionary algorithms could achieve one of major goals

that game-theoretic analysis pursues: to discover efficient and stationary strategies. The

summary of experimental results are outlined in Table 9.2 corresponding to bargaining prob-

lems in Table 9.1.

Q2. Through adaptive learning, will boundedly rational players make reasonable deci-

sions? Answer: Yes. For the seven bargaining problems studied by evolutionary algorithms,

after training, players make efficient and stationary agreements, as seen in Section 4.2 for

CRub82, Section 6.6 for ICRub85,UII, UGI and BGI, Section 7.4 for COO and Section 8.4

for ICOO. In experiments, after training player 1’s first offer is always accepted by player 2

immediately. Such an agreement is always made at time 0. Both players have no motivation

to withdraw from such an agreement.
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Determinants Complete Incomplete Information
Information One-sided Two-Sided

Discount Factors Approximate SPE * Approximate PBE * Efficient
and stationary

Efficient
and stationary

Discount Factors Approximate SPE * Efficient ♦
and stationary

+ Outside Options

Table 9.2: Overall observations from experimental results on corresponding bargaining prob-
lems as in Table 9.1. Problems with * are problems that have game-theoretic solutions.

Q3. For complicated games whose game-theoretic solutions are unavailable yet, are

bounded rational players’ decisions efficient and stationary after evolutionary training? An-

swer: Yes. Experimental results demonstrate high efficiency and high stationarity ( Sec-

tion 6.6 for UII, UGI and BGI; and Section 8.4 for ICOO). Therefore, it is very likely that

experimental results approximate (one of) game-theoretic solutions which are unknown.

Computational Efficiency

Q5. Does CCGP require heavy computational resources and/or long time for solving

bargaining problems? Answer: It only takes about an hour to run statistically sufficient

experiments for one game setting by a Linux machine with an athlon2400 processor. We

implement the CCGP system by JAVA version “1.4.2” and use GNU Compiler for the Java

Programming Language (GCJ). This Java compiler is developed by Sun.

Reusability

Q4. Is the CCGP system easily reusable and extensible for various bargaining problems?

Answer: Yes. Once the co-evolutionary framework is established and CCGP system is

implemented, it typically takes us a few days to extend the CCGP system to satisfy the

165



9.4 Contributions

specification of a variant bargaining problem. As Section 6.5, 7.4 and 8.5 witness, the

CCGP for CRub82 bargaining problem adapts to solve Incomplete information bargaining

problems (ICRub82, UII, UGI and BGI), outside option bargaining problem (COO), and

the bargaining problem with incomplete information on outside option (ICCO).

Comparison with Human-Subject Experiments

Moreover in Section 6.7 we briefly contrast and compare experimental results from

CCGP with human entries or human behaviors observed in experimental economics stud-

ies [BPSS98]. It is obvious that human behaviors demonstrate less efficiency and less sta-

tionarity than the experimental results from CCGP. It is probably because human learning

is far more complicated than the artificial adaptive learning that we define in this thesis

(Section 3.3 and Section 3.4). Many other factors in human learning affect learning out-

comes.

9.4 Contributions

This study overcomes the limitations of game-theoretic method for solving complicated bar-

gaining problems, in terms of assumption, cost and expertise. We have demonstrated that

co-evolutionary algorithms can find approximation to game-theoretic equilibriums and/or

find solutions with game-theoretic properties. The main contributions of this thesis are as

follows:

• Co-evolutionary Dynamics We have deepened the understanding of the co-evolutionary

algorithm and its dynamics from observing the interactive adaptation of two players

simulated by the co-evolutionary algorithm. Moreover the study on co-evolutionary

dynamics helps to explain why the values of evolutionary operators (crossover rate,
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mutation rate and selection pressure) should be smaller than values of operators in

evolutionary algorithms 2. Additionally in a co-evolutionary system relative fitness

essentially drives co-evolving populations to adapt to each other. Absolute fitness

monitors adaptive improvement, interpreting how co-adaptation reaches.

• Constraints, especially when different types of constraints exist in one problem, in-

crease the difficulty of problem-solving. As demonstrated mainly in Chapter 5, the In-

centive method outperforms a comparable penalty method and the co-evolutionary sys-

tem having no constraint handling technique. Incentive method helps heuristic search

to allocate search efforts more efficiently. In literature the application of the Incentive

method to financial forecasting also exhibits its efficiency and effectiveness [LT99].

• Simplicity and Complexity The assumptions A-1 to A-9 defined in Section 3.3 are

very primitive. One of the main abilities of a boundedly rational player is to choose the

better or the best choice in front of him according to the known values (utilities) of these

choices. Another main ability is the adaptive learning ability according to principles

of evolution. The discoveries show that players equipped with such primitive abilities

perform nearly perfect after evolutionary training. Simple intelligence can generate

complex behaviors.

• Learning Element The simulations of boundedly rational players’ adaptive learning

reveal an interesting property of learning elements. Although the learning elements

(the terminal set and the function set in Table 3.3 3) that we provide to the artificial

players are very primitive: arithmetic functions and variables, such players’ behaviors

2Full details about the values of evolutionary operators are in Section 3.5.
3Please note that there are variations in terminal sets for different bargaining problems, as the information

one player has may be different from what the other player has.
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after sufficient trial-and-error training approximate game-theoretic solutions and ex-

hibit game-theoretic properties. It implies that combinations of simple elements can

achieve complex structures and behaviors. This finding is consistent with observations

in biology. The building blocks of DNA are called nucleotides. Nucleotides have only

four types: adenine, cytosine, guanine and thymine. Merely these four types of nu-

cleotides build genetic materials for millions of species on earth. These species vary

greatly in genotypes 4 and phenotypes 5. John Holland in Emergence : from chaos to

order states that “complexity emerged from simple elements” [Hol00].

• Rationality The learning mechanism in the theoretic framework is based on the princi-

ples of genetic algorithms in Machine learning [Mit97]. Simplification is also taken into

consideration. As observed, at earlier beginning of learning, players’ behave naively.

Then they quickly improve their performance. At the end of training, they demon-

strate nearly perfect rationality. Just as the saying “practice makes perfect”, adaptive

learning makes players’ behaviors nearly perfect. It indicates that the bounded ratio-

nality is not an unbeatable obstacle to reach perfect rationality if sufficient training

is given. Importantly, bounded rationality can evolve to be perfect. This study sheds

insights to rationality and its relationship to adaptive learning.

• Complementary Method CCGP system discovers good solutions for complex and

dynamic games. We argue that the co-evolutionary framework, together with CCGP

4“The genotype is the specific genetic makeup (the specific genome) of an individual, in the form of DNA.
Together with the environmental variation that influences the individual, it codes for the phenotype of that
individual.” [Wik06c]

5“The phenotype of an individual organism is either its total physical appearance and constitution or
a specific manifestation of a trait, such as size, eye color, or behavior that varies between individuals.
Phenotype is determined to some extent by genotype, or by the identity of the alleles that an individual
carries at one or more positions on the chromosomes. Many phenotypes are determined by multiple genes
and influenced by environmental factors. Thus, the identity of one or a few known alleles does not always
enable prediction of the phenotype.” [Wik06d]
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system can serve as an alternative method to game-theoretic method for bargaining

theory.

• For Complex Bargaining Problems Real-life bargaining situations typically have

a large number of determinants that affect outcomes. Therefore, it is always difficult

to predict bargaining outcomes and find equilibriums. Artificial simulations may help

release such analytic burden with affordable time and cost.

9.5 Discussions

Despite achievements, we are aware of limitations of evolutionary algorithms. Firstly, there

lack mathematical proofs on experimental results from the evolutionary-algorithms-based

CCGP. A CCGP experiment is not designed to “mathematically solve” realistic bargain-

ing problems. Instead, CCGP is expected to generate hints of possible outcomes and to

recommend beneficial strategies.

Secondly, experimental results that evolutionary algorithms create are not always identi-

cal when inputting different random seeds. Therefore, it is necessary to collect statistically

sufficient samples. For these concerns, Koza [Koz92] comments that genetic programming

6 disobeys seven ruling principles for science and engineering. These seven principles are

correctness, consistency, justifiability, certainty, orderliness , parsimony and decisiveness.

However, he argues that from a practical perspective, genetic programming has successfully

solved a wide variety of problems and that this is supported by empirical evidences. We

agree with his arguments on these concerns.

Thirdly, it may be difficult for CCGP to handle all determinants in a real situation.

However, CCGP is capable of integrating more determinants into one bargaining model

6This remark also applies to GA.
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than game-theoretic method.

