Skip to main content

Learning Class Disjointness Axioms Using Grammatical Evolution

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2019)

Abstract

Today, with the development of the Semantic Web, Linked Open Data (LOD), expressed using the Resource Description Framework (RDF), has reached the status of “big data” and can be considered as a giant data resource from which knowledge can be discovered. The process of learning knowledge defined in terms of OWL 2 axioms from the RDF datasets can be viewed as a special case of knowledge discovery from data or “data mining”, which can be called“RDF mining”. The approaches to automated generation of the axioms from recorded RDF facts on the Web may be regarded as a case of inductive reasoning and ontology learning. The instances, represented by RDF triples, play the role of specific observations, from which axioms can be extracted by generalization. Based on the insight that discovering new knowledge is essentially an evolutionary process, whereby hypotheses are generated by some heuristic mechanism and then tested against the available evidence, so that only the best hypotheses survive, we propose the use of Grammatical Evolution, one type of evolutionary algorithm, for mining disjointness OWL 2 axioms from an RDF data repository such as DBpedia. For the evaluation of candidate axioms against the DBpedia dataset, we adopt an approach based on possibility theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://linkeddata.org/.

  2. 2.

    https://www.w3.org/standards/semanticweb/.

  3. 3.

    https://www.w3.org/egov/wiki/Linked_Open_Data.

  4. 4.

    https://www.w3.org/RDF/.

  5. 5.

    https://www.w3.org/TR/rdf-sparql-query/.

  6. 6.

    https://wiki.dbpedia.org/.

  7. 7.

    https://www.w3.org/TR/owl2-overview/.

  8. 8.

    https://www.w3.org/TR/owl2-syntax/.

References

  1. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  2. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)

    Article  Google Scholar 

  3. Lehmann, J., Völker, J.: Perspectives on Ontology Learning, Studies on the Semantic Web, vol. 18. IOS Press, Amsterdam (2014)

    Google Scholar 

  4. Drumond, L., Girardi, R.: A survey of ontology learning procedures. In: WONTO. CEUR Workshop Proceedings, vol. 427. CEUR-WS.org (2008)

    Google Scholar 

  5. Hazman, M., El-Beltagy, S.R., Rafea, A.: Article: a survey of ontology learning approaches. Int. J. Comput. Appl. 22(8), 36–43 (2011)

    Google Scholar 

  6. Zhao, L., Ichise, R.: Mid-ontology learning from linked data. In: Pan, J.Z., et al. (eds.) JIST 2011. LNCS, vol. 7185, pp. 112–127. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29923-0_8

    Chapter  Google Scholar 

  7. Tiddi, I., Mustapha, N.B., Vanrompay, Y., Aufaure, M.-A.: Ontology learning from open linked data and web snippets. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012. LNCS, vol. 7567, pp. 434–443. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33618-8_59

    Chapter  Google Scholar 

  8. Zhu, M.: DC proposal: ontology learning from noisy linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 373–380. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_31

    Chapter  Google Scholar 

  9. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 57–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_8

    Chapter  Google Scholar 

  10. Völker, J., Fleischhacker, D., Stuckenschmidt, H.: Automatic acquisition of class disjointness. J. Web Sem. 35, 124–139 (2015)

    Article  Google Scholar 

  11. Lehmann, J.: Dl-learner: learning concepts in description logics. J. Mach. Learn. Res. 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72667-8_14

    Chapter  Google Scholar 

  13. Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meersman, R., et al. (eds.) OTM 2011. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25106-1_20

    Chapter  Google Scholar 

  14. Bühmann, L., Lehmann, J.: Pattern based knowledge base enrichment. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 33–48. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_3

    Chapter  Google Scholar 

  15. O’Neill, M., Ryan, C.: Grammatical evolution. Trans. Evol. Comput. 5(4), 349–358 (2001). https://doi.org/10.1109/4235.942529

    Article  Google Scholar 

  16. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments - Chapter 2 Grammatical Evolution. Studies in Computational Intelligence, vol. 194. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00314-1

    Book  Google Scholar 

  17. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  18. Mahfoud, S.W.: Crowding and preselection revisited. In: PPSN, pp. 27–36. Elsevier (1992)

    Google Scholar 

  19. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Testing OWL axioms against RDF facts: a possibilistic approach. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 519–530. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13704-9_39

    Chapter  Google Scholar 

  20. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thu Huong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, T.H., Tettamanzi, A.G.B. (2019). Learning Class Disjointness Axioms Using Grammatical Evolution. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2019. Lecture Notes in Computer Science(), vol 11451. Springer, Cham. https://doi.org/10.1007/978-3-030-16670-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16670-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16669-4

  • Online ISBN: 978-3-030-16670-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics