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Abstract—Genetic programming is an evolutionary algorithm 
that proposed to solve the automatic computer program design 
problem by J.R.Koza in the 1990s. It has good universality and 
intelligence, and has been widely applied in the field of computer 
engineering. But genetic programming is essentially a stochastic  
optimization algorithm, lack theoretic basis on the convergence 
of algorithm, which limit the scope of its application in some 
extent. The convergence mechanism of non-elitist genetic 
programming was studied in this paper. A recursive estimation 
of the probability of population contains satisfactory solution 
with the evolution algebra was established by the analysis of 
operators’ characteristic parameters, then a sufficient condition 
of population converge in probability was derived from this 
estimation, and thereby some operational convergence strategies 
for many common evolution modes were provided. 

Keywords- non-elitist genetic programming; convergence 
mechanism; convergence strategy; algorithmic pause time 

I.  INTRODUCTION 

1990s, John R Koza[1,2] in Stanford university proposed 
an evolutionary algorithm, this algorithm adopts hierarchical 
computer program to express the problem, was known as 
genetic programming algorithm (GP). This algorithm can 
actually be regarded as a kind of genetic algorithm for 
computer program optimization and automatic generation. 
The basic idea of GP algorithm is quiet similar to genetic 
algorithm, but its operation objects is not traditional GA code 
strings, but the computer programs that solving problem. 

As a program optimizing and automatic generate method, 
GP algorithm has been successfully applied in artificial 
intelligence[3], expert diagnostic system[4], and the natural 
evolution of computer languages[5], Etc. Through a series of 
engineering practice, no scholar doubts the feasibility of  GP 
algorithm as an automatic programming method, but its 
mathematical foundation is weakness, especially in the 
convergence of algorithm. It is mainly because GP algorithm 
is a stochastic optimization algorithm, its convergence 
mechanism has essentially uncertainty. This issue is worthy 
of further exploration, because an algorithm that can’t or can 
not easily converge doesn’t make sence to program design. 

The so-called algorithm convergence is actually a merit-
based capacity, i.e. the ability to find the individual that can 
better meet certain requirements from populations. The 
conditions required for convergence is called convergence 
conditions and the strategies that adopted to achieve 
convergence is called convergence strategy.  In the existing 
related theories, most studies[6-8] tend to believe that genetic 
programming can not find the optimal solution within a 
determined time, but so far, there is no strict proof of this 
assertion. Vosef used a nonlinear functional operator to 
describe the evolution process of population under certain 
assumptions[9,10], and forecast the behaviors of population 
through the analysis of this operator, get an conclusion that 
population will eventually converge to a steady state when 
adopted a linear fitness function, but he did not specify 
whether this steady state corresponds to a satisfactory solution 
of problem. Rudolph[11] adopted the Markov property of 
population evolution to calculate the probability of population 
contains a satisfactory solution at any moment, concluded 
that the canonical genetic programming does not converge, 
while adopted elitist selection strategy convergent. But elitist 
genetic programming can only be applied to the typical 
global optimization problems, for the more general situations, 
Rudolph did not propose operational convergence strategy, 
just recommended the population should experience different 
feasible solutions as much as possible in a limited period of 
time. After Rudolp, many other scholars[12,13] have tried to 
get the convergence conditions of non-elitist genetic 
programming through the modification of algorithm, but the 
genetic programming is a very complex Markova process, 
these studies have not get universal conclusions. Furthermore, 
there were researchers[14,15] tried to attribute GP algorithm to 
a special case of generalized simulated annealing algorithm 
by adjusting the operator parameters, and then derived its 
convergence conditions. But it is well known that these two 
algorithms are quiet different in the basic ideals, so there are 
still a lot of work to be done to blend them together. 

On the basis of previous studies[16-18], this paper used the 
pure probability estimation to study the convergence of 
genetic programming, by the estimation of characteristic 
parameters to predict the population’s behaviors, and then 
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derived its convergence conditions. 

II. ENCODING AND OPERATORS OF GENETIC PROGRAMMING 

A. Encoding method 

In GP algorithm, the individual is a tree structure that 
composed of algorithms and parameters, called algorithm 
tree. Inside the computer, algorithm tree can be expressed by 
a 2h-1 bits decimal integer code string, where h is the 
maximum tree depth. Every locus in code string corresponds 
to a determined node position of algorithm tree, and there is a 
fixed correspondence between the code values and algorithm 
elements. When encoding, in order to ensure every locus of 
the code string is non-empty, we introduced transfer function 
tr: x=tr(x), and provide the left and right sub-tree of unary 
operator are same. 