These features of evolutionary algorithms and CCGP are paid off by evolutionary algo-

rithms’ and CCGP’s great advantages: they can model more bargaining determinants than

game-theoretic method. Additionally, the quality of solutions, the efficiency on resources and

CCGP’s reusability are attractive points for considering using such an artificial intelligence.

9.6 Future Study

Having summarized the main achievements and analyzed the limitations, we now outline

improvements that merit further investigation.

• To extend CCGP to treat multi-players bargaining. Currently we focus on two-player

bargaining games. Two-player models are fundamental ones. Real situations mo-

tive us to investigate how bargaining players behave where multiple players are in-

volving. [YD94] extends Axelrod’s two-player Iterated Prisoner’s Dilemma (IPD) to

multi-player IPD. [YD94] discovers such interesting findings that the increasing num-

ber of players in IPD causes less cooperation. We are looking forward to observing the

behaviors of multiple bargaining players.

• To study bargaining situations where two players have different leaning abilities. In this

thesis, we assume that two players equip with identical or almost the same intelligence,

see Assumption A-4 in Section 3.3. That co-evolving players (species) have differen-

tially adaptive abilities is very common in society (nature). Some players quickly learn

and promptly adapt to changes of environments, but others do not. That is why chess

players might qualify different levels even after the same level of intensive training.

This extension will definitely help to enhance our understanding of co-adaptation in a
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more general set-up.

• To contrast and compare experimental results of CCGP with observations by experi-

mental economics and to examine whether the beliefs, information states and prefer-

ences affect human’s decisions in the same way as they affect artificial players’ behaviors

in simulations. They are great challenges. Such studies demand cooperation of social

scientists (experimental economists and psychologists) and researchers of artificial in-

telligence.

We believe that this study will be selected as genetic materials for creating many new

research in future.

THE END
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Appendix A

Notations and Abbreviations
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Table A.1: Notations and Explanation

Explanation Notation

The player who makes the first offer 1
The second player 2
A player i
The other player j
Population P
Individual (Genetic Program) g
An individual in population for the player i gi

gi’s bidding function b(gi)
Strategy of gi s(gi)
Utility u
gi’s utility from the outcome of bargaining with gj us(gi)→s(gj)

Game fitness of gi GF (gi)
Fitness of gi F (gi)
Discount factor of i δi

Discount rate of i ri

Discount factor of the weak player 2 δw

Discount factor of the strong player 2 δs

Incorrect discount factor of player 2 δ′2
Player 2 whose discount factor is δw 2w

Player 2 whose discount factor is δs 2s

Player 2 whose discount factor is δ′2 2′

The possibility of player 1’ initial belief that ω0

player 2’s discount factor is δw

Outside option of player i wi

The larger one of two possible player 2’s outside options wl

The smaller one of two possible player 2’s outside options ws

The incorrect value of player 2’s outside option w′
2

The possibility of player 1’ initial belief that ω′0
player 2’s outside option is ws

Random value r
Player i’ share from an agreement in the theoretic solution x∗i
Player i’ share of the agreement that is made by the xi

best-of-generation individuals at last generation of one run
Player i’ average xis of 100 runs x̄i

The bargaining time for reaching agreements by the
game-theoretic solution t∗

The bargaining time spent by the best-of-generation
individuals at last generation of one run t
The average bargaining time of ts of 100 runs t̄
Deviation σ
t-test critical value tc
t-test statistical value tsv
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Table A.2: Abbreviations and Explanation

Explanation Abbreviations

Evolutionary Algorithms EA
Genetic Programming GP
Genetic Algorithms GA
Constraint-based Co-evolutionary Genetic Programming CCGP
Rubinstein Complete Information Bargaining Problem CRub82
Rubinstein Incomplete Information Bargaining Problem ICRub85
Unilateral Imprecise Information Bargaining Problem UII
Unilateral Ignorance Information Bargaining Problem UGI
Bilateral Ignorance Information Bargaining Problem BGI
Complete Information Outside Option Bargaining Problem COO
Incomplete Information on Outside Option Bargaining Problem ICOO
Subgame Perfect Equilibrium SPE
Perfect Bayesian Equilibrium PBE
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Appendix B

Non-technical Introduction to
Game-theoretic Analysis of CRub82
Bargaining Problem

Rubinstein [Rub82] introduces an alternating-offer bargaining problem and establishes a

mathematical model for this problem. We abbreviate this problem as CRub82 bargaining

problem. Rubinstein makes game-theoretic assumptions and game-theoretic analysis, and

provides subgame perfect equilibrium (SPE).

The purpose of this appendix is to give readers a taste of proof of subgame perfect equi-

librium for CRub82 bargaining problem. This appendix mainly follows [Mut99]’s analysis.

This appendix is a non-technical description of game-theoretic analysis. For rigorous and

technical treatments please refer to [Rub82,Mut99,BF98].

Game-theoretic solutions must satisfy at least two properties below:

• Efficiency. Efficiency is instantiated as “no delay” for CRub82 bargaining problem.

A player’s equilibrium offer is accepted by the other player. Thus there is no bargaining

cost spent, and the cake is solely split by two players.

• Stationarity. A player only offers the same division in equilibrium. Players do not

unilaterally withdraw from equilibrium.

188



Let x1 denote an offer made by player 1 and x2 by player 2; x∗1 and x∗2 denote the shares

of respective players in SPE. The size of the cake is 1. t, a non-negative integer is the time

when an agreement is reached.

Consider at an arbitrary time t when player 1 (he) offers x1 and player 2 (she) gets 1−x1

if she accepts this offer. According to Property Stationarity, player 1 only asks for x1 and

player 2 only asks for x2 in equilibrium. In equilibrium x1 and x2 are static, not changing

over bargaining time. Player 2 accepts x1 if this offer brings her more utility than what she

probably gets after her counteroffer:

(1− x1)× δt
2 > x2 × δt+1

2 (B.1)

1− x1 > x2 × δ2 (B.2)

She rejects x1 if the utility from x1 gives her less than what she might get from her

counteroffer:

(1− x1)× δt
2 < x2 × δt+1

2 (B.3)

1− x1 < x2 × δ2 (B.4)

If

(1− x1)× δt
2 = x2 × δt+1

2 (B.5)

1− x1 = x2 × δ2 (B.6)

acceptance or rejection of x1 is indifferent to her. According to Property of no delay, she

should accept this offer.
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Now consider whether player 1 will offer a x1 so that 1 − x1 > x2 × δ2. He will not do

that because he can increase his utility by asking x′1 such that

1− x1 > 1− x′1 > x2 × δ2 (B.7)

until 1− x′1 = x2 × δ2. On the other hand, player 1 must offer a x1 which player 2 does not

reject. Therefore, player 1 offers the minimum that player 2 can accept:

1− x1 = x2 × δ2 (B.8)

Similarly, when player 2 offers, her offer is accepted if

1− x2 = x1 × δ1 (B.9)

According to Equation B.8 and Equation B.9, we solve the x1 and x2:

x1 =
1− δ2

1− δ1δ2

(B.10)

x2 =
1− δ1

1− δ2δ1

(B.11)

As the player 1 is the first-move player, he starts bargaining at time 0 and his offer is

accepted by player 2 immediately. Therefore, player 1 gets what he offers and player 2 gets

the rest of the cake. The shares in SPE are:

x∗1 = x1 (B.12)

=
1− δ2

1− δ1δ2

(B.13)
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x∗2 = 1− x∗1 (B.14)

End of proof.
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Appendix C

One-population Co-evolution for
CRub82 Bargaining Problem

This appendix presents the study of applying one-population co-evolutionary algorithm to

tackle CRub82 bargaining problem. The reasons of considering one-population system are

explained. The experimental results of one-population system are analyzed.

Axelrod [Axe87] applies the one-population co-evolutionary algorithms to examine It-

erated Prisoners’ Dilemma. This design implicitly assumes that two prisoners’ actions are

symmetric, choosing the same or very similar strategies. After the evolutionary process,

the population converges to one strategy and its minor variants. This survived strategy is

TIT-FOR-TAT.

We propose an one-population co-evolutionary system for the CRub82 bargaining prob-

lem, considering the symmetry of the game-theoretic solution: Subgame Perfect Equilibrium.

The proposed one-population co-evolutionary system presumes that players behave the same

when they swap their roles. This design also conforms to the fact that two players in CRub82

have the same set of information.

We use genetic programming to implement this one-population co-evolutionary system.

The terminal set is {δthis, δother, 1,−1}. A genetic program is interpreted as a player’s be-
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haviors given this player’s discount factor δthis and the other’s discount factor δother, so the

exact same genetic program can be applied to two players.

