
Automated Design of Genetic
Programming Classification Algorithms

Thambo Nyathi

Supervisor: Prof. Nelishia Pillay

This thesis is submitted in fulfilment of the academic requirements of Doctor
of Philosophy in

Computer Science

School of Mathematics , Statistics and Computer Science

University of KwaZulu Natal

Pietermaritzburg

South Africa

December 2018

PREFACE

The research contained in this thesis was completed by the candidate while based in the
Discipline of Computer Science, School of Mathematics, Statistics and Computer Science
of the College of Agriculture, Engineering and Science, University of KwaZulu-Natal,
Pietermaritzburg, South Africa.

The contents of this work have not been submitted in any form to another university and,
except where the work of others is acknowledged in the text, the results reported are due to
investigations by the candidate.

————————————— Date: 04-12-2018
Signature
Professor Nelishia Pillay

Declaration

PLAGIARISM

I, Thambo Nyathi, declare that:

i) this dissertation has not been submitted in full or in part for any degree or examination
to any other university;

ii) this dissertation does not contain other persons’ data, pictures, graphs or other informa-
tion, unless specifically acknowledged as being sourced from other persons;

iii) this dissertation does not contain other persons’ writing, unless specifically acknowl-
edged as being sourced from other researchers. Where other written sources have been
quoted, then:

a) their words have been re-written but the general information attributed to them has
been referenced;

b) where their exact words have been used, their writing has been placed inside quotation
marks, and referenced;

iv) where I have used material for which publications followed, I have indicated in detail
my role in the work;

v) this thesis is primarily a collection of material, prepared by myself, published as journal
articles or presented as a poster and oral presentations at conferences. In some cases,
additional material has been included;

———————————- Date: 04-12-2018
Signature

Thambo Nyathi
December 2018

Declaration

I can confirm that this work was done under my supervision and it is the candidate’s original
work. As the candidate’s supervisor, I have approved this thesis for submission.

————————————— Date: 04-12-2018
Signature
Professor Nelishia Pillay

Thambo Nyathi
December 2018

Declaration

PUBLICATIONS

The following publications are associated with the research presented in this thesis:

1. Nyathi, T., Pillay, N.: Automated design of genetic programming classification algo-
rithms using a genetic algorithm. In: European Conference on the Applications of
Evolutionary Computation. pp. 224–239. Springer (2017)

2. Nyathi, T., Pillay, N.: Comparison of a genetic algorithm to grammatical evolution for
automated design of genetic programming classification algorithms. Expert Systems
with Applications 104(-), 213–234 (2018)

3. Nyathi, T., Pillay, N.: Automated design of genetic programming classification
algorithms for financial forecasting using evolutionary algorithms In: International
Conference on the Theory and Practice of Natural Computing (TPNC 2018) DOI:
10.1007/978-3-030-04070-3-16

———————————- Date: 04-12-2018
Signature

Thambo Nyathi
December 2018

Acknowledgements

I would like to thank my supervisor, Professor Nelishia Pillay, who introduced me to the
world of genetic programming and without her guidance and patience this journey would
have been more rugged. My gratitude also extends to the Centre of High Performance
Computing for allowing me access to their distributed computing architecture resources. I
would also like to thank the National University of Science and Technology for affording me
the time to embark on this journey.

A special thank you to my Bulawayo crew, without you nothing is worth it. To my late
mother who always believed in the best of me and always saw the best in me. My Dad, a
simple village boy from Kezi, Matopo who has always led by example from the front and the
root of my life, who always wanted one of his offsprings to be an M.D, this will have to do.

Abstract

Over the past decades, there has been an increase in the use of evolutionary algorithms (EAs)
for data mining and knowledge discovery in a wide range of application domains. Data
classification, a real-world application problem is one of the areas EAs have been widely
applied. Data classification has been extensively researched resulting in the development of
a number of EA based classification algorithms. Genetic programming (GP) in particular has
been shown to be one of the most effective EAs at inducing classifiers. It is widely accepted
that the effectiveness of a parameterised algorithm like GP depends on its configuration.
Currently, the design of GP classification algorithms is predominantly performed manually.
Manual design follows an iterative trial and error approach which has been shown to be a
menial, non-trivial time-consuming task that has a number of vulnerabilities. The research
presented in this thesis is part of a large-scale initiative by the machine learning community
to automate the design of machine learning techniques. The study investigates the hypothesis
that automating the design of GP classification algorithms for data classification can still
lead to the induction of effective classifiers. This research proposes using two evolutionary
algorithms, namely, a genetic algorithm (GA) and grammatical evolution (GE) to automate the
design of GP classification algorithms. The proof-by-demonstration research methodology
is used in the study to achieve the set out objectives. To that end two systems namely,
a genetic algorithm system and a grammatical evolution system were implemented for
automating the design of GP classification algorithms. The classification performance of the
automated designed GP classifiers, i.e., GA designed GP classifiers and GE designed GP
classifiers were compared to manually designed GP classifiers on real-world binary class
and multiclass classification problems. The evaluation was performed on multiple domain
problems obtained from the UCI machine learning repository and on two specific domains,
cybersecurity and financial forecasting. The automated designed classifiers were found to
outperform the manually designed GP classifiers on all the problems considered in this study.
GP classifiers evolved by GE were found to be suitable for classifying binary classification
problems while those evolved by a GA were found to be suitable for multiclass classification
problems. Furthermore, the automated design time was found to be less than manual design
time. Fitness landscape analysis of the design spaces searched by a GA and GE were carried

viii

out on all the class of problems considered in this study. Grammatical evolution found the
search to be smoother on binary classification problems while the GA found multiclass
problems to be less rugged than binary class problems.

Table of contents

List of figures xv

List of tables xvi

1 Introduction 1
1.1 Purpose of the Study . 1

1.1.1 Manual Design . 2
1.2 Objectives . 3
1.3 Scope of the Study . 4
1.4 Contributions . 5
1.5 Thesis Layout . 5

1.5.1 Chapter 2 - Literature Review . 5
1.5.2 Chapter 3 - Methodology . 6
1.5.3 Chapter 4 - Manual Design of Genetic Programming Classification

Algorithms . 6
1.5.4 Chapter 5 - Design of Genetic Programming Classification Algo-

rithms using a Genetic Algorithms 6
1.5.5 Chapter 6 - Design of Genetic Programming Classification Algo-

rithms using Grammatical Evolution 6
1.5.6 Chapter 7 - Results and Discussion 7
1.5.7 Chapter 8 - Conclusion and Future Work 7

2 Literature Review 8
2.1 Introduction . 8
2.2 Classification . 8

2.2.1 Metrics of Evaluating Performance of Classifiers 10
2.2.2 Comparing Classification Algorithms 12
2.2.3 Datasets . 13

x Table of contents

2.2.3.1 Discretisation . 13
2.2.3.2 Normalisation . 15
2.2.3.3 Partitioning . 16

2.3 Evolutionary Algorithms . 18
2.3.1 Genetic Algorithm . 19

2.3.1.1 Initial Population Generation 20
2.3.1.2 Fitness Evaluation . 21
2.3.1.3 Selection . 21
2.3.1.4 Crossover . 22
2.3.1.5 Mutation . 24
2.3.1.6 Population Replacement 25
2.3.1.7 Termination . 25
2.3.1.8 Applications of GA . 25

2.3.2 Genetic Programming . 26
2.3.2.1 Initial Population Generation 27
2.3.2.2 Fitness Evaluation . 28
2.3.2.3 Selection . 28
2.3.2.4 Genetic Operators . 29
2.3.2.5 Population Replacement 31
2.3.2.6 Termination . 31
2.3.2.7 Applications of GP . 31

2.3.3 Grammatical Evolution . 31
2.3.3.1 Initial Population Generation 33
2.3.3.2 Mapping . 33
2.3.3.3 Selection . 34
2.3.3.4 Genetic Operators . 35
2.3.3.5 Population Replacement 36
2.3.3.6 Termination . 36
2.3.3.7 Applications of Grammatical Evolution 36

2.4 GP and Classification . 36
2.4.1 GP Classifier Models . 37
2.4.2 Population Initialisation . 39
2.4.3 Fitness Function . 39
2.4.4 Selection . 40
2.4.5 Genetic Operators . 40
2.4.6 Population Replacement . 40

Table of contents xi

2.4.7 GP and Multiclass Classification 41
2.4.8 GP Parameters for Classification Problems 42

2.4.8.1 Parameter Tuning . 44
2.5 Automated Design . 44

2.5.1 Definition of Automated Design 44
2.5.1.1 Design Decisions . 45

2.5.2 Automated Design using Genetic Algorithms 46
2.5.3 Automated Design using Grammatical Evolution 47
2.5.4 Analysis of Automated Design . 48

2.6 Fitness Landscape and Fitness Landscape Analysis 49
2.6.1 Fitness Landscape . 49
2.6.2 Fitness Landscape Analysis . 50

2.6.2.1 Fitness Landscape Analysis Metrics 50
2.7 Summary . 52

3 Methodology 53
3.1 Introduction . 53
3.2 Research Methodologies . 53
3.3 The Proof by Demonstration Methodology 54

3.3.1 Objectives One and Two . 54
3.3.2 Objective Three and Four . 56

3.4 Comparative Analysis . 58
3.4.1 Experiments . 58

3.4.1.1 Manual Approach . 58
3.4.1.2 Automated Design Approaches 58

3.4.2 Statistical Tests . 58
3.4.3 Fitness Landscape Analysis . 59

3.5 Datasets . 59
3.5.1 Multiple Problem Domain Datasets 59
3.5.2 Single Domain Datasets . 61
3.5.3 Fitness Landscape Analysis Datasets 62
3.5.4 Data Pre-processing . 63

3.6 Technical Specification . 63
3.7 Summary . 63

xii Table of contents

4 Manual Design of Genetic Programming Classification Algorithm 64
4.1 Introduction . 64
4.2 Genetic Programming Classification Algorithm 64

4.2.1 Classifier Type . 65
4.2.2 Fitness Function . 65
4.2.3 Multiclass Classification Method 65

4.3 Initial Population Generation . 66
4.4 Selection . 66
4.5 Genetic operators . 66
4.6 Algorithm Termination . 66
4.7 Parameter Tuning . 67

4.7.1 UCI Datasets . 67
4.7.1.1 Binary classification . 67
4.7.1.2 Multiclass classification 69

4.7.2 Cybersecurity Datasets -NSL-KDD99 20% Values 70
4.7.3 Financial forecasting datasets . 71

4.8 Summary . 71

5 Design of GP classification algorithms using a Genetic Algorithm 73
5.1 Introduction . 73
5.2 GP Design Decisions . 73

5.2.1 Determination of Parameters Values 73
5.2.1.1 Categorical Parameters 74
5.2.1.2 Numerical Parameters 75

5.2.2 Determination of Genetic Operators 76
5.2.3 Determination of the Control Flow 77

5.3 Automated Design of GP Classification Algorithms using a Genetic Algo-
rithm . 77
5.3.1 Genetic Algorithm for autoGA . 78

5.3.1.1 Representation . 79
5.3.2 Initial Population Generation . 80
5.3.3 Fitness Function and Selection . 81
5.3.4 Crossover . 81
5.3.5 Mutation . 82

5.3.5.1 Elitism . 83
5.3.6 Termination . 83
5.3.7 AutoGA Parameter Settings . 83

Table of contents xiii

5.4 Summary . 84

6 Design of GP classification algorithms using Grammatical Evolution 85
6.1 Introduction . 85
6.2 GP Design Decisions . 85
6.3 Automated Design of GP Classification Algorithms using Grammatical

Evolution . 86
6.3.1 Grammatical Evolution Algorithm for AutoGE 86

6.3.1.1 Representation . 87
6.3.2 Initial Population Generation . 87
6.3.3 Mapping . 87
6.3.4 Fitness Function and Selection . 91
6.3.5 Crossover . 91
6.3.6 Mutation . 92
6.3.7 Elitism . 92
6.3.8 Termination . 92
6.3.9 AutoGE Parameter Settings . 92

6.4 Fitness Landscape Analysis Settings . 93
6.5 Summary . 93

7 Results and Discussion 95
7.1 Introduction . 95
7.2 Multiple Domain Problems . 95

7.2.1 Binary Classification Results . 96
7.2.1.1 Training . 96
7.2.1.2 Testing . 96
7.2.1.3 Configurations . 99

7.2.2 Multiclass Classification Results 101
7.2.2.1 Training . 101
7.2.2.2 Testing . 102
7.2.2.3 Configurations . 103

7.3 Cybersecurity . 105
7.3.1 Training . 105
7.3.2 Testing . 105
7.3.3 Configurations . 107

7.4 Financial Forecasting . 108
7.4.1 Training Results . 108

xiv Table of contents

7.4.2 Testing Results . 109
7.4.3 Configurations . 111

7.5 Design Times . 113
7.6 Fitness Landscape Analysis . 115

7.6.1 Binary Classification Problems . 115
7.6.2 Multiclass Classification Problems 115
7.6.3 Cybersecurity Problems . 116
7.6.4 Financial Forecasting Problems 117

7.7 Summary . 117

8 Conclusion and Future Work 119
8.1 Introduction . 119
8.2 Manual Design vs Automated Design . 119
8.3 Objectives . 121
8.4 Conclusion . 124
8.5 Future Work . 125
8.6 Summary . 126

References 127

List of figures

2.1 Examples of GA individuals . 20
2.2 One point crossover . 23
2.3 Two-point crossover . 23
2.4 Uniform crossover . 23
2.5 Bit flip mutation . 25
2.6 GP syntax tree . 26
2.7 GP subtree crossover . 30
2.8 Grow mutation . 30
2.9 Examples of GE individuals . 32
2.10 Grammar for pin generation . 34
2.11 Derivation tree pin generation . 35
2.12 Examples of GE individuals . 35
2.13 Examples of GP classifiers . 37

5.1 AutoGA overview . 79
5.2 AutoGA chromosome . 79
5.3 AutoGA individual . 80
5.4 AutoGA uniform crossover . 82
5.5 AutoGA random mutation . 82

6.1 AutoGE overview . 87
6.2 AutoGE individual . 87
6.3 Grammar . 88
6.4 Genotype-phenotype mapping . 90
6.5 AutoGE single point crossover . 91

List of tables

2.1 Confusion matrix . 10

3.1 Summary of binary datasets . 60
3.2 Summary of multiclass datasets . 60
3.3 Financial forecasting datasets . 62
3.4 Financial forecasting datasets . 62

4.1 Arithmetic parameter values . 68
4.2 Logical parameter values . 68
4.3 Decision tree parameter values . 69
4.4 Multiclass manual GP parameters . 69
4.5 NSL-KDD binary problem parameters . 70
4.6 NSL-KDD multiclass parameter . 71
4.7 Financial forecasting parameters . 71

5.1 Design decisions and range of values . 80
5.2 AutoGA evolved GP parameter settings 81
5.3 AutoGA parameter settings . 83

6.1 AutoGE evolved GP parameter settings 91
6.2 AutoGE settings . 93

7.1 Training accuracy for binary classification problems 96
7.2 Testing accuracy for binary classification problems 97
7.3 Average ranks for binary classification problems 97
7.4 Statistical significance summary: binary classification problems 98
7.5 Binary class auto-designed configurations 99
7.6 Training multiclass classification problems 101
7.7 Testing multiclass classification problems 102
7.8 Average ranks for multiclass classification problems 102

List of tables xvii

7.9 Statistical significance summary: multiclass classification problems 103
7.10 Multiclass auto-designed configurations 104
7.11 Cyber security training results . 105
7.12 Cybersecurity test results . 106
7.13 Average ranks cybersecurity . 106
7.14 Significance for cyber security problems 107
7.15 NSL-KDD auto-designed configurations 108
7.16 Financial forecasting training results . 109
7.17 Financial forecasting tests results . 110
7.18 Average ranks financial forecasting . 110
7.19 Significance for financial forecasting problems 111
7.20 Financial forecasting: automated design configurations 112
7.21 Binary class design times(hrs) . 113
7.22 Multiclass design times(hrs) . 113
7.23 Design times(hrs) . 114
7.24 Design times(hrs) . 114
7.25 Fitness landscape analysis binary . 115
7.26 Fitness landscape analysis multiclass . 116
7.27 Fitness landscape analysis cybersecurity 116
7.28 Fitness landscape analysis financial forecasting 117

List of Algorithms

1 Generic Evolutionary Algorithm . 18
2 Genetic Algorithm . 20
3 Genetic Programming . 27
4 Grammatical Evolution . 33
5 Generational Genetic Programming . 64
6 Generational Genetic Algorithm . 78
7 Generational Grammatical Evolution . 86

Chapter 1

Introduction

1.1 Purpose of the Study

The research presented in this thesis tests the hypothesis that evolutionary algorithms specifi-
cally, a genetic algorithm and grammatical evolution can be used to automatically config-
ure genetic programming classification algorithms for data classification. It is hypothesised
that at the very least genetic programming classification algorithms automatically designed
by a genetic algorithm and grammatical evolution are competitive when compared to human
designed genetic programming classification algorithms. The effectiveness of the proposed
approach is evaluated on a set of multiple domain problems and problems from specific
domains. The research presented in this thesis is part of a large scale initiative by the machine
learning community to automate the design of machine learning techniques. The overall aim
is to remove reliance on the human expert, providing out of the box software that can also be
used by novices.

Classification is considered to be a branch of data mining. Data mining is an area
concerned with the extraction of knowledge from real-world data using computational
algorithms. Classification may be described as a technique of assigning objects to classes
based on a collection (dataset) of features describing those objects [87]. Most real-world
problems may be viewed as classification problems. For example, in cybersecurity, intrusion
detection systems should be able to classify a connection as malicious or non-malicious
[170]. In credit scoring, there is a need to be able to classify a loan applicant as high risk or
low risk [126]. Classification is usually performed by classifiers which are models that are
induced by classification algorithms.

A significant amount of research has been carried out in the domain of classification
resulting in the development of numerous classification algorithms [3, 171]. The application
of evolutionary algorithms (EAs) [60] particularly genetic programming (GP) [120] to evolve

2 Introduction

classifiers has also gained traction [64, 74]. Using GP as a classification algorithm presents
a number of advantages. For example, the representation used by GP allows it to model
different types of classifiers such as decision trees [113], discriminant functions [165] and
classification rules [26] amongst others. Genetic programming is also capable of performing
automatic feature selection as well as controlling the size of evolved classifiers.

It has been shown that like most EAs, the effectiveness of GP depends on its configuration
[60, 136, 111]. There is no standard GP configuration for specific problems or problem
domains. Different configurations work well for different problems or problem instances,
therefore, finding the most effective configuration is a search process. The configuration and
design of GP classification algorithms is still predominantly performed manually.

1.1.1 Manual Design

Normally, during the manual design of GP classification algorithms, a formal experimental
design strategy is not followed. Manual design is usually performed using an iterative
trial and error approach where for each parameter a range of values to be considered are
pre-selected. Using a subset of the problem instances trial runs are then conducted adjusting
one parameter value at a time with the values of the other parameters staying constant. The
parameter value that achieves the best result is chosen as the value for that parameter. This
process is done iteratively for all the parameters until all the parameters have values assigned
to them. This is then considered to be the best configuration for the algorithm. A number of
disadvantages have been identified with this approach. These are listed as follows:

a) Since parameter values are evaluated iteratively the effect parameters have on each other
is not taken into consideration [100].

b) The pre-selection of parameter values to consider limits the search space as better values
may lie outside the boundary of considered values [90].

c) Using a subset of problem instances may give misleading results as different configurations
work well with different problem instances [98].

d) The large search space of possible parameters leads to human designers making biased
design decisions based on intuition and experience [99].

e) Because of the large search space, the manual design approach is considered to be a
menial time-consuming task [13].

f) Design decisions made during manual design are not documented and justified making
the reproducibility of experiments difficult [138].

1.2 Objectives 3

Although parameter tuning and control methods have been proposed for EAs in general
[54, 58], however, none of the proposed methods have been universally adopted [8, 111].
Additionally, there is no research that has been carried out on the automated design of genetic
programming classification algorithms.

1.2 Objectives

The major goal of this study is to investigate the feasibility of automating the design of
genetic programming classification algorithms using evolutionary algorithms, namely a
genetic algorithm and grammatical evolution. To achieve this goal the following objectives
have to be met.

1. To automate the design of genetic programming classification algorithms using a
genetic algorithm.

2. To automate the design of genetic programming classification algorithms using
grammatical evolution.

3. To compare the effectiveness of genetic programming classifiers evolved by a
genetic algorithm to manually designed genetic programming classifiers.

4. To compare the effectiveness of genetic programming classifiers evolved by gram-
matical evolution to manually designed genetic programming classifiers.

5. To compare the performance of genetic programming classifiers evolved by a
genetic algorithm to the performance of genetic programming classifiers evolved
by grammatical evolution.

6. To compare the manual design configurations to the automated design configu-
rations.

7. To compare the manual design time to the automated design time.

8. To compare the fitness landscape of the design space searched by a genetic algo-
rithm to the fitness landscape searched by grammatical evolution.

4 Introduction

1.3 Scope of the Study

The major objective of the study presented in this thesis is to evaluate the use of evolutionary
algorithms to configure genetic programming classification algorithms. The study is scoped
as follows:

• Evolutionary algorithms
The study is restricted to using a genetic algorithm and grammatical evolution to
configure GP classification algorithms. The genetic algorithm approach for automating
the design of genetic programming classification algorithms is described in Chapter 5
while Chapter 6 describes the grammatical evolution approach.

• Problem instances.
The evaluation of the automatically designed GP classification algorithms is carried out
by comparing the performance of automated designed classifiers to manually designed
classifiers on the following problem instances:

– binary and multiclass classification problems obtained from publicly available
datasets.

– binary and multiclass classification problems obtained from the cybersecurity
problem domain.

– financial forecasting problems.

• The evaluation and comparison is carried out with respect to training accuracy, testing
accuracy, design time and evolved configurations.

• Genetic programming is a highly parameterised algorithm, therefore, there are nu-
merous design decisions that need to be taken during the design of GP classification
algorithms. The design decisions considered for automated design in this study are
based on a survey of literature and these are outlined in section 5.2 of Chapter 5

• Fitness landscape analysis is carried on the design spaces evolved by the automated
design approaches as opposed to the solution space. It is not possible to directly
compare the fitness landscape of the manual design space as this is conducted manually
by a human making selections.

1.4 Contributions 5

1.4 Contributions

The main contribution of this thesis are two new approaches for the automated design of
genetic programming classification algorithms. To the best of the author’s knowledge there
is currently no method that automates the design of genetic programming classification
algorithms. The new approaches presented in Chapters 5 and 6 make use of a genetic
algorithm and grammatical evolution respectively to configure GP classification algorithms.

More specifically:

1. Genetic programming classifiers evolved by genetic algorithm are shown to be
suitable for classifying multiclass problems for the considered problem instances.
In sections 7.2.2 and 7.3 of Chapter 7 it is shown that GP classifiers evolved by a
genetic algorithm outperform those evolved by grammatical evolution and manual
design on multiclass problems.

2. Genetic programming classifiers evolved by grammatical evolution are shown
to be suitable for classifying binary class problems for the considered problem
instances. In sections 7.2.1, 7.3 and 7.4 of Chapter 7 it is shown that GP classifiers
evolved by grammatical evolution outperform those evolved by a genetic algorithm
and manual design on binary problems.

3. Automated design of genetic programming classification algorithms reduces the
design time. In section 7.5 of Chapter 7 it is shown that the design times achieved by
the automated design approaches is less than the manual design times.

4. Grammatical evolution is shown to search a less rugged design space fitness land-
scape for binary classification problems while a genetic algorithm searches a less
rugged landscape for multiclass classification problems. A fitness landscape is
considered to be rugged if no correlation exists between the distance of solutions and
their fitness values. This is outlined in section 7.6 of Chapter 7

1.5 Thesis Layout

The rest of this thesis is organised as follows:

1.5.1 Chapter 2 - Literature Review

This chapter mainly provides background information as well as related work. The chapter
firstly presents background information relating to the field of classification and the various

6 Introduction

classification techniques. Evolutionary algorithms are then briefly introduced in general
followed by a detailed description of genetic algorithms, genetic programming and gram-
matical evolution. An outline of the application of genetic programming as a classification
algorithm is also presented. Finally related work using the proposed evolutionary algorithms
for automated design is presented.

1.5.2 Chapter 3 - Methodology

This chapter initially provides a brief description of research methods in Computer Science.
The chapter then provides details of how the objectives set out in Chapter 1 will be met
using the appropriate research methodology. The details of classification problem instances
to be used to evaluate the proposed approach are also presented.

1.5.3 Chapter 4 - Manual Design of Genetic Programming Classifica-
tion Algorithms

Chapter 4 presents a manual design of the standard genetic programming classification
algorithm. A listing of parameter values for each set of problem instances considered in this
study is also presented. The performance of the manual GP system presented in this chapter
will be compared to the proposed approach.

1.5.4 Chapter 5 - Design of Genetic Programming Classification Algo-
rithms using a Genetic Algorithms

Chapter 5 presents the automated design approach using a genetic algorithm. The design
decisions for automated design are also presented in this chapter. The parameter settings for
the genetic algorithm for the automated design are also presented in this chapter.

1.5.5 Chapter 6 - Design of Genetic Programming Classification Algo-
rithms using Grammatical Evolution

This chapter presents the design of the automated design approach that uses grammatical
evolution to evolve GP classifiers. The chapter also specifies the parameter settings for
grammatical evolution used by the automated design system.

1.5 Thesis Layout 7

1.5.6 Chapter 7 - Results and Discussion

Chapter 7 provides the results of comparing the manual design approach to automated
design. The performance is compared on classifier accuracy and design times. An analysis
of the evolved configurations is carried out. The ruggedness of the design spaces evolved by
the automated design approaches is analysed using autocorrelation analysis and the results
are presented.

1.5.7 Chapter 8 - Conclusion and Future Work

Finally Chapter 8 provides the conclusion and presents future work.

Chapter 2

Literature Review

2.1 Introduction

This chapter provides background information and related work that lays the foundation for
the proposed automated design approach presented in this study. The research presented in
this thesis is part of a large-scale initiative by the machine learning community to automate
the design of machine learning techniques. Furthermore, the desire is to automate certain
tasks thereby freeing the human designer to attend to other tasks thus reducing the man-hours
spent on the design process.

The first three sections of this chapter present background information specifically the
following topics: classification is presented in section 2.2, evolutionary algorithms in section
2.3 and section 2.4 presents GP and its application as a classification algorithm. Section 2.5
presents a survey of related studies that follow a similar approach to that presented in this
thesis. Finally section 2.6 provides background information relating to methods of fitness
landscape analysis.

2.2 Classification

Generally, classification is considered to be a supervised machine learning approach [225].
In supervised learning, the algorithm works with labelled data instances. Instance is the term
used in machine learning, to refer to observations while the explanatory variables are termed
features. The features are normally grouped together resulting in what is known as a feature
vector. The possible categories to be predicted are referred to as classes. A labelled data
instance is thus one in which a feature vector is given with its class. While the opposite i.e.
class not given is referred to as unlabelled. Classification is a two-phase process consisting

2.2 Classification 9

of an induction (training/learning) phase and a deduction(testing) phase. During the training
phase, a search algorithm is used to induce a model (classifier) from a collection of labelled
data instances called a training set. In the testing phase, the induced classifier is evaluated
by applying it to a collection of unseen labelled data instances called a test set. A search
algorithm used to induce classifiers is commonly referred to as a classification algorithm
[225]. Basically, a classification algorithm takes data instances from a training set as input
and outputs a classifier. The outputted classifier is a mapping of the relationship between the
attributes and classes of the training set. A classifier accepts unseen data instances from a test
set as input and outputs a value which represents an evaluation metric of the classification
process.

Different classification algorithms induce different classifier models [87]. In this thesis,
we focus on classification rules (decision rules) and decision trees. Classification rules
normally have an antecedent and consequent. The antecedent usually consists of a set of
attributes and constants as input and a set of logical operators and/or mathematical functions
that for each instance in the data set produce a score which then determines the consequent
of the rule. The score can be an actual class or a value which represents a class [225]. A
decision tree is a graph like structure (or flowchart) containing multiple interconnected nodes.
Each node denotes a test on a feature value, each branching path represents an outcome of
the test and tree leaves represent classes. A decision tree may be viewed as a collection of
rules [87].