 Taking f(x1,x2)=ax1+bsinx2 as example, when we defined 
algorithm collection SO is {+,-,×,/,sin,tr} and parameter 
collection SD  is {x1, x2,C} (where: x1 and x2 are independent 
variables, a and b are parameters, C is constant), its algorithm 
tree and encoding is shown in Figure.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Example of algorithm tree and encoding method 

B. Selection operator 

Non-elitist GP algorithm based on the individuals’ fitness 
function to assign the survival probability of individuals, and 
then determined the composition of the next generation 
population according to this probability. Assuming the 
feasible region of problem is S and the current population is 
x, then selection operators can be defined as a functional 
operator C(x,f) that mapping from space SN  to SM. Because 
the selection process is based on the fitness function f and 
only act on the current population, so the selected population 
should be included in the original ones: 

( ), , N
C Sx f x x ⊂⊆ ∀                            (1) 

The common selection operators in genetic programming 
are the following: 

1) Roulette selection 
It is also known as proportional selection; the survival 

probability of individuals is proportional to their fitness. 

{ ( )} ( ( ) ; (, ) ) 0,i i i i
z x

P C f f x f Z f xx x x x
∈

∀= ≥ ∈∈    (2) 

2) Sequence selection 
There are linear and nonlinear two kinds, this selection 

operator mainly focus on the numerical values of individual 
fitness, and do not concern about their  numerical difference. 
Sequence selection first to sort the individuals in accordance 
with their fitness values, and then determine the survival 
probability of every individuals based on this sort. 

1
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Where: N is population size, i is the location of individual, k1 
and k2 are the strength parameters of linear and nonlinear 
sequence selection. 

3) Breeding pool selection 
This selection is carried out in a deterministic way. First, 

the expected survival number of individuals is calculated 
based on the fitness by the follow formula: 

( ) ( )i i
z x

f ZN N fx
∈

=                        (4) 

Then, the survival probability of every individual in next 
generation is calculated as follows: 
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    (5) 

Where: Ni is the expected survival number of individuals, 

( )ifix N is the integer portion of Ni. 

4) Boltemann selection 
This selection method is similar to simulated annealing 

algorithm, randomly selected two individuals xi and xj from 
the population, the survival probability of individuals xi is: 

( )( ) ( )
( ){ }, [ ]ji i f Tf T f T

i

xx x
CP x f e e ex = +∈      (6) 

Where:T is a selection parameter that similar to the simulated 
annealing temperature. 

5) Competition selection 
This selection can be generally divided into two kinds: 

cellular competition selection and probability competition 
selection. Cellular competition selection is to select the 
optimum from a certain number of individuals that adjacent 
to xi, while the probability competition selection is first 
randomly sample several individuals out of population, and 
then select the optimal one to the next generation. 

C. Evolution operator 

In genetic programming, the new algorithm tree is 
generated by population evolution; this process can be 
defined as a functional operator E(x) that mapping from 
space SM to SN. For the GP algorithm, evolution operator 
include mutation operator and crossover operator two kinds, 
are respectively expressed by Em(x) and EC(x). 

1)  Mutation operator 
a) Point mutation 

This operator only changes the values of mutation point 
itself, do not influence the rest part of coding. Point mutation 
is essentially an inversal bit-to-bit allelic variation, the 
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probabilities of individuals do not change and generate new 
individual under point mutation meet the following estimations: 

1

'

' ' '
( ) 1

( ) min

{ } ( )

{ } [ (1 , )]

,
,
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m m

m m m m
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∈

       (7) 

Where: L=2h-1 is the encoding length, Pm is mutation rate, 
P’

m=Pm(1-nS
-1), nS=max[num(SO),num(SD)], which num(SO) 

and num(SD) are the element numbers of algorithm collection 
SO  and parameter collection SD. 

b) Sub-tree mutation 
Randomly choose a mutation point in algorithm tree 

according to mutation rate Pm , and using a new generated 
sub-tree to instead the original sub-tree that takes the mutation 
point as root node. Referring to Figure.1, the probabilities of 
individuals do not change and generate new individual under 
sub-tree mutation meet the following estimations: 

( )
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           (8) 

c) Arrangement mutation 
The arrangement mutation can be seen as a special sub-

tree mutation, it achieve mutation by changes the elements’ 
order of each nodes in algorithm tree. Referring to Figure.1, 
the probabilities of individuals do not change and generate new 
individual under arrangement mutation meet the following 
estimations: 

1
( )

( )
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   (9)  

2) crossover operator  
a) Same point crossover 

This operator is similar to single-point crossover operator 
in genetic algorithm, randomly or non-randomly select two 
parent individuals from population, choose a cross point in 
the parent algorithm trees according to crossover rate PC, and 
then exchange the two sub-trees that take the crossing point 
as root node, thereby obtaining two new individuals. 