We run experiments to measure the performances of the one-population and two-population

co-evolutionary systems by inputting same game settings and genetic programming opera-

tors. The two-population co-evolutionary system are specified in Section 3.5. Table C.1 lists

the experimental results both from the one-population system and from the two-population

system. Experimental evidences show that the average partition of cake x̄1s by the two-

population system are closer to SPE.

An explanation of this phenomenon is that the two-population system allows individuals

in two populations to converge to different genetic programs, thus different strategies. On

the other hand, individuals in the one-population system are tightly constrained by functions

of δthis, δother. Two players have to use the same genetic programs. The search aims for a

general function suitable for both players with (δthis, δopp), is much harder than a search for

functions suitable for only one player in each population.

The one-population design limits the potential extensions for more complicated situa-

tions. The two-population co-evolutionary system is more general, therefore it is preferred

for studying problems such as outside option or incomplete information problems in which

two players have different information about the bargaining game. In addition, it is more

realistic and probably easier to be understood that two bargaining players do not necessarily

behave symmetrically.

This appendix has justified the reasons that we finally choose the two-population co-

evolutionary system.
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Game setting SPE One-Population Two-population

(δ1, δ2) x∗1 x̄1 σ x̄1 σ

( 0.4 , 0.4 ) 0.7143 0.9588 0.0104 0.8973 0.0247
( 0.4 , 0.6 ) 0.5263 0.4493 0.1429 0.5090 0.0096
( 0.4 , 0.9 ) 0.1563 0.0667 0.0582 0.1469 0.1467
( 0.9 , 0.4 ) 0.9375 0.9684 0.0194 0.9107 0.0106
( 0.9 , 0.6 ) 0.8696 0.8221 0.1143 0.8000 0.1419
( 0.9 , 0.9 ) 0.5263 0.5037 0.0164 0.5385 0.1194
( 0.9 , 0.99) 0.0917 0.1918 0.0394 0.1474 0.1023

Table C.1: Experimental results from one-population system and two-population system for
CRub82 Bargaining Problem.
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Appendix D

GP Terminal Sets including
Bargaining Time t for CRub82
Bargaining Problem

This appendix substantiates our choice of using the bidding function b(gi) = gi × (1 − ri)
t

and of representing strategy s(gi). b(gi) and s(gi) are detailed in Section 3.5.

The design of strategy representation of the two-population co-evolutionary system in

Section 3.5 excludes bargaining time t from the genetic program’s terminal set. This means

that t is not a variable to be evolved. This appendix investigates what are the results if we

introduce t into the terminal set and we evolve functions which may include t.

In this appendix, the strategy representation for CRub82 bargaining problem is com-

pletely generated by the co-evolutionary system. In terms of genetic programming, the

primitive set is { t, δ1, δ2, 1,−1, +,−,×, / } where t, a non-negative integer, is the bargaining

time. A strategy is a syntax tree consisting of the members of the primitive set. We call such

strategy representation as T-strategy. The strategy representation in Section 3.5 is named

as B-strategy.

Experimental results from using the T-strategy representation is displayed in Table D.1.

From a regression statistics analysis, the R2 value is as low as 0.2402. The SPE is approxi-
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Game setting SPE T-strategy B-strategy

(δ1, δ2) x∗1 x̄1 σ x̄1 σ

( 0.1 0.1 ) 0.9091 0.9169 0.1515 0.8956 0.0308
( 0.1 0.4 ) 0.6250 0.8692 0.1666 0.9101 0.0117
( 0.1 0.9 ) 0.1099 0.6322 0.3620 0.1920 0.0288
( 0.4 0.1 ) 0.9375 0.8929 0.1852 0.9991 0.0054
( 0.4 0.6 ) 0.5263 0.6708 0.3410 0.5090 0.0096
( 0.4 0.9 ) 0.1563 0.5911 0.4346 0.1469 0.1467
( 0.5 0.5 ) 0.6667 0.7762 0.2324 0.6580 0.0271
( 0.9 0.1 ) 0.9890 0.7004 0.3449 0.9792 0.0030
( 0.9 0.4 ) 0.9375 0.4687 0.3604 0.9107 0.0106
( 0.9 0.9 ) 0.5263 0.5458 0.4078 0.5385 0.1194

Table D.1: Experimental results using T-strategy and B-strategy for CRub82 Bargaining
Problem

mated by x∗1 = 0.8050× x̄1 + 0.1571. Experimental results of using the B-strategy generate

the regression result x∗1 = 0.9588 × x̄1 + 0.0257 with a remarkably high R2 value 0.9928.

Moreover, the σ from T-strategy is much higher than that of B-strategy in all game settings

listed in Table D.1. These sharp distinctions clearly demonstrate that the B-strategy creates

much closer results to the Subgame Perfect Equilibrium than the T-strategy does. Spend-

ing the same computational costs, the B-strategy representation outperforms the T-strategy

representation. The reason of these observations is that t has 11 possible values 1. Added t

into the terminal set, it is more difficult for heuristic search to find out co-adapted strategies.

T-strategy representation is more general than B-strategy representation, but T-strategy

has a much larger search space than the B-strategy. T-strategy system has to search sensible

strategies which must makes offers and counter-offers within the constraint of (0, 1] for

t = 0 to t = 10. In addition, the B-strategy guarantees that players offers and counter-

offers decreasing shares over the bargaining time. Whereas T-strategy makes potentially any

possible offers and counter-offers including such strategies that request even larger shares at

1bargaining starts at t = 0. It can last for 10 time intervals, so t’s maximal value is 10.
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the end of bargaining than at the beginning, which does not honestly reflect the exponentially

increasing time pressure subject to discount factors.

As a conclusion, we finally choose the B-strategy representation in the main thesis.

197



Appendix E

Experimental Results for Chapter 6

This appendix provides raw experimental data for Chapter 6: CCGP for Bargaining Prob-

lems with Incomplete Information.
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Exp Game Setting PBE Exp. Results
No. δ1 δ2 δ′2 ω0 x∗1 Vs xω0 yω0 x̄1 σ

# 1 0.1 0.1 0.2 0.1 0.8163 0.8163 0.9009 0.0091 0.9162 0.0316
# 2 0.1 0.1 0.2 0.5 0.8163 0.8163 0.9045 0.0455 0.9269 0.0269
# 3 0.1 0.1 0.2 0.9 0.9082 0.8163 0.9082 0.0818 0.9367 0.0242
# 4 0.1 0.1 0.9 0.1 0.1099 0.1099 0.9009 0.0091 0.9273 0.0277
# 5 0.1 0.1 0.9 0.5 0.9045 0.1099 0.9045 0.0455 0.9335 0.0253
# 6 0.1 0.1 0.9 0.9 0.9082 0.1099 0.9082 0.0818 0.9387 0.0250
# 7 0.1 0.5 0.4 0.1 0.5263 0.5263 0.6024 0.0061 0.6273 0.0180
# 8 0.1 0.5 0.4 0.5 0.5263 0.5263 0.6123 0.0308 0.6329 0.0196
# 9 0.1 0.5 0.4 0.9 0.0561 0.5263 0.6224 0.0561 0.6356 0.0199
# 10 0.1 0.5 0.9 0.1 0.1099 0.1099 0.5025 0.0051 0.6318 0.0185
# 11 0.1 0.5 0.9 0.5 0.5129 0.1099 0.5129 0.0258 0.6362 0.0178
# 12 0.1 0.5 0.9 0.9 0.5236 0.1099 0.5236 0.0472 0.6318 0.0196
# 13 0.1 0.9 0.1 0.1 0.1099 0.1099 0.9009 0.0091 0.1486 0.0311
# 14 0.1 0.9 0.1 0.5 0.0455 0.1099 0.9045 0.0455 0.1507 0.0312
# 15 0.1 0.9 0.1 0.9 0.0818 0.1099 0.9082 0.0818 0.1492 0.0314
# 16 0.1 0.9 0.8 0.1 0.1099 0.1099 0.2016 0.0020 0.1488 0.0315
# 17 0.1 0.9 0.8 0.5 0.1099 0.1099 0.2084 0.0105 0.1572 0.0285
# 18 0.1 0.9 0.8 0.9 0.0194 0.1099 0.2155 0.0194 0.1543 0.0271

Table E.1: The experimental results and its corresponding PBE solutions. x̄1 is the average
of player 1’s shares from agreements of 100 runs. δ1 = 0.1.
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Exp Game Setting PBE Exp. Results
No. δ1 δ2 δ′2 ω0 x∗1 Vs xω0 yω0 x̄1 σ