The number of classes contained in a dataset determines the type of classification. If there
are only 2 distinct non-overlapping classes then the task is binary classification, however,
if the number of classes is greater than two the task is a multiclass classification. Binary
classification requires a classifier to predict whether values of an attribute describes one of
two classes whereas in multiclass classification the number of possible classes is greater
than two. Comparatively, multiclass classification is considered to be a more complex task
than binary classification [213]. Generally, from a high level, two approaches are used to
achieve multiclass classification. One approach is where the binary classifier with little or no
modifications is extended to perform multiclass classification. Classification and regression
trees (CART) [31] and C4.5 [179] are examples of classifiers that follow this approach to
multiclass classification. The second and most popular approach is to decompose the problem
into multiple binary classification problems. In this approach k classes are decomposed into
k binary classification problems. A number of different methods have been proposed on how
to perform binary decomposition and these are outlined in [9, 11].

10 Literature Review

Both binary and multiclass classification aim to classify unseen problem instances as
accurately as possible. A number of performance metrics are available to measure the
effectiveness of the evolved classifiers. These are presented in the next section.

2.2.1 Metrics of Evaluating Performance of Classifiers

The most common metric used for evaluating classifier performance is the predictive accuracy
rate i.e. the number of correctly classified instances divided by the total number of considered
instances, presented as a percentage ± the standard deviation. It has been shown that in
certain situations this measure on its own may not be efficient and as a result, the following
parameters are computed and widely used in coming up with various metrics [171].

a) The number of correctly classified instances (true positives tp).

b) The number of correctly classified instances that do not belong to a class (True negatives
tn).

c) The number of instances incorrectly assigned to a class (false positive fp).

d) The number of instances not recognised as belonging to a class (false negative fn).

These parameters are usually presented in tabular form in what is known as a confusion
matrix or contingency table [88] as illustrated in Table 2.1. Metrics formulated from the
confusion matrix have been widely adopted for evaluating classifier performance.

Data class Classified as Positive Classified as Negative
positive true positive (tp) false negative (fn)
negative false positive (fp) true negative (tn)

Table 2.1 Confusion matrix

accuracy =
tp + tn

tp + tn + fp + fn
(2.1)

Equation 2.1 shows the formula for evaluating the commonly used predictive accuracy.
As stated a number of researchers have been critical of the predictive accuracy metric and
have pointed out certain flaws [225, 19]. A typical situation where accuracy may be flawed
is in a case where the classes in a dataset are imbalanced. For example if a dataset with two
classes X and Y and whose class distribution is given as 95% X and 5% Y. A classifier that
concentrates on class X will have a 95% accuracy but there is no measure on how well it
is able to classify Y. Baldi et al. [16] argue that evaluating a classifier using only accuracy

2.2 Classification 11

without considering other metrics available from the confusion matrix may lead to a loss
of valuable evaluation information about the classifier. In concurrence, Marsland [145]
states that accuracy, is a single numerical value that is evaluated using four components (tp,
tn, fn, fp), as a result, there is a loss of information which can be extracted from different
combinations of the four components.

speci f icity =
tn

tn + fp
(2.2)

Equation 2.2 defines specificity which is a ratio of instances classified as negative to the total
negative instances in the dataset.

precision =
tp

tp + fp
(2.3)

Equation 2.3 defines precision which is a ratio of instances classified as positive to the
actual positive class instance plus those falsely classified as positive.

recall(sensitivity) =
tp

tp + fn
(2.4)

Recall given by equation 2.4 is a measure of the ratio of instances classified as positive to the
total positive classes in the dataset. It is also referred to as sensitivity or the true positive rate.
A low recall value indicates high false negatives.

fmeasure = 2(
precision∗ recall
precision+ recall

) (2.5)

Precision and recall are considered to be valid metrics individually [88] however, they
may be combined to convey more information about a classifier and this is provided by the
fmeasure given by equation 2.5. Although Marsland further argues that the fmeasure does not
convey any information about a classifier’s ability to learn negative (tn) examples it is still a
widely adopted metric.

Each of the metrics outlined by equations 2.1 to 2.5 can be extended for multiclass
classification as shown in [201, 88, 145]. A number of researchers have proposed weighted
metrics based on the equations from the confusion matrix parameters. Bojarczuk et al. [25]
used a product of precision and recall (f = precision ∗ recall) as a metric to evaluate the
effectiveness of classification rules on medical data while in [128] recall, precision and
specificity are used in a weighted metric to evaluate classifiers for financial forecasting.
Parameters from the confusion matrix can also be used to construct graphs such as the
receiver operating characteristic (ROC) which is a plot of the true positive rate (tp) against

12 Literature Review

false positive rate (fp) [145]. Other metrics such as the root mean square error (RMSE) are
also found in the literature although this metric is predominantly used to evaluate regression
algorithms.

From the presented analysis there is no best way to evaluate any classifiers, but different
metrics may give us different valuable insights into how a classification model performs.

2.2.2 Comparing Classification Algorithms

According to Dietterich [52] comparing classification algorithms is not an easy task, but it
can be achieved indirectly by comparing the performance of the evolved classifiers. The
no free lunch theorem [227] also applies in classification, as no one classification algorithm
can outperform all other classification algorithms across all problem domains. However, it
is still important to have a criteria to compare the performance of classification algorithms.
Dietterich argues that if classification algorithms are to be compared the conditions of
comparison need to be clearly outlined at the onset and the appropriate statistical tests selected.
In agreement Salzberg [190] argues the comparison of classifiers should be performed
in a statistical framework preferably using real-world data. According to Dietterich the
comparison approach determines the evaluation methods to be used. For example, are two
classification algorithms being compared on one dataset or multiple datasets, or are multiple
classification algorithms being compared on one dataset or multiple datasets? A number of
methods have been proposed and are used for evaluating two algorithms on multiple datasets.
Among other, these tests include the z-test [68] and wilcox test [223].

In this thesis, multiple classification algorithms are to be compared on multiple datasets.
The most widely used and recommended method for evaluating multiple algorithms on
multiple datasets is the non-parametric Friedman test [76]. This test was initially proposed
by Demšar [51]. Demšar recommends the Friedman test to evaluate the null hypothesis
that all the considered algorithms perform the same. If the null hypothesis is rejected then
a post-hoc test for pairwise comparison to establish the significance of the differences in
performance is applied. The Friedman test is a non-parametric equivalent of the analysis of
variance (ANOVA) test. In the Friedman test, the performance of each algorithm is ranked
with the best performing algorithm ranked first the next best performing ranked second and
so on. If algorithms tie then the ranks are shared between the tied algorithms. For example,
if algorithm A and B tie for first place then positions (ranks) 1 and 2 are shared between
them and they are each ranked 1.5. If we assume r j

i to be the rank of the jth algorithm of
k algorithms on the ith of N datasets. The Friedman test compares the average ranks of
algorithms, R j = 1

N Σir
j
i and the expectation is that for all algorithms the average ranks should

be equal, according to the null hypothesis. The Friedman statistic is given by:

2.2 Classification 13

χ
2
F =

12N
k(k+1)

[
∑

j
R2

j −
k(k+1)2

4

]
(2.6)

and is distributed according to χ2
F with k-1 degrees of freedom. Iman and Davenport [102]

showed the Friedman to be conservative and derived a better statistic based on the Friedman
statistic as follows:

Ff =
(N −1)χ2

F

N(k−1)−χ2
F

(2.7)

this statistic is distributed according to the F-distribution k-1 and (k-1)(N-1) degrees of
freedom. If the null hypothesis of similar performance is rejected a post-hoc test for pairwise
comparison is carried out. If the difference in the average rank between two classifiers is
greater than the critical difference then the differences in performance is considered to be
statistically significant. The critical difference is evaluated as follows:

CD = qα

√
k(k+1)

6N
(2.8)

where critical values of qα are based on the Studentized range statistic divided by
√

2.
Demšar recommends the Nemenyi post-hoc test for general pairwise comparison, however,
if there is a control algorithm then the Bonferroni-Dunn test is more suitable.

2.2.3 Datasets

Data from real-world problems is often unstructured and may require processing to enable
it to be structured into a format that a classifier can interpret. A data instance is made up
of several features each of which is either categorical or continuous. Categorical features
include nominal, binary and ordinal types while continuous may refer to integer, inter-scaled
or ratio scaled features [30]. A dataset may contain a mix of categorical and continuous
features. Some classifiers due to their functionality work well with categorical data in which
case numerical data has to be converted to categorical data a process known as discretisation.

2.2.3.1 Discretisation

According to Garcia et al. [77] discretisation is a process that converts data from a quantitative
state to a qualitative state. Discretisation transforms a continuous feature into a discrete
feature with a fixed number of non-overlapping intervals. Liu et al. [134] argue that most of
the classifiers proposed in the domain of classification require discrete features. The general
advantages of discretisation highlighted in the literature [77, 56, 115, 116] include:

14 Literature Review

• improved classification accuracy.

• reduced algorithm execution time.

• possible elimination of noise in the data.

• compact and shorter results.

• easier interpretation and understanding of data by practitioners and users.

However, it is also argued that the process of discretisation results in a loss of information
[56]. Therefore, prevention or the minimisation of the loss of information is a major objective
of a discretisation method. In a recent survey study, Garcia et al. [77] identified more
than eighty discretisation methods and they recommend the following characteristics to be
considered when selecting a discretisation method:

a) number of features - an effective discretisation method should be able to reduce continuous
features to as few as possible discrete levels without loss of information.

b) inconsistency - there should no inconsistencies after discretisation such as duplicate
instances having different classes.

c) predictive accuracy - after discretisation the predictive accuracy obtained from the dis-
crete dataset should not be less than what can be predicted from the numerical dataset.
Chmielewski and Grzymala-Busse [39] describe this as the most important feature of a
discretisation method.

d) time requirements - the process of discretisation should not be time-consuming.

A number of classifications taxonomies have been proposed for discretisation methods but
what is generally accepted is that at a high level they fall under unsupervised vs supervised
[115, 134, 121].

Unsupervised discretisation methods discretise a feature based on the distribution of
values of that feature. Equal interval width (EIW) and equal frequency interval (EFI)
[225] are examples of unsupervised discretisation methods. EIW is one of the simplest
discretisation methods to implement, it divides the range of observed values of a feature into
l equal sized bins, where l is user-defined. If V1 is the least value of a feature and V2 the
maximum value the width of intervals is given by (V2-V1)/l. It has been shown that the EIW
method has a weakness in that it can distribute instances unevenly as some bins may be empty
while others have been filled [225]. EFI is a similar method to EIW. Assuming we have m
instances in a feature each of l bins will have m/l instances. Unsupervised discretisation

2.2 Classification 15

methods do not take into consideration the class labels during discretisation and this has been
identified as a weakness as information loss may occur [225].

Supervised discretisation methods take the class into consideration. The ChiMerge [112]
method is an example of one of the most widely used supervised discretisation methods. The
ChiMerge method uses the χ2 statistic to evaluate if the relative class frequencies of adjacent
intervals are statistically different. Given a continuous feature, the first step of the ChiMerge
method is to sort the numerical values of the continuous feature (and their corresponding
classes) into an ascending order. Then a frequency table outlining the number of occurrences
of each distinct value of the feature for each possible classification is constructed. The
distribution of the values of the feature within the different classes is used to generate a set
of intervals. Then using the χ2 statistic the statistical significance of the differences of the
intervals is evaluated. If there is no statistical significance the intervals are merged otherwise
the intervals are maintained separately. A detailed outline of the ChiMerge algorithm is
provided in [112].

According to Garcia et al. conclusions on which is the best discretisation method cannot
be drawn. In a study to evaluate the induction of decision trees using hyper-heuristics Vella
et al. [216] use the equal frequency interval method the justification of the selection of this
method is not provided. Lim and Lee [131] use the equal interval width discretisation strategy
for a proposed online classification algorithm. Witten et al. [226] propose a classification
tool which can perform equal interval width pre-processing. In [23] equal interval width
is used for the pre-processing of datasets used to evaluate classifiers for software error
classification. In [225] it is argued that for medium to small datasets the equal frequency
interval method can be effective. Liu and Setiono [135] propose an approach that extends the
ChiMerge method and demonstrate how it improves the predictive accuracy of a classifier.
In [56] a study that compares the performance of supervised discretisation to unsupervised
discretisation is presented and the results are reported to show a marginal difference in
performance. From the studied literature the choice of discretisation method to use seems to
depend on the experience and preference of the researcher.

2.2.3.2 Normalisation

Before the data is discretised it is often preferable to have the data normalised. Normalisation
is the process of scaling data to within a certain range usually 0-1 [30]. This is usually
necessary when a feature exhibits high numeric variation in its values. For example, a feature
containing values for distance travelled may have a minimum value of 10 kilometers and a
maximum value of 5000 kilometers. To overcome this problem normalisation is performed.

16 Literature Review

Equation 2.9 outlines the most commonly used formula for normalisation also referred to as
min-max scaling [30].

xnorm =
x− xmin

xmax − xmin
(2.9)

All the features or some of the features on the dataset can be normalised. In [169] a study is
presented to evaluate the effectiveness of normalisation on the classification accuracy. In the
study classifiers are applied to datasets before normalisation and after normalisation. The
predictive accuracy of the classifiers on datasets after normalisation is found to be higher
than before normalisation. Wu et al. [229] compare the performance of three classification
algorithms using normalised data from the medical domain specifically ovarian cancer. An
argument is put forward that data normalisation has no impact on the final classification
results as the effect, if any, of normalisation will affect the three classification algorithms
equally. Gunn et al. [85] argue that the necessity of normalisation depends on the variations
in the values of the feature(s) and although normalisation may not be necessary for all cases
there is no harm in normalising all the features of a dataset.

2.2.3.3 Partitioning

As mentioned a classifier is evolved from a training set and evaluated on unseen instances
which constitute a test set. A complete dataset has to be partitioned into a training set and
test set. The three commonly used strategies are holdout validation, k-fold cross-validation
and N-fold cross-validation [30].

In the holdout validation strategy, the dataset is randomly split into two subsets, a training
set and a test set. There is no standard value for the splitting ratio used to partition a dataset,
but the norm is that the training set contains a greater number of examples than the test set.
According to Bramer [30] partition ratio values of 90:10(90% training set and 10% test
set),80:20,70:30 and 60:40 are acceptable. Barros et al. [19] used a 70% training to 30%
testing ratio to partition a dataset containing microarray gene expression data. There are
some cases where the test set has a greater or equal number of examples as in the training set.
Ye and Keogh [231] describe a decision tree type of classifier which is applied to datasets
that contain data from spectography measurements. The proposed multiclass decision tree
classifier is evaluated on the following data: a wheat dataset which is split into a 5% training
and 95% testing and a coffee dataset which is split to 50% training and 50% testing. The
holdout strategy is considered to have an advantage of being simple to implement and since
it is performed independently of algorithm execution it does not impose a computational cost
on the classification algorithm. However, if the dataset contains imbalances in classes i.e. if

2.2 Classification 17

there are few instances of a particular class and they are included in the test set and not in the
training set the classifier is bound to perform poorly as it will fail to generalise on instances
it has not been trained on. Real-world problems usually contain these imbalances in classes,
therefore, partitioning using the holdout strategy has to be performed with care. Engen [62]
uses holdout validation to partition a dataset containing intrusion detection data. The dataset
is split using an 80% training and 20% test ratio. Due to the imbalances in intrusion classes
the selection of data for each partition is performed chronologically ensuring that each class
is equally represented in each partition.

In the k-fold cross-validation strategy, the dataset is partitioned into k equal parts. If
the number of instances of the dataset is not totally divisible by k the k subset will contain
the smaller number of instances than the other k-1 subsets. k runs are performed where on
each run k-1 subsets are used for training while the k subset is a test set. To evaluate the
classification, the number of correctly classified instances in all the runs is divided by the
total number of instances. According to [30] typical values of k lie in the range of 5 -10.
Although the commonly found k values found in the literature are 5 [2, 229] and 10 [47, 27]
a number of studies also use 2-fold cross-validation [10]. De’ath and Fabricius [27] describe
an approach which uses classification and regression trees for the analysis of ecological data.
In their approach, they use 10-fold cross-validation and argue that this approach eliminates
over-fitting. Over-fitting also known as over-training is when a classifier learns exactly how
to fit the training set, this usually leads to poor generalisation [225].

N-fold cross-validation functions in a similar manner as k-fold cross-validation. The
dataset is divided into as many parts as there are instances, meaning at some stage each
instance will be a test set, hence this technique is also known as leave one out. Bramer
is critical of the computational demands of this method and argues that it is suitable for
very small datasets where there is limited data for training. Furthermore, he asserts that
the performance of this validation method compared to k-fold cross-validation has not
been shown to be significantly better. Friedman et al. [75] assert that 5-fold and 10-fold
cross-validation are better than the N-fold cross-validation technique. De’ath and Fabricius
disagree with this assertion, they conducted a study to compare the 5-fold, 10-fold and N-fold
validation methods and their results show the methods are comparable as no one method
performed significantly better than the others. From the literature considered, it seems to
appear that the selection of which dataset partitioning method to use is an arbitrary choice
based on the preference of the researcher. There is no clear justification of the selections
although in some instances there are references to general advantages or disadvantages of the
partitioning methods.

18 Literature Review

2.3 Evolutionary Algorithms

Evolutionary computation is a sub-field of artificial intelligence which models the Darwinian
[43] principle of natural selection as an inspiration for the design of computational meth-
ods. Algorithms that follow the principle of natural selection are generally referred to as
Evolutionary Algorithms (EAs) [60]. They operate on a collection of candidate solutions
for some problem. Each candidate solution is represented as an individual and a collection
of individuals is called a population. Each individual of the population is assigned a quality
value known as a fitness which is evaluated by a function called a fitness function. The fitness
function measures how well a candidate solution is at solving the problem being considered.
Evolutionary algorithms are iterative and each iteration is called a generation. Algorithm 1
is pseudo-code of a generic EA.

Algorithm 1 Generic Evolutionary Algorithm
1: BEGIN
2: INITIALISE population with random individuals
3: EVALUATE each individual;
4: while termination condition not met DO
5: SELECT parents
6: GENETIC MANIPULATION of parents
7: EVALUATE new individuals
8: SELECT individuals for the next generation
9: end while

10: END

From Algorithm 1 an EA generally operates as follows: as a first step, a population of
individuals is initialised before evolution can take place. The initial population is normally
randomly generated. The next step is to evaluate the fitness of each individual using a fitness
function. A predefined termination condition is checked. If the termination condition is met
the algorithm outputs the best solution for the problem and terminates. If the termination
condition is not met a selection method is used to choose individuals from the population
to undergo genetic manipulation. The selection method tends to be biased towards fitter
individuals. The selected individuals are used to seed the next generation of individuals.
This is achieved through the application of genetic operators (crossover and/or mutation)
to the selected individuals (parents). The fitness of the resulting individual(s)(offspring) is
evaluated. A population replacement strategy is then used to update the population. This
process continues iteratively until a stopping criterion is met.

2.3 Evolutionary Algorithms 19

According to [60] variation operators (crossover and mutation) and selection are the basis
of EAs. A number of EAs exist that share similarities, however, Evolutionary Strategies(ES)
[182], Evolutionary Programming(EP) [70], Genetic Algorithms, Genetic Programming and
Grammatical Evolution are considered to be the primary members of the EA family.

In this thesis, the aim is to automatically design GP classification algorithms using a
GA and GE, therefore, our focus on EAs will be limited to GA, GE and GP. The following
sections review genetic algorithms, genetic programming and grammatical evolution. The
aim of the reviews is not to exhaustively enumerate all the available information about the
approaches but to provide relevant background information for the research carried out in
this thesis.

2.3.1 Genetic Algorithm

Individuals in a GA population represent possible solutions to a problem being solved. An
individual is normally encoded as a fixed length linear chromosome where each gene of
the chromosome is a binary bit string. Other forms of encoding besides binary bits have
been proposed, such as in [40, 93] where real numbers are used. Eshelman and Schaffer
[63] present three advantages of using real number encoding over binary. Firstly, they argue
that real numbers provide a more accurate and precise representation of real-word problems
than binary numbers, secondly, real numbers provide a wider range than the power of two
provided by binary encoding. Thirdly, real numbers can represent slight or gradual changes
better than the binary number system. Non-numeric encoding is also widely used as shown
in [42] where characters from the alphabet are used to encode a GA chromosome which
represents an amino-acid protein. Variable length chromosomes have also been proposed and
are commonly used as presented in [4].

The first step of a basic genetic algorithm is to randomly create an initial population of
individuals. The fitness of each individual in the population is then evaluated. A selection
method is used to select individuals from the current population to act as parents and to
undergo crossover and mutation to create offspring for the next generation. The population is
then updated. This process continues iteratively until a predefined stopping criteria is met
and the algorithm terminates. The best solution based on fitness is returned. Algorithm 2 is
an outline of the steps of a typical GA algorithm.

20 Literature Review

Algorithm 2 Genetic Algorithm
1: Create initial population
2: Calculate fitness of all individuals
3: while termination condition not met do
4: Select fitter individuals for reproduction
5: Recombine individuals
6: Mutate individuals
7: Evaluate fitness of all individuals
8: Generate a new population
9: end while

10: return best individual

Since the initial proposal of GAs by Holland, a number of variants have been proposed
and are found in the literature [80]. However, according to [150] most implementations of a
GA follows the flow of Algorithm 2. A detailed algorithmic flow is presented as follows.

2.3.1.1 Initial Population Generation

At the initialisation step, individuals are randomly created. The value of each gene is
randomly selected from a range of possible values for that gene determined by the encoding
scheme. The number of chromosomes created (population) is determined by a population
size parameter. The encoding used depends on the problem being solved as each individual
in a GA represents a candidate solution. Figure 2.1 shows three examples of typical GA

Fig. 2.1 Examples of GA individuals

individuals. Each individual is an example of a specific encoding scheme. The example
denoted a) illustrates the binary encoding scheme where each gene can be a value of either
be 1 or 0. Example b) is for the real number encoding scheme and c) shows encoding an
individual using characters from the alphabet. The range of possible values for each gene
is specified before initial population generation to enable each randomly created individual
to be a valid candidate solution of the problem being solved. For example in the Travelling

2.3 Evolutionary Algorithms 21

Salesman Problem (TSP)[183] a chromosome can represent a route and each gene can be a
city. A chromosome can also be encoded in such a way that each gene uniquely represents
a different element of the problem. For example in [204] where a GA is used to design a
metaheuristic to solve a TSP problem, each gene of the chromosome is a specific design
component of the metaheuristic.

2.3.1.2 Fitness Evaluation

Fitness is a measure of the quality of each individual’s ability to solve the problem at hand.
A fitness function is used to evaluate the fitness of an individual. The fitness function is
normally predefined. It can be a mathematical function or some measure of how well a
GA individual is at solving the specified problem. DeJong and Spears [48] describe a GA
approach for data classification that uses predictive accuracy as the fitness function. Miller
et al. [147] propose to use a GA to design an artificial neural network (ANN) [86]. The
performance measure obtained from evaluating the ANN is assigned as the fitness of the GA
individual which specified the design of that ANN.

2.3.1.3 Selection

A selection method is used to select individuals from a population. According to Goldberg
[79] the two commonly used selection methods for a GA are fitness proportionate and
tournament selection.

Fitness proportionate selects individuals with a probability that is directly proportional
to their fitness values [191]. The selection of an individual proceeds as follows:

i) evaluate the probability, pi of selecting each individual in the population:

pi =
fi

∑
n
k=1 fk

(2.10)

where n is the population size and fi is the fitness of an individual.

ii) calculate the cumulative probability, qi for each individual using the following equation:

qi =
i

∑
k=1

pk (2.11)

iii) choose a uniform random number rand between 0 and 1.

22 Literature Review

iv) if rand <q1 the first individual is selected or else the individual xi such that qi−1 <rand
<= qi is selected.

v) Steps iii) and iv) are repeated n times to create n candidates in the mating pool.

An individual is randomly selected from the mating pool.

Tournament selection follows a simpler approach. A fixed number of individuals t are
randomly selected from the population and the individual with the best fitness from the t
individuals is returned.

According to Whitley et al. [222] fitness proportionate selection may lead to a GA
experiencing premature convergence if the population of the GA contains individuals with
a very high fitness. The authors point out that these super-fit individuals will dominate
the mating pool and after a number of generations the population will constitute mainly of
genetic material from those individuals. Tournament selection appears to be favoured due to
its operational simplicity and it is quicker to execute than fitness proportionate [58].

2.3.1.4 Crossover

Crossover is a convergence operator with an objective of directing the population to a
global maxima/minima. Crossover is considered as the primary genetic operator for a GA
[1]. In crossover usually, two individuals are selected using a selection method to act as
parents which exchange elements of their chromosomes before and after a randomly selected
crossover point(s) to create one or two offspring. The likelihood of crossover occurring
is determined by a crossover probability pc. A random number r is chosen between [0,1]
and if r is greater than pc then crossover takes place. The objective of a GA is to achieve
convergence, therefore, crossover is usually applied at higher rates. A number of crossover
approaches have been proposed as outlined in [61, 158, 205]. In this thesis, we consider the
three widely used crossover operators namely, one-point crossover, two-point crossover and
uniform crossover.

one-point crossover is also referred to as single point crossover. In this crossover operator
a point is randomly selected along the chromosomes (parents) and the tails are exchanged to
form two offspring as illustrated in figure 2.2.

two-point crossover is an extension of one-point crossover where two crossover points
are randomly selected. Each parent chromosome is broken into three segments of contiguous

2.3 Evolutionary Algorithms 23

Fig. 2.2 One point crossover

genes and the offspring are created by taking alternative segments from the parents. This
crossover method is illustrated in Figure 2.3.

Fig. 2.3 Two-point crossover

Uniform crossover considers genes individually based on a probability known as a swap-
ping probability [208]. Given two individuals, parent 1 and parent 2 and assuming the
swapping probability is set as 0.5 the crossover proceeds as follows: a random number r is
chosen from a uniform distribution over [0,1]. If r is equal or greater than 0.5 the value of
the first gene of offspring 1 is assigned the same value as the first gene of parent 1 and the
first gene of offspring 2 is assigned the same value as the first gene of parent 2. If the value
of r is less than 0.5 the value of the first gene of offspring 1 is assigned the value of gene 1 of
parent 2 and the value of the first gene of offspring 2 is assigned the same value as the first
gene of parent 1. This process is repeated until all the genes of the offspring chromosomes

Fig. 2.4 Uniform crossover

are assigned values. Figure 2.4 illustrates uniform crossover.

24 Literature Review

According to [60] the choice of which crossover method to use for a GA depends on the
researcher and the suitability of the method for the problem area as no one crossover method
is better than other methods for all problems. For example, both one-point and two point
crossover tend to populate offspring with genes that are closer together. This characteristic
would be suitable for the vehicle routing problem if genes values represent cities, closer cities
may be kept together which may lead to quicker convergence. Uniform crossover tends to
populate each individual with one half of the genes from one of the parents and the other half
of the genes from the other parent. This makes uniform crossover more suitable for problems
where the value of the genes represent independent entities of a solution. It is important that
the selected crossover method produces valid candidate solutions (offspring) otherwise a
problem specific repair mechanism may be required to further process the offspring and this
naturally leads to an extra overhead in-terms of processing time. Other crossover operators
have been proposed [150, 191, 205].

2.3.1.5 Mutation

Mutation is applied to a single individual selected using a selection method. Mutation is
used to provide diversity within a population and involves making small random changes
in the chromosome resulting in a new individual. Mutation plays an important role in the
prevention of the search from prematurely converging to a local minima/maxima [150]. The
application rate of mutation given by pm is normally less than the crossover rate. A very high
mutation rate may result in the search becoming a random search.

A number of researchers have reported on different mutation operators such as swap
mutation [49], inversion mutation [7] and scramble mutation [44], however, the most widely
used mutation method is bit flip mutation [60].

