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Estimation of discharge flowing through rivers is an important aspect of water resource planning and management. The most
common way to address this concern is to develop stage-discharge relationships at various river sections. Various computational
techniques have been applied to develop discharge ratings and improve the accuracy of estimated discharges. In this regard, the
present study explores the application of the novel hybrid multigene genetic programming-generalized reduced gradient (MGGP-
GRG) technique for estimating river discharges for steady as well as unsteady flows. It also compares the MGGP-GRG per-
formance with those of the commonly used optimization techniques. As a result, the rating curves of eight different rivers were
developed using the conventional method, evolutionary algorithm (EA), the modified honey bee mating optimization (MHBMO)
algorithm, artificial neural network (ANN), MGGP, and the hybrid MGGP-GRG technique. The comparison was conducted on
the basis of several widely used performance evaluation criteria. It was observed that no model outperformed others for all datasets
and metrics considered, which demonstrates that the best method may be different from one case to another one. Nevertheless, the
ranking analysis indicates that the hybrid MGGP-GRG model overall performs the best in developing stage-discharge rela-
tionships for both single-value and loop rating curves. For instance, the hybrid MGGP-GRG technique improved sum of square of
errors obtained by the conventional method between 4.5% and 99% for six out of eight datasets. Furthermore, EA, the MHBMO
algorithm, and artificial intelligence (AI) models (ANN and MGGP) performed satisfactorily in some of the cases, while the idea of
combining MGGP with GRG reveals that this hybrid method improved the performance of MGGP in this specific application.
Unlike the black box nature of ANN, MGGP offers explicit equations for stream rating curves, which may be counted as one of the
advantages of this Al model.

1. Introduction

For quantification of discharge in open channels, hydraulic
engineers often restore to the application of rating curves to
avoid the need for in situ discharge measurements con-
ducted either continuously or at particular time intervals [1].
These curves are developed by analysing the relationship
between the water level and discharge at a specific river
section under steady and unsteady circumstances. In the
former, the rating curve is single-valued because of the one-
to-one relationship between water depth and discharge.
However, corresponding to the same water level, higher

discharges are observed when the water level is rising during
floods than in receding stages resulting in a hysteresis re-
lationship and loop ratings [2]. Finally, once a discharge
rating curve is obtained, it can be deliberately used to es-
timate discharges by measuring water depth exclusively.
Realizing the importance and wide applications of rating
curves, the topic has been studied remarkably. Different
issues investigated on the topic include [3] (1) developing
discharge rating curves using various data-driven techniques
under both steady and unsteady flows [4, 5], (2) physical
interpretations of different parts of rating curves, (3) un-
certainties associated with stage-discharge relationships
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[6, 7], (4) introducing a rating curve applicable beyond the
range of discharge measurements [8, 9], and (5) applying
rating curves to practical problems in water resources
[10, 11]. Among these issues, the majority of the efforts in the
literature may be allocated to the first category, which in-
dicates that the inevitable need to develop more rigorous
rating curves is the main problem investigated in many
previous studies. Likewise, the problem statement in this
study focuses on the assessment of different models for
defining single-value and loop rating curves.

According to the literature, available approaches for
deriving a stage-discharge relationship may be categorized
into two main groups named hard computing and soft
computing models. The former exploited either numerical
models [12-14] or empirical models [15-17] to determine
discharge rating equations, whereas the latter utilized arti-
ficial intelligence (AI) models for the same purpose [18-23].
Starting from the simple regression-based ratings, hydraulic
engineers gradually have turned towards complex computer
programming and machine learning approaches not only to
develop discharge rating curves but also to estimate dis-
charges more accurately. Moreover, several studies have
reported the superiority of Al models over general regressive
techniques [24]. Despite all conducted efforts, the quest not
only for new approaches but also for assessing different
models available for estimating the stage-discharge relation
more precisely is still ongoing due to the importance and
wide applications of discharge rating curves.

This study aims not only to explore the applicability of Al
models in developing rating curves for steady as well as
unsteady flow conditions but also to assess their perfor-
mances in comparison with some other approaches available
in the current literature. Therefore, the performances of the
MHBMO algorithm, multigene genetic programming
(MGGP), and the hybrid MGGP-GRG, which has been
recommended for this specific purpose for the first time in
the literature, were compared with the performances of the
conventional method, the Excel Solver or evolutionary al-
gorithm (EA), rise and fall (RF) method, and ANN. The
comparison is conducted for eight datasets with single-value
and loop rating curves using several metrics.

2. Materials and Methods

2.1. Datasets. In the present study, eight datasets (four under
the steady and four under the unsteady flow conditions)
were used in this study. These data, which have already been
published in the literature [16, 17, 24-28], are depicted in
Figure 1. As shown, the first four datasets have single-value
stage-discharge relations, whereas the next four ones display
a loop relationship.

Each dataset used in this study was randomly divided
into two parts: (1) train data (75% of each dataset) and (2)
test data (25% of each dataset). The former was utilized
for calibrating and training different methods, while the
latter was exploited for comparing the estimated and
observed discharges. The ranges of the train and test data
of the eight datasets are summarized in Table 1. As shown,
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in each dataset, the minimum and maximum values of
each parameter in the train data are lower and higher than
the minimum and maximum of the same parameter in the
test data, respectively. This characteristic in the data
division enables to calibrate or train different methods for
a wider range of values so that they can predict the test
data better.

2.2. Models Used for Developing Rating Curves. In the sub-
sequent section, the seven models including the conven-
tional method, EA, RF, the MHBMO algorithm, ANN,
MGGP, and the hybrid MGGP-GRG model, which were
used to develop rating curves, are presented.

2.2.1. Conventional Method. The general form of a discharge
rating curve is based on Manning’s equation. This stage-
discharge relationship is generally expressed in the following
equation [24]:

Q=K(G-a), (1)

where Q is a stream discharge, G is a river stage, a is a
constant representing the gauge reading corresponding to
zero discharge, and Kand nare the rating curve parameters.