# 19 0.5 0.1 0.2 0.1 0.8889 0.8889 0.9058 0.0584 0.9304 0.0312
# 20 0.5 0.1 0.2 0.5 0.8889 0.8889 0.9265 0.2647 0.9378 0.0250
# 21 0.5 0.1 0.2 0.9 0.8889 0.8889 0.9435 0.4355 0.9373 0.0244
# 22 0.5 0.1 0.9 0.1 0.1818 0.1818 0.9058 0.0584 0.9391 0.0254
# 23 0.5 0.1 0.9 0.5 0.9265 0.1818 0.9265 0.2647 0.9391 0.0233
# 24 0.5 0.1 0.9 0.9 0.9435 0.1818 0.9435 0.4355 0.9445 0.0246
# 25 0.5 0.5 0.4 0.1 0.6667 0.6667 0.6159 0.0397 0.6309 0.0194
# 26 0.5 0.5 0.4 0.5 0.6667 0.6667 0.6774 0.1935 0.6307 0.0207
# 27 0.5 0.5 0.4 0.9 0.3396 0.6667 0.7358 0.3396 0.6406 0.0182
# 28 0.5 0.5 0.9 0.1 0.1818 0.1818 0.5167 0.0333 0.6354 0.0172
# 29 0.5 0.5 0.9 0.5 0.5833 0.1818 0.5833 0.1667 0.6356 0.0184
# 30 0.5 0.5 0.9 0.9 0.6500 0.1818 0.6500 0.3000 0.6397 0.0183
# 31 0.5 0.9 0.1 0.1 0.1818 0.1818 0.9058 0.0584 0.1072 0.0191
# 32 0.5 0.9 0.1 0.5 0.2647 0.1818 0.9265 0.2647 0.1088 0.0195
# 33 0.5 0.9 0.1 0.9 0.4355 0.1818 0.9435 0.4355 0.1106 0.0256
# 34 0.5 0.9 0.8 0.1 0.1818 0.1818 0.2109 0.0136 0.1111 0.0206
# 35 0.5 0.9 0.8 0.5 0.1818 0.1818 0.2593 0.0741 0.1097 0.0233
# 36 0.5 0.9 0.8 0.9 0.1463 0.1818 0.3171 0.1463 0.1113 0.0196

Table E.2: The experimental results and its corresponding PBE solutions. x̄1 is the average
of player 1’s shares from agreements of 100 runs. δ1 = 0.5.
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Exp Game Setting PBE Exp. Results
No. δ1 δ2 δ′2 ω0 x∗1 Vs xω0 yω0 x̄1 σ

# 37 0.9 0.1 0.2 0.1 0.9756 0.9756 0.9309 0.3092 0.9269 0.0290
# 38 0.9 0.1 0.2 0.5 0.9756 0.9756 0.9736 0.7364 0.9400 0.0243
# 39 0.9 0.1 0.2 0.9 0.9756 0.9756 0.9870 0.8699 0.9415 0.0280
# 40 0.9 0.1 0.9 0.1 0.5263 0.5263 0.9309 0.3092 0.9293 0.0322
# 41 0.9 0.1 0.9 0.5 0.9736 0.5263 0.9736 0.7364 0.9443 0.0233
# 42 0.9 0.1 0.9 0.9 0.9870 0.5263 0.9870 0.8699 0.9446 0.0238
# 43 0.9 0.5 0.4 0.1 0.9091 0.9091 0.6919 0.2298 0.7151 0.0413
# 44 0.9 0.5 0.4 0.5 0.9091 0.9091 0.8602 0.6506 0.7287 0.0407
# 45 0.9 0.5 0.4 0.9 0.9091 0.9091 0.9267 0.8168 0.7225 0.0416
# 46 0.9 0.5 0.9 0.1 0.5263 0.5263 0.5996 0.1991 0.7338 0.0382
# 47 0.9 0.5 0.9 0.5 0.8041 0.5263 0.8041 0.6081 0.7272 0.0358
# 48 0.9 0.5 0.9 0.9 0.8940 0.5263 0.8940 0.7879 0.7304 0.0397
# 49 0.9 0.9 0.1 0.1 0.5263 0.5263 0.9309 0.3092 0.4708 0.0273
# 50 0.9 0.9 0.1 0.5 0.7364 0.5263 0.9736 0.7364 0.4779 0.0309
# 51 0.9 0.9 0.1 0.9 0.8699 0.5263 0.9870 0.8699 0.4817 0.0295
# 52 0.9 0.9 0.8 0.1 0.5263 0.5263 0.2724 0.0905 0.4817 0.0301
# 53 0.9 0.9 0.8 0.5 0.5263 0.5263 0.5064 0.3830 0.4864 0.0313
# 54 0.9 0.9 0.8 0.9 0.5978 0.5263 0.6782 0.5978 0.4780 0.0278

Table E.3: The experimental results and its corresponding PBE solutions. x̄1 is the average
of player 1’s shares from agreements of 100 runs. δ1 = 0.9.
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Exp Game Setting PBE Experimental
No. δ1 δ2 δ′2 ω0 t∗ t̄

# 1 0.1 0.1 0.2 0.1 0 0.00
# 2 0.1 0.1 0.2 0.5 0 0.00
# 3 0.1 0.1 0.2 0.9 0 0.00
# 4 0.1 0.1 0.9 0.1 0 0.00
# 5 0.1 0.1 0.9 0.5 0 0.00
# 6 0.1 0.1 0.9 0.9 0 0.00
# 7 0.1 0.5 0.4 0.1 0 0.04
# 8 0.1 0.5 0.4 0.5 0 0.05
# 9 0.1 0.5 0.4 0.9 1 0.05
# 10 0.1 0.5 0.9 0.1 0 0.05
# 11 0.1 0.5 0.9 0.5 0 0.05
# 12 0.1 0.5 0.9 0.9 0 0.05
# 13 0.1 0.9 0.1 0.1 0 0.34
# 14 0.1 0.9 0.1 0.5 1 0.40
# 15 0.1 0.9 0.1 0.9 1 0.48
# 16 0.1 0.9 0.8 0.1 0 0.41
# 17 0.1 0.9 0.8 0.5 0 0.37
# 18 0.1 0.9 0.8 0.9 1 0.41

Table E.4: PBE bargaining time t∗ and experimental bargaining time t̄. t̄ is the average of
the bargaining time for reaching agreements of 100 runs.
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Exp Game Setting PBE Experimental
No. δ1 δ2 δ′2 ω0 t∗ t̄

# 19 0.5 0.1 0.2 0.1 0 0.00
# 20 0.5 0.1 0.2 0.5 0 0.00
# 21 0.5 0.1 0.2 0.9 0 0.00
# 22 0.5 0.1 0.9 0.1 0 0.00
# 23 0.5 0.1 0.9 0.5 0 0.00
# 24 0.5 0.1 0.9 0.9 0 0.00
# 25 0.5 0.5 0.4 0.1 0 0.05
# 26 0.5 0.5 0.4 0.5 0 0.05
# 27 0.5 0.5 0.4 0.9 1 0.05
# 28 0.5 0.5 0.9 0.1 0 0.05
# 29 0.5 0.5 0.9 0.5 0 0.05
# 30 0.5 0.5 0.9 0.9 0 0.05
# 31 0.5 0.9 0.1 0.1 0 0.20
# 32 0.5 0.9 0.1 0.5 1 0.23
# 33 0.5 0.9 0.1 0.9 1 0.23
# 34 0.5 0.9 0.8 0.1 0 0.22
# 35 0.5 0.9 0.8 0.5 0 0.29
# 36 0.5 0.9 0.8 0.9 1 0.23

Table E.5: PBE bargaining time t∗ and experimental bargaining time t̄. t̄ is the average of
the bargaining time for reaching agreements of 100 runs.
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Exp Game Setting PBE Experimental
No. δ1 δ2 δ′2 ω0 t∗ t̄

# 37 0.9 0.1 0.2 0.1 0 0.00
# 38 0.9 0.1 0.2 0.5 0 0.00
# 39 0.9 0.1 0.2 0.9 0 0.00
# 40 0.9 0.1 0.9 0.1 0 0.00
# 41 0.9 0.1 0.9 0.5 0 0.00
# 42 0.9 0.1 0.9 0.9 0 0.00
# 43 0.9 0.5 0.4 0.1 0 0.32
# 44 0.9 0.5 0.4 0.5 0 0.26
# 45 0.9 0.5 0.4 0.9 0 0.32
# 46 0.9 0.5 0.9 0.1 0 0.28
# 47 0.9 0.5 0.9 0.5 0 0.34
# 48 0.9 0.5 0.9 0.9 0 0.33
# 49 0.9 0.9 0.1 0.1 0 3.99
# 50 0.9 0.9 0.1 0.5 1 3.64
# 51 0.9 0.9 0.1 0.9 1 3.98
# 52 0.9 0.9 0.8 0.1 0 3.76
# 53 0.9 0.9 0.8 0.5 0 3.73
# 54 0.9 0.9 0.8 0.9 1 3.83

Table E.6: PBE bargaining time t∗ and experimental bargaining time t̄. t̄ is the average of
the bargaining time for reaching agreements of 100 runs.