Bit flip mutation is used in binary encoded GAs and involves considering each gene for
mutation individually based on the mutation probability pm. A number r between [0,1] is
randomly generated and compared to the value of pm. If r is equal to or greater than pm then
the value of the gene under consideration is flipped. If the value of the gene is 1 then mutation
will change the bit to a 0 as illustrated in Figure 2.5 where the values of the third and fifth
genes are mutated from 1 to 0 and 0 to 1 respectively. Bit flip mutation can be extended for
other forms of encoding where the new value of the gene to be mutated is obtained from a
set of valid values for that gene.

2.3 Evolutionary Algorithms 25

Fig. 2.5 Bit flip mutation

2.3.1.6 Population Replacement

The two commonly used population replacement methods for GAs are generational and
steady-state. In generational replacement, the current population is replaced by a new
population generated from crossover and mutation. Steady-state replaces a specific number
n of individuals of the current population with n offspring. Sastry et al. [191] assert that
the generational approach is preferable because it is simpler to implement and has less
computational overheads than the steady-state approach. The overheads in the steady-state
approach arise from having to determine the optimal value of n. Additionally, a selection
method has to be used to select the individuals to be replaced. Elitism which involves
copying a specified number of the fittest individuals from the current population into the next
generation is also considered to be a replacement strategy [60].

2.3.1.7 Termination

The algorithm evolves from generation to generation until a termination criteria is met.
Genetic algorithms are stochastic and there is no guarantee that the algorithm will either
converge or find the optimal solution. The termination criteria can be set to be a maximum
number of generations or a near optimal solution.

Complete execution of a genetic algorithm from population initialisation to executing the
specified number of generations and outputting the solution is known as a run. Due to the
stochastic nature of evolutionary algorithms, a number of runs have to be performed. Each
run normally uses a different random number generator seed.

2.3.1.8 Applications of GA

Genetic algorithms have been applied in numerous problem areas, such as classification [106],
design of experiments [218], function optimisation [32] feature selection [177] amongst
others including designing other evolutionary algorithms [53].

26 Literature Review

2.3.2 Genetic Programming

Genetic programming is an EA that explores a program space. The concept of evolving
software programs using evolutionary algorithms was presented by Cramer [41] in 1985 and
in 1992, Koza [118] proposed Genetic Programming. Genetic programming is viewed as
an extension of genetic algorithms [17]. In GP an individual is a computer program and the
hope is that through evolution of the population of programs, fitter programs can be evolved
until a program that provides an (near) optimal solution is generated.

The basic approach of a GP algorithm is to initially create a population of randomly
generated programs. Each program is constructed from building blocks needed to solve the
problem GP is being applied to. The fitness of each randomly generated program is then
evaluated. If a specified termination criteria is not met good programs are then selected to
act as parents for the generation of new programs. New programs are generated by applying
genetic operators to parent programs and their fitness is evaluated. The process of selecting
good programs and applying genetic operators to them is repeated until a stopping criteria is
met and the best program is outputted. Therefore, unlike a GA which searches for a solution
to a problem at hand in a solution space GP conducts a search in a program space for a
program to solve a problem at hand.

In GP, programs (individuals) are traditionally represented as syntax trees which can
be converted to their corresponding executable expressions usually in prefix notation [124].
Each node of the tree is considered to be a gene. Figure 2.6 is an example of a syntax tree.

Fig. 2.6 GP syntax tree

The internal nodes of a syntax tree are known as functions while the external nodes are
known as terminals. Functions and terminals are constructed from elements of a function
and a terminal set respectively. Banzhaf et al.[17] describe a function set as constituting of
application specific operators and a terminal set as constituting of inputs to the GP program
for the problem being considered. The authors point out that functions and terminals are
problem dependant primitives from which GP programs are constructed. The operators in
a function set are defined with an arity, which represents the number of inputs a specific
operator requires. The function set may include the following:

2.3 Evolutionary Algorithms 27

• arithmetic operators {+, -, *, / }.

• mathematical functions{sine, cosine, sqrt}.

• logical operators { AND, OR, NOR, NOT}.

• equality operators { <, >, <=, >=, == }.

• user defined domain specific operators.

Koza [120] describes two important properties that a function set and terminal set must
satisfy, these are the closure property and sufficiency property. The closure property requires
that any output from any of the functions / terminals must be a valid input for all the other
functions. To meet this property the functionality of some operators are modified. An
example of this is the arithmetic divide operator. Its functionality is modified to enable
division by zero to be performed [17]. The common modification is to have it return a 1 or 0
when a division by 0 operation occurs. This is known as protected divide. The sufficiency
property requires that elements of the function and terminal sets should be able to represent
the solution. Other forms of representations are also found in the literature such as linear GP
[29] and graph-based GP [148].

Algorithm 3 is a step by step outline of the GP algorithm.

Algorithm 3 Genetic Programming
1: Create an initial population of programs
2: Execute each program and establish the fitness
3: while termination condition not met do
4: Select fitter programs to participate in reproduction
5: Create new programs using genetic operators and update the population
6: Execute each new program and establish the fitness
7: end while
8: return best program

The complete execution of the algorithm from start to finish is known as a run. A detailed
algorithmic flow is presented as follows.

2.3.2.1 Initial Population Generation

Like most EAs, initial population generation of GP programs is performed randomly. The
number of programs generated is specified by a user-defined population size parameter. To

28 Literature Review

create a program, a function for the root node is randomly selected from the function set
and the rest of the tree is recursively constructed with the leaves of any new nodes filled
until the maximum tree depth is reached. Maximum tree depth is defined as the number of
nodes between the end node of a tree and the root node[17]. The value of this parameter
is user-defined. Koza [119] proposes three methods for initial tree generation namely, full,
grow and ramped half-and-half. The full method constructs trees in such a manner that all
the nodes up to a depth of (maximum tree depth - 1) are functions and a depth equal to the
maximum tree depth are terminals. The grow method creates trees of variable length. Nodes
between the root and (maximum tree depth - 1) may randomly be assigned as functions or
terminals and those at the maximum tree depth set as terminals. The ramped half-and-half
method combines the full and grow method. At each depth from a depth of two, it creates half
of the trees using the full method and the other half using the grow method up to the maximum
tree depth. At each depth, an equal number of trees is created. The ramped half-and-half
creates an initial population of varied shapes and sizes with the hope of increasing diversity
[119].

Other methods have been proposed for initial population generation for GP as outlined by
Poli et al. [175] and Luke and Paniat [141], however, the three methods originally proposed
by Koza [119] are still predominantly used with the ramped half-and-half method being
the most widely used [64]. Once an initial population has been created the fitness of each
individual is evaluated.

2.3.2.2 Fitness Evaluation

The effectiveness of a GP program is measured using a fitness function which is normally
problem dependant [17]. Each program is applied to a training set (fitness cases) and the
result is assigned as the fitness of the program. Fitness can be measured in a number of ways.
For example, it can be a measure of how close a program output is to a desired outcome
such as the accuracy rate in classification [64] or a measure of how quick a GP program is at
providing a solution [175]. A fitness function may be used to measure a single objective or
multiple objectives. For example, Li [127] uses a fitness function which combines several
objectives in applying GP for financial forecasting. The measured output is assigned to the
program as its fitness.

2.3.2.3 Selection

As in other evolutionary algorithms selection in GP is biased towards fitter individuals. A
number of selection methods are found in the literature but the two commonly used selection

2.3 Evolutionary Algorithms 29

methods are tournament selection and fitness proportionate selection [175]. These methods
are applied as outlined in section 2.3.1.3.

2.3.2.4 Genetic Operators

In GP crossover and mutation are the commonly used genetic operators. Crossover promotes
convergence and is considered to be a local search operator since it combines genetic material
that is already existing between two parents [17, 175]. However, unlike crossover, mutation
is a global search operator which does not promote convergence but promotes diversity as
it introduces new genetic material to an individual. In crossover, two programs selected as
parents exchange code to create two new programs while in mutation a random change is
made to a selected parent program. Poli et al. [175] point out that copies of parents are used
to avoid making alterations to the parents as they stand a chance of being selected again, so
they have to maintain their unaltered state. A number of crossover and mutation operators
have been proposed and some are outlined in [175], however, in this section the review is
restricted to subtree crossover, shrink mutation and grow mutation.

Subtree crossover is the most commonly used crossover operator in GP [124]. Koza [119]
describes this form of crossover as an exchange of subtree branches between parents. Two
parents are selected from the population using a selection method. A random crossover point
is selected on each parent. Subtrees rooted at the randomly selected crossover points are
known as crossover fragments. The two fragments are exchanged from one parent to the
other thus creating two offspring. An example of this operation is shown in Figure 2.7. A
random point is selected in a copy of parent 1 resulting in fragment 1 and the same procedure
is followed on a copy of parent 2 resulting in fragment 2. The two fragments are exchanged
i.e. fragment 1 is inserted at the crossover point of parent 2 and fragment 2 is inserted at
the crossover point of parent 1. The size of the offspring must not exceed a user-defined
offspring depth limit. A number of methods exist in the literature [78, 180] for dealing with
offspring that exceed offspring depth with the most widely used method being pruning [175].

Mutation is considered as an important operator for increasing diversity in a population
during evolution [17].

Poli and Langdon [176] describe shrink mutation as an operator that replaces a randomly
selected subtree with a randomly created terminal node. Grow mutation works by randomly
selecting a terminal and replacing it with a subtree [12]. Figure 2.8 is an example of grow
mutation where the highlighted terminal node is replaced by the subtree.

30 Literature Review

Fig. 2.7 GP subtree crossover

Fig. 2.8 Grow mutation

Grow mutation has the effect of increasing the size of a tree. The resultant offspring needs
to conform to the specified offspring depth in a similar manner to the offspring resulting from
crossover. Therefore, a parameter known as mutation depth is specified for a GP system. The
purpose of this parameter is to control the size of a subtree created by a mutation operator.

2.3 Evolutionary Algorithms 31

The population size of the new generation is the same size as the initially randomly
generated population. Part of the new population is evolved by crossover and the other part
by mutation. The number of individuals created by crossover and those created by mutation
are determined by the application rates parameters and they should sum up to the population
size. The application rates are known as the crossover rate and the mutation rate. There are
instances where some members of a current population are passed onto the next population
this is known as reproduction and it may also be applied at a specified rate known as the
reproduction rate [17].

2.3.2.5 Population Replacement

The most frequently used population replacement methods are generational and steady-state.
These methods are implemented in the same manner as described in section 2.3.1.6.

2.3.2.6 Termination

Two termination conditions are usually used in GP, a maximum number of generations or
a problem specific solution is met. The maximum number of generations is a user-defined
parameter and is specified before a run. According to Poli et al. [175] typical values lie in
the range of 10 to 50 generations. However, other researchers insist that a balance has to be
struck between the number of generations and the population size to achieve convergence
[124]. A larger population size may require fewer generations or a smaller population size
may require more generations to achieve convergence. What is clear is there are no optimum
values for the parameters and most have to be arrived at through parameter tuning.

2.3.2.7 Applications of GP

The flexibility of GP enables it to be applied to a wide range of real-world problems.
For example, GP has been successfully used in cyber-security [89, 203], bio-informatics
[109, 188], medical domain [122] and text mining [103, 105] amongst a number of problems
domains.

2.3.3 Grammatical Evolution

O’Neill and Ryan [166] describe grammatical evolution as an evolutionary algorithm capable
of producing code in any language, providing a Backus Naur Form grammar which describes
the output language and a fitness function are defined. Grammatical evolution which was
proposed by Ryan et al. [186] is considered to be an extension of GP [175]. Unlike GP which

32 Literature Review

uses syntax trees to represent individuals, GE uses chromosomes of variable length binary
strings. Each gene of the chromosome is an 8-bit binary string and is referred to as a codon.
Codons contain information on how to select production rules from a BNF grammar. Figure
2.9 is an illustration of two examples of GE individuals where a) is a genome consisting of 6
codons and b) consists of 8 codons.

Fig. 2.9 Examples of GE individuals

Grammatical evolution uses a user-defined Backus Naur Form grammar to map variable
length linear genomes to executable programs. Domain knowledge of the problem being
solved is incorporated into the grammar. The grammar is used in conjunction with evolution
to map a genotype to a phenotype. Harper and Blair [91] assert that the simplicity of the
representation used by GE, i.e. bit strings, gives GE the flexibility of allowing a wider range
of possible operators to be used during the search.

Grammatical evolution draws inspiration from molecular biology where a sequence of
genetic material, deoxyribonucleic acid (DNA)(genotype) is translated into a protein which
defines the characteristics of a phenotype. A grammar G can be represented by the four-tuple
<N, T, P, S>, where N represents a set of non-terminals, T a set of terminals, P a set of
production rules that map the elements of N to T and S (a member of N) the start symbol.
An individual (genotype) is used to map the start symbol S to terminals by reading and
converting each codon to its decimal value from which an appropriate production rule is
selected by using the following mapping function:

Rule = (codon decimal value)%(No o f production rules) (2.12)

A derivation tree (phenotype) is evolved by iterating and mapping through the sequence of
codons. The derivation process is performed from left to right starting with the left-most
non-terminal. If the iteration process reaches the end of the sequence of codons before
the derivation tree is evolved the procedure continues by looping to the start of the codon

2.3 Evolutionary Algorithms 33

sequence, a process called wrapping. The fitness of the phenotype is evaluated by applying it
to a problem at hand.

Algorithm 4 Grammatical Evolution
1: Create an initial population of variable length binary strings
2: Map via a BNF grammar

a) binary strings to expression using production rules

3: Evaluate fitness
4: do while {termination condition not met}
5: Select fitter individuals for reproduction
6: Recombine selected individuals
7: Mutate offspring
8: Evaluate fitness of offspring
9: Replace all individuals in the population with offspring

10: end while
11: return best individual

Algorithm 4 is an outline of the step by step GE algorithm.

2.3.3.1 Initial Population Generation

The first step of the GE algorithm is to randomly generate a population of variable length
individuals. The population size and the variable length limits are user specified. Ryan and
Azad [185] argue that random initialisation may lead the search to start in a poor area thus
leading to either premature convergence or generation of invalid individuals. They proposed
an approach known as sensible initialisation. This method generates derivation trees using
the ramped half-and-half method. Random initialisation remains the most commonly used
initial population generation method, however, sensible initialisation is becoming widely
accepted and an in-depth analysis of this method is provided in [185].

2.3.3.2 Mapping

After population initialisation the randomly generated genotypes are mapped onto phenotypes.
The mapping process involves the BNF grammar and the rule specified by equation 2.12 to
produce valid phenotypes. The mapping is deterministic meaning if the grammar remains
the same, a particular genotype will always be mapped to the same phenotype. An example
of the mapping process is demonstrated using a simple grammar for generating pin numbers
depicted in Figure 2.10. The symbols enclosed within the angular brackets <> are non-
terminals and those without are terminals. The production rules are indexed from 0 and are

34 Literature Review

Fig. 2.10 Grammar for pin generation

separated by the | sign. Therefore, if a non-terminal for example <X> from the grammar has
ten production rules the first one indexed by 0 the next one 1 until the last one 9. The indexes
are used in conjunction with equation 2.12 to select the production rules. Using individual a)
from Figure 2.9 as an example, the first step is to convert the binary codons to their decimal
values which is 5,166,4,30,172,17. The next step is to map the start symbol <S> to terminal
using rule 2.12

1. 5%3 = 2 since there are 3 production rules rule 2 is selected i.e. <X><W><Y> . Next
we process the left-most non-terminal.

2. 166%10 = 6 production rule 6 is selected mapping to 7<W><Y>

3. 4%2 = 0 production rule 0 7→ 7<Y><X><Y>

4. 30%10 = 0 production rule 0 7→ 7a<X><Y>

5. 172%10 = 2 production rule 2 7→ 7a3<Y>

6. 17%10 = 7 production rule 7 7→ 7a3-

The evolved phenotype (pin) is 7a3-. The fitness of the phenotype is measured using a
problem dependent fitness function. For pin numbers, this can be standard password metrics
such as complexity. The derivation tree for this example is shown in Figure 2.11

If the termination criteria is not met a selection method is used to select genotypes to act
as parents to generate offspring.

2.3.3.3 Selection

The commonly used selection methods in GE are tournament selection and fitness pro-
portionate selection. These are implemented in the same manner as explained in section
2.3.1.3.

2.3 Evolutionary Algorithms 35

Fig. 2.11 Derivation tree pin generation

2.3.3.4 Genetic Operators

Crossover and mutation are the commonly applied genetic operators for grammatical evolu-
tion.

Crossover according to O’Neill et al. [167] one-point crossover is the most widely used
crossover operator in GE. This is applied in a similar manner as in genetic algorithms except
that in GE it is used on variable length genomes resulting in variable length offspring. Two
parents are selected using a chosen selection method and a crossover probability rate is
used to determine if the crossover operator should be applied. If crossover is to be applied
a random crossover point r in the range [1, l -1] where l is the maximum length of the
shortest parent is generated and used as the crossover point where the tails of each parent
are exchanged. The application of one-point crossover in GE is illustrated in Figure 2.12.
Other variations of this crossover operator have been used in GE, where a crossover point is

Fig. 2.12 Examples of GE individuals

randomly selected on each parent and the tails are exchanged [38].

36 Literature Review

Mutation bit flip mutation described in section 2.3.1.5 is the commonly used mutation
operator in GE. This is enhanced by the fact that the representation in GE uses bit strings.

2.3.3.5 Population Replacement

Grammatical evolution follows a similar approach as the other EAs when it comes to
population replacement. Population replacement can either be generational or steady-state
replacement. Elitism may also be applied in GE.

2.3.3.6 Termination

Like the other EAs termination can occur either after a certain number of generations or if a
problem specific solution is obtained.

2.3.3.7 Applications of Grammatical Evolution

Grammatical evolution has been applied in numerous domains particular to solve real-world
problems. Sen and Clark [192] use GE to evolve programs that detect intrusions in a mobile
ad hoc network (MANETS) In [34] Bryne et al. use GE for architectural design while Tanev
et al. [209] apply GE in the automated design of a robot. The next section reviews the
application of GP in classification.

2.4 GP and Classification

Generally, when used as a classification algorithm GP uses supervised learning. GP randomly
initialises a population of classifiers and evaluates their fitness by applying each classifier to a
training set. The classifiers are then improved gradually as they are evolved from generation
to generation (learning) until a stopping criterion is met. The best returned classifier at
the end of the evolution process is then applied on a test set. Predictive accuracy is the
most commonly used fitness function to evaluate classifiers. As previously stated the most
commonly used approach to represent GP individuals is using syntax trees. This is also
the case for GP classification algorithms. Although there are studies in the literature that
use other representations to evolve classifiers using GP. For example, Green et al. [81]
describe a GP classification algorithm to classify human genomes. The system encodes GP
individuals using a linear genome structure. Eiben et al. [58] argue that the ease with which
a representation matches a problem makes it more suitable than other representations.

2.4 GP and Classification 37

2.4.1 GP Classifier Models

The flexibility of the tree representation gives GP a distinct advantage of being able to model
classification rules and decision trees [64]. The most commonly modelled classification
rules using GP are discriminant functions. In this form, the GP classifier is represented as
a mathematical expression constituting of operators and/or functions from the function set
and features from the terminal set. The expression is resolved into a value (usually floating
point) which is the output of the GP tree. The value is then translated to a class. Greene et
al. [81] use the term symbolic discriminant function to define these GP classification rules.
The operators and functions that constitute a function set for a GP classification algorithm
determine the type of classifiers evolved. In this thesis, we restrict our focus to arithmetic and
logical classifiers for classification rules and decision trees. If the function set is populated by
arithmetic operators GP will evolve arithmetic classifiers and if the function set constitutes
of logical operators, logical trees classifiers are evolved. If the function set is populated with
features from the dataset and the terminal set with classes then decision trees are evolved.

Fig. 2.13 Examples of GP classifiers

The graph-like structure of a decision trees makes it convenient to use syntax trees to
model decision trees in GP. The classifier is evaluated from the root downwards in a top-down
manner. Koza [117] was the first to propose the induction of decision trees using GP. Figure
2.13 is an illustration of examples of an arithmetic classifier, logical classifier and decision
tree evolved by GP.

Another advantage of GP is that it is capable of performing automatic feature selection.
Since features are randomly selected for each tree this reduces the dimensionality of the
input data for classification as not all features are selected to be part of the tree.

GP classification algorithms that evolve arithmetic tree, logical tree and decision trees
classifiers are widely used in numerous problem domains. Zhang and Nandi [232] propose a
GP classification algorithm to classify faults in the manufacture of roller bearings. Arithmetic
tree type classifiers are used and their effectiveness is compared to classifiers evolved by
two-hybrid classification algorithms namely, a GA-ANN and a GA-SVM. In both of the

38 Literature Review

hybrid algorithms, the GA is used for feature selection, which GP performs automatically.
GP is reported to outperform the hybrid classification algorithms. Griffin and Chen [84]
use arithmetic classifiers evolved by GP to detect the occurrence of faults during grinding.
Grinding is a process performed during the manufacture of a wide range of materials such as
vehicle parts. During grinding acoustic signals are emitted and faulty grinds emit a different
sound. Some faults are visually undetectable. In this study, GP is successfully used to detect
faults based on the acoustic signals emitted. Raymer et al. [181] evaluate the effectiveness
of GP arithmetic tree classifiers to detect the presence of water in protein molecules. The
researchers compare GP classifiers to a GA on the same dataset. GP is reported to not only
detect water molecules at a higher rate than the GA but it also uses fewer features in the
detection thus reducing the computational cost of classification. Hong and Cho [94] show the
effectiveness of arithmetic tree classifiers in the detection of lymphoma cancer. Bojarczuk
et al.[26] describe a GP classification algorithm that evolves logical trees classifiers. The
effectiveness of the classifiers is evaluated on five datasets from the University of California
Irvine (UCI) repository [15] containing medical data. The performance of GP is found to
be better than the C4.5 algorithm. Similarly, in [45] three datasets containing medical data
obtained from the UCI repository are used to evaluate GP evolved logical classifiers. Hirsch
[92] use GP to evolve logical classifiers for text classification. The performance of GP is
reported to be comparable to other classification algorithms from the literature. Mousavi et al.
[152] use GP to evolve arithmetic and logical classifiers for portfolio trading. An individual
is represented by multiple trees depending on the number of stocks in the portfolio. If for
example, a portfolio has 5 stocks then 1 individual will have 5 trees each representing a
specific stock. Each of the trees may be arithmetic or logical and each represents a rule for
each stock. A total of 30 stocks obtained from the Canada (15) and Iran (15) stock exchanges
are used to evaluate the proposed classifiers. The proposed classifiers are reported to perform
better than a GA and the Buy and Hold (BH) strategy. A BH strategy is where an investor
buys stock and holds it for a long time ignoring the fluctuations [69]. Khoshgoftaar et al.
[113] propose a GP system that evolves decision trees to classify the quality of a software
program. Wang et al. [219] propose a GP system that evolves decision trees for financial
forecasting. The study shows that GP is able to evolve classifiers able to extract financial
forecasting rules. Fallah et al. [66] use decision trees evolved by GP to predict and control
the water levels of a reservoir. Other examples of GP classification algorithms that evolve
decision tree classifiers are presented in [65, 140, 165].

2.4 GP and Classification 39

2.4.2 Population Initialisation

An initial population provides a starting point for a search. Since there is relatively no
task-dependent knowledge used during the creation of the initial population, diversity is
important. From the surveyed studies the ramped half-and-half method is the most widely
used population creation method for GP classification algorithms [26, 37, 92, 152, 181].
Although the full and grow methods are also used no justification is provided in the literature
for the choice of the ramped half-and-half method hence, it is assumed that the popularity
of this method is due to the fact that the population consists of a mixture of individuals
generated by the full and grow methods. Therefore, it is likely to provide a diverse initial
population. However, Silva et al. [197] argue that diversity is not that important for the initial
population for GP as it is likely to be introduced during evolution by mutation.

2.4.3 Fitness Function

The evaluation of classifiers evolved by GP can be a single measure i.e. single objective opti-
misation or multiple measures i.e. multi-objective optimisation. Depending on the problem
the measured fitness function may be maximisation or minimisation. Predictive accuracy
(equation 2.1) is the most widely used fitness function for GP classification algorithms. This is
a single objective measure which seeks to maximize the accuracy of classifiers. The following
studies use predictive accuracy as the fitness function. [71, 73, 153, 164, 234]. Another com-
monly used single objective fitness function measure is the fmeasure (equation 2.5) also known
as the fscore . This fitness function is used in the following studies [21, 35, 46, 103, 105].
Parameters of the confusion matrix have been used as fitness functions such as the true
positive rate [123], sensitivity [178] and specificity [195]. Other metrics which are used less
often as fitness functions found in the literature are the J-Measure and Matthews correlation
coefficient (MCC). The J-Measure is a measure of the quality of disjunction rules that de-
scribe a class. This metric is used as a fitness function in [72, 104], while in [188, 189] the
Mathews correlation coefficient (equation 2.13) is used as the fitness function.

MCC =
(tp ∗ tn)− (fp ∗ fn)√

(tn + fn)∗ (tn + fp)∗ (tp + fn)∗ (tp + fp)
(2.13)

The root mean square error which is commonly used for regression problems is also
extensively used for classification problems in GP [109].

Barros et al. [20] identify three approaches to multi-objective optimisation i) weighted
formula ii) pareto dominance and iii) lexicographic analysis. In this thesis, we focus on
the weighted formula approach which is the commonly used strategy in GP classification

40 Literature Review

algorithms. In this approach, the fitness function consists of multiple objectives which
contribute towards the final value of the fitness. The amount contributed by each objective is
determined by weights i.e. the objectives are weighted depending on their importance in the
application. A formula is normally then applied to manipulate the weighted amounts to a
single value which represents the fitness.

The most widely used weighted approach in classification involves weighting accuracy
and tree complexity. Tree complexity is usually taken as the size of the tree i.e. the number
of nodes [194]. Although other researchers have used other metrics to define tree size such
as the depth of the tree or the number of layers [217], in [18] 6 different fitness functions
are used. Each fitness function is a summation of accuracy and another metrics. Bhowan et
al. [22] describe a fitness function which is the square root of the product of the accuracy of
each class, i.e. class 1 and class 2 for a binary problem. A weighted fitness function is used
in [224] where 3 objectives are used to formulate a fitness function. Li [128] in applying GP
to a financial forecasting problem proposes a similar approach which uses a fitness function
that sums 3 objectives.

2.4.4 Selection

The two widely used selection methods are tournament and fitness proportionate selection.
Tournament selection is the most commonly used and has a tournament size parameter associ-
ated with it. Typical values of the tournament size are discussed in section 2.4.8. Tournament
selection is used in the following studies [92, 196, 224, 232]. Fitness proportionate which
selects classifiers based on their fitness is used in [26, 37, 67, 129, 152, 181].

2.4.5 Genetic Operators

The genetic operators presented in section 2.3.2.4 are the most widely used operators for
GP in classification. Application rates are used with each operator to evolve new classifiers,
these are discussed in section 2.4.8.

2.4.6 Population Replacement

A generational model is the most popular population replacement strategy for GP classifi-
cation algorithms. A new generation of classifiers is used to replace a current population
for the next generation. The generational approach is exemplified in the following studies
[196, 232].

2.4 GP and Classification 41

2.4.7 GP and Multiclass Classification

In this section GP, strategies for multiclass classification are reviewed. The review is restricted
to strategies that use tree representations to evolve classification rules. Hybrid strategies such
as those that combine GP and other methods are not considered.