In the conventional method, the value of a is determined
by the straight line fitted to the curve of log Q versus
log (G — a). This curve is commonly plotted by adopting a
trial-and-error process by playing with the value of a. In this
regard, the transformed logarithmic form of equation (1) is
given in the following equation:

log Q =nlog(G —a) +1log K. (2)

By defining Y =log Q, A=n, X =1og(G-a), and
B =log K, equation (2) provides a straight relation between
Y and Xas is Y=AX+B. The values of A and B can be
calculated by using the conventional regression analysis (the
least square method).

2.2.2. Evolutionary Algorithm. EA is a population-based
probabilistic method with a bioinspired principle of survival
of the fittest. This algorithm can be used to solve highly
nonlinear problems with less than 200 decision variables
[29]. In essence, EA is a combination of evolutionary al-
gorithms, GA, and classical optimization methods. In this
zero-order algorithm embedded within Microsoft Excel, a
population is initialized randomly. Thereafter, it is subjected
to the selection, recombination, and mutation iteratively
until it finds a better fit solution in the given time regarding a
set of constraints specified.

In the present study, the Excel Solver has been used to
optimize the parameters of the rating curve relation shown
in equation (1). To obtain the optimal values of the decision
variables (K, a, and #), minimization of sum of square of
errors (SSE) was set as the objective function. A constraint
was put on the variable a so that its optimal value is less than
or equal to the stage corresponding to the minimum
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F1GURE 1: Observed rating curves of the eight datasets. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4. (e) Dataset 5. (f) Dataset 6. (g) Dataset

7. (h) Dataset 8.
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TaBLE 1: Range of calibration and validation data.
Training data Test data

Data Reference of data Parameter L ) o .

Minimum Maximum Mean Minimum Maximum Mean
Dataset 1 [25] G (m) 622.23 624.24 623.06 622.24 624.14 623.08
Dataset 2 [16] G (m) 1.79 2.61 1.94 1.8 2.5 1.93
Dataset 3 [24] G (m) 1.8 4.49 2.14 1.8 4.46 2.39
Dataset 4 [26] G (m) 0.27 3.34 1.12 0.3 3.306 0.98
Dataset 5 [27] G (ft) 21.78 46.29 36.15 22.08 46.23 36.62
Dataset 6 [28] G (ft) 1.00 2.98 1.79 1.04 2.51 1.65
Dataset 7 [17] G (ft) 885.99 981.10 892.69 886.11 893.48 891.28
Dataset 8 [17] G (ft) 881.01 885.96 883.98 881.01 885.96 883.89
Dataset 1 [25] Q (m%/s) 30.56 451.87 170.79 31.48 425.71 171.19
Dataset 2 [16] Q (m%/s) 17.7 484.22 73.63 19.11 407.76 71.65
Dataset 3 [24] Q (m’/s) 71.08 656.95 173.71 71.08 639.96 174.43
Dataset 4 [26] Q (m%/s) 2.33 236.6 54.37 2.923 228.5 44.39
Dataset 5 [27] Q (ft'/s) 323237 1078225 690475 337255 1058347 709212
Dataset 6 [28] Q (ft'/s) 21.38 374.74 133.02 23.65 236.93 99.97
Dataset 7 [17] Q (ft3/s) 1110.00 7060.00 4973.71 1380.00 6920.00 4886.75
Dataset 8 [17] Q (ft'/s) 1490.00 6550.00 4122.27 1490.00 6520.00 4047.19

observed discharge. The mutation rate was set as 0.05, while
the population size and convergence criterion were fixed as
50 and 0.00001, respectively.

2.2.3. Rise and Fall (RF) Method. Several attempts have also
been made by various researchers to address the issues
related to the measurement of unsteady flow. During floods,
higher discharges are observed when flood waves propagate
through the gauging site, while lower discharges are ob-
served for the same stage when the flood wave recedes. This
subsequently leads to different relationships between stages
and discharges during the rising and falling limbs of flood
hydrographs. Since the failure probability of hydraulic
structures increases during high discharges, it is vital to
distinguish different behaviours of water levels in different
limbs of a flood hydrograph. In this regard, separate rating
curve equations are fitted to the rising and falling limbs of
stage-discharge flood hydrographs, commonly known as the
rise and fall (RF) method. Therefore, separate rating curves
will be required to be developed to comply with changes in
the stage-discharge relationship.

2.2.4. The MHBMO Algorithm. The MHBMO algorithm is a
zero-order optimization algorithm that simulates the mating
process of honey bees between a queen and drones of a
generation. This simulation process mainly searches for the
best honey bee (queen) by producing successive generations,
which are improved in the light of the fitness criterion
through the mating process. Similar to other metaheuristic
algorithms, the MHBMO algorithm has several controlling
parameters, which have been set in accordance with that of
previous studies in the literature [30]. Based on the litera-
ture, it is the first time that the MHBMO algorithm has been
used for developing rating curves.

2.2.5. Artificial Neural Network. Artificial neural network
(ANN) serves as an estimation tool in various fields of

research. In essence, it comprises an organized network,
which contains three main layers named as input layer,
hidden layer, and output layer. Each layer consists of a
specific number of neurons, which are permitted to have
connections exclusively with other neurons placed in dif-
terent layers [31]. This principle dictates that the input data,
like the output data, should be independent variables. The
former and latter data are commonly placed in the input and
output layers, respectively. On the other hand, the neurons
of the hidden layers play the role of transferring the input
data to the output data. Finally, the data flow in the ANN
architecture continues until an adequate relationship, which
satisfies a desirable accuracy, is obtained [32].

In this study, the input and output data for each dataset
consist of normalized stages and normalized discharges,
respectively. For the training process of ANN, normalized
variables were utilized instead of dimensional variables to
capture the relationship between the input and output data
more accurately, while normalized variables were turned
into ones with dimensions for comparison purposes. Ad-
ditionally, a feed-forward backpropagation ANN with the
Levenberg-Marquardt optimization algorithm was used,
while the ANN controlling parameters, except the minimum
gradient parameter, were assumed the same as those adopted
in the literature [33]. The best value for the minimum
gradient parameter was determined by a trial-and-error
procedure as it was found that the value of this parameter
may have a major impact on the results. Finally, ANN used
in this study has a three-layer network, which contains one,
ten, and one neurons in the input, hidden, and output layers,
respectively.