Exp Game Setting CRub82 Experimental Results
No. δ1 δ2 x∗1 x̄1 σ t̄

# 1 0.1 0.1 0.9091 0.9438 0.0254 0.00
# 2 0.1 0.4 0.6250 0.8476 0.0293 0.03
# 3 0.1 0.9 0.1099 0.1474 0.0371 0.22
# 4 0.4 0.1 0.9375 0.9456 0.0238 0.00
# 5 0.4 0.6 0.5263 0.4981 0.0063 0.02
# 6 0.4 0.9 0.1563 0.0999 0.0051 0.01
# 7 0.5 0.5 0.6667 0.6765 0.0083 0.01
# 8 0.9 0.1 0.9890 0.9836 0.0130 0.00
# 9 0.9 0.4 0.9375 0.8944 0.0128 0.00
# 10 0.9 0.6 0.8696 0.7144 0.0571 0.37
# 11 0.9 0.8 0.7143 0.6178 0.0581 1.91
# 12 0.9 0.9 0.5263 0.4965 0.0503 3.82

Table E.7: Experimental Results for UII: shares of player 1 x̄1s, bargaining time t∗s and
stationarity σs.
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Exp Game Setting CRub82 Experimental Results
No. δ1 δ2 x∗1 x̄1 σ t̄

# 1 0.1 0.1 0.9091 0.9536 0.0229 0.00
# 2 0.1 0.4 0.6250 0.8529 0.0276 0.02
# 3 0.1 0.9 0.1099 0.1414 0.0408 0.20
# 4 0.4 0.1 0.9375 0.9546 0.0211 0.00
# 5 0.4 0.6 0.5263 0.4982 0.0066 0.01
# 6 0.4 0.9 0.1563 0.1016 0.0026 0.01
# 7 0.5 0.5 0.6667 0.6763 0.0091 0.01
# 8 0.9 0.1 0.9890 0.9859 0.0119 0.00
# 9 0.9 0.4 0.9375 0.8974 0.0118 0.01
# 10 0.9 0.6 0.8696 0.7275 0.0505 0.46
# 11 0.9 0.8 0.7143 0.6245 0.0641 1.76
# 12 0.9 0.9 0.5263 0.4901 0.0432 3.66

Table E.8: Experimental Results for UGI: shares of player 1 x̄1s, bargaining time t∗s and
stationarity σs.

Exp Game Setting CRub82 Experimental Results
No. δ1 δ2 x∗1 x̄1 σ t̄

# 1 0.1 0.1 0.9091 0.9536 0.0229 0.00
# 2 0.1 0.4 0.6250 0.8531 0.0261 0.03
# 3 0.1 0.9 0.1099 0.1306 0.0393 0.23
# 4 0.4 0.1 0.9375 0.9546 0.0211 0.00
# 5 0.4 0.6 0.5263 0.4951 0.0269 0.02
# 6 0.4 0.9 0.1563 0.1033 0.0141 0.03
# 7 0.5 0.5 0.6667 0.6761 0.0088 0.01
# 8 0.9 0.1 0.9890 0.9859 0.0119 0.00
# 9 0.9 0.4 0.9375 0.8971 0.0119 0.01
# 10 0.9 0.6 0.8696 0.7195 0.0514 0.35
# 11 0.9 0.8 0.7143 0.6484 0.0643 1.48
# 12 0.9 0.9 0.5263 0.4930 0.0550 2.96

Table E.9: Experimental Results for BGI: shares of player 1 x̄1s, bargaining time t∗s and
stationarity σs.
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Appendix F

Experimental Results for Chapter 7

This appendix provides raw experimental data for Chapter 7: CCGP for Bargaining Prob-

lems with Outside Options.
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Exp Game Setting SPE Experimental Results
No. δ1 δ2 w1 w2 x∗1 x̄1 σ t̄

# 1 0.1 0.5 0 0.2 0.5263 0.6179 0.0275 0.02
# 2 0.1 0.9 0 0.7 0.1099 0.1104 0.0184 0.12
# 3 0.1 0.9 0 0.2 0.1099 0.1350 0.0321 0.20
# 4 0.5 0.9 0 0.7 0.1818 0.0869 0.0159 0.10
# 5 0.5 0.9 0 0.2 0.1818 0.0979 0.0190 0.18
# 6 0.9 0.9 0 0.2 0.5263 0.4326 0.0338 2.06
# 7 0.5 0.1 0.1 0 0.9474 0.9311 0.0250 0.00
# 8 0.5 0.5 0.1 0 0.6667 0.6292 0.0204 0.04
# 9 0.9 0.1 0.1 0 0.9890 0.9336 0.0234 0.00
# 10 0.9 0.1 0.5 0 0.9890 0.9376 0.0235 0.00
# 11 0.9 0.5 0.1 0 0.9091 0.7227 0.0419 0.25
# 12 0.9 0.5 0.5 0 0.9091 0.7129 0.0430 0.26
# 13 0.9 0.9 0.1 0 0.5263 0.4731 0.0281 3.73
# 14 0.1 0.9 0.01 0.02 0.1099 0.1496 0.0372 0.24
# 15 0.5 0.5 0.03 0.03 0.6667 0.6294 0.0218 0.03
# 16 0.9 0.9 0.4 0.4 0.5263 0.4350 0.0098 0.07

Table F.1: Category 1-a Ineffective Threats: The experimental results x̄1 and its correspond-
ing SPE solutions x∗1, σ and t̄. x̄1 is the average of 100 runs for a game setting.
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Exp Game Setting SPE Experimental Results
No. δ1 δ2 w1 w2 x∗1 x̄1 σ t̄

# 1 0.1 0.1 0 0.7 0.3000 0.2663 0.0111 0.00
# 2 0.1 0.1 0 0.2 0.8000 0.7017 0.0328 0.00
# 3 0.1 0.5 0 0.7 0.3000 0.2681 0.0126 0.00
# 4 0.5 0.1 0 0.7 0.3000 0.2676 0.0127 0.00
# 5 0.5 0.1 0 0.2 0.8000 0.7148 0.0243 0.00
# 6 0.5 0.5 0 0.7 0.3000 0.2643 0.0123 0.00
# 7 0.5 0.5 0 0.2 0.6667 0.6194 0.0222 0.02
# 8 0.9 0.1 0 0.7 0.3000 0.2663 0.0126 0.00
# 9 0.9 0.1 0 0.2 0.8000 0.7098 0.0329 0.00
# 10 0.9 0.5 0 0.7 0.3000 0.2687 0.0109 0.00
# 11 0.9 0.5 0 0.2 0.8000 0.6894 0.0340 0.07
# 12 0.9 0.9 0 0.7 0.3000 0.2530 0.0203 0.10
# 13 0.9 0.1 0.2 0.7 0.3000 0.2807 0.0077 0.00
# 14 0.9 0.1 0.7 0.2 0.8000 0.7438 0.0206 0.00
# 15 0.9 0.5 0.2 0.7 0.3000 0.2834 0.0060 0.00
# 16 0.9 0.5 0.7 0.2 0.8000 0.7457 0.0231 0.03
# 17 0.9 0.9 0.2 0.7 0.3000 0.2695 0.0111 0.06
# 18 0.5 0.1 0.1 0.5 0.5000 0.4569 0.0177 0.00
# 19 0.5 0.5 0.1 0.5 0.5000 0.4596 0.0160 0.00
# 20 0.9 0.1 0.1 0.5 0.5000 0.4571 0.0142 0.00
# 21 0.9 0.1 0.5 0.1 0.9000 0.8357 0.0235 0.00
# 22 0.9 0.5 0.1 0.5 0.5000 0.4635 0.0146 0.00
# 23 0.9 0.5 0.5 0.1 0.9000 0.7059 0.0411 0.15
# 24 0.9 0.9 0.1 0.5 0.5000 0.3426 0.0295 0.48
# 25 0.1 0.1 0.01 0.02 0.9091 0.8736 0.0375 0.00
# 26 0.5 0.1 0.4 0.05 0.9474 0.8603 0.0289 0.00
# 27 0.5 0.1 0.4 0.05 0.9474 0.8615 0.0323 0.00
# 28 0.9 0.1 0.4 0.01 0.9890 0.9123 0.0302 0.00