La Cava et al. [122] and Munoz et al. [154] argue that traditionally GP does not
do well for multiclass classification when compared to other state-of-the-art classification
methods. At a high level, two strategies are commonly followed to perform multiclass
classification with GP i.e. those that extend binary classification and those that do not extend
binary classification. Binary classification is extended by simply enumerating the number
of classes considered. This approach is easily implemented when GP is used to model
decision trees as the extra class(es) is(are) added to the terminal set. However, when GP
models classification rules there is increased complexity. As mentioned earlier, in binary
classification a tree (classifier) is interpreted as a classification rule which is a discriminant
mathematical expression. A mathematical operation is carried out using an input fitness case
from the dataset resulting in a floating point value. The floating value is used to associate the
input vector to one of the two classes under consideration. An approach referred to as static
class boundary determination (SBCD) which extends binary classification is presented by
Zhang and Ciesielski [233]. In this approach, a numerical range is predefined for each class.
So for an n-class problem, there would be n ranges. Consider for example a 3-class problem
boundaries may be defined as follows: class 0 = [-inf to -5.0], class 1 =[-5.1 to 5.0] and class
2 = [5.1 to inf]. If for example, a numerical output value from a classifier is -3.8, then the
object is in class 1. This approach to classification is considered to have an advantage of
being simple and easy to implement. However, finding the boundaries that provide the best
classification is no easy task as boundaries are selected arbitrarily. In [140] an improved
version of SBCD is presented where boundaries are selected dynamically. A subset of the
dataset is used to find the best boundaries and these are then used for the rest of the run.
This approach is known as dynamic boundary class determination (DBCD). This method is
shown to perform better than SBCD for complex problems.

Of the strategies that do not extend binary classification, binary decomposition is the most
commonly implemented. This approach reduces an n-class problem to n binary problems. For
each class, a run is performed with the other classes combined. This approach is followed in
the following studies [114, 132, 133, 140, 198, 230]. In [153] Muni et al. present a multi-tree
approach to solving the multiclass classification problem. In this approach a classifier (tree)
is evolved for each class in a single GP run. For example, for a 4-class problem, 4 classifiers
(trees) will be evolved. Other lesser used methods for multiclass classification are presented
in [64].

42 Literature Review

2.4.8 GP Parameters for Classification Problems

This section presents a brief review of the numeric parameter values found in the literature
for configuring GP for classification problems.

It is widely accepted that the success of an evolutionary algorithm is largely influenced
by its configuration. Part of algorithm configuration is assigning values to numerical and
categorical parameters. Genetic programming is amongst one of the most parameterised
evolutionary algorithms. Espejo et al. [64] describe this to be one of the disadvantages of GP.
In this thesis we consider the following GP numerical parameters: population size, initial
tree depth, maximum offspring depth, tournament selection size, crossover rate, mutation
rate, mutation offspring depth and number of generations.

• population size
Poli et al. [175] describe the population size parameter as a very important parameter
for GP. The value assigned to this parameter represents the number of classifiers
considered for solving the problem. The following values are found in the literature:
100 classifiers are used in [6, 14, 133], 200 classifiers are used in [230], 500 classifiers
are used in [140, 198], while in [132, 202] 2000 classifiers are used.

• initial tree depth
According to [18] initial tree depth is usually set at low values at initialisation to speed
up algorithm runtimes. In [175] Pol et al. emphasise the importance of the initial
tree depth parameter for GP. Oltean and Dioşan [164] describe a GP classification
algorithm that starts with a population size of 1 and an initial tree depth 1. The proposed
approach doubles the population size if there is no improvement in the fitness of the best
individual after a certain number of generations. New randomly created individuals are
added to the population. The initial tree depth of the new individuals is also increased
by one at each addition point. Aitkenhead [5] recommends restraining the initial tree
depth of decision trees to a value of 2. This recommendation is supported by Papagelis
and Kalles [168]. The premise is that during algorithm execution evolution will deepen
the offspring. The majority of studies set the value of this parameter in the following
range (2 - 7) [6, 140, 198, 202, 230].

• maximum offspring depth
Maximum offspring tree depth is used to restrict the size of growth of classifiers as the
algorithm executes. This parameter helps in controlling bloat. GP programs contain
redundant code known as introns and the number of introns increase during evolution
and this is referred to as bloat [17]. Controlling the size of trees using parameters such

2.4 GP and Classification 43

as offspring depth are efforts of controlling bloat. A detailed analysis of the effects and
control of bloat in GP is provided in [174]. Offspring depths is set to the following
values are used in the following studies: 5 in [14], 6 in [230], 7 in [129], 8 in [133], 10
in[6], 15 in [198] and 17 in [140, 202, 214].

• tournament selection size
Silva and Tseng [198] used a selection size of 50 with a population size of 500 in their
study which is high when compared to values used in other studies. A high selection
size also introduces an element of elitism as individuals with a higher fitness will stand
a better chance of being selected frequently. Generally tournament selection size is
usually set at low values with typical values distributed as follows: 3 in [14], 4 in [214],
5 in [133], 6 in [132], 7 in [6].

• crossover rate
A wide range of values are used for the crossover rate which is considered to be the
main genetic operator. In most studies a higher crossover rate than the mutation rate is
used. The following values are commonly used and found in the literature: 50% [198],
80% [132], 85% [14, 133] and 90% [140, 214, 230]. Crossover is sometimes applied
as the only genetic operator such as in [65] or it is used with reproduction such as in
[202]. Loveard and Ciesielski [140] also used crossover and reproduction to evolve
classifiers.

• mutation rate
Generally, mutation is set at low rates as it introduces diversity it does not encourage
convergence. According to Poli et al.[175], if the population size is low a higher
mutation rate is required to maintain diversity during evolution. In [198, 202] mutation
is used to evolve half of the offspring at each generation with the mutation rate set at
50%. The following are typical values used: 5% [14, 133], 10% in [214, 230] and 20%
in [132].

• mutation offspring depth
Mutation offspring depth is used to restrict the size of the subtree used for mutation.
Typical values are found in the following of range values (2-9) [92, 97, 221].

• number of generations
A fixed number of generation is used to terminate the algorithm. The following values
are typically used for this parameter: 30 [6], 50 [14, 140], 100 [132], 200 [230], 250
[133], 500 [181, 232] and 1000 [84].

44 Literature Review

2.4.8.1 Parameter Tuning

There is no set of parameter values that will lead to an optimal solution for all problems [58,
175]. The determination of parameter values for configuration of GP classification algorithms
is predominantly performed manually using parameter tuning. Poli et al. [175] argue that GP
is a robust algorithm capable of finding acceptable solutions using many different parameter
settings. The authors further argue against carrying out intensive parameter tuning for GP
parameters. Using this recommendation some researchers, therefore, carry out parameter
tuning using a subset of the problem instances and then apply the same parameters on the rest
of the problem instances. However, other researchers prefer to carry out parameter tuning for
each problem instance [142, 184].

Parameter tuning is an iterative trial and error approach. For each parameter, a finite
set of values are considered usually based on the values obtained from the literature. Each
parameter is considered one at a time and trial runs are performed while the values of the
other parameters remain the same. A number of researchers are critical of this approach
to setting the parameter values. Montero et al. [151] describe this as a time-consuming
brute-force approach. This view is supported by Veček et al. where in [215] it is pointed out
that setting a boundary of values to be considered may leave out the value which may lead to
an optimal solution. Furthermore, the authors argue that the appropriate number of trial runs
to be performed is set arbitrarily without justification. Hutter[98] argues that the correlation
between the parameters is not considered during parameter tuning and additionally the search
space is too wide for a human designer and this leads to human bias where values are
eventually assigned based on preference. In [151] Montero and Riff argue that to effectively
tune parameters one should have expert knowledge of the domain being considered, however,
this is not always possible. Several parameter tuning methods have been proposed in the
literature [24, 101, 155] but none have been universally adopted.

2.5 Automated Design

This section defines automated design in the context of this thesis followed by a review of
the research carried within the context of the definition.

2.5.1 Definition of Automated Design

Generally, given an algorithm f(x) with parameters p the process of finding a combination of
parameters and their values such that f(x) = {p1,p2,p3....pn} finds an optimal or near optimal
solution for a given problem is an algorithm configuration problem [59]. In this thesis, we

2.5 Automated Design 45

define an automated approach to solving this problem as automated design. The focus is on
the automated design of genetic programming classification algorithms using a GA and GE.
During manual design of a parameterised algorithm, design decisions are made that lead to
a configuration of the algorithm. Automated design therefore can also be described as the
automation of these design decisions. The next section outlines the design decisions made to
solve the algorithm configuration problem.

2.5.1.1 Design Decisions

Design decisions may include the following:

1. Determining the parameters for an approach.
This design decision involves determining the parameters and their values, e.g for
an EA it could be assigning a value to the population size parameter or assigning
a selection method to use such as tournament selection over fitness proportionate
selection.

2. Determining the operators to use.
This design decision determines which operators are to be used. For example, deter-
mining which genetic operators to use for an EA, such as which crossover operator to
use uniform crossover or single-point crossover.

3. Determining the control flow of an approach.
In this design decision the control flow of the algorithm is determined. Sevaux et al.
[193] describe algorithm control flow as the order in which components in an algorithm
combine to achieve the final output. A component is a process of an algorithm such as
a mutation operator in an evolutionary algorithm. Therefore, in this design decision
the order in which the components are linked for algorithm execution is determined.
For example crossover followed by mutation [54].

4. Creating new construction heuristics.
Construction heuristics are often used with metaheuristics to solve a problem. These
are rules of thumb that are usually manually derived. This involves automating the
creation of these heuristics [33].

5. Creating new operators.
This design decision involves the creation of new operators. For example Hong et al.
in [95] create new mutation operators for evolutionary programming.

46 Literature Review

An algorithm designer needs to make these design decisions in order to arrive at a
combination of components that result in f(x) yielding an optimal solution for a considered
problem. While a number of definitions of the term configuration have been suggested,
this thesis follows the definition suggested by Sevaux et al. [193] where a configuration is
defined as a specific set of parameter values and control flow to solve a problem at hand.
Algorithm configuration usually requires expert knowledge. In [193] manual configuration is
described as an art which relies on intuitive decisions that are based on experience. Hence,
the authors argue that novice designers cannot effectively configure algorithms that yield
optimal solutions.

A large and growing body of literature has investigated the application of evolutionary
algorithms to design and configure other algorithms. Research can be found under parameter
tuning [156], parameter control [100, 137] and hyper-heuristics [33]. However, the review
presented in the next section is restricted to those studies that are closely related to the research
carried out in this thesis i.e. those that use a GA and GE to automate other metaheuristics.
The review focuses on studies where a GA and GE take the place of an algorithm designer
and determine the design decisions to configure the best algorithms for particular problems.

2.5.2 Automated Design using Genetic Algorithms

Genetic algorithms have been widely used for automating the design of other metaheuristics.
Preliminary work on using a GA to automate the design of an EA was undertaken by

Grefenstette [82] where a GA was used to tune parameter values i.e. design decision 1
(section 2.5.1.1) for GAs. Each element of the population of the designing GA represented
parameters for a GA. The evolved parameters were found to be effective at configuring GAs
for solving numerical function optimisation problems. The designing GA was configured
with the following parameters: population size 50, crossover rate 60%, mutation rate 0.1%
and elitism. Twenty generations were used as the stopping criteria.

Similarly, Brain and Addicoat [28] used a generational GA to determine design decision
1 for GAs that were used to solve a computational chemistry problem. The designing GA
was configured as follows: population size 80, tournament selection (size 2), single point
crossover rate at a probability rate of 50%, random mutation at a probability rate of 2%. The
termination criteria was set to 20 generations.

Souffriau et al. [204] used a steady-state genetic algorithm to determine parameter values
for an Ant Colony Optimisation (ACO) metaheuristic. Each individual of the GA represents
ACO parameter values and real number encoding was used to encode each chromosome.
Each gene of the chromosome represents a specific parameter of an ACO algorithm. The GA
was used to search for parameter values that yield the best ACO algorithm for the orienteering

2.5 Automated Design 47

problem, a form of the travelling salesman problem. The ACO algorithms configured with
the GA evolved configurations were reported to perform better than those that were tuned
manually. The GA was configured as follows: population size 100, stochastic universal
selection, uniform crossover rate at a probability rate of 90%, integer flip mutation at a
probability rate of 0.1% and elitism at 2%.

In [53] Diosan and Oltean described an approach that used a generational GA to evolve
evolutionary algorithms. Each element of the GA was used to represent a complete EA,
determining design decisions 1, 2 and 3. The best evolved EA was tested on numeric function
optimisation problems and the results were reported to be competitive when compared to
other approaches for solving function optimisation methods. The GA was configured as
follows: population size 100, tournament selection with tournament size 2, single point
crossover rate at a probability rate of 80%, gaussian mutation [80] at a probability rate of
10%. The termination criteria was set as 100 generations.

2.5.3 Automated Design using Grammatical Evolution

Grammatical evolution has also been extensively used for automated design.
Tavares and Pereira [211] used GE to configure ACO algorithms. The GE algorithm was

used to determine design decision 1, 2 and 3 for the ACO algorithms. The performance of the
GE evolved ACO algorithms was compared to the performance of manually designed ACO
algorithms in solving the travelling salesman problem. The GE evolved ACO algorithms
were reported to outperform the manually designed ACOs. The GE algorithm was configured
as follows: population size 64, individual size 128, tournament selection with tournament
size of 3, single-point crossover at a probability rate of 70%, standard integer-flip mutation
at a probability rate of 5% and elitism. Twenty-five generations were set as the termination
criteria of the algorithm.

Lourenço et al. [138] presented an approach that used GE to configure EAs. In this study
GE was used to determine design decision 1, 2 and 3. The evolved EAs were reported to be
effective at solving Royal Roads Functions. The GE algorithm was configured as follows:
population size 100, individual size 10-16, tournament selection with tournament size of 5,
single-point crossover at a probability rate of 90%, bit flip mutation at a probability rate of
1% and 50 generations as the termination criteria.

In [139] Lourenço et al. used GE in a hyper-heuristic to evolve EAs to solve the knapsack
problem. Design decision 1, 2 and 3 was automated for each EA. The evolved EAs were
shown to perform well on unseen problem instances when compared to other methods.
The GE algorithm was configured as follows: population size 100, individual size 10-16,
tournament selection with tournament size of 3, single-point crossover at a probability rate

48 Literature Review

of 90%, bit flip mutation at a probability rate of 1% and 50 generations as the termination
criteria.

Drake et al.[57] also presented a hyper-heuristic which used GE to design a local search
method, namely the variable neighbourhood search (VNS). The GE grammar automated
design decision 1, 2, 3, 4 and 5 for the VNS. The GE evolved VNS was tested on instances
of the vehicle routing problem. The GE algorithm was configured as follows: population
size 1024, tournament selection with tournament size of 7, crossover at a probability rate of
90%, mutation at a probability rate of 5%, reproduction at a probability rate of 5% and 50
generations as the termination criteria.

Miranda and Prudêncios [149] used a steady-state GE to design and configure particle
swarm optimisation (PSO) algorithms. GE is used to determine design decision 1, 2 and 3.
The GE designed PSO algorithms were found to perform competitively when compared to
other state-of-the-art methods for solving continuous optimisation problems. The GE algo-
rithm was configured as follows: population size 50, individual size 30, fitness proportionate
selection, single point crossover at a probability rate of 80%, bit mutation at a probability
rate of 1% and 20 generations as the termination criteria.

2.5.4 Analysis of Automated Design

It is clear from the reviewed studies that there is no one set of standard configuration settings
for configuring a GA or GE for automated design. Generally, all methods were reported to
be effective in the problems that they were applied to. The parameter settings for each study
are problem dependent. Some of the studies used an automated design approach to tune
parameters (design decision 1) while others automated the determination of design decision
1, 2 and 3. and one study used a hyper-heuristic approach to determine design decision 1, 2,
3, 4 and 5.

From the studies that used a GA for automating the design, the majority used a genera-
tional control model for population control. In the majority of the studies, the representation
used is problem dependent for example in [53] an individual represented an EA while in
[82] an individual represented parameter values. Real number encoding was found to be
the most commonly used form of encoding. Tournament selection is the most widely used
selection method. Single point crossover is the commonly used crossover method although
uniform crossover is also reported to be used as in [204]. Random mutation where values for
each gene are randomly assigned from a range of allowed values is the most common form
of mutation used. Elitism which involves preserving individuals with a high fitness is also
commonly applied. Populations size values range from a low of 50 to a maximum of 100
individuals. In all the studies the crossover probability rates were set at much higher values

2.6 Fitness Landscape and Fitness Landscape Analysis 49

than mutation probability rates. The termination criteria value i.e. the number of generations
ranged from a low of 20 to a maximum of 100 generations.

In all the studies that used GE for automated design, binary encoding was used for
encoding variable length GE individuals. The majority of the studies determined design
decision 1, 2, 3, however, this is problem dependent. Tournament selection was the most
commonly used selection method although fitness proportionate selection was also used in
[149]. Single-point crossover is the crossover operator used in all the studies with bit flip
mutation. As expected higher crossover probability values and lower mutation probability
values were used. Elitism was also commonly applied. Population size values ranged from
50 to 1064 and termination criteria values ranged from 20 to 50 generations.

2.6 Fitness Landscape and Fitness Landscape Analysis

A number of metrics have been proposed for the evaluation of evolutionary algorithms.
Furthermore, it has been of interest to the evolutionary algorithm research community to try
and gain an understanding of why and how evolutionary algorithms work. Fitness landscape
analysis is one such approach that has been widely applied in trying to answer that question.
This section introduces the concept of fitness landscape and then describes the techniques
used to perform fitness landscape analysis.

2.6.1 Fitness Landscape

The concept of fitness landscape is adopted from theoretical biology where it was initially
conceptualised by Wright [228] in the early 1930s. According to Pitzer and Affenzeller [172]
viewing the search space as a fitness landscape is beneficial to gain an intuitive understanding
of how and where heuristic algorithms such as EAs operate. An analysis of the fitness
landscape provides a measure of the difficulty of solving a problem at hand or finding
the optimal value for an EA [173]. In [146] it is argued that the knowledge of the fitness
landscape may lead to the design of more efficient algorithms as the algorithm designer
will be having domain knowledge of the search space. According to Jones [110] a fitness
landscape is neither a search space nor a search algorithm, therefore, it is not possible to
provide a precise strict formal definition of a fitness landscape. However, the author further
argues that an informal definition may be provided through relating specific elements of both
the search space and search algorithm. The fitness value of each individual in a population
can be viewed as a point in the search space. In [172] it is pointed out that as much as
the fitness values of individuals in a search space may be used to provide some form of

50 Literature Review

visualisation of the search space they still do not provide a complete picture as no information
is provided on how the points are related or connected. The relationship between individuals
may be through direct connectivity, through neighbours or operators such as mutation or
crossover to distances measures or hypergraphs [173]. Merz and Freisleben [146] described
a fitness landscape as the set of all candidate solutions in the search space with the fittest
candidate being the peak of the landscape. The authors formally define the fitness landscape
(S, f, d) of a problem instance of a given combinatorial optimisation problem as being made
up of a set of candidate solutions S, a fitness function f :S7−→ R which assigns a real-valued
fitness to each solution in S and a distance metric d that defines the spatial structure of the
landscape.

2.6.2 Fitness Landscape Analysis

Fitness landscape analysis has been widely carried out in the area of evolutionary algorithms.
A number of fitness landscape analysis methods have been used to try and understand
the behaviour of evolutionary algorithms such as neutrality and evolvability [83, 200] and
epistasis variance [157] among others. A comprehensive survey of fitness landscape analysis
is presented in [144]. There are also a number of application studies found in the literature
that apply fitness landscape analysis to well known problems. In [207], Stadler and Schnabl
performed a fitness landscape analysis on the travelling salesman problem, while in [206]
a fitness landscape analysis of a graph-bipartitioning-problem [130] is presented. In [212]
Tavares et al. carried out a fitness landscape analysis on a multidimensional knapsack
problem. In the following studies [143, 162, 163] fitness landscape analysis is carried out
on hyper-heuristic problems. The automated design approach proposed in this thesis bear
similarities to hyper-heuristics, therefore, the metrics used in the fitness landscape analysis
applied to hyper-heuristic studies are reviewed. These are presented in the next section.

2.6.2.1 Fitness Landscape Analysis Metrics

In this section two of the most commonly used statistical fitness landscape analysis methods,
namely fitness distance correlation and auto-correlation analysis, are reviewed.

i) Fitness distance correlation
This measure is considered to be the most commonly used metric for evaluating problem
difficulty for genetic algorithms [162]. Given a set of points p1, p2, p3...pn and their
fitness values f1, f2, f3...fm, the fitness distance correlation coefficient ρ is defined as
follows:

ρ(f ,dopt) =
Cov(f ,dopt)

σ(f).σ(dopt)
(2.14)

2.6 Fitness Landscape and Fitness Landscape Analysis 51

In the given equation Cov(.,.) is the covariance of two random variables and σ(.) is
the standard deviation. The fitness distance correlation is used to establish how closely
related the set of fitness points and their distances are to the nearest optimum in the
search space given as dopt . A fitness distance correlation value that is less or equal to
-0.5 (i.e. ρ <= -0.5) for maximisation problems is indicative of an easy problem. While
a value of ρ = 1.0 indicates a difficult search as an increase fitness values also means an
increase in distance to the optimal value.

ii) Autocorrelation analysis
This measure is commonly used to evaluate the ruggedness of a search space. Ac-
cording to Merz and Freisleben [146] a fitness landscape can be defined as rugged if
it contains many peaks and if the neighbouring points have a low correlation. The
evaluation of ruggedness using auto-correlation analysis was proposed by Weinberger
[220]. Weinberger investigated the correlation structure of a fitness landscape based on
the autocorrelation function[96]. Weinberger suggested that by performing a random
walk across a landscape the ruggedness of the landscape may be described [143]. The
approach is to perform a random walk of size T, on the landscape via neighbouring
points. A time series of fitness values is then generated as at each step the fitness
is recorded. The autocorrelation function of the time series is then calculated using
equation 2.15

ac fs =
∑

T−s
t=1 (ft − f̄)(ft+s − f̄)

∑
T
t=1(ft − f̄)2

(2.15)

Where ft is the fitness and f̄ is the mean fitness of the T points. The auto-correlation
function establishes the correlation of the fitness of two points in the search space
separated by s steps. The ruggedness of landscapes can be compared using the correlation
lengths. This length can be obtained from the acf using the following equation

cl =− 1
ln |ac f1|

(2.16)

A high correlation length is indicative of a smoother landscape while a low value
indicates the landscape is more rugged.

In [162] Ochoa et al. performed both fitness distance correlation and autocorrelation anal-
ysis in analysing the landscape of a graph based constructive hyper-heuristic for timetabling
problems. In [163] fitness distance correlation analysis is performed on a hyper-heuristic
framework for dispatching rules for production scheduling. Maden et al. [143] perform
autocorrelation analysis on a landscape for a perturbative hyper-heuristic framework.

52 Literature Review

2.7 Summary

This chapter presented a review of the background information. The chapter introduced data
classification outlining the types of classification problems, types of classifiers and metrics
for measuring the effectiveness of classifiers and classification algorithms. A general review
of evolutionary algorithms was presented including a detailed review of the evolutionary
algorithms of interest in this thesis, specifically, a genetic algorithm, grammatical evolution
and genetic programming. The application and configuration of genetic programming as a
classification algorithm was also described. A detailed outline of the manual design of genetic
programming classification algorithms together with the disadvantages of this approach to
design were presented. The concepts of automated design were introduced and related studies
that use a similar approach to automated design was also outlined. The chapter concludes by
presenting fitness landscape analysis techniques. The next chapter presents the methodology
used to meet the objectives set out in Chapter 1.

Chapter 3

Methodology

3.1 Introduction

This chapter outlines the research methodology used in this study to meet the objectives set
out in section 1.2 of Chapter 1. Section 3.2 discusses research methods commonly used in
computer science while section 3.3 discusses the research method chosen for this study and
how it is applied. Section 3.4 outlines how a comparative analysis will be done to achieve
some of the objectives of this study. Section 3.5 presents the classification problem instances
to be used in this study. The technical specifications and summary are provided in sections
3.6 and 3.7 respectively.

3.2 Research Methodologies

According to Demeyer [50] selecting a research methodology to use when conducting
research in the field of computer science is not an easy task. The author argues that this is
because computer science has its foundations based on a number of other fields. Mathematics,
for example, has strong links to computer science. Would this then qualify the application
of mathematical research methodologies such as the concepts of axioms, postulates and
proofs to computer science problems? Engineering, it can also be argued has strong links
to computer science thus can the concepts of quantification, measurements and comparison
be applied in computer science as in engineering. A number of researchers have proposed a
wide range of research methodologies that can be used in computer science.

Oates [161] presents action research and design and creation as being suitable research
methods for computer science. Action research is described as a strategy that involves a
plan-act-reflect cycle which is deemed a suitable research method for solving real-world

54 Methodology

computing problems. Design and creation which is an iterative process involving five steps
awareness, suggestion, development, evaluation and conclusion is described as being suitable
for the creation of new software artefacts.

Johnson [107, 108] identifies four research methodologies that are also commonly used
in computer science and outlined as follows: proof by demonstration is described as bearing
similarities to methods used in engineering it works by iteratively testing and refining a
computer system towards the desired solution or until no further improvements can be
achieved. At each iteration, if the desired solution is not achieved the reasons for failure
are sought and used as corrective measures to make adjustments of the system towards the
desired outcome. Empiricism which is described as having four stages namely, hypothesis
generation, method identification, results compilation and conclusion is mainly used to
evaluate a certain hypothesis. The results stage may involve statistical tests being applied
to refute or accept the hypothesis. Mathematical proof applies the concepts of formal
mathematical techniques to evaluate a specific hypothesis. Hermeneutics is a research
method adopted from social sciences and involves deploying and observing the proposed
computer system in an environment where it is meant to function.

Oates [161] asserts that depending on the research being undertaken different research
methods can be used to meet different objectives or one research method can be used to
meet several objectives. The main aim of the study presented in this thesis is to evaluate
whether evolutionary algorithms (GA or GE) are suitable for automating the design of GP
classification algorithms. This requires that a GA system and a GE system be developed
and implemented thus the proof by demonstration research methodology is deemed to be
the most appropriate. The next section outlines how the proof by demonstration research
methodology is used to meet some of the objectives set out in Chapter 1.

3.3 The Proof by Demonstration Methodology

3.3.1 Objectives One and Two

Objective one is to automate the design of genetic programming classification algorithms
using a genetic algorithm.
Objective two is to automate the design of genetic programming classification algorithms
using grammatical evolution.
To achieve these objectives two systems will be developed and implemented namely, a GA
system and a GE system. The proof by demonstration methodology specifies that once
a system has been implemented it should be tested and the results of the testing used to

3.3 The Proof by Demonstration Methodology 55

refine the system towards the desired outcome. The process alternates between testing and
refinement until the desired outcome is met or until no further improvements can be achieved.
For this study, each of the two systems is implemented with an initial set of primitives and
parameters. The steps to be taken using the proof by demonstration approach to develop each
of the systems are outlined as follows:

GA System The main goal of the genetic algorithm system is to determine design deci-
sions for GP classification algorithms, namely design decision 1 (determine parameters), 2
(determine operators) and 3 (determine control flow). The GA searches in a space of design
decisions for the best configuration of GP classification algorithms. Each GA individual will
represent a GP classification algorithm configuration specifying design decisions 1, 2 and
3. The initial configuration of the GA system will be based on parameters obtained from
related studies outlined in section 2.5.2 of Chapter 2 where the parameters are shown to
have worked well in similar studies like the one presented in this thesis. The following steps
of the proof by demonstration methodology will be performed:

i) develop and implement the GA system for automated design.

ii) test the GA system using randomly selected binary and multiclass classification problem
instances from the list of problem instances outlined in section 3.5.

• Due to the stochastic nature of a GA the system will be tested several times (at
least ten) using different random number generator seeds for each test for each
problem.

iii) If the GA system fails to evolve a valid solution for at least one seed for each problem
tested then changes will be made to one or more of the following:

• genetic algorithm parameters and features such as representation, genetic operators
and probability rates, selection method and associated values, control method,
selection method, fitness function and the number of generations.

• components and elements of the GP design decisions search space such GP repre-
sentation, initial population generation method, initial tree depth, selection method,
genetic operators, genetic operator application rates, offspring depth, number of
generations.

iv) The revised GA system will be tested and if any failures occur these will be reported
and the system will be revised again until the desired outcome is met.

56 Methodology

Section 5.3 of Chapter 4 provides a detailed outline of the proposed approach of using a GA
to automate the design of GP classification algorithms.