2.2.6. Multigene Genetic Programming. Genetic program-
ming (GP) is categorized as one of the AI models and as a
modified variant of GA. In the latter context, GA works as
the search engine of GP to strive for finding a relationship
between two sets of variables. To be more precise, GP not
only benefits from the random-based searching
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characteristics of GA but also overcomes one of its limi-
tations, which is known to be the incapability of determining
a relation between input and output data associated with a
problem with a high order of complexity. The latter ad-
vantage of GP over GA is provided with the use of a tree-like
configuration [33].

Among various versions of GP, MGGP contains a user-
defined number of genes, which enables the implementation
of various types of functions and mathematical operators in
the quest for a suitable relation between the data under
consideration. MGGP exploits GA as an optimization engine
to minimize a defined objective function [34]. In the process
of solving an optimization problem using MGGP, the main
steps of GA, which includes initialization, selection, re-
production, and termination, are successively repeated [35].
To be more specific, it commences with the creation of an
initial population. This randomly generated population
basically includes different functions and terminals, which
are subjected to GA operators, such as crossover and mu-
tation. This process is repeated until one of the termination
criteria, which are the maximum number of generation and
fitness termination value, is met [36]. Finally, MGGP assigns
a weight to each member of the GP population containing a
number of trees or genes, while the MGGP output is a linear
combination of these trees.

In this study, a MATLAB version code of MGGP, which
was adopted from the literature [34, 37], was used. The
objective function of this code is minimizing the root mean
square of errors between the estimated and observed sets of
normalized discharges, while normalized stages were uti-
lized as the input data. Furthermore, the same data division
considered for ANN was applied to MGGP. Also, Table 2
summarizes the MGGP parameters used in this study. Since
MGGP attempts to solve a defined optimization problem,
each run of MGGP may lead to a different equation. Hence,
many (more than 50) runs of MGGP were conducted for
each dataset, and the relation with the best fitness value was
selected as the final MGGP result.

2.2.7. Hybrid MGGP-GRG Method. The hybrid MGGP-
GRG refers to the combination of multigene genetic pro-
gramming and generalized reduced gradient technique. The
latter is a first-order optimization algorithm, which has been
combined with other models in the literature [30]. Figure 2
illustrates the detailed flowchart of the hybrid MGGP-GRG
method used for developing rating curves. As shown, the
best-fit MGGP model is selected in the first stage. Then, the
coefficients of the model developed by MGGP are obtained
by GRG optimization technique with target cell as mini-
mization of SSE. In this way, the equation obtained by
MGGP can be further improved by applying GRG opti-
mization technique. Based on the current literature, it is the
first time that the hybrid MGGP-GRG has been proposed.

2.3. Performance Evaluation Criteria. The developed ratings
obtained by different models were compared on the basis of
several performance evaluation criteria including (1) SSE

(equation (3)), (2) Nash-Sutcliffe efficiency (NE) (equation
(4)), (3) relative error (RE) (equation (5)), (4) mean absolute
relative error (MARE) (equation (6)), and (5) maximum
absolute relative error (MXARE) (equation (7)). In this
regard, the model with the highest efficiency and lowest
error will be the best-fit model:

N

SSE=Y(Q,-Q.)" (3)
i=1
N AV
NE=1- % (Q, NQE") 5 (4)
Zi:l (Qoi - (Zi:1 Qo,-/N))

RE, = Qe%oQ”’, fori=1,...,N, (5)

1 N Qei - Qa[
MARE = ; ~a | (6)
MXARE = max( ﬂ , fori= 1,...,N), (7)

where Q, and Q,are the i™ observed and estimated dis-
charges for each dataset, respectively.

3. Results

The seven methods described in the previous section were
used to develop rating curves for all datasets separately. For
this purpose, the training part of each dataset was used for
(1) calibrating equation (1) using the conventional method,
EA, RF, and the MHBMO algorithm and (2) training the Al
and hybrid models. The rest of the data in each dataset (test
data) were utilized for quantifying the performances of
different methods. The results achieved by different methods
are presented as follows.

3.1. Results of the Conventional Method, EA, and the MHBMO
Algorithm. The rating curve parameters of equation (1),
which were obtained by the conventional method, EA, and
the MHBMO algorithm, are reported in Table 3. As shown,
although these three models applied to the same relation for
discharge rating curves (equation (1)), they yielded com-
pletely different values of rating curve parameters for
Dataset 3, Dataset 5, and Dataset 7. Furthermore, applying
EA and the MHBMO algorithm to Dataset 1, Dataset 2,
Dataset 4, and Dataset 6 resulted in almost similar optimal
parameters of equation (1), while the parameters calibrated
by the three methods (the conventional method, EA, and the
MHBMO algorithm) are quite close for Dataset 8. The
discrepancy in this parameter estimation mainly arises be-
cause the parameter a in the conventional method is ob-
tained from the best fit of a straight line through a trial-and-
error procedure, and the estimates of the other two pa-
rameters (Kand n) are dependent on the value of the
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TaBLE 2: Values of MGGP controlling parameters.

Parameter

Values

Function set

Number of generations

Maximum number of genes allowed in individual
Maximum tree depth

Tournament size

Elitism

Crossover events

High-level crossover

Low-level crossover

Standard deviation of perturbation applied in mutation Gaussian
perturbation of a randomly selected constant

Subtree mutation

Replacing input terminal with another random terminal
Gaussian perturbation of randomly selected constant
Direct reproduction

Ephemeral random constants

Arithmetic (trigonometric, plog, psqroot, and exponential
functions) and operations

120
5
4
4

0.05 of population

0.85

0.2

0.8

0.1

0.9
0.05
0.05
0.05

[-10, 10]

parameter a. On the other hand, all the rating curve pa-
rameters calibrated by EA and the MHBMO algorithm are
optimized simultaneously to obtain the global optima. Ev-
idently, the datasets whose parameters gained different
values in the calibration process may provide a better
perspective when the performances of the conventional
method, EA, and the MHBMO algorithm are compared.