Table F.2: Category 2-b Effective Threats: The experimental results x̄1 and its corresponding
SPE solutions x∗1, σ and t̄. x̄1 is the average of 100 runs for a game setting.
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Exp Game Setting SPE Experimental Results
No. δ1 δ2 w1 w2 x∗1 x̄1 σ t̄

# 1 0.1 0.1 0.1 0 0.9100 0.9199 0.0294 0.00
# 2 0.1 0.1 0.5 0 0.9500 0.9349 0.0281 0.00
# 3 0.1 0.5 0.1 0 0.5500 0.6248 0.0243 0.04
# 4 0.1 0.5 0.5 0 0.7500 0.6873 0.0254 0.04
# 5 0.1 0.9 0.1 0 0.1900 0.1782 0.0364 0.20
# 6 0.1 0.9 0.5 0 0.5500 0.5101 0.0165 0.09
# 7 0.5 0.1 0.5 0 0.9500 0.9357 0.0289 0.00
# 8 0.5 0.5 0.5 0 0.7500 0.6886 0.0255 0.05
# 9 0.5 0.9 0.1 0 0.1900 0.1726 0.0070 0.09
# 10 0.5 0.9 0.5 0 0.5500 0.5156 0.0151 0.09
# 11 0.9 0.9 0.5 0 0.5500 0.5196 0.0181 0.18
# 12 0.1 0.9 0.2 0.7 0.2800 0.2563 0.0076 0.04
# 13 0.1 0.9 0.7 0.2 0.7300 0.6703 0.0161 0.00
# 14 0.5 0.9 0.2 0.7 0.2800 0.2574 0.0089 0.04
# 15 0.5 0.9 0.7 0.2 0.7300 0.6763 0.0164 0.01
# 16 0.9 0.9 0.7 0.2 0.7300 0.6880 0.0176 0.09
# 17 0.1 0.5 0.5 0.1 0.7500 0.6867 0.0218 0.03
# 18 0.1 0.9 0.1 0.5 0.1900 0.1704 0.0062 0.08
# 19 0.1 0.9 0.5 0.1 0.5500 0.5139 0.0157 0.08
# 20 0.5 0.5 0.5 0.1 0.7500 0.6832 0.0245 0.03
# 21 0.5 0.9 0.1 0.5 0.1900 0.1716 0.0094 0.08
# 22 0.5 0.9 0.5 0.1 0.5500 0.5171 0.0145 0.08
# 23 0.9 0.9 0.5 0.1 0.5500 0.5200 0.0199 0.18

Table F.3: Category 2-c Effective Threats: The experimental results x̄1 and its corresponding
SPE solutions x∗1, σ and t̄. x̄1 is the average of 100 runs for a game setting.

Exp Game Setting SPE Experimental Results
No. δ1 δ2 w1 w2 x∗1 x̄1 σ t̄

# 1 0.1 0.1 0.2 0.7 0.3000 0.2789 0.0073 0.00
# 2 0.1 0.5 0.2 0.7 0.3000 0.2816 0.0072 0.00
# 3 0.1 0.5 0.7 0.2 0.8000 0.7420 0.0191 0.02
# 4 0.5 0.1 0.2 0.7 0.3000 0.2823 0.0067 0.00
# 5 0.5 0.1 0.7 0.2 0.8000 0.7382 0.0199 0.00
# 6 0.5 0.5 0.2 0.7 0.3000 0.2822 0.0068 0.00
# 7 0.5 0.5 0.7 0.2 0.8000 0.7391 0.0220 0.03
# 8 0.1 0.1 0.1 0.5 0.5000 0.4535 0.0176 0.00
# 9 0.1 0.1 0.5 0.1 0.9000 0.8219 0.0290 0.00
# 10 0.1 0.5 0.1 0.5 0.5000 0.4607 0.0166 0.00
# 11 0.5 0.1 0.5 0.1 0.9000 0.8207 0.0283 0.00
# 12 0.1 0.1 0.7 0.2 0.8000 0.7355 0.0212 0.00

Table F.4: Category 2-d Effective Threats: The experimental results x̄1 and its corresponding
SPE solutions x∗1, σ and t̄. x̄1 is the average of 100 runs for a game setting.
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Exp Game Setting SPE Experimental Results
No. δ1 δ2 w1 w2 x∗ x̄ σ t̄

# 1 0.1 0.1 1 0 1 0.9313 0.0260 0.00
0 0.0687 0.0260

# 2 0.1 0.1 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 3 0.1 0.5 1 0 1 0.8892 0.0451 0.08
0 0.1108 0.0451

# 4 0.1 0.5 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 5 0.1 0.9 1 0 1 0.9046 0.0359 0.08
0 0.0954 0.0359

# 6 0.1 0.9 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 7 0.5 0.1 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 8 0.5 0.1 1 0 1 0.9310 0.0256 0.00
0 0.0690 0.0256

# 9 0.5 0.5 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 10 0.5 0.5 1 0 1 0.8570 0.0759 0.20
0 0.1430 0.0759

# 11 0.5 0.9 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 12 0.5 0.9 1 0 1 0.9348 0.0293 0.09
0 0.0652 0.0293

# 13 0.9 0.1 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 14 0.9 0.1 1 0 1 0.9326 0.0266 0.00
0 0.0674 0.0266

# 15 0.9 0.5 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 16 0.9 0.5 1 0 1 0.9385 0.0283 0.26
0 0.0615 0.0283

# 17 0.9 0.9 0 1 0 0.0000 0.0000 0.00
1 1.0000 0.0000

# 18 0.9 0.9 1 0 1 0.9399 0.0272 0.11
0 0.0601 0.0272

Table F.5: Category 3-e Over strong threats: The experimental results x̄ and its correspond-
ing SPE solutions x∗, σ and t̄. x̄ is the average of 100 runs for a game setting. In the cells
under SPE x∗ and x̄, the above values are x∗1 and x̄1 respectively. The below values are x∗2
and x̄2 respectively. In theory, players take their outside options immediately so x1 +x2 6= 1.
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Exp Game Setting SPE Experimental Results
No. δ1 δ2 w1 w2 x∗ x̄ σ t̄

# 19 0.1 0.1 0.7 0.5 0.7 0.6559 0.0194 0.01
0.5 0.52 0.0125

# 20 0.1 0.1 0.5 0.7 0.5 0.4715 0.0122 0.01
0.7 0.7069 0.0094

# 21 0.1 0.5 0.7 0.5 0.7 0.6665 0.0154 0.05
0.5 0.5196 0.0100

# 22 0.1 0.5 0.5 0.7 0.5 0.4781 0.0097 0.02
0.7 0.7085 0.0059

# 23 0.1 0.9 0.7 0.5 0.7 0.6698 0.0139 0.05
0.5 0.5184 0.0090

# 24 0.1 0.9 0.5 0.7 0.5 0.4806 0.0088 0.05
0.7 0.7094 0.0047

# 25 0.5 0.1 0.7 0.5 0.7 0.6621 0.0155 0.01
0.5 0.5171 0.0109

# 26 0.5 0.1 0.5 0.7 0.5 0.4760 0.0112 0
0.7 0.708 0.0064

# 27 0.5 0.5 0.7 0.5 0.7 0.6669 0.0145 0.07
0.5 0.5183 0.0090

# 28 0.5 0.5 0.5 0.7 0.5 0.4818 0.0104 0.04
0.7 0.7054 0.0065

# 29 0.5 0.9 0.7 0.5 0.7 0.6704 0.0156 0.04
0.5 0.5166 0.0099

# 30 0.5 0.9 0.5 0.7 0.5 0.4837 0.0104 0.04
0.7 0.7078 0.0056

# 31 0.9 0.1 0.7 0.5 0.7 0.6605 0.0162 0.01
0.5 0.5168 0.0113

# 32 0.9 0.1 0.5 0.7 0.5 0.4775 0.0092 0.01
0.7 0.7061 0.0081

# 33 0.9 0.5 0.7 0.5 0.7 0.6748 0.0132 0.06
0.5 0.5138 0.0083

# 34 0.9 0.5 0.5 0.7 0.5 0.4864 0.0083 0.04
0.7 0.704 0.0053

# 35 0.9 0.9 0.7 0.5 0.7 0.6778 0.0114 0.05
0.5 0.5129 0.0074

# 36 0.9 0.9 0.5 0.7 0.5 0.4869 0.0082 0.06
0.7 0.7064 0.0046

Table F.6: Category 3-e Over Strong Threats: The experimental results x̄ and its corre-
sponding SPE solutions x∗, σ and t̄. x̄ is the average of 100 runs for a game setting. In
the cells under SPE x∗ and x̄, the above values are x∗1 and x̄1 respectively. The below val-
ues are x∗2 and x̄2 respectively. In theory, players take their outside options immediately so
x1 + x2 6= 1.
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Appendix G