GE System Similar to the GA system the main goal of the grammatical evolution system
is to determine design decisions 1, 2 and 3 for GP classification algorithms. Using a grammar
each GE genotype will be mapped on to a GE phenotype representing a GP configuration.
The initial configuration of the GE system will be based on parameters obtained from related
studies outlined in section 2.5.2 of Chapter 2 where the parameters are shown to have
worked well in similar studies which used GE in a similar approach as the one proposed in
this thesis. The following steps of the proof by demonstration methodology will be performed

i) develop and implement the GE system for automated design.

ii) test the GE system using randomly selected binary and multiclass classification problem
instances from the list of problem instances outlined in section 3.5.

• due to the stochastic nature of GE the system will be tested several times (at least
ten) using different random number generator seeds for each test for each problem.

iii) If the GE system fails to evolve a valid solution for at least one seed for each problem
tested then changes will be made to one or more of the following:

• grammatical evolution parameters and features such as representation, genetic
operators and probability rates, selection method and associated values, selection
method, fitness function and number of generations.

• GE grammar specifying components and elements of the GP design decisions
search space such as GP representation, initial population generation method,
initial tree depth, selection method, genetic operators, genetic operator application
rates, offspring depth, number of generations.

iv) The revised GA system will be tested and if any failures occur these will be reported
and the system will be revised again until the desired outcome is met.

Section 6.3 of Chapter 4 provides a detailed outline of the proposed approach of using GE
to automate the design of GP classification algorithms.

3.3.2 Objective Three and Four

Objective three to compare the effectiveness of genetic programming classifiers evolved by
a genetic algorithm to manually designed genetic programming classifiers.

3.3 The Proof by Demonstration Methodology 57

Objective four to compare the effectiveness of genetic programming classifiers evolved by
grammatical evolution to manually designed genetic programming classifiers.
To meet objectives three and four a manually designed GP classification algorithm system
will be developed. The following steps of the proof by demonstration methodology will be
followed:

GP Classification algorithm system :

i) manually develop and implement a GP classification algorithm system.

ii) test the GP system using randomly selected binary and multiclass classification problem
instances from the list of problem instances outlined in section 3.5.

• due to the stochastic nature of GP the system will be tested several times (at least
ten) using different random number generator seeds for each problem.

iii) If the GP system fails to evolve a valid solution for at least one seed for each problem
tested then changes will be made to one or more of the following:

• representation

• initial population generation method

• initial tree depth

• selection method

• genetic operators

• genetic operators application rates

• offspring depth

• number of generations

• type of classifiers

iv) The revised GP system will be tested and if any failures occur these will be reported and
the system will be revised again until the desired outcome is met.

Section 4.2 of Chapter 4 provides a detailed outline of the manual GP approach used in this
study.

58 Methodology

3.4 Comparative Analysis

To achieve objectives three, four, five, six, seven and eight a comparative analysis of the
results of the performance of the automated approaches (GA and GE) and the manual
approach will be conducted. This entails conducting a number of experiments to measure
the performance of each approach. The performance will be evaluated with respect to the
predictive accuracy and design time obtained from applying each algorithm to real-world
binary and multiclass classification problems in the following cases:

1. across varied problem domains summarised in Tables 3.1 and 3.2.

2. in specific domains namely, computer security and financial forecasting.

3.4.1 Experiments

Experiments will be conducted using the three approaches, manual, GA and GE to enable
comparisons. An overview (note a detailed description is provided in Chapters 4, 5 and 6)
of the experiments to be conducted is described as follows:

3.4.1.1 Manual Approach

Three experiments will be conducted for the manual GP approach. These will be differentiated
by the type of classifiers used. Experiment 1 will be configured to evolve arithmetic tree
classifiers, experiment 2 will generate logical tree classifiers and experiment 3 will evolve
decision tree classifiers. For each dataset and for each experiment 30 runs will be conducted
using different random number generator seeds. As indicated earlier classification consists of
training and testing. The best training classifier will then be applied to the test set resulting
in a test predictive accuracy value.

3.4.1.2 Automated Design Approaches

For each dataset 30 runs of the GA automated design approach will be performed resulting
in the best test predictive accuracy result. Similarly, 30 runs of the GE automated design
approach will be performed for each dataset this will also result in the predictive accuracy
result.

3.4.2 Statistical Tests

This section outlines how objectives three, four, five and six will be met. The results obtained
from conducting the experiments on the stipulated datasets will be used to achieve objectives

3.5 Datasets 59

three, four, five and six. A comparative analysis will be conducted using the results. The non-
parametric Friedman test discussed in section 2.2.2 of Chapter 2 will be used to determine
the statistical significance of the obtained results. An analysis of the configurations evolved
by the automated design approaches will also be presented to meet objective six. To achieve
objective seven the manual design time will be compared to the automated design time.

3.4.3 Fitness Landscape Analysis

To meet objective eight fitness landscape analysis will be carried out using the autocorrelation
analysis method described in section 2.6.2.1 of Chapter 2. To carry out the analysis a number
of fitness landscape analysis experiments (described in section 6.4 of Chapter 6) need to be
conducted. The data to be used for the fitness landscape analysis experiments is presented in
section 3.5.3.

3.5 Datasets

The proof by demonstration methodology requires systems to be implemented to prove or
disprove the hypothesis. This entails experiments to be conducted to evaluate the systems.
Problems instances are required to demonstrate the effectiveness of the proposed approaches.
Thus this section presents the problem instances to be used in the experiments. As mentioned
earlier the experimental analysis will be conducted over two scenarios across datasets from
multiple problem domains and on problems from a specific domain.

3.5.1 Multiple Problem Domain Datasets

The experiments for the first case will make use of publicly available datasets containing
binary and multiclass classification problems. These datasets are obtained from the UCI
machine learning repository [15]. Tables 3.1 and 3.2 contains a listing of the 22 datasets to
be used.

60 Methodology

dataset # attributes # numeric #nominal # instances

australian credit data 14 8 6 690
appendicitis 7 7 0 106
breast cancer (Ljubljana) 9 0 9 277
cylinder band 19 19 0 365
diabetes(pima) 8 8 0 768
german credit data 20 7 13 1000
heart disease 13 13 0 270
hepatitis 19 19 0 80
liver disease(Bupa) 6 6 0 345
mushroom 22 0 22 5644
tictactoe 9 0 9 958

Table 3.1 Summary of binary datasets

dataset # attributes # numeric #nominal # instances # classes

balance 4 4 0 625 3
post-operative 8 0 8 87 3
car 6 0 6 1728 4
lymphography 18 3 15 148 4
cleveland 13 13 0 297 5
page-block 10 10 0 5472 5
dermatology 34 34 0 358 6
flare 11 0 11 1066 6
glass 9 9 0 214 7
zoo 16 0 16 101 7
ecoli 7 7 0 336 8

Table 3.2 Summary of multiclass datasets

These problem instances are from varied problem domains. The data is from the follow-
ing problem domains: medical(e.g breast cancer, diabetes), financial(e.g australian credit
data), botany(e.g mushroom), industry(e.g car), dermatology, zoology(e.g zoo), games(e.g
tictactoe), microbiology(e.g ecoli) and publishing(e.g page-block). This will allow the evalu-
ation of the effectiveness of the proposed approach to generalise across multiple problem
domains.

3.5 Datasets 61

3.5.2 Single Domain Datasets

Two real-world problem domains namely, computer security and financial forecasting are
selected for the single domain problem instances. It is widely accepted that data from
the cybersecurity domain usually exhibits low volatility compared to data from financial
forecasting which exhibits high volatility [62, 125]. Using data from these 2 problem domains
will enable the evaluation of the ability of the proposed approach to classify problems with
different degrees of volatility.

1. Cybersecurity

• NSL-KDD 99+20%
The widely used NSL-KDD 99+20% [210] dataset was selected and a set of 6
datasets were created. This dataset contains training and testing subsets and each
record consists of 42 feature attributes including a class label. The label of each
record is one of five main classes namely

i) normal

ii) denial of service (dos)

iii) probe

iv) user to root (u2r)

v) root to local (r2l)

A set of 6 datasets is created by grouping the records based on their classes in a
similar approach as in [36]. This is achieved as follows:

a) set 1 -normal + rest (dos, probe, u2r, r2l)

b) set 2 -dos + rest (normal, probe, u2r, r2l)

c) set 3 -probe + rest (normal, dos, u2r, r2l)

d) set 4 -u2r + rest (dos, probe, normal, r2l)

e) set 5 -r2l + rest (dos, probe, u2r, normal)

f) set 6 -five distinct classes (normal, dos, probe, u2r, r2l)

Each dataset consists of 5000 training instances and 2000 test instances.

2. Financial forecasting
Fifteen stocks were selected from the NASDAQ, NYSE, XETRA and HKSE stock
exchanges. A varied selection was made because different industry stock have a varied
volatility, for example, stock from the technology sector, is more volatile than stock

62 Methodology

from the banking sector. Each dataset comprises of data from 1500 trading days
03/01/2012 to 05/03/2018 (1000 training and 500 test). Each record contains a total of
4 attributes the opening price, highest price, lowest price and the closing price from
which the binary class denoting the actual movement of the stock (up or down) on that
day is determined. Table 3.3 is a listing of the stocks. The first column presents the
name of the stock, the second and third columns number of days the data was split
for training and testing. The fourth column identifies the sector of industry the stock
emanates from and the fifth column is the exchange the stock is listed on.

dataset #training(days) #test(days) sector source
adobe 1000 500 technology NASDAQ
amazon 1000 500 technology NASDAQ
americanExpress 1000 500 financial NYSE
barclays 1000 500 financial NYSE
centerPoint 1000 500 energy NYSE
dominosPizza 1000 500 food NYSE
entergy 1000 500 energy NYSE
horizonPharm 1000 500 pharmaceutical NASDAQ
pfizer 1000 500 pharmaceutical NYSE
mcDonalds 1000 500 food NYSE
microsoft 1000 500 software NASDAQ
SAP 1000 500 software XETRA
standardChartered 1000 500 financial HKSE
timeWarner 1000 500 entertainment NYSE
waltDisney 1000 500 entertainment NYSE

Table 3.3 Financial forecasting datasets

3.5.3 Fitness Landscape Analysis Datasets

The following datasets were selected to be used for the fitness landscape analysis
comparison for the automated design approaches. The selections were done based on

domain datasets
binary class australian credit hepatitis tictactoe
multiclass balance dermatology ecoli
cybersecurity set 1 set 3 set 6
financial forecasting adobe barclays pfizer

Table 3.4 Financial forecasting datasets

3.6 Technical Specification 63

the following criteria:

• binary class - varied problems domains i.e. financial, medical and game data.

• multiclass - varied problem domains and varying classes.

• cybersecurity - normal set, malicious set and multiclass set.

• financial forecasting - varied volatility i.e. adobe most volatile, barclays and
pfizer medium and least volatile respectively.

3.5.4 Data Pre-processing

All continuous attributes of the datasets are normalised using equation 2.9 outlined in
section 2.2.3.2 of Chapter 2 after which discretisation is performed using the equal
frequency interval. Data is partitioned using a 70% training and 30% test split for those
datasets that do not have a training and test subset.

3.6 Technical Specification

The specification of the computer used to develop the software is as follows: Intel(R)
Core(TM) i7-6500U CPU @ 2.6GHz with 16GB RAM running 64 bit Linux Ubuntu.
The IBM SPSS statistical package is used for data discretisation. The simulations were
performed using the CHPC (Centre for High Performance Computing) Lengau cluster
large que. Java 1.8 was used as the software development platform on the Netbeans
8.1 Integrated Development Environment. R was used for autocorrelation analysis and
calculation of the statistical significance of the differences of the test results.

3.7 Summary

This chapter presented the methodology to be used to investigate the automated design of
genetic programming classification algorithms. The chapter also included a description of
the problem instances to be used to carry out an evaluation of the automatically designed GP
classifiers. The next chapter presents the manual design approach of genetic programming
classification algorithms to be used in this thesis.

Chapter 4

Manual Design of Genetic Programming
Classification Algorithm

4.1 Introduction

In this chapter, the manual design of the generational Genetic Programming classification
algorithm used in this study is presented in detail. This is followed by an outline of the
parameter tuning process and a presentation of the parameter values obtained from parameter
tuning. The chapter is organised as follows: sections 4.2 to 4.6 present the manual GP
algorithm while section 4.7 presents the parameter values obtained from parameter tuning
for the considered problem instances. Section 4.8 provides a summary of the chapter.

4.2 Genetic Programming Classification Algorithm

The manual GP classification algorithm uses a generational GP algorithm. Algorithm 5 is an
illustration of the step by step flow of the manual GP algorithm used in this study.

Algorithm 5 Generational Genetic Programming
1: Create an initial population of individuals (classifiers)
2: Apply each individual and establish its fitness
3: while termination condition not met do
4: Select fitter individuals to participate in reproduction
5: Create new individuals using genetic operators and update the population
6: Apply each individual and establish the fitness
7: end while
8: return best individual

4.2 Genetic Programming Classification Algorithm 65

Each individual of the population is a classifier induced by the GP algorithm.

4.2.1 Classifier Type

The manual GP algorithm can evolve one of three types of classifiers namely, arithmetic tree
classifiers, logical tree classifiers and decision tree classifiers. These three tree classifier types
are illustrated in section 2.4.1. of Chapter 2. The type of classifier evolved is determined by
the contents of the function and terminal sets. For this study the function and terminals sets
were defined as follows:

• arithmetic tree type

– function set ={ +,-,*,/(protected) }

– terminal set = {attributes from fitness cases}

• logical tree type

– function set ={AND,OR,EQUAL,DIFFERENT,NOT }

– terminal set = {attributes from fitness cases}

• decision tree type

– function set ={attributes from fitness cases }

– terminal set = {class 0, class 1}(incremental for multiclass classification prob-
lems)

4.2.2 Fitness Function

Predictive accuracy is used as the fitness function. The predictive accuracy of each individual
is evaluated as the sum of all correctly classified fitness cases divided by the total number of
fitness cases. The fitness is assigned as a percentage.

4.2.3 Multiclass Classification Method

Static class boundary determination (SCBD) discussed in section 2.4.7 of Chapter 2 is used
for multiclass classification problems. The class boundaries are defined as follows:

i) three classes: Class1[-inf,-1], Class2[-1,1], Class3[1,inf].

ii) four classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,inf].

66 Manual Design of Genetic Programming Classification Algorithm

iii) five classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,inf].

iv) six classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,8], C6[8,inf].

v) seven classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,8], C6[8,10]
C7[10,inf].

vi) eight classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,8], C6[8,10]
C7[10,12] C8[12,inf].

4.3 Initial Population Generation

The first step of the algorithm is to create an initial population of GP individuals. Individuals
are created by randomly selecting elements from a combination of the respective function and
terminal sets outlined in section 4.2.1. The function set and terminal set used corresponds
to the chosen tree type for the individuals i.e. arithmetic trees, logical trees or decision
trees. The ramped half-and-half method which is the most commonly used initial population
generation method is used for initial tree generation [118, 175].

4.4 Selection

Tournament selection is used to select individuals from the current population to act as
parents for the creation of offspring for the next generation. The values of the tournament
size are discussed in section 4.7.

4.5 Genetic operators

Subtree crossover and grow mutation are used as the genetic operators for the manual GP
algorithm. The associated application rates are discussed in section 4.7.

4.6 Algorithm Termination

Two stopping criteria, maximum number of generations and maximum fitness are defined. If
the maximum number of generations is reached or the predictive accuracy is the maximum
possible (100%) then the algorithm will terminate and the best classifier will be returned.
Values used for the maximum generation are discussed in section 4.7.

4.7 Parameter Tuning 67

4.7 Parameter Tuning

In the manual design approach, parameter tuning is conducted using the iterative trial and
error approach, discussed in section 2.4.8 of Chapter 2. For each parameter, an iterative
approach is followed where one parameter is varied at a time while keeping the others
constant. Trial runs are performed for each parameter value. The final parameter value is
obtained from the trial run that achieves the highest predictive accuracy. This process is
repeated for the next parameter until all parameters have been tuned.

As discussed earlier under manual design three experiments are conducted distinguished
from each other by the type of classifier evolved as follows:

• experiment 1 - arithmetic tree classifiers

• experiment 2 - logical tree classifiers

• experiment 3 - decision tree classifiers

For each experiment, parameter tuning is carried out to determine the parameter values to
be used. In the following section, the values obtained from parameter tuning for the selected
datasets are presented.

4.7.1 UCI Datasets

4.7.1.1 Binary classification

A similar approach to that used in [184] and [142] where parameter tuning was carried out
for each dataset was followed to tune parameter values for binary classification problems
listed in Table 3.1. The commonly used values for GP classification algorithms discussed in
section 2.4.8.1 of Chapter 2 were used as the starting point values for the tuning process.
From parameter tuning a population size of 300 was found to adequately represent the search
space. The algorithm terminates when the maximum predictive accuracy has been achieved
or when the maximum number of generations have occurred. Three hundred generations
were found to be adequate to achieve algorithm convergence on the considered datasets.
The initial tree depth parameter was tuned in the range from 2 to 20 while the maximum
offspring depth parameter range was from 4 to 30 for arithmetic and logical trees and 4 to 10
for decision trees. A tournament selection size range of 2 to 20 was used. It is recommended
that the crossover application rates should be higher than the mutation application rate [118].
Following this recommendation, the application rate for crossover was considered in the
range 50% to 90% and the mutation range 50% to 10%. The mutation depth was tuned

68 Manual Design of Genetic Programming Classification Algorithm

in the range 2 to 10. The tuned parameter values for each dataset are presented in Table
4.1, Table 4.2 and Table 4.3. The first column of each table represents a parameter and
subsequent columns are the datasets indexed as follows: i-australian credit, ii-appendicitis,
iii-breast cancer, iv-cylinder band, v-diabetes ,vi-german credit, vii-heart, viii-hepatitis,
ix-liver disease, x-mushroom and xi-tictactoe.

• Arithmetic trees

parameter dataset

i ii iii iv v vi vii viii vix x xi
pop size 300 300 300 300 300 300 300 300 300 300 300
init tree depth 8 8 3 3 8 6 8 4 7 8 5
max offsp depth 10 10 10 15 10 10 10 12 15 10 10
selection size 4 12 4 4 4 4 8 4 8 12 4
crossover rate 60 90 80 60 60 70 70 65 85 60 90
mutation rate 40 10 20 40 40 30 30 35 25 40 10
mutation depth 5 6 6 6 6 6 4 8 4 4 6
number of gens 300 300 300 300 300 300 300 300 300 300 300

Table 4.1 Arithmetic parameter values

• Logical trees

parameter dataset

i ii iii iv v vi vii viii vix x xi
pop size 300 300 300 300 300 300 300 300 300 300 300
init tree depth 8 8 4 2 4 3 6 3 8 6 4
max offsp depth 10 10 12 10 10 10 10 10 10 12 12
selection size 8 8 8 4 4 4 4 8 8 8 4
crossover rate 80 85 60 60 70 80 80 80 70 80 60
mutation rate 20 15 40 40 30 20 20 20 30 20 40
mutation depth 5 4 5 6 6 4 4 6 5 6 6
number of gens 300 300 300 300 300 300 300 300 300 300 300

Table 4.2 Logical parameter values

4.7 Parameter Tuning 69

• Decision trees

parameter dataset

i ii iii iv v vi vii viii vix x xi
pop size 300 300 300 300 300 300 300 300 300 300 300
init tree depth 2 2 2 3 3 2 2 2 4 3 2
max offsp depth 5 4 5 5 5 5 4 5 5 5 5
selection size 8 8 4 4 4 4 4 4 4 4 8
crossover rate 80 70 70 80 70 80 70 70 70 70 80
mutation rate 20 30 30 20 30 30 30 30 30 30 20
mutation depth 3 3 3 3 3 3 4 3 4 4 3
number of gens 300 300 300 300 300 300 300 300 300 300 300

Table 4.3 Decision tree parameter values

4.7.1.2 Multiclass classification

The more commonly used standard approach [20] of using one problem from the application
domain to determine parameter values and using them on all problems was followed for
tuning values for the multiclass classification datasets. This enables evaluation of the ability
of the algorithm to generalise across problem domains. Using the parameter values found
from literature as initial values a population size of 300 was found to be sufficient to represent
the search space, initial tree depth was tuned in the range 2 to 20, maximum offspring depth
in the range of 4 to 30 for the arithmetic and logical trees while the range of 4 to 10 was used
for the decision trees.

parameter arithmetic logical decision tree

population size 300 300 300
initial tree depth 3 3 2
max offspring depth 8 10 5
tournament size 8 10 8
crossover rate 80 90 70
mutation rate 20 10 30
mutation offspring depth 6 8 4
maximum generations 300 300 300

Table 4.4 Multiclass manual GP parameters

70 Manual Design of Genetic Programming Classification Algorithm

The crossover application rate was tuned in the range 50% to 90% and the mutation rate
in the range 10% to 50%. The tournament size was tuned in the range 2 to 20, mutation
offspring depth in the range 2 to 10 and 300 generations were set at the termination criterion.
Table 4.4 presents the values obtained from parameter tuning. The first column represents
parameters for arithmetic tree classifiers the second column represents logical trees classifiers
and the last column decision tree classifiers.

4.7.2 Cybersecurity Datasets -NSL-KDD99 20% Values

Similarly, trial runs were used to tune parameter values to be used for binary and multiclass
problems from the NSL-KDD99 20% datasets. A population size of 300 was found to
be sufficient to represent the search as values greater than 300 did not yield significant
improvements. The initial tree depth was tuned in the range 2 to 20, maximum offspring
depth in the range of 4 to 30 for the arithmetic and logical trees while the range of 4 to 10
was used for the decision trees. The crossover application rate was tuned in the range 50% to
90% and the mutation rate in the range 10% to 50%. The tournament size value was tuned in
the range 2 to 20, mutation offspring depth in the range 2 to 10 and 200 generations were
found to be sufficient as the termination criterion. Tables 4.5 and 4.6 present the parameter
values obtained for the NSL-KDD99 datasets.

parameter arithmetic logical decision tree

population size 300 300 300
initial tree depth 4 3 2
max offspring depth 10 8 8
tournament size 8 10 8
crossover rate 80 70 90
mutation rate 20 30 10
mutation offspring depth 6 10 8
maximum generations 200 200 200

Table 4.5 NSL-KDD binary problem parameters

4.8 Summary 71

parameter arithmetic logical decision tree

population size 300 300 300
initial tree depth 4 4 2
max offspring depth 12 8 6
tournament size 12 8 4
crossover rate 80 80 85
mutation rate 20 20 15
mutation offspring depth 4 8 4
maximum generations 200 200 200

Table 4.6 NSL-KDD multiclass parameter

4.7.3 Financial forecasting datasets

A parameter tuning approach similar to the cybersecurity datasets was followed for tuning
parameter values for the financial forecasting datasets. Table 4.7 is a listing of the parameter
values obtained for the financial forecasting datasets.

parameter arithmetic logical decision tree

population size 300 300 300
initial tree depth 3 4 2
max offspring depth 12 8 5
tournament size 4 6 8
crossover rate 90 85 70
mutation rate 10 15 30
mutation offspring depth 4 5 4
maximum generations 200 200 200

Table 4.7 Financial forecasting parameters

4.8 Summary

This chapter outlined the manual design of genetic programming algorithms used in this
study. The chapter also presented the parameter values obtained through the parameter tuning
process. It can be argued that a different designer can design a different manual GP system or
develop it quicker. As pointed out the manual design approach used in this thesis used initial
values obtained from the literature and iteratively improved the system. This was done to

72 Manual Design of Genetic Programming Classification Algorithm

eliminate any form of bias and to follow the standard procedure of GP manual design. This
was done in order to produce a manual design that would evolve classifiers that would allow
a fair comparison with the automated design approach. The next chapter outlines the genetic
algorithm approach to automated design for genetic programming classification algorithms.

Chapter 5

Design of GP classification algorithms
using a Genetic Algorithm

5.1 Introduction

In this chapter, the approach for automating the design of genetic programming classification
algorithms using a genetic algorithm is presented. Firstly the considered GP design decisions
are outlined followed by a description of the GA automated design approach. The chapter
is structured as follows: section 5.2 outlines the GP design decisions. This is followed by
section 5.3 which describes the implementation details of the automated design using a GA.
Finally section 5.4 presents a summary of the chapter.

5.2 GP Design Decisions

One of the main objectives of this study is to use a GA to design generational GP classification
algorithms. This is achieved by using a GA to make design decisions and evaluating different
GP classification algorithm designs. To enable this a GA is used to search in the design space
for the most suitable configurations of GP classification algorithms. Based on the outline of
design decisions presented in section 2.5.1.1 of Chapter 2, the following design decisions
are considered for Genetic Programming classification algorithms for this study.

5.2.1 Determination of Parameters Values

As previously stated a GP classification algorithm requires categorical and numerical param-
eters. Both these types of parameters need to be specified. From the discussion presented in

74 Design of GP classification algorithms using a Genetic Algorithm

section 2.4.8 of Chapter 2 the parameters and options of possible values that can be assigned
to each design decision are outlined as follows:

5.2.1.1 Categorical Parameters

a) Tree type
The three commonly used tree types by GP for data classification algorithms are the
options made available for this design decision i.e. arithmetic trees, logical trees, and
decision trees.

b) Initial population generation method
Initial population generation is performed using either the full method, grow method
or ramped half-and-half method. These are the three methods available for this design
decision.

c) Fitness function
Five fitness functions are specified for this design decision. These are based on the
discussions presented in sections 2.2.1 and 2.4.3 of Chapter 2 and are outlined as follows:

i) accuracy

accuracy =
tp + tn

tp + tn + fp + fn
(5.1)

ii) fmeasure

fmeasure = 2(
precision∗ recall
precision+ recall

) (5.2)

iii) weighted accuracy
For this fitness function, a weighted fitness function is specified where accuracy and
fmeasure are weighted and defined as follows:

weightedacc = 0.5∗accuracy+0.5∗ fmeasure (5.3)

iv) random weighted accuracy
This fitness function is similar to the weighted accuracy, the difference is that the
weight of the contribution of accuracy and fmeasure are randomly set before evaluation.
The function is defined by the following equation:

weightedrand = rand ∗accuracy+(1− rand)∗ fmeasure (5.4)

5.2 GP Design Decisions 75

v) true positive rate

t pr =
tp

tp + fn
(5.5)

d) Selection method
Two options tournament and fitness proportionate selection are the options specified for
this design decision.

5.2.1.2 Numerical Parameters

a) Population size
Three population size values 100, 200, and 300 are available for this parameter. These
values are deemed to adequately represent the search space.

b) Maximum initial tree depth
The maximum initial tree depth parameter value is randomly assigned from the range
[2–15] for arithmetic trees and logical trees and [2–8] for decision trees. As pointed out
in [20] decision trees can grow exponentially leading to high computational costs. Hence
the commonly used range of maximum tree depths for decision trees are significantly
narrower than for the other type of trees.

c) Tournament selection size
This parameter is randomly assigned any value in the range [2–10].

d) Maximum offspring depth
The maximum offspring depth parameter value is randomly assigned from the range
[2–15] for arithmetic trees and logical trees and [2–8] for decision trees.

e) Mutation depth
The mutation depth parameter value is randomly assigned from the range [2–6].

f) Termination
Two termination criteria are defined namely, desired fitness and maximum number of
generations. The desired fitness value is 100% while the maximum number of generations
can be set in the range 50-200.

76 Design of GP classification algorithms using a Genetic Algorithm

5.2.2 Determination of Genetic Operators

A generational GP algorithm makes use of genetic operators to evolve offspring for each
subsequent generation after initial population generation. For this design decision three
genetic operators are specified as follows:

1. Crossover
Subtree crossover as described in section 2.3.2.4 of Chapter 2 is specified for this
design decision.

2. Mutation
The two commonly used mutation operators are specified for this design decision
namely, grow mutation and shrink mutation. These are implemented as described in
section 2.3.2.4 of Chapter 2.

3. Creation
This operator functions by replacing the current population with a new population.
Genetic material from the previous population is not used in the regeneration of new
individuals.