3.2. Results of ANN. ANN, as an Al model, leads to a
calibrated network for estimating discharges for the train
and test data. By conducting many attempts for running
ANN, it was found that the minimum gradient parameter in
the training process of ANN has a major impact on the
discharges estimated by ANN. Therefore, a trial-and-error
procedure was adopted to find appropriate values of this
controlling parameter.

Q, = 0.4503y, +0.3962 sin (177.2y,) — 0.3955 sin (177.3y,) + 0.4503y"

3.3. Results of MGGP. MGGP provides explicit equations in
terms of stage so that discharges can be directly estimated. In
the proposed equations, the stage and discharge values were
normalized before applying MGGP to achieve better results.
For instance, the observed discharges of the i™ dataset (Qp)
were normalized by Q; = (Q, — Qpin/Quax — Quin)> Where
Q;, Quin and Q.. are the normalized, minimum, and
maximum discharges of the i dataset. The explicit equation
obtained by MGGP for estimating normalized discharges of
the i dataset is a function of the normalized water depth
(y;). After the dimensionless discharges predicted by the
MGGP-based models were transformed back to the di-
mensional variable (the estimated discharge), they were
compared with the corresponding observed values. The
equations developed by MGGP are presented in the fol-
lowing for the eight datasets:

(1) For Dataset 1:

(8)

—~0.02175 sin (88.6y, — 750.3) — 0.04285 cos[18.84 cos(y,)] + 0.04287.

(2) For Dataset 2:

Q, = 0.05899 cos(11.78y,) — 0.07737 cos[-9.779y, — cos(y,)]

+7.196 sin (0.8161y,) — 0.01603 sin (15.46y,) +

9)
36.2
362005(y3) ;g
5.937y, + 6.1
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F1GURE 2: Flowchart of the hybrid MGGP-GRG model for developing rating curves.
TaBLE 3: Coeflicients of equation (1) calibrated by the conventional method, EA, and the MHBMO algorithm.
Method Coefficients ~ Dataset 1 ~ Dataset 2 Dataset 3 ~ Dataset 4  Dataset 5  Dataset 6 Dataset 7  Dataset 8
K 38.38 578.07 23.74 42.80 1351.46 63.76 779.64 19.85
Conventional a 621.30 1.61 0.21 0.15 0.10 0.40 881.00 875.00
n 2.37 1.98 2.10 143 1.73 1.89 0.76 2.41
K 126.16 543.41 11.02 40.75 1322.00 80.38 3415.67 19.30
EA a 621.88 1.68 0.00 0.13 0.00 0.54 885.98 875.00
n 1.42 1.57 2.67 1.51 1.74 1.74 0.23 2.42
K 126.16 54344  1.00x107° 4074  243x10°" 80.40 3403.68 24.66
MHBMO a 621.88 1.68 -13.87 0.13 -136.28 0.53 885.90 875.28
n 1.42 1.57 14.10 1.51 8.24 1.74 0.23 2.35
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for y,>0

for y,<0 and

where  plog(y,) = {éog(yz)

\y, for y,>0
0

psqroot(y,) = { for ,<0°

(3) For Dataset 3:

Q; = 0.328y; — 0.006875 sin[sin (7.901y;)] + 0.328 cos[cos(y3)]
—0.0009848 sin(2y;) — 0.0009848 sin (22.75y;) + 3.208 cos(y;) (10)
—3.418 cos[2y; —sin(y;)] + 0.03491.

(4) For Dataset 4:

2 0.093(2y, - y3) R
= 0216y, + 1.133(2y, - y2) - ——24 24 581
Q % (274-%) 6.031y, — 3.498 4

(11)
s 0.3006y
+238y + ——————2 % _0.0008927.
5.978y, — 3.498
(5) For Dataset 5:
Qs = 0.0172 sin(63.21y; ) + 0.01468 sin (319.7ys) + 0.02307 sin (163.2y5) -
12
+0.02196 sin (480.3y5) — 0.5722y% + 0.5722y5 exp (ys) + 0.01377.
(6) For Dataset 6:
_ 2 , 6.604 . )
Qs = 0.0253 sin [ (8.549y,)"| - 109.7 exp( yg ———— | - 0.03472 sin[ (y + 6.604)° ]
Ve (13)
+0.1227 tanh (6.528y,) — 7.162 tanh{tanh [cos(y,)]} + 4.585,
where the second term in the right-hand side of (7) For Dataset 7:
equation (13) is zero when y, = 0.
o - 1155 64.57y) 10700y
7 exp(0.4073/y;) 32 +0.0002876 8.076y, — exp(y;)
(14)
61402 2(355.4y, — 2866
+ ;7 (3554y, ) 4 0.03322,
4.836y, + exp(y,) 7.944y, —exp(y,)
where the first term in the right-hand side of (8) For Dataset 8:

equation (14) is zero when y, = 0.
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Qs - 0.0007984(yg — 0.366) _0.004208 [y —sin(yy)] ~ 0.445y,
8- y2 —0.2897 yg — 0.366 2yg +0.2737

—0.03444 exp (yg)exp[exp(ys)] + 1.062 exp[cos (ys)]exp(yi) -2.795.

3.4. Results of the Hybrid MGGP-GRG Model. The hybrid (1) For Dataset 1:
MGGP-GRG model modified the coefficients of the equa-

tions obtained by MGGP. These equations are given in the

following for the eight datasets:

Q, = 0.4480y, + 0.3976 sin (176.967y,) — 0.393 sin (177.09y,) + 0.4587 y;

—0.0266 sin(90.107y; — 751.049) — 0.0445 cos[18.8143 cos(y;)] + 0.0404.

(2) For Dataset 2:

Q, = 0.05899 cos(11.7924y,) — 0.07737 cos[-9.7849y, — cos(y,)]

36.1584 cos(y,)
5.9348y, + 6.0984

+7.1919 sin (0.8159y,) — 0.01603 sin (15.459y,) +

(3) For Dataset 3:

Q; = 0.328y, — 0.006875 sin[sin(7.91y5)] + 0.328 cos[cos(y;)]
—0.0009848 sin(2y;) — 0.0009848 sin (22.75y;) + 3.2075 cos(y5)
—3.4185 c0s[1.9998y; — sin(y;)] + 0.03491.