 Referring to Fig.1, the non-random same point crossover 
can be regarded as a modification of genetic algorithm’s 
single point crossover operator, the probabilities of individuals 
do not change under non-random same point crossover meets 
the following estimation: 

1
( ){ } 1 (1 ),C CE P LP y y y x −−= ∀ ≥ −∈           (10) 

For the random same point crossover, if the selected 
parents are exactly the same one, the newborn individuals 
are still the original ones, and thereby the probabilities of 
individuals do not change under random same point crossover 
meets the following estimation: 

2
( ){ } 1 (1 ),C CE P NP y y y x −= ∀ ≥ −∈        (11) 

Where: L=2h-1 is the encoding length, PC is crossover rate, 
N is population size. 

b) Different point crossover 
The basic operation of different point crossover is similar 

to the same point crossover operator, the difference is that 
the selection of cross points is mutually independent. Similar 
to the same point crossover, the different point crossover can 

operate in random and non-random two ways, the probabilities 
of individuals do not change under non-random different point 
crossover meets the following estimation: 

2
( ){ } 1 (1 ),C CP E P Ly y y x −−= ∀ ≥ −∈         (12) 

For the random different point crossover, if the selected 
parents and the cross point position of parents are exactly the 
same, the crossed individuals are still the original ones, so 
the probabilities of individuals do not change under random 
different point crossover meets the following estimation: 

2 2
( ){ } 1 (1 ),C CP E P L Ny y y x − −−= ∀ ≥ −∈      (13)  

c) Multi-parental crossover 
Multi-parental crossover uses the structural information 

of multiple parents to guide the generation of new individual. 
First, randomly sample m parents from the population, and 
calculated the frequency of element values in every node of 
each parent algorithm trees. And then, determining the 
selection probabilities of each node elements in offspring 
algorithm trees according to this frequency. Finally, roulette 
selection method is adopted to select the appropriate elements 
combined into new individuals. In multi-parental crossover, 
we consider the newborn individual does not change when it 
is same to any parent, this probability meets: 

1
( ) 1 1 ){ , } ( L

C CPP E my y y x −− −= ∀ ≥∈          (14) 

III. A SUFFICIENT CONDITION OF POPULATION CONVERGE 

Genetic programming is a typical Markov process, the 
changes in population is only depends on the selection and 
evolution operators that act on the current population, and 
has nothing to do with the generations. When the selection 
and evolution operators are clear, the individual distribution 
in population of the next generation can be determined based 
on the status of the current population. Therefore, we can 
fully predict the behaviors of population by the analysis of 
operators, and thus to study the performance of algorithm. 

In order to analyze the convergence, the convergent target 
should be first determined. We took the collection of problem’s 
satisfactory solutions as the convergent target: 

{ ( ) ( ), };B Bx f x f y y= ≥ ∀ ∉                 (15) 

For any initial population x(0)∈S, if the populations x(n) 
meets:  

( )lim { } 1,
n

B BP x n
→∞

∅ ∅≠ = ≠∀            (16) 

Then it said that the population converges to satisfaction 
set B in probability. 

In order to quantitative analysis the abilities of operators 
that make the population reach some extent satisfactory 
solution in the process of evolution, several characteristic 
parameters that describe the evolution abilities of operators 
were established as follows. 

For the selection operators, if satisfactory solutions exist 
in the original population, then we hope that the selection 
operation can retain them to the next generation. Therefore, 
the lower probability bound of selection operators retain the 
satisfactory solutions in original population was defined as 
the strength coefficient of selection operator: 

;( ) ,inf[ { }]C C B S BP x x xτ ∅ ∅⊂= ≠ ≠        (17) 
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As for the evolution operators, we hope that it will be 
able to generate satisfactory solutions as much as possible on 
the basis of retain the existing satisfactory solutions.   

Therefore, the lower probability bound of the population 
reach any satisfactory solution after evolution when the 
original population does not contain satisfactory solution was 
defined as the aggregation rate of evolution operator: 

;( ) ,inf[ { }]E E B S BP x x xα ∅ ∅⊂≠ ==           (18) 

And the upper probability bound of the population lose 
original satisfactory solution after evolution was defined as 
the divergence rate of evolution operator: 

;( ) ,sup[ { }]E E B S BP x x xδ ∅ ∅⊂= ≠=      (19) 

Furthermore, the lower probability bound of population 
still belongs to original population after evolution was 
defined as the stable rate of evolution operator: 

;( ) ,inf[ { }]E E SP y x x y xγ ∈ ⊂ ∀ ∈=          (20) 

Among them, aggregation rate αE reflects the operator’s 
ability to generate new satisfactory solution, the divergence 
rate δE reflects the operator’s ability to destroy satisfactory 
solution, and the stable rate γE reflects the limit of operator’s 
evolution ability. 

Assuming n is evolution algebra, and the Nth generation 
population is x(n), the intermediate population that generated 
from x(n) by select operation is y(n), the probability of x(n) 
and y(n) converges to any satisfaction set are respectively 
P(n) and P’(n). Based on the total probability formula, P’(n) 
can be estimated as follows: 

'
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(21) 

Considering that y(n)∩B≠Ø and y(n)∩B=Ø are two 
incompatible events, P(n+1) meets the following estimation: 

'
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(22) 

According to formula (1), when x (n)∩B=Ø, there must 
be y(n)∩B=Ø, then: 

( ) ( ) ( ){ } { } 1y B BP n P x n P n∅ ∅= ≥ = = −        (23) 

Substituting the formula (21) and (23) to formula (22), the 
recursive estimation of probability P(n) with evolution algebra 
was derived as follows: 

( 1) [1 ( )] ( ) ( ) ( ) ( )[1 ]E C EP P Pn n n n n nδ ατ≥ − + −+       (24) 

Let a(n)=αE(n) and b(n)=[1-δE(n)]τC(n)-αE(n), then the 
convergence problem of genetic programming becomes a 
mathematical problem: Under what conditions, the Markov 
series P(n+1)≥a(n)+b(n)P(n) converges to 1? 

It can be proved that when a(n) and b(n) meet[16]: 

lim ( ) 1 ( )[ ] 1
n

a nn b
→∞

− = ；
2

1
1 ( )[ ]

n
nb

=

∞
− = ∞     (25) 

There is ( ) 1lim
n

P n
→∞

= , and then it said P(n) converges to 1 

in probability. 
A sufficient term for population converges in probability 

can be derived from formula (25): 

1 ( )[1 ( )] ( ) 0lim{ }C E En
n n nδ ατ

→∞
=－ － ; 

1

2( )[ ( )]E E
n

n nα α
=

∞
− = ∞  (26) 

IV. PARAMETER ESTIMATION OF OPERATORS 

The parameters τC, αE, δE and γE in the formula (26) are 
all the random probabilities that related to operators. In this 
section, the ranges of those characteristic parameters that 
describe the evolution abilities of operators were estimated to 
establish the relationship with specific operators. 

A. Selection operators  

1) Roulette selection 
The survival probability of individuals in population after 

roulette selection follows formula (2), then the probability of  
retain the satisfactory solutions in population is: 

;( ) , ( ) ( ){ }
y B z x

ZP C B S B f y fx x x
∈ ∈

∅ ∅∈≠ ≠ =     (27) 

Let ρ=max{f(a)/f(b); f(b)>f(a)≥0, ∀ a,b∈x} is the maximum 
fitness ratio of population, then the strength coefficient’s 
estimation of roulette selection operator meets: 

1inf[ ( ) ( )] 1 ( 1)[ ]C
y B z x

Zf f Ny ρτ −

∈ ∈
= ≥ + −       (28) 

2) Sequence selection 
Deriving from formula (3), the survival probabilities of 

the optimal individual in original population under linear and 
nonlinear sequence selection were respectively N-1+k1(N+1)/2 
and k2/[1-(1- k2)

 N], then the strength coefficient’s estimations 
of sequence selection operator meet: 

1

1

2 2

linear ( 1) 2

nonlinear 1 1[ ( ) ]
C

N

C

N k N

k k

τ
τ

−

≥

≥ + +
− −





: 

: 
             (29) 

3) Breeding pool selection 
According to formula (5), when the optimal individual’s 

expected survival number is no less than 1, it will certainly 
survive in the next generation. Otherwise, this selection will 
be similar to roulette selection, let  fmax=max{ f(a), ∀ a∈x}, 
the estimations of strength coefficient meet: 

1

( )

( ) 1 ( 1)

1
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C

C
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z x
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z x

f Z
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f f N N ρ
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



：

：
    (30) 

Where: ρ is the maximum fitness ratio of population. 
4) Boltzmann selection 

Deriving from formula (6), the survival probability of the 
optimal individual in population after M times independent 
Boltzmann selection meets: 

1

[ ( ) ( )]( ){ }, ,
1 optopt f f x TzC

MN
P x f

e
x z x

−

−= ∈
+

∈    (31) 

Let ρ’=min{│f(a)-f(b)│, ∀ a,b∈x} is the minimum fitness 
difference of population, the strength coefficient’s estimation 
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of Boltzmann selection meets: 
' 1(1 )[ ]C

TM N e ρτ − −≥ +                  (32) 

5) Competition selection 
Cellular competition selection can guarantee the optimal 

individual of population survive in probability 1, so its τC=1. 
And for the probability competition selection, the survival 
probability of optimum is actually its selected probability in 
the random sampling process, the estimation of its strength 
coefficient meets: 

11 (1 )[ ]C

mM Nτ −≥ − −                   (33) 

B. Evolution operator 

Considering the two events, one is the population lost the 
original satisfactory solution after evolution, and the other is 
the population changed after evolution operation. Obviously, 
the former is a sub-event of the latter, because lost satisfactory 
solution means that the population will inevitably change, so 
the divergence rate δE of evolution operators must not be 
greater than the lower probability bound of the individuals 
change in evolution, that is: 

( ) ( )inf 1 { } 1[ { , }{ ]} [ ]
Z

N

E
B

Z ZP E P E y y y xδ
∈

∀≤ − = = − = ∈∏  (34) 

Similarly, consider the following two events: population 
generate new individual and population generate satisfactory 
solution after evolution. The former is a sub-event of the latter, 
because generate satisfactory solution means a new individual 
was inevitably generated in population. So the aggregation 
rate αE of evolution operators must not be less than the upper 
probability bound of generating new individuals in population, 
that is: 

1 1 { ( ) } 1 1 { ( ) }sup [ ] [ ]{ } N

E
y x

P E P Ey x y xα
∈

≥ − − − −∉ = ∉∏ (35) 

Further, when all individuals in population are not change, 
the population will apparently stable, thereby the estimation 
of stable rate γE of evolution operators meet: 

{ ( ) , } { ( ) , }inf[ ] [ ]N

E
y x

P E P Ey y y x y y y xγ
∈

= ∀ = ∀≥ ∈ = ∈∏ (36) 

Substituting the formula (7)-(14) to formula (34)-(36), the 
parameter estimations of various common evolution operators 
were derived as shown in Table.1. 

TABLE I.  THE PARAMETER ESTIMATION OF COMMON EVOLUTION OPERATORS 

Operator Parameter Estimations 

Point mutation 

1 1

1

[ (1 )] [ (1 )]

1 (1 )
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S
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E E S

E S

m m m m

m m

N P n LP n
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≥ − ≤ −
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Sub-tree mutation 
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mutation 

1

1
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m m

m m

m m

NP L LL
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Non-random same 
point crossover 

1 1
(1 ) 1 (1 )[ ] [ ]N N

C CEc EcP L P Lδ γ− −≤ ≥ −− −,

Random same point 
crossover 

2 2
[ (1 )] [1 (1 )]

C C

N N

E Ecc P N P Nδ γ− −≤ − ≥ − −,

Non-random 
different point 

crossover

2 2
1 )[ (1 )] [1 ( ]N N

C CEc EcP L P Lδ γ− −≤ ≥− − −,

Random different 
point crossover

1 2 1 2[ (1 )] [1 (1 )]C C

N N
Ec EcP PL N L Nδ γ− − − −≤ ≥− − −,

Multi-parental 
crossover 

1 1[ (1 )] [1 (1 )]C C

L N L N
Ec EcP Pm mδ γ− −≤ − ≥ − −,

For the compound evolution operator that composed by 
crossover and mutation operators, taking into accounting that 
P{E(x)∩B=Ø│x∩B=Ø}≥P{E(y) ∈ x, ∀ y ∈ x│x∩B=Ø}, its 
parameter estimations can be derived by the total probability 
formula, that is: 

{ 1 1( ) ( )
(1 )

E E E E E E E

E E E E E E E

c m m c m c

c m m m c

α α δ α α α
δ δ α δ

γ
γ γ γ

≥ ≥− + −
≤ − + ≥，

       (37) 

V. CONVERGENCE STRATEGIES OF GENETIC PROGRAMMING 

Based on the conclusions of the section 3 and section 4, 
the convergence strategies of genetic programming under 
different evolution modes have been derived in this section. 

1) Roulette selection 
According to formula (28), the strength coefficient τC of 

roulette selection under any determined fitness function is 
always have a lower bound that greater than 0. Therefore, in 
order to meet the convergence conditions (formula (26)), the 
fitness function of roulette selection should be corrected to 
make the maximum fitness ratio of population can be adjusted 
with the evolution algebra. 

Introduced simulated annealing operator: 
1( ) [1 ( )]}{

( )
f x T f x

xg e
−

= ＋
               (38) 

Then the maximum fitness ratio ρ meets: 
( ) ( )

1[1 ( )][1 ( )]
max{ ; ( ), ( ) 0}

f a f b
Tf a f b T

f a f be eρ
−

≤ ≥ ≤＋ ＋
  (39) 

Corresponding thereto, there is:  
1 1

1 ( 1)[ ]T

C N eτ −+ −≥                    (40) 

Substituting the formula (37) and (40) to formula (26), the 
convergence strategies of roulette selection under different 
evolution operators were derived from the estimations in Table.1:  

1 1

1 1

1 1

1 2 1

(2ln )

2 (2ln )

2 (2ln )

(2ln )

only point mutation

only sub-tree mutation

only arrangement mutation
any crossover and point mutation

, , ,

, ,
,

 , ,
,

L

L N

C

m

m

m

m

N

N

N

N

P L T n

P T n

P T n

P P L T n

n
n

n

n n

−

− −

−

− −

− −

−

≥

≥

−

= > = −
= = −

= = −

> == =

：

：

：

：

1 2 1

1 2 1

 

2 (2ln )

2 (2ln )

any crossover and sub-tree mutation

, , ,
any crossover and arrangement mutation

, , ,

 

 

N

C

N

C

m

m

N

N

P P T n

P P T n

n n

n n

−

−

− −

− −

−

−

≥ =

≥ =

= =

= =













：

：

(41) 

2) Sequence selection 
When the strength parameters meet: 

2

2
1

2

linear 2 (1 ) 1 ( 1)

nonlinear 1 2

[ ] [ ]
( )

N N Nk n
k n

−

−
= − − +

= −




: 

: 
    (42) 

And the other parameters are valued by formula (41), the 
convergence conditions (formula (26)) were met, populations 
would converge in probability. 
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3) Breeding pool selection 
According to formula (26), the lower strength coefficient 

bound of breeding pool selection is same to roulette selection, 
so they can take the same convergence strategies. 

4) Boltzmann selection 
When the simulated annealing temperature T meets: 

2 2 2 1

2 2 2 1

1 ln ( ) ln ( 1)

1 ln ( ) ln( )

( ) : [ ] [ ]
( ) : [ ]

{ }
{ }

M N N M N N

M N M N M N

n T n n
n T n n

− −

− −
≤ = − − − −
> = − + −

−
−





(43) 

And the other parameters are valued by formula (41), the 
convergence conditions (formula (26)) were met, populations 
would converge in probability. 

5) Competition selection 
For the cellular competition selection and the probability 

competition selection that the sampling number m≥ln(1-M-1) 
/ln(1-N-1), their strength coefficient τC=1. At this time, the 
competition selection is actually becomes an elitist selection, it 
inevitably convergent according to the findings of Rudolph[11]. 

As for the probability competition selection that sampling 
number m<ln(1-M-1) /ln(1-N-1), unless its population size 
N=1, or the lower bound of its strength coefficient must be 
greater than 0, it is failed to find its effective convergence 
strategies under the convergence conditions in this paper. 

VI. THE PAUSE TIME OF GENETIC PROGRAMMING 

Pause time is a part of the convergence mechanism, it 
reflects the convergence speed of algorithm. In the section 5, 
whether genetic programming can convergence and how to 
convergence were discussed, and the convergence strategies 
under different evolution modes were given as well. But those 
strategies were all derived from the limit characteristics of 
population evolution, can only guarantee that the evolution 
process can converge to a satisfactory solution, has no further 
descripted population converge in what time or before what 
time. The evolution algebra in practice obviously can not be 
infinite, so it is necessary to estimate the evolution algebra of 
population reach any satisfactory solution in algorithm design. 

Since the evolution is a random process, the generation 
that it reaches any satisfactory solution is also random, so our 
concerned is the relationship between the evolution algebra of 
population reaches any satisfactory solution for the first time 
and the operators. According to formula (25), there exists a 
positive integer φ that respects to any positive number ε to 
make the following formula true: 

( ) 1 ( )] ( ) 1[a n b n b n n ϕε − − + ∀< >；           (44) 

Took a genetic programming that adopt roulette selection 
as example, when the crossover rate PC, mutation rate Pm and 
the simulated annealing temperature T are valued by Table.1, 
the integer φ that make formula (44) come into existence 
were derived as shown in Table.2. 

TABLE II.  THE GENERATION THAT MAKE FORMULA (44) COME TRUE  

Operator Generations 

Only point mutation 1 1( )[( 1) ] (1 )
S

L N L N L LL nϕ ε − −−> − −  

Only sub-tree mutation 1 1 ( 1) ( 1)1 11[( ) ] ( )L N L N N

S Sn N nϕ ε − − − −− −−>  

Only arrangement 
mutation 

1 1 11 ( 1)
1 ! 1 1 2[( )( ) ] ( )N

L N Lεϕ − − −−− − −>

Non-random same point 
crossover and point 

mutation
1 12 ( )[( 1) ] (1 )

S

L N L N L LL nεϕ − −−> − −
Non-random same point 
crossover and sub-tree 

mutation
1 1 ( 1) ( 1)1 11[( ) ] ( )L N N L N N

S SLn N nϕ ε − − − −− −−>
Non-random same point 

crossover and 
arrangement mutation

1 1 1 ( 1)
1 ! 1 1 2[( )( ) ] ( )N

NL L Lεϕ − − −− − −>
Random same point 
crossover and point 

mutation
1 2 1( )[( 1) ] (1 )N N

S

L L N L L
L N nεϕ − −−> − −

Random same point 
crossover and sub-tree 

mutation
2 1 1 ( 1) ( 1)1 11[( ) ] ( )L N N L N N

S Sn N nϕ ε − − − −− −−>
Random same point 

crossover and 
arrangement mutation

1 11 ( 1) 2
1 ! 1 1 2[( )( ) ] ( )N

L N N Lεϕ − −−− − −>
Non-random different 
point crossover and 

point mutation
1 13 ( )[( 1) ] (1 )

S

L N L N L LL nεϕ − −−> − −  

Non-random different 
point crossover and sub-

tree mutation
2 1 1 ( 1) ( 1)1 11[( ) ] ( )L N N L N N

S SLn N nϕ ε − − − −− −−>
Non-random different 
point crossover and 

arrangement mutation
1 1 2 1 ( 1)

1 ! 1 1 2[( )( ) ] ( )N
NL L L Lεϕ − − −− − −>

Random different point 
crossover and point 

mutation
1 2 2 1( )

1[( 1) ] ( )N N

S

L L N L L
L N nεϕ − −−> − −

Random different point 
crossover and sub-tree 

mutation
2 1 1 ( 1) ( 1)1 11[( ) ] ( )NL N N L N N

S SLn N nϕ ε − − − −− −−>
Random different point 

crossover and 
arrangement mutation

1 1 ( 1) 2
1 ! 1 1 2[( )( ) ] ( )N

L LN N Lεϕ − −− − −>

Multi-parental crossover 
and point mutation 

2 1 1 ( 1) ( 1)1 11[( ) ] ( )NL N N L N N

S SLn m nϕ ε − − − −− −−>
Multi-parental crossover 

and sub-tree mutation
1 ( 1) 1 1 ( 1) ( 1)1[( 1) ] ( )L N L N L N N

S SNn m nϕ ε − − − − − −> − −
Multi-parental crossover 

and arrangement 
mutation

( 1) 1 1 ( 1) 11 ! 1 2[( 1)( 1) ] ( )N L NN LL mϕ ε − − − −−> − − −

Substituting the formula (44) to formula (24), there is: 

11 ( ) 1 ( ) ( )[ ]
i

n
P P bn i

ϕ
ϕ εε

=
− + < + − − ∏         (45) 

Since b(n)≤1-αE(n), and αE(n)<<1 when n>φ, so there is: 

( ) 1 1( ) ( )[ ] ( ) EE
n

i

n
b i i n nϕ

ϕ
α ϕ α−

=
≤ − − −≈∏   (46) 

Deriving from formula (46), if a positive integer R can be 
found to make (R-φ)αE(R)≥1-ε come into existence, then for 
any  n> R, there is: 

1( ) 1 2P n ε+ −>                          (47) 

It means that the probability of population reaches any 
satisfactory solution within R+1 generation should be greater 
than 1-2ε, the conditions that make formula (47) come into 
existence were derived as shown in Table.3. 

TABLE III.  THE CONDITIONS THAT MAKE FORMULA (47) COME TRUE  

Operator Conditions 

Only point mutation

1

1

1 1

(1 (1 ) 1

(1 (1 )

(1 )(1 )

)
)

[ ]

L

S
L

S
L

S

N n R

N n

R N N n

ϕ

ϕ ε

ε
ε

− −

− −

− − −

≤ − − = +
> − −
> − − −





：

：  
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Any crossover and 
point mutation 

1

1 2 1

1 2 1

1 2

2

(1 (1 ) (1 )
1

(1 (1 ) (1 )

(1 ) (1 )

(1 ) (1 ) 1

)

)

S

L N

S

L N

S
L N

S

L N

N n N
R

N n N

N n N
R

N n N

ϕ
ϕ

ϕ
ϕ ϕ

ϕ ε

ε

ε

−

− − −

− − −

−

≤ − − −
= +
> − − −

− −
>

− − + −








：

： 

Only sub-tree 
mutation { 1

(1 ) 1

(1 ) (1 )[ ]

L

S
L L

S S

N R

N R N N

n
n n

ϕ
ϕ

ε
ε ε −

≤ − = +
> − > − −

：

：

Any crossover and  
sub-tree mutation 

2 1

2

2

2 1

(1 )(1 )

(1 )

(1 ) (1 )

(1 )(1 1)

L

S

L

S

N

N

N L

S
N

N N n

N N
R

N N n

N N n R

ϕ
ϕ ϕ

ϕ ε
ϕ ϕ

ε

ε

−

−

> − −
−

>
− − −

≤ − − = +







：

：

 

Only arrangement 
mutation 

1

1

1 1

2(1 )( 1) ! 1

2(1 )( 1) !

2(1 !( 1)[ ) ]

N L LL R

N L LL

R N N LL L

ϕ

ϕ

ε
ε

ε

−

−

− −

≤ − − = +
> − −
> − − −





：

：  

Any crossover and 
arrangement mutation 

1 2 1

1 2 1

2

2

2(1 )( 1) (1 ) !
1

2(1 )( 1) (1 ) !

( 1)(1 )

( 1)(1 ) 2(1 ) !

N

N

N

N

N L N LL
R

N L N LL

N L N
R

N L N LL

ϕ
ϕ

ϕ
ϕ ϕ

ϕ ε

ε

ε

− −

− −

≤ − − −
= +
> − − −

− −
>

− − − −







：

： 

Through Table.1 and Table.2, the generation of genetic 
programming reaches any satisfactory solution under various 
evolution modes can be estimated. Without less of generality, 
we take ε=1/8, then for the genetic programming that adopts 
roulette selection, non-random same point crossover and sub-
tree mutation, when its population size N=60, maximum tree 
depth h=6, the larger element number of algorithm and 
parameter collection nS=6, and the other parameters are 
valued by Table.1, the R=763. It means that, if this evolution 
process was independently carried out 10 times, then the 
probability of find out at least one satisfactory solution within 
764 generation should be not less than 1-10-6. If the evolution 
algebra was increased to 840, there is P(840)>0.9991, then it 
is only need to independently carry out this evolution twice, 
at least one satisfactory solution can guarantee to be found out 
in the probability of not less than 1-10-6. 

Because of the limitation of paper space, this section only 
derived the pause time of genetic programming under roulette 
selection. Other cases can also be analyzed by the similar 
process, and will not go into here. 

VII. CONCLUSIONS AND ANALYSIS 

The convergence mechanism and strategies of non-elitist 
genetic programming were studied in this paper, and the 
conclusions and analysis were summarized as follows: 

(1) The convergence study of genetic programming in this 
paper is based on the operators’ analysis and estimates, it is 
different from the traditional mode analysis that based on gene 
encoding. This study approach has downplayed the biological 
background of genetic programming, and thereby provides the 
basis for a broader application of GP algorithm. 

(2) The convergent target of this study is the collection of 

satisfactory solutions, and the optimal solution is inevitably a 
satisfactory solution, so it can be found out by the strategies 
that derived in paper. 

(3) Through the analysis of the pause time, it can be found 
that the mutation operators seems to play a greater impact on 
the convergence, while the crossover operators do not play a 
decisive role, but conversely decrease the convergence rate 
of algorithm. This conclusion has been supported by some 
other studies[6,16,19,20]. 

(4) Formula (26) is not the necessary condition of genetic 
population converges in probability, and there are many 
groups of parameters that meet formula (26), the convergence 
strategies derived in this paper is just one simpler group. It 
means there may exist a great difference in  the convergence 
performance of the same problem under different evolution 
modes, so it is necessary to study the influence of different 
modes to the evolution process of certain problems, and thus 
to determine the optimal evolutionary strategy. 
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