To evolve the next generation a combination of the genetic operators is used. Each
combination has a specific application rate of a genetic operator. The genetic operator
combination options are presented as follows:

a) Crossover and mutation
For this combination, the application rates are randomly assigned from the range of
[0%–100%]. For example, if crossover is randomly assigned an application rate of 71%
the mutation application rate is assigned a value of 29%. The sum of the crossover
application rate and mutation application rate should add up to 100%.

b) 100% crossover
This combination regenerates the whole population using only crossover. Although
combination a) can achieve this crossover rate the probability of it being selected is very
low (1%) and therefore it is explicitly presented as an option.

c) 100% mutation
This combination regenerates a new population using mutation only. Similar to 100%
crossover this value of the mutation rate can be set by combination a) but the probability
is also low therefore it is explicitly presented as an option.

5.3 Automated Design of GP Classification Algorithms using a Genetic Algorithm 77

d) Crossover and mutation preset rates
This combination makes available a range of rates which are multiples of 10. A pair will
be randomly selected from the range and both crossover and mutation are applied using
the selected rates. The range is defined as follows (crossover, mutation) [10,90; 20,80;
30,70; 40,60; 50,50; 60,40; 70,30; 80,20; 90,10]. For example, if the first pair is selected
the new generation will be evolved by 10% crossover and 90% mutation.

e) 100% mutation and (rand%)crossover
This combination applies 100% mutation to the current population and then a random
rate of crossover in the range of [0%–100%] is applied to the new population.

f) 100% crossover and (rand%)mutation
This combination applies 100% crossover to the current population and then a random
application rate of mutation in the range [0%–100%] is applied to the new population.

g) Creation
This option is used to replace the current population with a new population.

5.2.3 Determination of the Control Flow

This design decision determines the order in which the processes of the algorithm occur. After
initial population generation, a combination of genetic operators outlined in section 5.2.2
are randomly chosen to evolve the next generation. One of two options is randomly selected
for this design decision. The control flow can be fixed or random. If the control flow is set
to fixed a selected combination of genetic operators will be used for regeneration until the
algorithm terminates. If the selection is random a different combination of genetic operators
is randomly chosen to evolve each subsequent generation until algorithm termination.

5.3 Automated Design of GP Classification Algorithms us-
ing a Genetic Algorithm

This section outlines how a genetic algorithm is used to automate the design of GP classifica-
tion algorithms. As defined earlier in Chapter 2 the term configuration in this thesis is used
to refer to a set of values for all the design decisions of an algorithm. Thus for automating
the design of GP classification algorithms using a GA we use the GA to search for the best
configuration of GP classification algorithms for a problem at hand. The GA makes the

78 Design of GP classification algorithms using a Genetic Algorithm

design decisions for configuring the GP classification algorithm. In this thesis, the automated
design of GP classification algorithms using a GA approach is termed autoGA.

5.3.1 Genetic Algorithm for autoGA

A generational GA is used by the autoGA approach. Algorithm 6 is an outline of the algorithm
flow. A GA individual is a GP classification algorithm configuration. The GA searches
for a configuration that will yield the best classifier. If after initial population generation
and evaluation, the desired outcome is not met individuals undergo crossover and mutation,
producing new GP configurations.

Algorithm 6 Generational Genetic Algorithm
1: Create initial population
2: Calculate fitness of all individuals
3: while termination condition not met do
4: Select fitter individuals for reproduction
5: Recombine individuals
6: Mutate individuals
7: Evaluate fitness of all individuals
8: Generate a new population
9: end while

10: return best individual

The fitness of each GA individual is evaluated by using the configuration to configure GP
classification algorithms. GP is then used to solve a classification problem. The accuracy of
the best testing GP evolved classifier is assigned as the fitness of the GA individual. This
process is repeated from generation to generation until the maximum number of specified
generations is met or the desired accuracy is achieved. Figure 5.1 provides an overview of
the proposed autoGA approach.

5.3 Automated Design of GP Classification Algorithms using a Genetic Algorithm 79

Fig. 5.1 AutoGA overview

5.3.1.1 Representation

Each element of the population is a fixed length chromosome representing the design
decisions that need to be made for the GP classification algorithm. Each gene represents one
of the design decisions specified in section 5.2

g0

0

g1

1

g2

2

g3

3

g4

4

g5

5

g6

6

g7

7

g8

8

g9

9

g10

10

g11

11

g12

12

g13

13

Fig. 5.2 AutoGA chromosome

Figure 5.2 is an illustration of the structure of an autoGA chromosome. An individual
is a chromosome made up 14 genes labelled from g0 to g13. Integer values are used to
encode the genes. As argued in [63] integer encoding provides a more precise and accurate
representation of real-world problems. Integer values are therefore used to represent the
design decisions for GP classification algorithms. The first gene g0 of the chromosome,
indexed by 0 represents the tree type (classifier type) i.e. arithmetic tree, logical tree or
decision tree. The second gene g1 represents the population size parameter, the third gene
g2 represents the tree generation method and the maximum initial tree depth parameter is
represented by the fourth gene g3. The fifth gene g4 represents the maximum offspring
depth while g5 represents the selection method, g6 the tournament selection size, g7 the
reproduction rates, g8 the mutation type, g9 the mutation depth, g10 the genetic operator
combinations, g11 the control flow, g12 the fitness function and g13 represents the number of
generations. Table 5.1 summarises the options for the different design decisions for the GP
classification algorithm described in section 5.2.

80 Design of GP classification algorithms using a Genetic Algorithm

Design Decision Range of possible values

0 tree type 0 - arithmetic, 1 - logical, 2 - decision
1 population size 100, 200, 300
2 tree generation 0- full, 1- grow, 2- ramped half and half
3 initial tree depth 2 - 15 (decision tree 2 -8)
4 max offspring depth 2 - 15 (decision tree 2 -8)
5 selection method 0 - fitness proportionate, 1 - tournament selection
6 selection size 2 - 10
7 reproduction rates 0 - 100 crossover (mutation = 100-crossover)
8 mutation type 0 - grow mutation,1 - shrink mutation,
9 max mutation depth 2 - 6
10 control flow 0 - fixed 1 - random
11 operator combination 0 - 6
12 fitness type 0 - 4
13 number of generations binary - [50-200](multiclass- 50,100,200)

Table 5.1 Design decisions and range of values

5.3.2 Initial Population Generation

Initial population generation is the first step of the autoGA algorithm. A specified number of
GA chromosomes are randomly created. Each gene of a chromosome is randomly assigned a
value from the list of possible values for each gene as specified in Table 5.1. For example the
possible values that can be assigned to g0 is 0,1, or 2. If g0 is randomly assigned a value of 2
then decision tree classifiers will be evolved by the GP algorithm. If g1 is randomly assigned
a value of 200 this specifies a GP population size of 200. All the genes from g0 to g13 are
assigned values randomly selected from the list of possible values.

0

g0

100

g1

1

g2

10

g3

12

g4

0

g5

8

g6

87

g7

0

g8

4

g9

0

g10

0

g11

4

g12

100

g13

Fig. 5.3 AutoGA individual

Figure 5.3 is an example of a typical autoGA individual which depicts the GP classifica-
tion algorithm configuration listed in Table 5.2.

5.3 Automated Design of GP Classification Algorithms using a Genetic Algorithm 81

Parameter Value

tree type arithmetic
population size 100
tree generation method grow
initial tree depth 10
max offspring depth 12
selection method fitness proportionate
crossover rate 87 (mutation = 100-crossover = 13)
mutation type grow
mutation depth 4
control flow fixed
operator combination crossover/mutation
fitness function tpr
number of generations 100

Table 5.2 AutoGA evolved GP parameter settings

5.3.3 Fitness Function and Selection

The fitness of each autoGA individual is evaluated by applying the configuration to a GP
classification problem. GP classification consists of two phases, a training phase, and testing
phase. During the training phase, thirty runs of a GP classification algorithm configured
using the autoGA configuration is performed using a training set. The best evolved classifier
from the thirty runs is then applied to a test set resulting in a test accuracy result. The result
of the testing phase is used as the fitness of the autoGA individual. Fitness proportionate is
used to select parents as described in section 2.3.1.3 of Chapter 2

5.3.4 Crossover

For autoGA, uniform crossover is used to evolve GP configurations as described in section
2.3.1.4 of Chapter 2.

82 Design of GP classification algorithms using a Genetic Algorithm

P1 1

0

100

1

0

2

4

3

12

4

0

5

4

6

60

7

1

8

5

9

0

10

0

11

4

12

100

13

P2 0

0

200

1

1

2

2

3

8

4

1

5

8

6

83

7

1

8

6

9

1

10

3

11

2

12

200

13

Off1 1

0

100

1

1

2

4

3

8

4

0

5

4

6

83

7

1

8

5

9

1

10

3

11

2

12

100

13

Off2 0

0

200

1

0

2

2

3

12

4

1

5

8

6

60

7

1

8

6

9

0

10

0

11

4

12

200

13

Fig. 5.4 AutoGA uniform crossover

Figure 5.4 is an illustration of an example of the uniform crossover operator implemented
in this study. Assuming two individuals P1 and P2 are selected to act as parents and applying
the crossover operator results in two offspring, namely Off1 and Off2. Off1 consists of genes
0,1,3,5,6,8,9 and 13 from P1 and genes 2,4,7,10,11 and 12 from P2. Similarly Off2 constitutes
of genes 2,4,7,10,11 and 12 from P1 and genes 0,1,3,5,6,8,9 and 13 from P2. These offspring
are added to the population of the next generation.

5.3.5 Mutation

The implemented mutation operator is discussed in section 2.3.1.5 of Chapter 2. This is
illustrated in Figure 5.5 where an individual, P is selected to act as a parent.

P 2

0

200

1

0

2

4

3

6

4

0

5

4

6

21

7

1

8

4

9

0

10

0

11

1

12

200

13

Off 1

0

200

1

0

2

4

3

12

4

0

5

4

6

21

7

1

8

4

9

0

10

0

11

1

12

100

13

Fig. 5.5 AutoGA random mutation

Applying the mutation operator results in the offspring, Off. Genes 0,4 and 13 of parent
P are mutated.

5.3 Automated Design of GP Classification Algorithms using a Genetic Algorithm 83

5.3.5.1 Elitism

Elitism, as previously stated, involves copying a specified number of the fittest individu-
als from the current population into the next generation. This concept is adopted in this
implementation of the GA.

5.3.6 Termination

Two termination conditions are set for the automated design GA implementation. The
algorithm proceeds from generation to generation until a preset number of generations have
been completed then the algorithm terminates or if the desired fitness of the GA individuals
is achieved. The individual with the best fitness is returned.

5.3.7 AutoGA Parameter Settings

Parameter tuning was carried out to establish parameter values for the genetic algorithm
using trial runs. A population size of 20 was found to adequately represent the search space.
A uniform crossover probability rate of 80% was established to suitable with a mutation
rate of 10% . In order to preserve good configurations, an elitism rate of 10% was found
to be adequate. Fifty generations were found to be an adequate value for convergence for
the multiple problem domain datasets while a value of 30 was found to be suitable for the
single domain problems i.e. cybersecurity and financial forecasting. Table 5.3 summarises
the parameter settings for the autoGA approach.

parameter value

population size 20
selection method fitness proportionate
Uniform crossover rate 80%
Bit mutation rate 10%
Elitism 10%
fitness function accuracy
maximum generations 50 (30 1)

Table 5.3 AutoGA parameter settings

The autoGA approach uses the same function and terminal sets as the manual design
configuration presented in section 4.2.1 of Chapter 4

1NSL-KDD and Financial forecasting

84 Design of GP classification algorithms using a Genetic Algorithm

5.4 Summary

In this chapter, the automated design approach for configuring genetic programming clas-
sification algorithms using a genetic algorithm was presented. The chapter outlined the
design and configuration of a genetic algorithm for automated design. The results of the
effectiveness of using a genetic algorithm for automated design are presented in Chapter 7.
The next chapter presents the grammatical evolution approach for automating the design of
GP classification algorithms.

Chapter 6

Design of GP classification algorithms
using Grammatical Evolution

6.1 Introduction

In this chapter, the approach for automating the design of genetic programming classification
algorithms using grammatical evolution is presented. The Chapter outlines the GP design
decisions made by grammatical evolution and then presents the approach of how GE is
used to make the considered design decisions. The chapter is structured as follows: section
6.2 outlines the GP design decisions. This is followed by section 6.3 which describes the
implementation details of the automated design approach using GE and section 6.4 present
the fitness landscape analysis evaluation settings. Finally, section 6.5 presents a summary of
the chapter.

6.2 GP Design Decisions

The design of generational GP classification algorithms using grammatical evolution involves
GE making design decisions. This requires GE conducting a search for the most suitable
configurations of GP classification algorithms in a GP design search space. Grammatical
evolution is used to determine the following GP classification algorithm design decisions:

1. determination of parameter values:

• categorical (as specified in detail in section 5.2.1.1 of Chapter 5)

• numerical (as specified in detail in section 5.2.1.2 of Chapter 5)

86 Design of GP classification algorithms using Grammatical Evolution

2. determination of genetic operators (as specified in detail in section 5.2.2 of Chapter
5).

3. determination of the control flow (as specified in detail in section 5.2.3 of Chapter 5).

6.3 Automated Design of GP Classification Algorithms us-
ing Grammatical Evolution

This section outlines how grammatical evolution is used to automate the design GP clas-
sification algorithms. As stated earlier GE is used to make GP design decisions resulting
in configurations of GP classification algorithms. The configurations are then evaluated on
selected classification problems and the best configuration is then selected. In this thesis the
GE approach for automating the design of GP classification algorithms is termed autoGE.

6.3.1 Grammatical Evolution Algorithm for AutoGE

A generational GE algorithm is used by the autoGE approach. Algorithm 7 is an outline of
the step by step generational GE algorithm used by autoGE.

Algorithm 7 Generational Grammatical Evolution
1: Create an initial population of variable length binary strings
2: Map via a BNF grammar

a) binary strings to expression using production rules

3: Evaluate fitness
4: do while {termination condition not met}
5: Select fitter individuals for reproduction
6: Recombine selected individuals
7: Mutate offspring
8: Evaluate fitness of offspring
9: Replace all individuals in the population with offspring

10: end while
11: return best individual

An initial population of GE individuals(genotypes) is randomly created and the fitness
of each individual is evaluated. Each individual of the GE population represents a GP
classification algorithm configuration. The fitness of an individual is evaluated by using it
to configure a GP classification algorithm. The GP classification algorithm is then applied
to a classification problem. The predictive accuracy value of the best testing GP classifier

6.3 Automated Design of GP Classification Algorithms using Grammatical Evolution 87

is assigned as the fitness of the GE individual. If after initial population generation and
evaluation, the desired outcome is not met individuals undergo crossover and mutation,
producing new GE individuals (GP configurations). This process is repeated from generation
to generation until the maximum number of specified generations is met or the desired
accuracy is achieved. Figure 6.1 provides an overview of the proposed autoGE approach.

Fig. 6.1 AutoGE overview

6.3.1.1 Representation

Each individual of the population is a variable length chromosome of codons where each
codon is an 8-bit binary string. Figure 6.2 is an illustration of an example of an autoGE
individual which is 15 codons long.

Fig. 6.2 AutoGE individual

6.3.2 Initial Population Generation

AutoGE individuals of the initial population are generated by randomly creating codons.
The length of each genotype of the initial population lies in the range 14–16 codons and is
randomly created during initial population generation. The number of genotypes created for
the initial population is specified by the population size parameter.

6.3.3 Mapping

The grammar used to map autoGE genotypes to autoGE phenotypes is depicted in Figure 6.3.
The grammar specifies possible values of both categorical and numerical parameters required

88 Design of GP classification algorithms using Grammatical Evolution

by a GP classification algorithm. Genetic operator combinations and control flow options are
also defined. Each genotype is mapped to a phenotype which represents a GP configuration.
The mapping process uses equation 2.12 and follows the same procedure discussed in section
2.3.3.2 of Chapter 2. For example, given the following autoGE genotype with the following

Fig. 6.3 Grammar

codon sequence 10,215,30,48,7,8,220,30,40,73,5,11,21,112,32 the mapping proceeds as
follows:
Starting with the start symbol there is only one production rule which maps to the non-
terminal <gp−parameters>, therefore, a codon value is not used. The first codon value 10
is used to translate the non-terminal <gp−parameters> to select one of three production
rules using the mapping function this results in
10 % 3 = 1 7→ logical(<tree−gen>).
The second production rule is selected. This option defines the tree type design decision
and specifies logical trees. The rule contains a non-terminal <tree−gen> which needs to
be translated. The next codon 215 is used to translate the non-terminal and results in the
following selection:
215 % 3 = 2 7→ logical (ramped half-and-half(<params>))
The selected production rule specifies the tree generation method to be used by GP. There is

6.3 Automated Design of GP Classification Algorithms using Grammatical Evolution 89

also a non-terminal in the selected rule which requires mapping. However, there is only one
rule for the non-terminal <params> and this is directly assigned without using a codon value.
logical (ramped half-and-half (<popSize>,<itree−depth>,< maxOffspring−depth>, <selection>,
<sel−size>,<reprod−rates>, <mut−type>,<maxMutation−depth>, <reprod−seq>, <operator−pool>,
<fitnes−type>, <generations>))
The next non-terminal to be mapped is <popSize> using the codon value 30 and this results
in :
30 % 3 = 0 7→ logical (ramped half-and-half (100,<itree−depth>,< maxOffspring−depth>,
<selection> ,<sel−size>, <reprod−rates>, <mut−type>, <maxMutation−depth>, <reprod−seq>,
<operator−pool>, <fitnes−type>, <generations>))
This specifies the population size and assigns the value 100. This process continues translat-
ing all non-terminals to terminals using the codon values. Figure 6.4 illustrates the complete
mapping process. The left side of Figure 6.4 identifies the current step, the middle is the
genotype to phenotype mapping at that step and the right side identifies the production rule
evaluated from the codon value to translate the next non-terminal.

90 Design of GP classification algorithms using Grammatical Evolution

Fig. 6.4 Genotype-phenotype mapping

The resulting mapping (phenotype) is given as follows
logical (ramped half-and-half (100,8,2,fitnessProportionate,24 ,grow, 2,random,0,1,50))
This autoGE phenotype is then translated into a GP configuration as listed in Table 6.1.

6.3 Automated Design of GP Classification Algorithms using Grammatical Evolution 91

Parameter# Value

tree type logical
population size 100
tree generation method ramped half and half
initial tree depth 8
max offspring depth 2
selection method fitness proportionate
crossover rate 24 (mutation = 100-crossover = 76)
mutation type grow
mutation depth 2
control flow random
operator combination crossover-mutation
fitness function fmeasure

number of generations 50

Table 6.1 AutoGE evolved GP parameter settings

6.3.4 Fitness Function and Selection

The fitness of each genotype is evaluated by using the mapped phenotype to configure a GP
classification algorithm and then applying the GP classification algorithm to a classification
problem at hand. Training and testing are carried out. During training, thirty independent
runs of the GP classification algorithm are performed using a training set. The best evolved
classifier from the training is then applied to the test set resulting in a test accuracy value.
This value is assigned as the fitness of the genotype. Tournament selection is used to select
parents to evolve the next generation as described in section 2.3.1.3 of Chapter 2.

6.3.5 Crossover

Single point crossover is used as described in section 2.3.3.4 of Chapter 2.

Fig. 6.5 AutoGE single point crossover

92 Design of GP classification algorithms using Grammatical Evolution

As stated tournament selection is used to select two genotypes from a current population
to act as parents. Figure 6.5 is an illustration of the single point crossover implemented.
Although in Figure 6.5 the codons are presented in their integer values single point crossover
can be applied to either binary strings or integer values. In this thesis, binary strings are
used. If crossover does not take place as determined by the crossover probability rate the two
selected parents are added to the next population.

6.3.6 Mutation

Bit mutation described in section 2.3.1.5 of Chapter 2 is used as the mutation operator for
autoGE. Tournament selection is used to select a parent for mutation. After undergoing
mutation the genotype is added to the new population.

6.3.7 Elitism

In order to preserve fitter genotypes elitism is used. A percentage of the fittest genotypes
from the current generation is copied to the next generation.

6.3.8 Termination

The algorithm proceeds from generation to generation until a preset number of generations
have been completed or until the desired fitness is met then the algorithm terminates. The
genotype with the best fitness is returned. This is the genotype with the best GP classification
configuration for the problem considered.

6.3.9 AutoGE Parameter Settings

Parameter tuning was carried out using trial runs to establish optimal(near) parameter values
for the autoGE approach. The autoGE algorithm is configured with a population size of 20.
The size of chromosomes in the initial population is randomly selected in the range of 14
to 16 with a codon size of 8 bits. A crossover probability rate of 85% and a bit mutation
probability rate of 5% were found to be suitable. A tournament selection size of 4 was
established. An elitism rate of 10% was found to be adequate while 30 generations were
found to be suitable for algorithms convergence Table 6.2 summarises the parameter settings
for the autoGE approach.

6.4 Fitness Landscape Analysis Settings 93

parameter value

Population size 20
Selection method tournament (size 4)
Single point crossover rate 85%
Bit mutation rate 5%
Elitism 10%
fitness function accuracy
Individual size 14-16
Wrapping yes
Maximum generations 30

Table 6.2 AutoGE settings

The autoGA approach uses the same function and terminal sets as the manual design
configuration presented in section 4.2.1 of Chapter 4

6.4 Fitness Landscape Analysis Settings

The fitness landscapes of the design spaces searched by the automated design approaches are
evaluated using the autocorrelation analysis method described in section 2.6.2.1 of Chapter
2. For each approach, a random walk of 30 steps (i.e. T = 30) is generated and the best fitness
is recorded. Each step consists of 30 generations of the considered approach. As in [143]
mutation is used as the neighbourhood operator. From the obtained results the autocorrelation
function will be calculated using equation 2.15. The autocorrelation length is evaluated from
the autocorrelation function using equation 2.16. The problem instances used for fitness
landscape analysis are presented in section 3.5.3 of Chapter 3. As stated previously it is not
possible to carry out a fitness landscape analysis comparison of the automated approaches to
manual design since manual design does not search a structured a design space. The results
of the comparison of the fitness landscape analysis of the autoGA and autoGE approaches
are presented in section 7.6 of Chapter 7.

6.5 Summary

In this chapter, an outline of the grammatical evolution approach for automating the design
of GP classification algorithms was presented. The design decisions considered by the GE
approach are also presented. The chapter also outlined a listing of the GE grammar for the

94 Design of GP classification algorithms using Grammatical Evolution

automated design approach. The setting used for the autoGE approach and for performing
the fitness landscape analysis were also presented. The results of evaluating the effectiveness
of the autoGE approach are presented in the next chapter.

Chapter 7

Results and Discussion

7.1 Introduction

In this chapter, the results of applying the autoGA and autoGE approaches to the classification
problem instances described in Chapter 3 are presented. Furthermore, the results are
compared to those obtained from applying the manual design approach outlined in Chapter
4 to the same problem instances. As previously stated the manual design approach involves
conducting three experiments differentiated by the classifier type used. For the convenience of
presenting the results, these are termed as arithmetic, logical and decision tree. The chapter is
structured as follows: section 7.2 presents the results of applying the three approaches, namely
autoGA, autoGE and manual design on multiple datasets from multiple problem domains.
This is followed by sections 7.3 and 7.4 which present the results of applying the three
approaches to specific problem domains, namely cyber-security and financial forecasting
respectively. Section 7.5 presents the design times achieved across all experiments and finally,
section 7.6 presents the results of an evaluation of the fitness landscape analysis.

7.2 Multiple Domain Problems

In this section the results of applying the three approaches on binary and multiclass clas-
sification problems obtained from multiple domains are presented and compared. Section
7.2.1 presents the binary classification results while the multiclass classification results are
presented in section 7.2.2.

96 Results and Discussion

7.2.1 Binary Classification Results

7.2.1.1 Training

Table 7.1 presents the training results. Each row represents a dataset while each column is
the applied approach. The results are the best training fitness ± standard deviation (at the
95% percentile confidence interval) over thirty independent runs for each approach. From the

dataset arithmetic logical decision tree autoGA autoGE
aus credit 0.89±0.01 0.91±0.01 0.86±0.01 0.89±0.01 0.91±0.01
appendicitis 0.97±0.02 0.89±0.02 0.89±0.02 0.95±0.02 0.95±0.02
breast cancer 0.98±0.01 0.97±0.01 0.94±0.02 0.98±0.01 0.99±0.01
cylinder band 0.74±0.01 0.77±0.01 0.64±0.01 0.75±0.01 0.80±0.04
diabetes (pima) 0.78±0.07 0.78±0.07 0.69±0.07 0.75±0.01 0.74±0.04
german credit 0.76±0.06 0.76±0.06 0.73±0.06 0.85±0.07 0.86±0.07
heart disease 0.92±0.01 0.94±0.01 0.79±0.01 0.87±0.01 0.95±0.01
hepatitis 0.98±0.03 0.98±0.03 0.88±0.02 0.93±0.02 0.98±0.03
liver disease 0.80±0.01 0.73±0.01 0.62±0.01 0.80±0.01 0.76±0.01
mushroom 0.86±0.00 0.86±0.00 0.60±0.00 0.88±0.00 0.88±0.00
tictactoe 0.87±0.07 0.84±0.07 0.72±0.07 0.94±0.07 0.99±0.00
averages 0.87±0.03 0.86±0.02 0.76±0.03 0.87±0.02 0.89±0.02

Table 7.1 Training accuracy for binary classification problems

obtained results, the autoGE approach trained better than the other classification approaches
on 5 of the 11 datasets and tied on 3 datasets. The autoGA approach tied on 2 datasets,
while the manually designed arithmetic tree classifiers trained well on 1 dataset and tied on 3
datasets. Logical tree classifiers tied on the 3 datasets. On average across all datasets, the
autoGE approach had the best training results of 89% followed by the autoGA and arithmetic
tree classifiers which tied at 87%. The logical and decision tree classifiers averaged 86% and
76% respectively.

7.2.1.2 Testing

Table 7.2 presents the test accuracy results of the best training individual ± standard deviation.
From the test results both the autoGA and autoGE approaches tested better on 4 datasets
each and tied on 1 while logical tree classifiers tested well on 1 dataset. On average across
all datasets, the autoGE approach tests better than all the other approaches. This was the
expected result as the training results showed the autoGE approach trained better than the
other approaches, therefore, it was anticipated that it should test better as well. The test
average across all datasets of the autoGE approach was found to be 81% while the autoGA

7.2 Multiple Domain Problems 97

approach averaged 79%. The manually designed arithmetic and logical tree classifiers both
had an equivalent test accuracy average of 74% and the decision tree classifiers averaged
69%. The statistical significance of the testing accuracy results was evaluated using the non-

dataset arithmetic logical decision tree autoGA autoGE
aus credit 0.83±0.01 0.84±0.01 0.85±0.01 0.88±0.01 0.86±0.01
appendicitis 0.84±0.03 0.78±0.03 0.85±0.03 0.91±0.03 0.94±0.03
breast cancer 0.97± 0.02 0.93±0.03 0.90±0.04 0.97±0.02 0.98±0.02
cylinder band 0.66±0.01 0.68±0.01 0.69±0.01 0.75±0.01 0.74±0.01
diabetes (pima) 0.64±0.01 0.75±0.01 0.69±0.01 0.70±0.07 0.60±0.01
german credit 0.65±0.01 0.65±0.01 0.65±0.01 0.68±0.01 0.66±0.05
heart disease 0.77±0.02 0.64±0.02 0.44±0.01 0.72±0.02 0.81±0.08
hepatitis 0.67±0.03 0.75±0.03 0.75±0.03 0.75±0.03 0.88±0.02
liver disease 0.64±0.01 0.64±0.01 0.44±0.01 0.71±0.01 0.65±0.01
mushroom 0.78±0.00 0.75±0.00 0.66±0.00 0.81±0.00 0.81±0.00
tictactoe 0.73±0.01 0.76±0.01 0.65±0.01 0.86±0.01 0.98±0.01
averages 0.74±0.01 0.74±0.02 0.69±0.02 0.79±0.02 0.81±0.02

Table 7.2 Testing accuracy for binary classification problems

parametric Friedman test with a post-hoc Bonferroni–Dunn test for pairwise comparison as
recommended by [51] for comparing multiple classification approaches on multiple datasets.
The details of this approach to evaluating statistical significance were presented in section
2.2.2 of Chapter2. The testing results were ranked with the best performing approach
assigned a rank of 1 and the least a rank of 5. If approaches tied the affected positions
were averaged amongst the approaches involved in the tie. Following the procedure of the
Friedman test, the average ranks for each approach were calculated and these are presented
in Table 7.3. From the table of ranks, the autoGE approach was ranked 1st with an average

algorithm arithmetic logical decision autoGA autoGE
average rank 3.818 3.590 4 1.818 1.772
position 4 3 5 2 1

Table 7.3 Average ranks for binary classification problems

rank of 1.772 followed by the autoGA approach with an average rank of 1.818. The best
performing manual design approach with an average rank of 3.818 was the logical tree
classifiers which were ranked 3rd. Arithmetic and decision tree classifiers were ranked 4th
and 5th respectively. Using the values from Table 7.3 and Equation 2.6 the calculation of the
Friedman’s χ2

F is given by:

98 Results and Discussion

χ
2
F =

12∗11
5∗6

[
(3.8182 +3.5902 +42 +1.8182 +1.7722)− 5∗62

4

]
= 21.756 (7.1)

and from Equation 2.7 Iman’s F f statistic is given by:

Ff =
(11−1)∗21.756

11∗ (5−1)−21.756
= 9.78 (7.2)

With 5 approaches and 11 data sets, FF is distributed according to the F distribution with
5 -1 = 4 and (5-1)*(11-1) = 40 degrees of freedom. The critical value of F(4,40) for α =
0.05 is 2.608 and since FF >F0.05(4,40)(9.78 >2.608) the null hypothesis which states that
all the classification approaches perform equivalently was rejected. Using the two-tailed
Bonferroni-Dunn test a pairwise comparison is carried out between the best performing
manual design approach, in this case, the logical tree classifiers and the automated designed
algorithms. The critical value q0.05 for 5 classification methods is 2.498, therefore, from
Equation 2.8 the critical difference CD is evaluated to:

CD = 2.498∗
√

5∗6
11∗6

= 1.68 (7.3)

The difference between the average rank of the logical tree classifiers and autoGE is 1.82
and the difference between the logical tree classifier average and autoGA is 1.77. Both
these values are greater than the CD (1.68) value which suggests that the performance of
the automated designed classification approaches are significantly better than the manually
designed approaches for the considered datasets. However, the difference in performance
between autoGA and autoGE is found to be not significant, therefore, their performance is
considered to be equivalent.

approach difference significance
logical - autoGE 1.82(>1.68) yes
logical - autoGA 1.77 (>1.68) yes
autoGE - autoGA 0.05(<1.68) no
Table 7.4 Statistical significance summary: binary classification problems

Table 7.14 presents a summary of the statistical significance analysis of the performances
of the automated design approaches and the best performing manual design approach.

From the obtained results the autoGE approach consistently trains and tests better than the
other approaches. Although the autoGE approach achieves better training and test averages
the differences in performance between the autoGE approach and autoGA approach across all

7.2 Multiple Domain Problems 99

datasets is not statistical significant. Both automated design approaches perform significantly
better than manual design. Either approach of automated design is found to be suitable to
solve the binary classification problems considered.

7.2.1.3 Configurations

Table 7.5 outlines the best configurations for the binary datasets evolved by the automated
design approach for each dataset. The first column represents the parameters in the configura-
tion and the subsequent columns are the parameter values for each dataset indexed as follows:
i-australian credit, ii-appendicitis, iii-breast cancer, iv-cylinder band, v-german credit, vi-
heart, vii-hepatitis, viii-liver disease, ix-mushroom, x-mushroom(tie) and xi-tictactoe. The
last column xii is an average of the manually tuned parameters.

parameter dataset
i ii iii iv v vi vii viii vix x xii

tree type 0 0 0 2 1 0 1 0 0 1 -
pop size 200 200 100 300 200 200 300 200 200 200 300
tree gen method 2 0 0 2 0 0 0 0 2 0 2
init tree depth 8 8 7 3 6 8 4 3 8 5 5
max offsp depth 10 9 6 5 5 8 8 9 11 3 9
selection method 0 0 1 0 0 1 1 0 0 0 1
selection size - - 6 - - 6 8 - - - 6
crossover rate 21 80 89 31 33 6 56 77 60 46 70
mutation type 1 0 1 1 1 0 1 1 0 0 0
mutation depth 5 2 5 3 5 3 2 3 4 3 4
control flow 0 0 1 1 0 1 1 0 1 0 0
operator comb 3 0 2 2 2 1 1 5 5 1 0
fitness function 0 0 3 0 0 1 1 3 3 3 0
number of gens 55 200 200 161 109 200 100 170 138 200 300

Table 7.5 Binary class auto-designed configurations

The arithmetic tree classifiers were included by the automated design approaches in
6 of the 10 configurations while logical tree classifiers were used in 3 configurations and
decision tree classifiers were included once. The expectation was for logical tree classifiers to
constitute the majority of the configurations since they ranked first among the manual design
approach. This seems to indicate that automated design was able to perform a wider search
than human design resulting in better configurations which use arithmetic tree classifiers
for the considered datasets. A population size of 200 was used on 7 configurations, 300 on
2 configurations and 100 on 1 configuration. Experienced human evolutionary algorithm

100 Results and Discussion

designers prefer the ramped half-and-half method for initial population generation, however,
from the automatically generated configurations this method was only used 3 times with the
full method included more frequently and was used 7 times while the grow method was not
used. Initial tree depth was set to a value in the range of [5-8] in 7 configurations while 3
configurations had values less than 5. These values correlated with the manual design values
which had an average of 5 for this parameter. Maximum offspring depth was set to values in
the range [5-11] in all configurations with the exception of 1 configuration in which the value
was set to 3. Tournament selection was used as the selection method 3 times with fitness
proportionate selection used 7 times. On the 3 occasions, that tournament selection was used,
the tournament size was set to a value of 6 twice and 8 once. Five configurations used fixed
genetic operator application rates. Of those 6 only 1 configuration for appendicitis used the
initially set application rate of 80% crossover and 20% mutation. The other 5 of the 6 were
configured as follows; 2 used 100% crossover, 1 used 100% mutation, 1 used the preset rates
and 1 used 100% crossover and then random mutation. Shrink mutation was selected in 6
configurations while 4 configurations used grow mutation. This is contrary to the manual
design approach which used grow mutation. Maximum mutation depth values were set in
the range [2-6] across all the configurations with the value of 3 being set more frequently.
The manual average was 4. Three fitness functions of the possible 5 were used, namely
accuracy, f-measure and weightedrand . Accuracy is used in 4 configurations, weightedrand in
4 configurations and f-measure in 2 configurations. Maximum generations were configured
within the range of [100 - 200] generations except for one configuration which used 55
generations.

Automated design seems to work well due to its unconstrained ability to be able to
combine and consider what can be considered as unconventional configurations. Humans
are constrained by logic and chronology for example in considering values for the crossover
rate the values were considered in steps of 5’s, yet automated design was able to establish
31% to be a very good value. The manual parameter tuning carried out for this part of the
study followed a similar approach performed by manual design i.e. parameters were tuned
for each dataset. However, despite this approach the automated design significantly out
performed manual design. Significantly manual design presented a wider search space for
GP classifiers (300) and a higher number of generations 300 than the automated design. Yet
automated design was able to evolve configurations that yield GP classifiers that achieve
better performances from a narrower search space (200 on average) and achieved convergence
in less generations.

7.2 Multiple Domain Problems 101

The differences in evolved configurations also lend weight to the widely held notion that
when it comes to classification the data also influences the parameter settings. Therefore no
set of parameters can be optimal across different data instances.

7.2.2 Multiclass Classification Results

7.2.2.1 Training

The training results for the classification of multiclass problems are presented in Table
7.6. Similarly to Table 7.1 and Table 7.2 the rows represent datasets and the columns the
classification approach. The results are the best training fitness ± standard deviation (at the
95% percentile confidence interval) over thirty independent runs for each approach. From

dataset arithmetic logical decision tree autoGA autoGE
balance 0.76 ±0.02 0.84±0.03 0.69±0.03 0.99±0.03 0.92±0.02
post-operative 0.81±0.04 0.29±0.04 0.76±0.04 0.80±0.04 0.86±0.04
car 0.83±0.02 0.23±0.02 0.83±0.02 0.83±0.02 0.83±0.02
lymphography 0.85±0.06 0.84±0.06 0.79±0.05 0.92±0.06 0.86±0.06
cleveland 0.62±0.06 0.21±0.05 0.61±0.07 0.67±0.06 0.60±0.06
page-blocks 0.95±0.04 0.96±0.04 0.51±0.04 0.97±0.04 0.97±0.04
demartology 0.77±0.05 0.35±0.06 0.67±0.06 0.75±0.08 0.88±0.06
flare 0.71±0.03 0.38±0.03 0.75±0.03 0.76±0.03 0.75±0.03
glass 0.63±0.07 0.49 ±0.07 0.57±0.07 0.59±0.07 0.65±0.07
zoo 0.87±0.07 0.62±0.07 0.84±0.07 0.86±0.07 0.87±0.07
ecoli 0.84±0.05 0.77±0.05 0.71±0.05 0.88±0.05 0.64 ±0.06
averages 0.79±0.05 0.54±0.05 0.70 ±0.05 0.82±0.05 0.80 ±0.05

Table 7.6 Training multiclass classification problems

the results the autoGA approach trained well on 5 of the 11 datasets and tied on 2 datasets,
while the autoGE approach trained well on 3 datasets and tied on 3 datasets. The manually
designed arithmetic tree classifiers tied on 2 datasets and the decision tree approach tied
on 1 dataset. On average across all datasets the autoGA approach trained better than the
other approaches achieving a training average fitness of 82%. The autoGE approach was
the next best training approach. AutoGE achieved an average fitness of 80% followed by
arithmetic tree classifiers with an average of 79% and decision trees with an average of 70%.
The logical tree classifiers had an average training fitness of 54%.

102 Results and Discussion

7.2.2.2 Testing

Table 7.7 presents the test accuracy results for the multiclass classification problems. The

dataset arithmetic logical decision tree autoGA autoGE
balance 0.81±0.03 0.76±0.03 0.68±0.06 0.98±0.01 0.92±0.03
post-operative 0.61±0.09 0.25±0.09 0.71±0.09 0.75±0.09 0.64±0.09
car 0.40±0.03 0.18±0.03 0.64±0.04 0.66±0.04 0.46±0.04
lymphography 0.73±0.07 0.76±0.07 0.78±0.07 0.82±0.07 0.78±0.07
cleveland 0.53±0.09 0.17±0.07 0.48±0.07 0.57±0.07 0.55±0.07
page-blocks 0.55±0.03 0.57±0.03 0.38±0.03 0.60±0.03 0.59±0.03
demartology 0.67±0.08 0.38±0.06 0.57±0.08 0.69±0.08 0.78±0.08
flare 0.68±0.05 0.43±0.05 0.67±0.05 0.67±0.04 0.71±0.04
glass 0.24±0.09 0.19±0.09 0.45±0.09 0.53±0.09 0.24±0.09
zoo 0.81±0.09 0.56±0.09 0.72±0.09 0.81±0.09 0.81±0.09
ecoli 0.61±0.08 0.40±0.08 0.31±0.08 0.90±0.05 0.43±0.09
averages 0.60±0.07 0.42 ±0.06 0.58±0.06 0.73±0.06 0.63±0.06

Table 7.7 Testing multiclass classification problems

testing accuracy results show that the autoGA approach tested well on 8 of the 11 datasets
and tied on 1 dataset. The autoGE approach tested well on 2 datasets and tied on 1 while
the arithmetic tree classifiers tied on 1 dataset. The autoGA approach achieved an average
testing accuracy of 73% across all datasets followed by the autoGE approach with an average
of 63%. The manually designed arithmetic tree classifiers achieved an average of 60% while
decision tree and logical tree classifiers achieved an average of 58% and 42% respectively.
To evaluate the statistical significance of the testing results the Friedman test was used. The
average ranks for each approach were evaluated and the results are presented in Table 7.8.
From the table of average ranks, the autoGA approach was ranked 1st followed by the autoGE.

approach arithmetic logical decision autoGA autoGE
average rank 3.364 4.409 3.545 1.409 2.273
position 3 5 4 1 2

Table 7.8 Average ranks for multiclass classification problems

The arithmetic tree classifiers, were ranked 3rd followed by the decision tree classifiers and
finally, the logical tree classifiers. Using the average ranks the Friedman χ2

F was calculated
as follows:

χ
2
F =

12∗11
5∗6

[
(3.3642 +4.4092 +3.5452 +1.4092 +2.2732)− 5∗62

4

]
= 24.10 (7.4)

7.2 Multiple Domain Problems 103

and from Equation 2.7 Iman’s F statistic was evaluated to:

Ff =
(11−1)∗24.10

11∗ (5−1)−24.10
= 12.11 (7.5)

The critical value of F(4,40) for α = 0.05 was established to be 2.608 and since FF

>F0.05(4,40) (12.11 >2.608) the null hypothesis which states that the classification approaches
for multiclass classification problems considered in this study perform equivalently was
rejected. Using the Bonferroni-Dunn post-hoc test the critical difference for F(4,40) was
shown to be 1.68 in section 7.2.1.2. The difference between the average rank of autoGA and
the average rank of the best performing manually designed classifier (arithmetic) was found
to be 1.955. As this value was greater than the critical difference (1.68) this indicated that
the differences in performance of the autoGA approach and the best performing manually
designed approach arithmetic tree classifiers were statistically significant. The difference in
average rank between autoGE and arithmetic tree classifiers was calculated to be 1.09. This
value was less than the critical difference, therefore, there was no significant difference in
performance between the 2 approaches considered. The differences between the automated

approach difference significance
arithmetic - autoGA 1.96(>1.68) yes
arithmetic - autoGE 1.09 (<1.68) no
autoGE - autoGA 0.86(<1.68) no
Table 7.9 Statistical significance summary: multiclass classification problems

designed approaches was also found not to be significant although autoGA was found to be
able to evolve classifiers which achieved higher accuracies than autoGE on average across
all datasets. Table 7.9 is an illustration of the statistical analysis results.

The autoGA approach consistently trained and tested better than the other approaches on
this set of classification problems. AutoGA performed significantly better than the manual
design approach but not significantly better than the autoGE. Based on the significance of
the differences in performance autoGA was found to be most suitable to use in multiclass
classification.

7.2.2.3 Configurations

Table 7.10 presents the configurations used by the best testing automated design algorithms.
The datasets are indexed as follows: i-balance, ii-post operation, iii-car, iv-lymphography,
v-cleveland, vi-page blocks, vii-dermatology, viii-flare, ix-glass, x-ecoli and xi-manual
averages. From the 10 configurations, 8 were configured to use the arithmetic tree type and 2

104 Results and Discussion

use the logical tree type. This was in alignment with the accuracy results as the arithmetic
tree classifier performed the best among the manual designs. A population size of 300
was used in 4 of the 10 configurations and values of 200 and 100 were each used 3 times.
The full tree generation method was used 7 times while the preferred method by manual
algorithm designers the ramped half-and-half method was used only twice and the grow
method was used once. The initial tree depth parameter values were set in the range [4-10]
yet the possible values range from [2-15]. The maximum offspring depth values were set
in the range [6-12] yet the possible values range from [2-15]. Tournament selection was
used in 8 configurations and fitness proportionate selection in 2 configurations. Tournament
selection size values were set in the range of [2-9].

parameter dataset
i ii iii iv v vi vii viii ix x xi

tree type 0 0 0 1 0 1 0 0 0 0 -
pop size 300 100 100 300 300 200 200 200 300 100 300
tree gen method 1 0 0 0 0 0 0 0 2 2 2
init tree depth 6 10 9 8 4 8 5 6 4 5 3
max offsp depth 9 8 10 12 10 12 6 6 6 10 8
selection method 1 0 1 1 1 1 1 1 0 1 1
selection size 9 - 2 8 8 7 2 4 - 7 9
crossover rate 82 80 27 18 36 78 81 51 77 69 80
mutation type 0 0 0 1 1 1 1 1 0 1 0
mutation depth 6 6 5 2 6 6 4 4 2 3 6
control flow 1 0 0 0 1 0 0 0 1 1 0
operator comb 3 3 1 1 3 1 2 3 3 0 0
fitness function 0 0 0 0 0 0 0 0 0 0 0
number of gens 200 200 50 200 50 200 100 200 100 50 300

Table 7.10 Multiclass auto-designed configurations

The crossover rate was set at a higher rate than the mutation rate in 6 configurations,
while the mutation rate was set higher than crossover in 3 configurations. In 1 configuration
crossover and mutation were set to rates of 51% and 49% respectively. As stated the
manually designed approach sets the crossover rate to a higher value than the mutation rate.
Grow mutation was used in 4 configurations while shrink mutation was used in the other 6
configurations. The maximum mutation depth values were set to values in the range [2-6].
Five configurations used random preset rates while 3 configurations used 100% crossover
and 1 configuration used 100% mutation. A maximum generation value of 200 was used 5
times, 100 used twice and a value of 50 was used 3 times.

7.3 Cybersecurity 105

Similarly to binary classification configurations there is no discernible pattern regarding
the configurations, as these are evolved to suite the presented problem instance.

7.3 Cybersecurity

In this section the results of applying the 5 classification approaches to problems from a
specific domain namely the cyber-security domain are presented. The cybersecurity problem
instances were obtained from the NSL-kDD dataset discussed in section 3.5.2 of Chapter 3.

7.3.1 Training

Table 7.11 presents the training results. The rows represent datasets and the columns the
classification approach. The results are the best training fitness ± standard deviation (at the
95% percentile confidence interval) over thirty independent runs for each approach. From the
training results obtained the autoGA approach trained well on 2 datasets and tied on 2 while
the autoGE trained well on 1 and tied on 2 datasets. The manually designed arithmetic tree

dataset arithmetic logical decision tree autoGA autoGE
normal 0.97±0.03 0.96±0.03 0.92±0.03 0.98±0.02 0.98±0.02
dos 0.99±0.01 0.97±0.02 0.92±0.04 0.99±0.01 0.99±0.01
probe 0.99±0.01 0.98±0.02 0.91±0.04 0.98±0.02 0.98±0.02
u2r 0.99±0.01 0.99±0.01 0.99±0.01 1.00±0.00 0.99±0.01
r2l 0.98±0.02 0.98±0.02 0.98±0.02 0.98±0.02 0.99±0.01
multi 0.81±0.02 0.68±0.02 0.59 ±0.02 0.82±0.02 0.72 ±0.02
averages 0.96±0.02 0.93±0.02 0.89±0.03 0.96±0.01 0.94±0.02

Table 7.11 Cyber security training results

classifier trained well on 1 dataset and tied on 1. On average across all datasets the autoGA
approach and the arithmetic tree classifier approach trained better than the other 3 approaches
and achieved an average fitness of 96%. This is followed by the autoGE approach with a
training average of 94%. The logical and decision tree classifiers achieve an average of 93%
and 89% respectively.

7.3.2 Testing

Table 7.12 presents the cyber security testing results. The autoGE approach tested well on 3
datasets while the autoGA approach tested well on 2 datasets and the arithmetic tree classifier
tested well on 1 dataset. On average across all datasets the autoGA approach achieved the

106 Results and Discussion

best testing average accuracy of 96% while the autoGE and logical tree classifiers achieved
the same average of 94% . The arithmetic and decision tree classifiers achieved an average
of 93% and 90% respectively. To evaluate the statistical significance of the differences in

dataset arithmetic logical decision tree autoGA autoGE
normal 0.97±0.03 0.96±0.04 0.92±0.06 0.96±0.04 098±0.02
dos 0.90±0.02 0.96±0.03 0.93±0.02 0.98±0.01 0.99±0.01
probe 0.99±0.01 0.95±0.04 0.91±0.06 0.98±0.03 0.98±0.03
u2r 0.99±0.01 0.99.±0.01 0.98±0.01 1.00±0.00 0.99±0.01
r2l 0.98±0.02 0.98±0.01 0.98±0.02 0.98±0.02 0.99±0.01
multi 0.75±0.02 0.80 ±0.03 0.66±0.03 0.81±0.02 0.70±0.03
averages 0.93±0.02 0.94±0.03 0.90±0.03 0.96±0.02 0.94±0.02

Table 7.12 Cybersecurity test results

performance the Friedman test was used. The average ranks were evaluated and are presented
in Table 7.13. From the average rankings the autoGE approach ranks 1st followed by the
autoGA approach and the arithmetic tree classifier. The logical and decision tree classifiers
rank 4th and 5th respectively.

arithmetic logical decision autoGA autoGE
average rank 2.92 3.167 4.583 2.25 2.083
position 3 4 5 2 1

Table 7.13 Average ranks cybersecurity

Using the average ranks and Equation 2.6 the Friedman χ2
F is calculated to be :

χ
2
F =

12∗6
5∗6

[
(2.922 +3.1672 +4.5832 +2.252 +2.0832)− 5∗62

4

]
= 9.50 (7.6)

and from Equation 2.7 Iman’s F statistic was evaluated to:

Ff =
(6−1)∗9.50

6∗ (5−1)−9.5
= 3.28 (7.7)

The critical value F(4,20) for α = 0.05 is given as 2.87 and since 3.28 > 2.87 the null hypothesis
which states that the 5 approaches perform equivalently was rejected and a post-hoc test using
the Bonferroni–Dunn test for pairwise comparison was carried out. The critical difference
CD at the 95% level was evaluated to:

CD = 2.498∗
√

5∗6
6∗6

= 2.28 (7.8)

7.3 Cybersecurity 107

The differences of the average ranks between the auto designed approaches and the best
performing manual approach, arithmetic tree classifiers, was found to be not greater than
the critical difference, therefore, the differences in performance between the automated
designed approaches and the best manual approach were not statistically significant. Table
7.14 presents the results of the statistical analysis.

approach difference significance
arithmetic - autoGE 0.84(<2.28) no
arithmetic - autoGA 0.67(<2.28) no
autoGE - autoGA 0.17(<2.28) no

Table 7.14 Significance for cyber security problems

On the cybersecurity domain the best performing manual design approach performed
equivalently to the automated design approaches. By the ranking metric the autoGE per-
formed better while through the training and test accuracy the autoGA performed better.
However no one approach was significantly better than the others. However, it is important
to note that if the multiclass dataset i.e. multi is considered in isolation as the other sets
are binary problems then the autoGA performed significantly better on that dataset. This is
consistent with the results obtained from the binary and multiclass problems from sections
7.2.1 and 7.2.1. Similarly if binary cybersecurity datasets are considered on their own the
autoGE approach performs better than the other approaches also inline with the previous
results. This further enhances the recommendation of the autoGE approach for binary class
problems and the autoGA approach for multiclass problems.

7.3.3 Configurations

Table 7.15 presents the best performing GP configurations evolved by the automated design
approaches. Arithmetic tree type were used in 4 of the 5 configurations and the logical tree
type was used once for the u2r dataset. A population size parameter value of 200 was set
in 3 configurations and a value of 100 was used twice. The grow tree generation method
was used in 3 configurations while the ramped half-and-half and the full methods were used
once each. The initial tree depth was set to values in the range [4-8] with values of 4 and
5 being used twice each and 8 once. The manual design average for the initial tree depth
was 3. Maximum offspring depth was set in the range [6-10] in 4 of the 5 configurations
and 3 in one configuration. The fitness proportionate selection method was configured once
while tournament selection was used in 4 configurations with a selection size set in the range
[3-5]. Crossover rates were set to higher values than mutation rates in 3 configurations. Grow

108 Results and Discussion

mutation was used 3 times while shrink mutation was used twice with the mutation depth
set in the range [2-6]. Control flow was set to random twice. Three configurations had fixed
application rates with the normal dataset configured with a crossover rate of 24% and a
mutation rate of 76%. The r2l configuration used a crossover rate of 52% and a mutation
rate of 48%. The best configuration applied to the multiclass dataset had a crossover rate
of 82% and a mutation rate of 18%. On all configurations, accuracy was configured as the
fitness function. Three configurations were set to terminate after 100 generations and 2 after
50 generations.

parameter parameter values
normal dos u2r r2l multi avg manual

tree type 0 0 1 0 0 -
pop size 100 100 200 200 200 300
tree gen method 1 2 0 1 1 2
init tree depth 5 4 8 5 4 3
max offsp depth 6 3 9 10 8 9
selection method 1 1 0 1 1 1
selection size 4 3 - 4 5 9
crossover rate 24 25 58 52 82 80
mutation type 0 0 0 1 1 0
mutation depth 4 2 6 2 6 8
control flow 0 1 1 0 0 0
operator comb 0 1 1 1 0 0
fitness function 0 0 0 0 0 0
number of gens 100 100 100 50 50 200

Table 7.15 NSL-KDD auto-designed configurations

7.4 Financial Forecasting

In this section, the results of applying the 5 classification methods to financial forecasting
problems are presented. Section 7.4.1 presents the training results while section 7.4.2 presents
the test accuracy results including the statistical analysis of the differences in performance.
Finally sections 7.4.3 presents the automated design evolved configurations.