(4) For Dataset 4:

0.0316(0.084y, — )
6.9433y, - 43146

Q, = 02751y, +0.9121(1.8105y, - y2)" - —1.375y?

0.0409y

24 _0,00025.
8.629y, — 4.62

+1.4796y, +

(5) For Dataset 5:

Qs = 0.0145 sin(63.45y; ) + 0.01635 sin (319.37y;) + 0.02336 sin (163.475y;)
+0.02248 sin (480.07y5) — 0.6305 7 + 0.595y5 exp (y5) + 0.01005.

(6) For Dataset 6:

—5.9479.

(15)

(16)

(17)

(18)

(19)

(20)



10

where the second term in the right-hand side of
equation (21) is zero when y, = 0.

Complexity

(8) For Dataset 8:

8

6.649
Qg = 0.0257 sin[ (8.559y,)°] - 111.73 exp(y§ - ) ~0.031696 sin (y, +6.616)°]
6 (21)
+0.1195 tanh (5.343y,) — 7.091 tanh{tanh[cos(y,)]} + 4.5475,
(7) For Dataset 7:
0 - 64.53y3 10700y3 . 6140y7
7 52400002879 8.0768y, —exp(y;) 4.8346y, +exp(y;)
(22)
y2(355.4y, — 2866)
- +0.03332.
7.9436y, — exp(y;)
~0.000528 (yg — 0.4779)  0.003506 yg — sin (ys)] 0.4689,
- . -
y2 - 0.2907 g — 0.3659 2162y + 0.2685 (23)

—0.03478 exp (yg)exp[exp(yg)] + 1.0707 exp[cos(yg)]exp(yg) - 2.8195.

3.5. Comparison of Different Methods for Single-Value Rating
Curves. The discharges estimated by the conventional
method, AE, the MHBMO algorithm, ANN, MGGP, and the
hybrid MGGP-GRG method are compared with the ob-
served ones using four performance criteria for the single-
value rating curves. The results of this comparative analysis
are reported in Table 4 and Figure 3 for both train and test
data. According to Table 4 and Figure 3, the results obtained
by the conventional method are the most inferior for the first
four datasets. Since the coefficients determined by EA and
the MHBMO algorithm are the same for Dataset 1 and
Dataset 2, the performances of these methods are the same
for these data. Furthermore, the application of the MHBMO
algorithm to Dataset 3 and Dataset 4 slightly improves
discharge ratings estimated by EA because it relatively
resulted in lower SSE, MARE, and MXARE and higher NE.
According to Table 4, ANN improved SSE of the test part of
Dataset 1 and SSE of the train parts of Dataset 3 and Dataset
4 comparing to the MHBMO algorithm, whereas the
MHBMO algorithm achieved better SSE for the test part of
Dataset 3. Based on Figure 3, the MXARE value calculated by
ANN is better than that of the MHBMO algorithm for the
test part of Dataset 1, whereas the latter has better MXARE
and MARE for Dataset 4. The discrepancy between MARE
and MXARE obtained by the MHBMO algorithm and ANN
is not considerable for Dataset 2 and Dataset 3. Based on the
SSE values shown in Table 4, the discharges of the train part
of all four datasets estimated by MGGP are much closer to
the observed ones in comparison with those of ANN and the
MHBMO algorithm, while the hybrid MGGP-GRG im-
proved the SSE values of MGGP for the train part of all

single-value rating curves. Furthermore, the MGGP-based
model obtained the best SSE for the test part of Dataset 2
compared with ANN and the MHBMO algorithm. Also, the
hybrid MGGP-GRG model achieved the best SSE in Table 4
for the test parts of Dataset 2 and Dataset 3, while the best
SSE values in this table were computed by ANN and EA for
the test parts of Dataset 1 and Dataset 4, respectively. Finally,
the lowest MXARE values for the test parts of Dataset 1 and
Dataset 3 (shown in Figure 3) were achieved by ANN and the
MHBMO algorithm, respectively, while several methods
reach the best MXARE values for the test parts of Dataset 2
and Dataset 4.

For better clarification, Dataset 2 was selected to be
focused for further investigations. In this regard, Figure 4
depicts the comparison analysis conducted between different
models in terms of relative errors for the test part of Dataset
2. As shown, the conventional method yielded the widest
range of relative errors for developing single-value rating
curves, whereas the maximum and minimum of relative
errors are quite the same in other methods. Also, Figure 4
shows that the patterns of relative errors are quite similar for
the applied methods. The similarity of these patterns may
reveal that the data belong to a single-value rating curve,
whose each stage is designated with a unique discharge.

3.6. Loop Rating Curves. The performances of different
models for the hysteresis-affected data are presented in
Table 5 and Figure 5. As shown in Table 5, the highest SSE
values were obtained by the conventional method and EA
for the training part and the conventional method, EA, and
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TaBLE 4: Comparing SSE of different methods for developing single-value rating curves.
Method Data part Dataset 1 Dataset 2 Dataset 3 Dataset 4
Conventional Training 27905.48 19621.30 85158.32 426.12
Testing 4978.88 3741.23 31583.23 47.00
FA Training 15005.11 511.32 21602.35 691.18
Testing 5752.12 183.24 7365.09 16.39
Training 15005.11 511.32 573.11 69.18
MHBMO Testing 5752.13 183.60 220.34 16.40
ANN Training 15513.37 4321.46 593.16 386.15
Testing 4706.09 184.38 311.06 16.55
MGGP Training 7670.02 398.97 530.02 4.16
Testing 6120.16 113.60 229.25 18.16
. Training 7136.91 398.18 474.26 215
Hybrid MGGP-GRG Testing 6028.23 110.80 214.63 16.71

NE for train data

MARE for train data

1.00
0.99 4 -
£ 0.98 -
<
@
£ 0.97 1
9
£
23] i
g 0.96
0.95 A
0.94 A
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 1 Dataset 2 Dataset 3 Dataset 4
= Conventional = ANN m Conventional = ANN
= EA = MGGP = EA = MGGP
= MHBMO = Hybrid MGGP-GRG = MHBMO = Hybrid MGGP-GRG
(a)
s
<
<
8
St
L
[sa}
~
<
=
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 1 Dataset 2 Dataset 3 Dataset 4
= Conventional = ANN m Conventional = ANN
= EA = MGGP = EA = MGGP
= MHBMO = Hybrid MGGP-GRG = MHBMO = Hybrid MGGP-GRG

() (d)

Figure 3: Continued.
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FIGURE 3: Comparison of the performances of different methods for the data with single-value rating curves based on NE, MARE, and
MXARE.
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FiGure 4: Comparison of relative errors of discharges predicted by different methods for Dataset 2. (a) Conventional method. (b) EA. (c)

MHBMO. (d) ANN. (¢) MGGP. (f) MGGP-GRG.