Experimental Results for Chapter 8

This appendix provides raw experimental data for Chapter 8: CCGP for Bargaining Prob-

lems with Incomplete Information on Outside Options.
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Exp Game Setting Experimental Results
No. δ1 δ2 w1 ω′0 w2 w′

2 x̄1 σ t̄

# 1 0.1 0.1 0.2 0.5 0.7 0.5 0.2800 0.0071 0.00
# 2 0.1 0.1 0.7 0.5 0.2 0.5 0.7291 0.0203 0.00
# 3 0.1 0.1 0.2 0.5 0.7 0.0 0.2763 0.0078 0.00
# 4 0.1 0.1 0.7 0.5 0.2 1.0 0.6874 0.0532 0.00
# 5 0.1 0.5 0.2 0.5 0.7 0.5 0.2814 0.0069 0.00
# 6 0.1 0.5 0.7 0.5 0.2 0.5 0.7303 0.0295 0.03
# 7 0.1 0.5 0.2 0.5 0.7 0.0 0.2391 0.0365 0.00
# 8 0.1 0.5 0.7 0.5 0.2 1.0 0.7033 0.0562 0.02
# 9 0.1 0.9 0.2 0.5 0.7 0.5 0.2526 0.0078 0.05
# 10 0.1 0.9 0.7 0.5 0.2 0.5 0.6684 0.0147 0.01
# 11 0.1 0.9 0.2 0.5 0.7 0.0 0.2556 0.0069 0.06
# 12 0.1 0.9 0.7 0.5 0.2 1.0 0.6535 0.0306 0.01
# 13 0.5 0.1 0.2 0.5 0.7 0.5 0.2798 0.0081 0.00
# 14 0.5 0.1 0.7 0.5 0.2 0.5 0.7360 0.0249 0.00
# 15 0.5 0.1 0.2 0.5 0.7 0.0 0.2783 0.0081 0.00
# 16 0.5 0.1 0.7 0.5 0.2 1.0 0.7012 0.0485 0.00

Table G.1: The w2 is the actual value of player 2’s outside option and w′
2 is another possible

value of player 2’s outside option in player 1’s initial belief. ω′0 is the possibility of player 1’s
initial belief of w2 = MIX(w2, w

′
2). The experimental results x̄1s and their σs and t̄s.
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Exp Game Setting Experimental Results
No. δ1 δ2 w1 ω′0 w2 w′

2 x̄1 σ t̄

# 17 0.5 0.5 0.2 0.5 0.7 0.5 0.2811 0.0072 0.00
# 18 0.5 0.5 0.7 0.5 0.2 0.5 0.7238 0.0258 0.03
# 19 0.5 0.5 0.2 0.5 0.7 0.0 0.2465 0.0335 0.00
# 20 0.5 0.5 0.7 0.5 0.2 1.0 0.7060 0.0441 0.02
# 21 0.5 0.9 0.2 0.5 0.7 0.5 0.2588 0.0081 0.04
# 22 0.5 0.9 0.7 0.5 0.2 0.5 0.6699 0.0168 0.01
# 23 0.5 0.9 0.2 0.5 0.7 0.0 0.2594 0.0083 0.04
# 24 0.5 0.9 0.7 0.5 0.2 1.0 0.6602 0.0241 0.01
# 25 0.9 0.1 0.2 0.5 0.7 0.5 0.2826 0.0064 0.00
# 26 0.9 0.1 0.7 0.5 0.2 0.5 0.7372 0.0227 0.00
# 27 0.9 0.1 0.2 0.5 0.7 0.0 0.2789 0.0072 0.00
# 28 0.9 0.1 0.7 0.5 0.2 1.0 0.7110 0.0499 0.00
# 29 0.9 0.5 0.2 0.5 0.7 0.5 0.2832 0.0064 0.00
# 30 0.9 0.5 0.7 0.5 0.2 0.5 0.7312 0.0221 0.03
# 31 0.9 0.5 0.2 0.5 0.7 0.0 0.2385 0.0344 0.00
# 32 0.9 0.5 0.7 0.5 0.2 1.0 0.7070 0.0538 0.03
# 33 0.9 0.9 0.2 0.5 0.7 0.5 0.2551 0.0262 0.08
# 34 0.9 0.9 0.7 0.5 0.2 0.5 0.6823 0.0197 0.08
# 35 0.9 0.9 0.2 0.5 0.7 0.0 0.2378 0.0305 0.07
# 36 0.9 0.9 0.7 0.5 0.2 1.0 0.6650 0.0329 0.08

Table G.2: The w2 is the actual value of player 2’s outside option and w′
2 is another possible

value of player 2’s outside option in player 1’s initial belief. ω′0 is the possibility of player 1’s
initial belief of w2 = MIX(w2, w

′
2). The experimental results x̄1s and their σs and t̄s.
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Exp Game Setting ICOO COO
No. δ1 δ2 w1 ω′0 w2 w′

2 x̄1 x̄1

# 1 0.1 0.1 0.2 0.5 0.7 0.5 0.2800 0.2789
# 2 0.1 0.1 0.7 0.5 0.2 0.5 0.7291 0.7355
# 3 0.1 0.1 0.2 0.5 0.7 0.0 0.2763 0.2789
# 4 0.1 0.1 0.7 0.5 0.2 1.0 0.6874 0.7355
# 5 0.1 0.5 0.2 0.5 0.7 0.5 0.2814 0.2816
# 6 0.1 0.5 0.7 0.5 0.2 0.5 0.7303 0.7420
# 7 0.1 0.5 0.2 0.5 0.7 0.0 0.2391 0.2816
# 8 0.1 0.5 0.7 0.5 0.2 1.0 0.7033 0.7420
# 9 0.1 0.9 0.2 0.5 0.7 0.5 0.2526 0.2563
# 10 0.1 0.9 0.7 0.5 0.2 0.5 0.6684 0.6703
# 11 0.1 0.9 0.2 0.5 0.7 0.0 0.2556 0.2563
# 12 0.1 0.9 0.7 0.5 0.2 1.0 0.6535 0.6703
# 13 0.5 0.1 0.2 0.5 0.7 0.5 0.2798 0.2823
# 14 0.5 0.1 0.7 0.5 0.2 0.5 0.7360 0.7382
# 15 0.5 0.1 0.2 0.5 0.7 0.0 0.2783 0.2823
# 16 0.5 0.1 0.7 0.5 0.2 1.0 0.7012 0.7382
# 17 0.5 0.5 0.2 0.5 0.7 0.5 0.2811 0.2822
# 18 0.5 0.5 0.7 0.5 0.2 0.5 0.7238 0.7391
# 19 0.5 0.5 0.2 0.5 0.7 0.0 0.2465 0.2822
# 20 0.5 0.5 0.7 0.5 0.2 1.0 0.7060 0.7391
# 21 0.5 0.9 0.2 0.5 0.7 0.5 0.2588 0.2574
# 22 0.5 0.9 0.7 0.5 0.2 0.5 0.6699 0.6763
# 23 0.5 0.9 0.2 0.5 0.7 0.0 0.2594 0.2574
# 24 0.5 0.9 0.7 0.5 0.2 1.0 0.6602 0.6763
# 25 0.9 0.1 0.2 0.5 0.7 0.5 0.2826 0.2807
# 26 0.9 0.1 0.7 0.5 0.2 0.5 0.7372 0.7438
# 27 0.9 0.1 0.2 0.5 0.7 0.0 0.2789 0.2807
# 28 0.9 0.1 0.7 0.5 0.2 1.0 0.7110 0.7438
# 29 0.9 0.5 0.2 0.5 0.7 0.5 0.2832 0.2834
# 30 0.9 0.5 0.7 0.5 0.2 0.5 0.7312 0.7457
# 31 0.9 0.5 0.2 0.5 0.7 0.0 0.2385 0.2834
# 32 0.9 0.5 0.7 0.5 0.2 1.0 0.7070 0.7457
# 33 0.9 0.9 0.2 0.5 0.7 0.5 0.2551 0.2695
# 34 0.9 0.9 0.7 0.5 0.2 0.5 0.6823 0.6880
# 35 0.9 0.9 0.2 0.5 0.7 0.0 0.2378 0.2695
# 36 0.9 0.9 0.7 0.5 0.2 1.0 0.6650 0.6880

Table G.3: The experimental results x̄1s of ICCO and experimental results x̄1s of CCO under
the same (δ1, δ2, w1, w2)
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Appendix H

Evolve Genetic Programs for 25 Game
Settings

We design a co-evolutionary system in which genetic programs evolve by playing 25 instances

of CRub82 bargaining games. We attempted to find the exact game-theoretic solutions. This

appendix reports the experimental results of this design.

H.1 Experimental Design

This set of experiments is designed to evolve genetic programs which adapt to many different

game settings. We hope under the evolutionary pressure, the identical genetic program as

the game-theoretic solution will be found.

The design of these experiments is illustrated in Figure H.1.

H.2 Experimental Set-up

We use the same computational resource as that for previous experiments in Chapter 3. The

GP set-up is the same as in Table 3.3:

- two-population co-evolution;

- one population for one player;
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H.2 Experimental Set-up
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Figure H.1: The design
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H.3 Experimental Results

- each population has 100 individuals (genetic programs);

- The terminal set is {δ1, δ2, 1,−1};

- The functional set is {+,−,×,÷} (÷ is Protected).

The difference is the fitness function. The fitness function sums up the game fitness from

playing 25 instances of bargaining games. These 25 game settings are listed in Table H.2

and H.1, δ1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and δ2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

H.3 Experimental Results

Each run starts with a different random sequence. After 300 generations of evolution, we

check the individuals in the final generation of two populations. For each individual (genetic

program), we test it with 25 game settings. We give five examples in Table H.1. It lists first

offers x1s of the five genetic programs for the 25 game settings.

Totally 300 individuals in the final generations of the population for player 1, are checked.

Only 20 of them satisfy the hard constraint x1 ∈ (0, 1).

Totally 300 individuals in the final generations of the population for player 2 are checked.

Only 54 of them satisfy the hard constraint x2 ∈ (0, 1).

We haven’t found the theoretic solutions x∗1 = 1−δ2
1−δ1δ2

or x∗2 = 1−δ1
1−δ1δ2

from the total 600

evolved genetic programs yet.

Experimental results from executing the co-evolutionary system (CCGP) with the input

of a specific pair of (δ1, δ2) are reported in Table 4.2 in the thesis. In order to compare the

experimental results, we give another five examples. In Table H.2, genetic programs are the

individuals in player 1’ final population given (δ1, δ2). Its design is detailed in Chapter 3.

The highlighted values are the x1s for the (δ1, δ2) to which the genetic programs evolve. For

example, g′1 = δ1 − δ2 + 1 is one resulting genetic program by inputting (δ1 = 0.1, δ2 = 0.1).
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H.3 Experimental Results

Game setting SPE g1 g2 g3 g4 g5

δ1 δ2 x∗1 x1 x1 x1 x1 x1

0.1 0.1 0.91 0.10 -0.20 -1.00 0.20 0.01
0.1 0.3 0.72 0.10 -0.40 -0.80 0.60 0.09
0.1 0.5 0.53 0.10 -0.60 -0.60 1.00 0.25
0.1 0.7 0.32 0.10 -0.80 -0.40 1.40 0.49
0.1 0.9 0.11 0.10 -1.00 -0.20 1.80 0.81
0.3 0.1 0.93 0.30 -0.40 -1.20 0.20 0.01
0.3 0.3 0.77 0.30 -0.60 -1.00 0.60 0.09
0.3 0.5 0.59 0.30 -0.80 -0.80 1.00 0.25
0.3 0.7 0.38 0.30 -1.00 -0.60 1.40 0.49
0.3 0.9 0.14 0.30 -1.20 -0.40 1.80 0.81
0.5 0.1 0.95 0.50 -0.60 -1.40 0.20 0.01
0.5 0.3 0.82 0.50 -0.80 -1.20 0.60 0.09
0.5 0.5 0.67 0.50 -1.00 -1.00 1.00 0.25
0.5 0.7 0.46 0.50 -1.20 -0.80 1.40 0.49
0.5 0.9 0.18 0.50 -1.40 -0.60 1.80 0.81
0.7 0.1 0.97 0.70 -0.80 -1.60 0.20 0.01
0.7 0.3 0.89 0.70 -1.00 -1.40 0.60 0.09
0.7 0.5 0.77 0.70 -1.20 -1.20 1.00 0.25
0.7 0.7 0.59 0.70 -1.40 -1.00 1.40 0.49
0.7 0.9 0.27 0.70 -1.60 -0.80 1.80 0.81
0.9 0.1 0.99 0.90 -1.00 -1.80 0.20 0.01
0.9 0.3 0.96 0.90 -1.20 -1.60 0.60 0.09
0.9 0.5 0.91 0.90 -1.40 -1.40 1.00 0.25
0.9 0.7 0.81 0.90 -1.60 -1.20 1.40 0.49
0.9 0.9 0.53 0.90 -1.80 -1.00 1.80 0.81

Table H.1: Experimental results of the co-evolutionary system as designed in Figure H.1.
We give five examples here. The values of x1s of five genetic programs, i.e. g1, g2, g3, g4,
and g5 are reported.
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H.4 Discussion

Its x1 is 1. The rest values under g′1 are the x1s given other game settings.

H.4 Discussion

From the above two tables and experiments which we have done, we can not make a definite

conclusion that which design generates better results.

The experiments to evolve the game-theoretic solutions probably need more computa-

tional resources in order to find out the game-theoretic solutions. It is because that the

search for the genetic program(s) which is (are) ideal for 25 game settings is much harder

than the search for genetic programs good at a specific pair of (δ1, δ2).

Even the game-theoretic genetic program appears during the evolutionary process. It

may not be found at the end of evolutionary process, because any crossover or mutation

may change it.
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H.4 Discussion

Game setting SPE g′1 g′2 g′3 g′4 g′5
δ1 δ2 x∗1 x1 x1 x1 x1 x1

0.1 0.1 0.91 1.00 1.00 0.91 1.90 1.00
0.1 0.3 0.72 0.80 0.80 0.26 3.70 0.33
0.1 0.5 0.53 0.60 0.60 0.13 5.50 0.20
0.1 0.7 0.32 0.40 0.40 0.08 7.30 0.14
0.1 0.9 0.11 0.20 0.20 0.06 9.10 0.11
0.3 0.1 0.93 1.20 1.20 2.73 1.23 3.00
0.3 0.3 0.77 1.00 1.00 0.77 1.70 1.00
0.3 0.5 0.59 0.80 0.80 0.40 2.17 0.60
0.3 0.7 0.38 0.60 0.60 0.25 2.63 0.43
0.3 0.9 0.14 0.40 0.40 0.18 3.10 0.33
0.5 0.1 0.95 1.40 1.40 4.55 1.10 5.00
0.5 0.3 0.82 1.20 1.20 1.28 1.30 1.67
0.5 0.5 0.67 1.00 1.00 0.67 1.50 1.00
0.5 0.7 0.46 0.80 0.80 0.42 1.70 0.71
0.5 0.9 0.18 0.60 0.60 0.29 1.90 0.56
0.7 0.1 0.97 1.60 1.60 6.36 1.04 7.00
0.7 0.3 0.89 1.40 1.40 1.79 1.13 2.33
0.7 0.5 0.77 1.20 1.20 0.93 1.21 1.40
0.7 0.7 0.59 1.00 1.00 0.59 1.30 1.00
0.7 0.9 0.27 0.80 0.80 0.41 1.39 0.78
0.9 0.1 0.99 1.80 1.80 8.18 1.01 9.00
0.9 0.3 0.96 1.60 1.60 2.31 1.03 3.00
0.9 0.5 0.91 1.40 1.40 1.20 1.06 1.80
0.9 0.7 0.81 1.20 1.20 0.76 1.08 1.29
0.9 0.9 0.53 1.00 1.00 0.53 1.10 1.00

Table H.2: Experimental results of the co-evolutionary system as designed in Chapter 3. We
give five examples here. The values are x1s of five genetic programs, i.e. g′1 = δ1 − δ2 + 1,
g′2 = 1 − δ2 + δ1, g′3 = δ1/(δ2 × (1 + δ2)), g′4 = 1 + δ2/δ1 − δ2, and g′5 = δ1/δ2. Those x1s
which are highlighted are experimental results from the co-evolutionary system given the
corresponding (δ1, δ2).

221



H.4 Discussion

THE END OF APPENDIX
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