TaBLE 5: Comparing SSE of different methods for developing loop rating curves.

Method Data part Dataset 5 Dataset 6 Dataset 7 Dataset 8
Conventional Training 68050636919 6057 476798368 10082970
Testing 21822676000 1814 24906002 3018398
FA Training 67935976928 6006 87692181 10047888
Testing 21780067017 1916 24133003 2992628
RE Training 26498285944 2462 61379579 1172853
Testing 12548719606 3574 15944107 8379269
MHBMO Training 46177882487 6006 89711266 10047482
Testing 13839023896 1916 24907408 2988805
ANN Training 35089435935 1681.726874 17520075.67 9352598.961
Testing 22189984412 2651.39974 6499608.451 3376646.962
MGGP Training 19204199283 2107 30070788 8838013
Testing 11708806606 2500 6572739 2889826
ivcorcia Tl aw feer s

ANN for the test part of Dataset 5. On the other hand, the
hybrid MGGP-GRG model achieved the lowest SSE values
for both parts of Dataset 5. According to Table 5, the worst
SSE for the train part and the best SSE for the test part of
Dataset 6 belong to the conventional method, whereas ANN
and RF reach the best and the worst SSE values for the train
and test parts of Dataset 6, respectively. For the train part of
Dataset 7, the conventional method resulted in an SSE value,
which is 4.5 times higher than SSE values obtained by other
methods. Furthermore, ANN and the hybrid MGGP-GRG
method achieved the best SSE value for Dataset 7. Table 5
shows that the conventional method, EA, and the MHBMO
algorithm yielded the highest SSE for the test part of Dataset
7, whereas the AI models (ANN and MGGP) and the hybrid
MGGP-GRG model significantly improved the SSE of other
methods for the corresponding data. Additionally, the best
SSE values for the train and test parts of Dataset 8 were
achieved by RF and the hybrid MGGP-GRG model, re-
spectively. Moreover, the conventional method achieved the

lowest NE for most train and test parts of loop rating curves,
whereas the Al models and the hybrid MGGP-GRG method
overall performed acceptably and even the best in some cases
as shown in Figure 5. Comparing the MARE and MXARE
values reported in Figure 5, it is obviously seen that the Al
models and the hybrid MGGP-GRG model yielded the
lowest values for the train parts of Dataset 5, Dataset 6, and
Dataset 7. These methods also resulted in better MARE for
the test parts of Dataset 5, Dataset 7, and Dataset 8 and better
MXARE for the test parts of Dataset 6 and Dataset 7 than
other methods compared in Figure 5. Additionally, the
hybrid MGGP-GRG model significantly reduced MXARE
for the test part of Dataset 5.

Figure 6 compares relative errors computed by seven
methods for the test part of Dataset 7, whose rating curve is
affected by the hysteresis phenomenon. Unlike Figure 4,
Figure 6 show that the AI models and the hybrid MGGP-
GRG method resulted in relatively smaller ranges of relative
errors compared to other methods. Moreover, the patterns
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FiGgure 5: Comparison of the performances of different methods for the data with loop rating curves based on NE, MARE, and MXARE.

of relative errors presented by the former methods are  methods used for calibrating equation (1) may have an
completely different from those achieved by the latter ones. ~ impact on the maximum and minimum relative errors and
This clearly indicates that equation (1) yielded the same  not on the corresponding patterns. On the other hand, the
pattern of relative errors for loop rating curves, while the Al models and the hybrid MGGP-GRG technique achieved
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quite the same patterns of relative errors, while the maxi-
mum and minimum relative errors are different. Therefore,
Figure 6 demonstrates that equation (1), regardless of which
method is adopted for the calibration, has limited potential
to capture the relation between stages and discharges in loop
rating curves, whereas the Al models and the hybrid MGGP-
GRG model were found to have more capabilities when it
comes to develop hysteresis-affected rating curves.

Figure 7 compares the confidence limits of different
models for the test data of the eight datasets. First of all,
the datasets used in this study have a wide range of
discharge values as shown in both Figure 7 and Table 1.
Based on Figure 7, the most considerable discrepancy is
between the confidence limits of Dataset 6, Dataset 7, and
Dataset 8. By comparing the confidence limits presented
in Figure 7, it can be observed that the confidence limits
obtained by the AI models and the hybrid MGGP-GRG
model are closer to the observed values compared to other
methods. Based on the comparison carried out in Tables 4
and 5 and Figures 3-5, it can be concluded that MGGP
and the hybrid MGGP-GRG method not only provided
explicit equations between the stage and discharge for
each dataset but also significantly improved discharge
estimations by developing precise stage-discharge rela-
tions, particularly for the loop rating curves.

4, Discussion

Characterization of the stage-discharge relationship at dif-
ferent river sections has remained an important aspect of
hydraulic as well hydrologic studies. Initially, Tawfik et al.
[18] employed ANN to simulate hysteresis-affected dis-
charge rating curves. Since Tawfik et al.’s [18] contribution,
ANN has remained a preferred choice to address the stage-
discharge curves. Ghimire and Reddy [38] suggested that GA
is more efficient than model tree and the conventional
method for developing rating curves. Azamathulla et al. [23]
proposed the application of gene expression programming
(GEP) and the classical GP, which are both modified ver-
sions of GA, for developing discharge rating curves. They
concluded that the efficiency of GEP is higher than that of
GP for this purpose. Recently, Zakwan et al. [4] asserted that
EA is as efficient as GA for determining stage-discharge
relationships. Progressing in a similar direction, the present
study has explored the capability of MGGP and the hybrid
MGGP-GRG model as compared to the conventional
method, EA, RF, the MHBMO algorithm, and ANN to
develop stage-discharge curves. Unlike most of the earlier
studies, this study examined the proposed models for their
efficiency in case of steady as well as unsteady flow condi-
tions by considering four datasets for steady and four
datasets for unsteady flow conditions.

The application of MGGP to problems in water re-
source field is limited to very recent investigations.
MGGP and hybrid models incorporating MGGP have
been already used for several applications like estimating
sediment transport [39], forecasting monthly streamflow
[40], developing a rainfall-runoff model to predict

Complexity

streamflow [41], river flow forecasting [42], and pre-
dicting longitudinal dispersion coefficients [43]. In al-
most all of these applications, MGGP has been found to
be an accurate estimation tool, particularly when the
problem under investigation is complicated. According
to the conducted literature review, it is the first time that
MGGP has been utilized for developing rating curves,
while the hybrid MGGP-GRG method has been intro-
duced for the first time in this study.

When machine learning techniques are used as esti-
mation models, one of the challenges is to take care of the
overfitting. In this study, a considerable number of runs of
the AI models were conducted. Afterwards, the achieved
results were checked and the ones that performed well for
the test data alone (and not well for the train data) were
excluded because they did not generalize well from the train
data to the test data. According to Tables 4 and 5, the results
of the AI models are acceptable for both train and test parts
of the data for each dataset considered.

As previously mentioned, various functions were con-
sidered in applying MGGP to develop stage-discharge re-
lations for each dataset considered in this study. The
opportunity to implement a desirable series of functions is
indeed one of the main characteristics of MGGP, which
makes it a powerful estimation tool. Because of the avail-
ability of various built-in functions in MGGP, several
combinations of functions were considered to determine the
best-fitted rating curves. As a result, MGGP may result in
different equations comprising of different types of func-
tions, which yield different numbers of accurate equations
for different databases as shown in equations (8)—(15). This
feature can be beneficial particularly when the user is not
sure about which types of equation are suitable for a specific
set of data. The entire process of the application of MGGP
and the hybrid MGGP-GRG technique can be found in
Figure 2.

Tables 4 and 5 and Figures 3 and 5 present quantitative
and qualitative comparative analysis of the performances of
different techniques used in the present study. Although
much variation is not seen in NE values presented in Fig-
ures 3 and 5, there have been significant discrepancies be-
tween SSE values obtained by different methods in Tables 4
and 5. To be more specific, the hybrid MGGP-GRG model
improved SSE values obtained by the conventional method
from 4.5% (for the test part of Dataset 8) to 99% (for the test
part of Dataset 3), while the conventional method achieved
the second best and the best SSE values for the test parts of
Dataset 1 and Dataset 5, respectively. Also, Tables 4 and 5
indicate that the reduction of SSE as a result of combining
MGGP with GRG varies between 0.16% (for the test part of
Dataset 6) and 7.9% (for the test part of Dataset 4). This
improvement reveals that the hybrid MGGP-GRG method
performed better than MGGP in terms of SSE for all datasets
considered in this study.

By comparing the results shown in Tables 4 and 5 and
Figures 3 and 5, it is not evident that which technique
outperformed others in all cases. In order to determine
which model performs the best, a ranking system was
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adopted from the literature [32] to evaluate different
methods based on the criteria and datasets considered. In
essence, this ranking system assumes an equal weight for
each criterion. For the test part of each dataset, an integer
value from one (the best performance) to seven (the worst
performance) was designated to each model based on its
performance in terms of each criterion (SSE, NE, MARE,
and MXARE). As a result, each model has four ranking
values for each dataset. The algebraic summation of these
four ranking values is basically used to assign a ranking
number to each model for each dataset. The detailed
process of this ranking system is presented in Supple-
mentary Materials for each and every dataset considered
in this study. The ranking numbers achieved for each
model applied to the data with single-value rating curves
are given in Table 6. The summation of the ranking
numbers of each model is also computed in Table 6, which
is called summation of ranks. It was utilized to determine
the total rank, which delineates the overall performance
of each method for all data and criteria considered.
According to Table 6, the hybrid MGGP-GRG model
obtained the best summation of ranks and the best
ranking numbers for data whose rating curves indicate a
one-to-one relation between stage and discharge values.
This implies that it has the best performance among
different methods for single-value rating curves. More-
over, the MHBMO algorithm takes the second place in
Table 6. Furthermore, the summation of ranks calculated
for EA and ANN is the same, which shows that their
performances for developing the stage-discharge rela-
tions for single-value rating curves were overall close to
one another, while they took the third total ranks. On the
other hand, the conventional method yielded a relatively
high summation of ranks, and consequently, it was
identified as the fourth (worst) method for developing
single-value rating curves. Comparing the total ranks of
MGGP and the hybrid MGGP-GRG method indicates
that the idea of combining MGGP with GRG significantly
improved the performances of MGGP in estimating
discharges under steady conditions.

The results of the ranking analysis conducted for the
hysteresis-affected data are presented in Table 7. As
shown, it indicates that the first two best performances
for data with loop rating curves are the hybrid MGGP-
GRG model and MGGP. Although ANN was identified as
the third best method in Table 6, it performs as the worst
model in Table 7. By considering the results of Tables 6
and 7, it can be concluded that no method can be found
that performs the best for all eight datasets based on the
metrics considered. In other words, ANN or MGGP or
even the hybrid MGGP-GRG technique is not the best
model for all datasets and metrics considered, while the
best method may be different from one case to another
one. Nevertheless, Tables 6 and 7, which show the ranking
results for the datasets and metrics considered, demon-
strate that the hybrid MGGP-GRG method overall per-
forms the best in developing rating curves considered in
this study.

Complexity

GP and its variants (like MGGP) can be used as a
sensitivity analysis tool because they have the ability to
formulate and structure the equation used for forecasting
[40]. For the case of this study, the discharge (output) is
exclusively a function of stage (input). Hence, the sensitivity
analysis does not give any perspective on which independent
variable has the highest impact and which one has the lowest
impact on the dependent variable based on the proposed
MGGP-based models.

When MGGP is applied to develop stream rating
curves, functions, parameters, and the structure of the
stage-discharge relation do not need to be known in ad-
vance, whereas the conventional method, EA, RF, and the
MHBMO algorithm require assuming a specific formula for
the stage-discharge relationship. In other words, MGGP
requires to know neither the equation form nor functions
comprising the relation between the input and output data,
while it exploits a set of built-in functions to construct an
adequate relation. This is one of the advantages of MGGP,
which enables developing a stage-discharge relationship
without shape limitation. It also allows the user to decide
about the inclusion of each built-in function in the esti-
mation process, while it does not provide the chance to add
new functions to the list. This may be counted as one of the
major drawbacks of the version of MGGP used in this
study. Since MGGP benefits from a search-based optimi-
zation algorithm, it may yield a different result in each run.
Therefore, it requires running a considerable number of
times to make sure that the best results have been obtained.
This may be accounted as one of the shortcomings of
MGGP. In this regard, several studies suggested coupling
MGGP with another program or optimization algorithm
not only to improve its efficiency but also to tailor it to their
specific problem [40]. In this regard, the hybrid MGGP-
GRG model has been proposed for the first time in this
study, while it improved the performance of MGGP in this
particular application.

MGGP provides the opportunity to choose between the
precision and complexity of the stage-discharge relation.
This trade-off can be addressed by tuning the several con-
trolling parameters playing the key roles in MGGP. The two
controlling parameters, which have a major impact on the
accuracy and simplicity of the final results, are the maximum
genes allowed in each individual and the depth of trees [35].
These parameters should be set based on either previous
studies or a sensitivity analysis because the poor evaluation
of these parameters may have a significant influence on the
final results.

MGG P is basically a flexible estimation tool that seeks
the best relation between any given input and output data
regardless of the physical meaning or theoretical back-
ground of the data. This feature enables us to apply
MGGP to various applications. Combining MGGP with
other optimization algorithms can improve the perfor-
mance of this artificial intelligence technique. Thus,
application of different hybrid MGGP-based models can
be explored in various sectors of engineering and allied
sciences.
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TaBLE 6: Ranking the performances of different methods for developing single-value rating curves.
Ranking results for each data set
Method & Summation of ranks Total rank
Dataset 1 Dataset 2 Dataset 3 Dataset 4
Conventional 2 6 6 6 20 6
EA 3 4 5 2 14 3
MHBMO 5 3 2 1 11 2
ANN 1 5 4 4 14 3
MGGP 6 1 3 5 15 5
Hybrid MGGP-GRG 4 2 1 3 10 1
TaBLE 7: Ranking the performances of different methods for developing loop rating curves.
Ranking results for each data set .
Method Summation of ranks Total rank
Dataset 5 Dataset 6 Dataset 7 Dataset 8
Conventional 5 3 6 5 19 5
EA 5 1 4 3 13 3
RF 3 7 4 7 21 6
MHBMO 4 1 7 3 15 4
ANN 7 6 3 6 22 7
MGGP 2 4 2 2 10 2
Hybrid MGGP-GRG 1 5 1 1 8 1

5. Conclusions

Rating curves have wide applications in water resource
engineering. Numerous studies have been carried out to
improve the accuracy of stream rating curves using opti-
mization algorithms as well as Al models. In the present
study, an attempt was made to develop ratings considering
four datasets under steady (single rating curve) and four
datasets under unsteady (loop rating curve) conditions
based on the conventional method, EA, the MHBMO al-
gorithm, ANN, MGGP, and the hybrid MGGP-GRG
method. Rating curves for the four sites affected by hysteresis
(loop rating curves) were also developed by the RF method.
The performances of these techniques were compared based
on the commonly used performance indicators and error
indices. Comparing the performances of different methods
applied to the eight datasets indicated that none of the
methods outperformed in each and every case. For instance,
the conventional method achieved the second best SSE for
the first dataset and the best SSE for the sixth dataset,
whereas the hybrid MGGP-GRG model improved SSE
obtained by the conventional method between 4.5% and 99%
for the rest of the datasets. To assess the overall performances
of these techniques, a ranking system with equal weight
designated to each metric was adopted from the literature. It
was observed that the discharges estimated by the hybrid
MGGP-GRG model were in good agreement with the ob-
served data for both single and loop rating curves as it
achieved the first ranking place for both scenarios. Based on
the comparative analysis, the conventional method provided
the worst estimates of discharge, whereas the MGGP-based
models yielded the most precise discharge values based on
SSE, MARE, and MXARE in most of the cases. However, this
significant improvement was obtained by the compensation
of relatively more complex equations, which can be directly
used to predict discharges. The MHBMO algorithm and

ANN also performed satisfactorily in most of the cases.
Additionally, ANN performed satisfactorily during training,
but failed to produce reliable discharge estimations during
testing of several cases, which is probably due to overfitting
during the training phase. Comparing the confidence limits
of different methods with the observed data showed that the
discrepancies between estimated and observed discharges
are much evident for the hysteresis-affected rating curves
than those of single ones. Moreover, MGGP provides several
explicit equations between the stage and discharge that can
be selected depending on the requirements of accuracy and
simplicity. Also, one of the advantages of MGGP is that there
is no need to assume both functions and parameters of the
stage-discharge relation, while tuning of its parameters re-
quires a bit of trial-and-error process, like any other Al
models. However, application of MGGP not only requires a
number of trials before the best results could be obtained but
also may involve relatively more complex equations than
that used by the conventional method in this study. Ap-
plication of MGGP and hybrid MGGP-based techniques can
be explored in the field of water resource engineering, es-
pecially in the field of sediment transport, as it involves
highly nonlinear and complex equations. Finally, the results
of this study demonstrated that a combination of MGGP
with another optimization algorithm like GRG can improve
the performance of this AI model in water resource
applications.
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Supplementary Materials

This appendix presents the detailed calculation process of
the ranking system applied to different methods for de-
veloping stage-discharge rating curves. (Supplementary
Materials)
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