7.4.1 Training Results

Table 7.16 presents the training results. The rows represent datasets and the columns the
classification approach. The results are the best training fitness ± standard deviation (at the

7.4 Financial Forecasting 109

95% percentile confidence interval) over thirty independent runs for each approach. Training
results reveal that autoGE trained well on 5 datasets and tied on 3 datasets and the autoGA
approach trained well on 2 datasets and tied on 3 datasets while the manually designed
arithmetic classifiers trained well on 1 dataset and tied on 1 dataset. Decision trees trained
well on 1 dataset. On average across all datasets, the autoGE approach trained better than
the other approaches with a training average of 71% followed by the autoGA with a training
average of 69%. Arithmetic tree classifiers achieved a training average of 68%, decision tree
classifiers averaged 64% and finally the logical tree classifiers achieved an average of 62%.

dataset arithmetic logical decision tree autoGA autoGE
adobe 0.68±0.02 0.64±0.02 0.89±0.02 0.78±0.02 0.73±0.02
amazon 0.61±0.03 0.55±0.03 0.55±0.04 0.60±0.03 0.65±0.03
american express 0.66±0.03 0.59±0.03 0.71±0.02 0.73±0.04 0.72±0.03
barclays 0.76±0.03 0.59±0.03 0.59±0.03 0.75±0.03 0.78±0.03
centerPoint 0.80±0.02 0.55±0.02 0.54±0.02 0.80±0.02 0.79±0.02
dominos pizza 0.64±0.03 0.61±0.03 0.56±0.03 0.63±0.03 0.67±0.03
entergy 0.56±0.03 0.52±0.03 0.55±0.06 0.60±0.03 0.60±0.03
horizon pharmacy 0.57±0.03 0.52±0.03 0.58±0.03 0.57±0.03 0.60±0.03
pfizer 0.63±0.03 0.64 ±0.03 0.70±0.03 0.60±0.03 0.62±0.03
mcdonalds 0.63±0.03 0.59±0.03 0.69±0.03 0.60±0.03 0.68±0.03
microsoft 0.89±0.02 0.77±0.03 0.73±0.03 0.62±0.03 0.83±0.03
sap 0.55±0.03 0.54±0.03 0.54±0.03 0.70±0.03 0.70±0.03
standardchartered 0.86±0.02 0.77±0.02 0.70±0.02 0.89±0.02 0.86±0.02
time warner 0.72±0.03 0.83±0.03 0.77±0.03 0.82±0.02 0.87±0.02
walt disney 0.58±0.03 0.53±0.03 0.55±0.05 0.69±0.03 0.61±0.03
averages 0.68±0.03 0.62±0.03 0.64 ±0.03 0.69±0.03 0.71±0.03

Table 7.16 Financial forecasting training results

7.4.2 Testing Results

Table 7.17 presents the test results. The test results revealed that autoGA tested well on 4
datasets and tied on 5 datasets. The autoGE approach tested well on 3 datasets and tied
on 6. The manually evolved decision trees tested well on 1 dataset and tied on 2 while the
arithmetic tree classifiers tied on 2 datasets and the logical tree classifiers tied on 1 dataset.
On average across all datasets, the autoGE approach tested better than the other approaches
with a testing average of 69% followed by the autoGA approach with an average of 67%.
The manually designed arithmetic tree classifiers achieved an average of 63%, logical tree
classifiers averaged 61% and decision trees averaged 59%. The Friedman test was used
to carry out the statistical analysis. The performance of the classification methods were

110 Results and Discussion

dataset arithmetic logical decision tree autoGA autoGE
adobe 0.69±0.04 0.66±0.04 0.47±0.04 0.70±0.03 0.69±0.04
amazon 0.69±0.04 0.52±0.04 0.55±0.04 0.71±0.04 0.66±0.04
american express 0.62±0.04 0.61±0.04 0.64±0.06 0.66±0.04 0.66±0.04
barclays 0.70±0.04 0.54±0.04 0.55±0.04 0.80±0.03 0.81±0.03
center point 0.77±0.03 0.57±0.03 0.58±0.03 0.80±0.03 0.81±0.03
dominos pizza 073.±0.04 0.58±0.04 0.54±0.04 0.77±0.04 0.77±0.04
entergy 0.54±0.04 0.53±0.04 0.51±0.04 0.54±0.04 0.53±0.04
horizon pharmacy 0.48±0.04 0.53±0.04 0.51±0.04 0.53±0.04 0.53±0.04
pfizer 0.64±0.04 0.56±0.04 0.74±0.04 0.65±0.04 0.65±0.04
mcdonalds 0.58±0.04 0.64±0.04 0.60±0.04 0.66±0.04 0.69±0.04
microsoft 0.69±0.04 0.72±0.03 0.70±0.03 0.65±0.05 0.81±0.03
sap 0.54±0.04 0.55±0.04 0.58±0.04 0.56±0.04 0.58±0.04
standard chartered 0.82±0.03 0.75±0.03 0.57±0.03 0.81±0.02 0.82±0.03
time warner 0.41±0.04 0.86±0.04 0.74±0.04 0.89±0.03 0.89±0.03
Walt Disney 0.49±0.03 0.49±0.04 0.51±0.04 0.51±0.04 0.51±0.04
averages 0.63±0.04 0.61 ±0.04 0.59±0.04 0.67±0.04 0.69±0.04

Table 7.17 Financial forecasting tests results

ranked accordingly. Table 7.18 presents the average ranks of each method across all datasets.
From the table, autoGE was ranked 1st followed by the autoGA approach. The arithmetic
tree classifiers were ranked 3rd followed by the decision trees and finally the logical tree
classifiers.

arithmetic logical decision autoGA autoGE
average rank 3.47 3.87 3.63 2.10 1.80
position 3 5 4 2 1

Table 7.18 Average ranks financial forecasting

Using the average ranks and Equation 2.6 the Friedman χ2
F was calculated to be :

χ
2
F =

12∗15
5∗6

[
(3.472 +3.872 +3.632 +2.102 +1.802)− 5∗62

4

]
= 16.93 (7.9)

and from Equation 2.7 Iman’s F statistic was evaluated to:

Ff =
(15−1)∗16.93

15∗ (5−1)−16.93
= 5.50 (7.10)

The critical value F(4,56) for α = 0.05 is given as 2.54 and since 5.50 > 2.54 the null hypothesis
which states that the 5 approaches perform equivalently was rejected and a post-hoc test using
the Bonferroni–Dunn test for pairwise comparison was carried out. The critical difference

7.4 Financial Forecasting 111

CD at the 95% level was evaluated to:

CD = 2.498∗
√

5∗6
6∗15

= 1.44 (7.11)

The difference between the average rank of autoGE and the best performing manually
designed method arithmetic tree classifiers was found to be 1.67, which was greater than the
critical difference implying that the performance of autoGE was significantly better. The
difference between the average rank of autoGA approach and arithmetic tree classifiers is
1.37 which was less than the CD value which means the performance of autoGA was not
significantly better than the best performing manual design approach. The differences in
performance between the automated design approaches was not significant although autoGE
evolved classifiers that achieved a higher testing accuracies. Table 7.19 is a summary of the
statistical analysis results.

approach difference significance
arithmetic - autoGE 1.67(>1.44) yes
arithmetic - autoGA 1.37(<1.44) no
autoGE - autoGA 0.03(<1.44) no

Table 7.19 Significance for financial forecasting problems

On this class of problems on average the autoGE approach trained well and tested
better than the other approaches. The approach performed significantly better than the
manual approach. Once again there was an element of consistency as the autoGE approach
performed well on binary problems as the financial forecasting approach presented in this
study is presented as a binary problem.

7.4.3 Configurations

Table 7.5 presents a listing of the 9 best performing automated designed configurations
labelled as follows: i-adobe, ii-amazon, iii-american express, iv-barclays, v-center point
vi-dominos pizza, vii-mcdonalds, viii-microsoft ix-time warner and x-average of the manual
design. From the table, 8 configurations used the arithmetic tree types, and 1 was configured
as a decision tree type. A population size of 200 was used in 5 configurations and a
population size of 100 was used in 4 configurations. The ramped half-and-half and full tree
generation methods were used in 4 configurations each while the grow method was used in 1
configuration only. Initial tree depth was set in the range [4-7]. Maximum offspring depth
was set in the range [2-8] while the average manual value was 9. Tournament selection was

112 Results and Discussion

parameter dataset
i ii iii ii iii iv v vi vii viii

tree type 0 0 0 0 0 0 0 2 0 -
pop size 100 100 100 200 200 200 200 100 200 300
tree gen method 2 0 1 2 2 0 0 2 0 2
init tree depth 7 2 5 5 6 6 4 6 5 3
max offsp depth 8 6 2 6 5 5 5 6 4 9
selection method 1 1 1 1 0 0 0 1 1 1
selection size 4 6 3 2 - - - 3 4 6
crossover rate 63 70 23 46 10 47 47 2 1 82
mutation type 1 1 1 1 1 1 0 0 1 0
mutation depth 3 2 2 2 2 3 2 3 3 3
control flow 0 0 1 1 1 1 0 1 1 0
operator comb 1 3 2 3 2 1 2 1 3 0
fitness function 3 3 1 0 0 2 1 2 0 0
number of gens 200 100 100 200 200 50 200 200 50 200

Table 7.20 Financial forecasting: automated design configurations

used 6 times with the selection size set in the range [2-6]. Fitness proportionate selection was
used 3 times. The crossover rate was set to values less than 50% on 7 of the 9 configurations.
This was in contradiction with the popular convention of manual design which specifies that
the crossover rate should normally be higher than the mutation rate [124]. Shrink mutation
was used 7 times. Mutation depth was set to the value of 2 in 5 configurations and to the value
of 3 in 4 configurations. The random control flow was used 6 times. Predictive accuracy
was used 3 times as the fitness function, the rate of missing chances, rate of failure and the
weighted fitness function were each used 2 times. Two hundred generations were set as the
termination criteria 4 times, 50 twice and 100 once. Some of the parameter values determined
by the automated design approach are not likely to be configured by a human designer. For
example, in manual design, the intuitive norm is to set a crossover rate that is higher than
the mutation rate. There is no discernible correlation between the automatically designed
configurations and the dataset(problem) characteristics. Similarly, the averages of the manual
designs outlined in viii of Table 7.5 also do not reflect any correlations with the automatically
designed configurations. The differences in configurations reinforce the assertion that even
for problem instances from the same problem domain, different configurations are required
for effective classification.

7.5 Design Times 113

7.5 Design Times

In this section, the design times of the automated design approaches are presented and dis-
cussed in relation to the design time of the manual approach. As previously stated parameter
tuning under manual design is performed as described in section 2.4.8.1 of Chapter 2. The
time taken for the manual design of GP classification algorithms for the values outlined in
sections 4.7.1.1, 4.7.1.2 and 4.7.2 of Chapter 4 ranged from 8 - 10 days and those from
section 4.7.3 of Chapter 4 ranged from 5 - 7 days for each dataset. This included performing
trial runs. Each day constituting approximately 10 man hours on average. The iterative nature
of manual design led to high design times. For example, to tune for the initial tree depth
parameter value in the range [2-20], 19 values were considered and for each value a number
of trial runs (minimum 10) were performed because of the stochastic nature of GP which
requires several runs to attain a normal distribution.
Table 7.21 presents the automated design times for binary classification problems. From the
table, the average design time across all datasets, performed by autoGA is 29.38 hrs, with
a minimum time of 16 hrs and a maximum of 36.39 hrs for the mushroom dataset. While
autoGE averaged approximately 21 hrs with a minimum of 12 hrs and a maximum of 28 hrs
hrs.

dataset autoGA autoGE
aus credit 36.02 20.18
appendicitis 16.26 17.48
breast cancer 32.22 19.02
cylinder band 34.46 28.16
diabetes (pima) 30.25 27.15
german credit 35.12 21.28
heart disease 25.43 18.21
hepatitis 16.36 12.21
liver disease 26.54 14.09
mushroom 36.39 27.39
tictactoe 34.12 22.34
average 29.38 20.69

Table 7.21 Binary class design times(hrs)

dataset autoGA autoGE
balance 17.13 15.39
post-operative 13.21 8.28
car 33.41 23.08
lymphography 16.15 12.50
cleveland 25.17 17.18
page blocks 46.35 42.11
dermatology 14.31 6.24
flare 36.12 21.08
glass 15.08 18.43
zoo 12.33 7.52
ecoli 33.25 18.18
average 24.26 17.27

Table 7.22 Multiclass design times(hrs)

Table 7.22 presents the automated design times for multiclass problems. AutoGA averaged
24.26 hrs with a maximum of 46.35 hrs for the page blocks dataset and a minimum of 12.33
hrs for the zoo dataset. AutoGE averaged 17.27 hrs with a maximum of 42.11 hrs for the
page block and a minimum of 7.52 hrs for the zoo dataset.
Table 7.23 presents the automated design times for the NSL-KDD datasets. From the table,

114 Results and Discussion

the autoGA approach averaged longer design times averaging 56 hours while the autoGE
averaged 53 hours. For the autoGA approach the dos dataset had the longest design time of
approximately 67 hours. The shortest design time was achieved on the u2r dataset. For the
autoGE approach the longest duration recorded was approximately 59 hours and the shortest
was approximately 50 hours. A duration of 67 hours may seem like a long time but this is
relatively a shorter period when compared to the manual design times.
Table 7.24 is a listing of the design times for each dataset for the autoGA and autoGE
approaches applied to financial forecasting problems. On average across all datasets, the
autoGE approach took approximately 15 hours to evolve classifiers while the autoGA took
12 hours. The shortest design time achieved by the autoGA was on the barclays dataset with
a time of 6.72 hrs while the longest was experienced on the walt disney dataset. The shortest
design time achieved by the autoGE approach was 9.73 hrs on the entergy dataset and the
longest was 18.68 on the microsoft dataset.

dataset autoGA autoGE
normal 50.40 56.55
dos 66.42 51.89
probe 59.49 50.20
u2r 49.21 58.68
r2l 52.54 49.52
multi 61.32 54.33
average 56.56 53.52

Table 7.23 Design times(hrs)

dataset autoGA autoGE
adobe 13.61 12.14
amazon 12.78 14.72
american express 8.52 12.63
barclays 6.72 13.53
center point 14.60 16.58
dominos pizza 9.76 17.98
entergy 9.38 9.73
horizon pharmacy 11.96 13.00
pfizer 8.38 15.76
mcdonalds 11.30 17.05
microsoft 16.13 18.68
sap 11.90 13.73
standard chartered 15.20 14.63
time warner 13.71 16.60
walt disney 16.10 18.03
average 12.00 14.99

Table 7.24 Design times(hrs)

The automated design times were found to be shorter than the manual design times and
as argued by Hutter et. al.[101] automated design liberates the algorithm designer to attend
to other tasks.

7.6 Fitness Landscape Analysis 115

7.6 Fitness Landscape Analysis

This section presents and compares the results of carrying out fitness landscape analyses
of the design space searched by the automated design approaches. As outlined in section
3.4.3 of Chapter 3 to evaluate the fitness landscape autocorrelation analysis was carried
out on a selection of problem instances from the specified problem domains. The tables
present the correlation length cl calculated from equations 2.15 and 2.16 while n/cl is the
correlation length in relation to the fitness landscape diameter n. A low autocorrelation cl
value is indicative of a more rugged landscape while a higher value indicates smoothness.

The results are presented as follows:

7.6.1 Binary Classification Problems

Table 7.25 presents the results of the fitness landscape analysis applied on binary classification
problems.

Dataset
australian credit hepatitis tictactoe

autoGA autoGE autoGA autoGE autoGA autoGE
n 690 690 80 80 958 958
cl 3.29 3982.33 3.27 32.90 9.44 48.42
n/cl 209.72 0.17 24.46 2.43 101.48 19.78

Table 7.25 Fitness landscape analysis binary

Across all datasets, the autoGE approach searched smoother design space fitness land-
scapes than the autoGA approach. This means that the autoGE approach found it easier to
solve the selected binary class problems than the autoGA approach. This is also in concur-
rence with the training and test accuracy results as the autoGE approach performed better
than the autoGA approach. The smoothest landscape was on the australian credit dataset with
a high correlation length of 3982.33. The most rugged landscape was also on the australian
credit searched by the autoGA approach.

7.6.2 Multiclass Classification Problems

Table 7.26 presents the results of the fitness landscape analysis applied on selected multiclass
classification problems.

The results reveal that the autoGA approach searches smoother landscapes than the
autoGE approach on 2 of the 3 datasets, namely dermatology and ecoli. This result can be
marginally correlated to the test accuracy results as the autoGA approach performed better

116 Results and Discussion

Dataset
balance dermatology ecoli

autoGA autoGE autoGA autoGE autoGA autoGE
n 625 625 358 358 336 336
cl 34.67 54.96 52.23 25.20 40.70 34.63
n/cl 18.02 11.37 6.85 14.21 8.26 9.70

Table 7.26 Fitness landscape analysis multiclass

than the autoGE on multiclass problems. This implies that the autoGA approach finds it
easier to solve multiclass problems than the autoGE approach. However, the smoothest
landscape was searched by the autoGE approach on the balance dataset although the autoGA
approach managed to find the highest peak as it found the highest accuracy (98%) for this
datasets. The autoGE also searched the most rugged landscape on the dermatology dataset.

7.6.3 Cybersecurity Problems

Table 7.27 reports on the fitness landscape analysis of the design space searched by autoGA
and autoGE when applied to set 1 (normal), set 3 (probe) and set 6 (multiclass) cybersecurity
datasets. The autoGA approach searched smoother landscapes than the autoGE approach on

Dataset
set 1 set 3 set 6

autoGA autoGE autoGA autoGE autoGA autoGE
n 5000 5000 5000 5000 5000 5000
cl 33.08 20.32 12.40 7.48 6.12 5.19
n/cl 151.14 246.06 403.22 668.45 816.99 963.39

Table 7.27 Fitness landscape analysis cybersecurity

all three cybersecurity datasets as indicated by the higher correlation length attained by the
autoGA approach. The smoothest landscape was on set 1 searched by the autoGA approach
with n/cl of 151.14. The autoGE approach searched the most rugged landscape on the set
6 (multiclass) dataset. The fitness landscape analysis results are in concurrence with the
test accuracy results as the autoGA approach achieved the highest test average across all
cybersecurity datasets. This implies that the autoGA approach found it easier to solve the
cybersecurity problems than the autoGE approach. Although the autoGE approach achieved
a better average ranking across all datasets.

7.7 Summary 117

7.6.4 Financial Forecasting Problems

From Table 7.28 a comparison of the correlation lengths evaluated shows that the autoGA
approach has shorter lengths than the autoGE approach for each dataset.

Dataset
Adobe Barclays Pfizer

autoGA autoGE autoGA autoGE autoGA autoGE
n 1500 1500 1500 1500 1500 1500
cl 14.42 99.50 4.57 245 18.73 33.98
n/cl 104.02 15.08 336.59 61.23 80.10 44.1
Table 7.28 Fitness landscape analysis financial forecasting

This implies that the automated design space searched by the autoGA approach is more
rugged than the design space searched by the autoGE. The correlation length differences
are quite high on the barclays dataset which is also the least volatile. The autoGA approach
evolves the most rugged landscape on the barclays dataset with an n/cl value of 336.59. This
implies that for this class of problems the autoGE approach has less difficulty in finding
more accurate solutions than the autoGA approach. This assertion is also supported by the
test accuracy results as the autoGE performed better than the autoGA.

7.7 Summary

This chapter presented the results of the experiments conducted to achieve the objectives
set out in this study. The effectiveness of automated designed classifiers compared to
manually designed classifiers was firstly evaluated on binary classification problems obtained
from multiple problem domains. The automated designed classifiers trained and tested
better than manually designed classifiers. The automated designed classifiers were found
to significantly perform better than manually designed classifiers. The difference in the
classification accuracy performance between the autoGA and autoGE was found to be not
significant although autoGE had higher training and test accuracies. A fitness landscape
analysis of the design space revealed that the autoGE approach searched the smoothest fitness
landscape when compared to the autoGA approach. Therefore autoGE found it easier to
solve problems in this class of problems.

The effectiveness of the proposed automated design approaches was also evaluated on
multiclass classification problems from multiple domains. The autoGA approach was found
to perform better than autoGE and manual design on these class of problems. On average
across all the multiclass datasets, autoGA trained better and achieved a higher predictive test

118 Results and Discussion

accuracy. The difference in performance between the autoGA approach and manual design
was found to be statistically significant. However, the difference in performance between the
autoGA approach and autoGE approach were found to be not statistically significant. The
difference in performance between the autoGE approach and manual design were also found
to be not statistically significant. This meant that the autoGA approach was found to be the
most suitable for multiclass classification problems. Fitness landscape analysis was carried
out on 3 datasets from the multiclass problems. The autoGA approach was found to have
searched smoother landscapes on 2 of the 3 datasets.

Two problem domains, namely cybersecurity and financial forecasting were selected
to evaluate the effectiveness of automated design when applied on instances from a single
problem domain. The autoGE approach ranked better for the cybersecurity class of problems
although the autoGA on average achieved a higher predictive test accuracy. The differences
in performance between the automated design approaches and the manual design were
found to be not statistical significant. The autoGA was found to perform better on the
multiclass cybersecurity dataset, this was found to be consistent with the conclusion drawn
from evaluating the multiclass problems i.e. autoGA performs well on multiclass problems.
A fitness landscape analysis of the design space for the automated design approaches for
this problem domain revealed that the autoGA approach evolves landscapes that are less
rugged than the landscapes searched by the autoGE approach. Once again this was consistent
with predictive accuracy test results as on average the autoGA approach achieved the highest
result. On the second single domain class of problems i.e. financial forecasting the autoGE
approach also trained and tested better. The approach ranked first and performed significantly
better than manual design. The difference in performance between the autoGA and autoGE
was found to be not statistically significant. The fitness landscape analysis revealed that the
autoGE approach searched smoother landscapes than the autoGA approach. This result was
found to be consistent with the training and test results as autoGE performed better than
autoGA.

An analysis of the configurations revealed that different configurations worked well for
different problem domains and different configurations worked well for different instances of
the same problem domain.

An analysis of the design times showed that automated design approaches design GP
configurations in significantly shorter durations than manual design.

The next chapter presents the conclusion of the study presented in this thesis.

Chapter 8

Conclusion and Future Work

8.1 Introduction

The main aim of the research carried out in this thesis was to test the hypothesis that the design
of genetic programming classification algorithms for data classification may be automated
by a genetic algorithm and grammatical evolution. The focus was to automate the design of
GP classification algorithms thereby removing the dependence on a human expert designer
and therefore, removing the weaknesses associated with manual design such as long design
times, human bias and human preference. The aim was achieved by developing two new
approaches that use a genetic algorithm and grammatical evolution to carry out the GP
classification algorithm design process. The GP classifiers evolved by the new approaches
were evaluated by applying them to binary and multiclass classification problems selected
from i) the UCI benchmark problem repository, ii) cybersecurity and iii) financial forecasting
problem domains.

The rest of the chapter is structured as follows: section 8.2 presents a brief analysis
of automated design compared to manual design, section 8.3 presents a summary of the
objectives achieved in this thesis, in section 8.4 a discussion of the conclusion is provided,
future work is discussed in section 8.5. Finally, section 8.6 provides a summary of the
chapter.

8.2 Manual Design vs Automated Design

Manual design is unstructured and does not follow a formal approach. According to Barros
et al. [20] to design an effective classification algorithm may take a number of weeks to
several months depending on the algorithm complexity. This assertion is supported by the

120 Conclusion and Future Work

design times experienced during the manual design of GP classification algorithms presented
in this study. There are a number of advantages associated with automated design. The first
advantage of automated design is the reduced design times achieved by automated design
when compared to manual design. Thus manual design has a time overhead. Automated
design reduces the man-hours spent on algorithm design. Automated design performs an
unbiased search for the best configuration and the automation yields classifiers which are
more accurate and relieves the human to attend to other tasks. Different combinations of
design decisions which may not make logical sense to a human designer are tried and tested
in a shorter time than manual design. Although, the search space of design decisions for the
automated design is also not exhaustive it is much wider than the search space considered
during manual design.

In [187] it is argued that effective manual design requires expert knowledge of the problem
domain and of classification. However, this is not always possible [20]. To effectively use
the approaches presented in this thesis the user is not required to be an expert in either the
problem domain nor in classification.

Admittedly the automated design approaches presented in this study are themselves
manually designed. However, this is only done once. Once the automated design approaches
have been designed and implemented they can be used to design genetic programming
classification algorithms suitable to evolve GP classifiers for a number of problem domains.
As mentioned this is achieved with minimal alterations to the automated design applications
to make them suitable to evolve GP classification algorithms that are suitable for the problem
domain at hand.

Certain problem domains require a dynamic classification algorithm i.e. one which is able
to adapt to changes in the problem. For example, the financial forecasting problem domain
presents problems that are volatile. According to Lee et. al [125] a financial forecasting tool
is expected to meet the following criteria: i) an acceptable accurate estimation of a forecast
ii) cost-benefit trade-off i.e. is the effort of using the tool worth the benefit obtained from the
forecast and iii) timeliness i.e. as events change and new information becomes available can
the forecast be updated in time. The presented automated design approaches are shown to
be able to evolve GP classification algorithms that meet the outlined criteria. As shown by
the results of experiments using the financial forecasting problems automatically designed
classifiers are able to achieve better forecasting results than manually designed classifiers thus
meeting criterion i) by achieving acceptable accurate estimations of forecasts. Automated
design also meets criterion ii) cost-benefit trade-off as the accuracy from automated design is
significantly better than that achieved by manual design hence it is worth the effort. The third
criterion relates to timeliness. Automated design meets this criterion as events that occur

8.3 Objectives 121

today can be factored into the classification process the next day as indicated by the average
design times (15 hrs) for financial forecasting problems presented here. It has been shown
that manual design cannot meet the timeliness criterion.

There is a shift in the machine learning research community towards algorithms that are
considered as generalist as opposed to specialist algorithms [33, 159]. Specialist algorithms
are problem-tailored while generalist algorithms are able to generalise within (or across) a
problem domain [199]. According to Haraldsson and Woodward [90] algorithms developed
by automated design tend to be generalist algorithms. However, the authors argue against
this approach and advocate for a general automated design framework that is able to design
specialist algorithms that are able to solve problems in multiple domains. The automated
design approaches presented in this study conform to this specification. With minor alter-
ations, either of the presented automated design framework (autoGA or autoGE) is able to
design GP classification algorithms which can be applied to a number of problem domains.
Classification requires a specialist algorithm as the objective is to maximise the predictive
accuracy. Classifiers are mappings of the relationship between data instance features and
their class labels. Therefore, the data has an influence on the extracted classifier meaning a
specialist algorithm is suitable for data classification.

The effectiveness of evolutionary algorithms depends on its configuration. The usefulness
of genetic operators is still being debated in certain quarters of research [55]. In this thesis,
this question is not answered however, it is left to the proposed approach to determine which
operator works best for specific problems or problem instances. The selection of using
one or more operators is determined by the automated design. Additionally, finding the
right balance regarding operator application rates without bias if more than one operator is
used is determined automatically. The automated design approaches evolve different GP
classification algorithm configurations for different problem domains. Also different GP
classification algorithm configurations are evolved for problem instances from the same
problem domain.

8.3 Objectives

This section lists the objectives which were set out in section 1.2 of Chapter 1 and describes
how they were met.

1. To automate the design of genetic programming classification algorithms using a
genetic algorithm.
To achieve this objective a genetic algorithm system that automatically designs GP
classification algorithms was designed and developed. The system used a genetic

122 Conclusion and Future Work

algorithm to make GP classification algorithm design decisions. The genetic algorithm
was used to determine i) parameter values ii) the genetic operators and iii) the control
flow for the GP classification algorithms. The proposed approach termed autoGA used
a genetic algorithm to evolve GP classification algorithms. Each individual of the
autoGA system represented a GP classification algorithm configuration. The evolved
configurations were gradually refined from generation to generation until a stopping
criterion was met and the best configuration was outputted.

2. To automate the design of genetic programming classification algorithms using
grammatical evolution.

Similarly to objective 1 a system to automatically configure GP classification algo-
rithms using grammatical evolution was designed and implemented. The system was
termed autoGE. Each individual of the autoGE system was encoded to represent a GP
classification algorithm configuration. A grammar which contained domain knowledge
of GP classification algorithm design decisions was defined. The autoGE system was
used to determine i) parameter values ii) the genetic operators and iii) the control flow
for the GP classification algorithms. Using grammatical evolution GP classification
algorithm configurations were evolved until the best configuration was obtained.

3. To compare the effectiveness of genetic programming classifiers evolved by a
genetic algorithm to manually designed genetic programming classifiers.

To achieve this objective, a standard GP classification algorithm system was designed
and developed using a manual design approach. The manual system was developed to
evolve the 3 commonly used GP classifier types, namely arithmetic tree, logical tree,
and decision tree. The two systems, viz. manual GP and autoGA were used to evolve
GP classifiers which were applied to binary and multiclass classification problems.
Three classes of binary classification problems were considered as follows: i) multiple
domain problems ii) cybersecurity problems and iii) financial forecasting problems.
Two classes were used for multiclass classification problems. these were problems
from multiple domains and cybersecurity problems The predictive accuracy of the best
performing manually evolved GP classifier was compared to the predictive accuracy
of the best performing GP classifier evolved by the autoGA approach. For all class
of problems considered on average the best autoGA evolved GP classifier performed
better than the best manually evolved GP classifier. On average the performance of the
best autoGA evolved GP classifiers were found to be significantly better than the best
manually designed GP classifiers on the multiple domain class of problems. Although
the difference in performance on the cybersecurity class of problems was found to

8.3 Objectives 123

be not significant, the autoGA evolved GP classifiers on average achieved a higher
predictive accuracy.

4. To compare the effectiveness of genetic programming classifiers evolved by gram-
matical evolution to manually designed genetic programming classifiers.

To achieve this objective, the predictive accuracy of the best performing GP classifiers
evolved by the autoGE approach applied to the binary and multiclass classification
problems considered in the study were compared to the results of the best performing
manually designed GP classifiers for the same classification problems. The results
indicated that the autoGE approach significantly outperformed the manual design
approach on the multiple domain binary problems and on the financial forecasting
problems. On the multiclass multiple domain problems and cybersecurity, there was
no significant differences in performance although on average across all datasets the
autoGE approach achieved a higher predictive accuracy.

5. Compare the performance of genetic programming classifiers evolved by a ge-
netic algorithm to the performance of genetic programming classifiers evolved
by grammatical evolution on selected problems.

To achieve this objective the predictive accuracy of the best performing GP classifiers
evolved by autoGA were compared to the predictive accuracy of the best performing GP
classifiers evolved by autoGE. For all the class of problems considered the differences
in performance between the autoGA and autoGE approaches were found to be not
significant. The GP classifiers evolved by autoGA achieved a better predictive accuracy
average across multiclass problems than autoGE evolved GP classifiers. On average
autoGE evolved GP classifiers performed better than autoGA evolved GP classifiers
on binary classification problems.

6. Compare the manual design configurations to the automated design configura-
tions.

To achieve this objective parameter tuning was performed for each dataset in the set
of binary class of problems from multiple domains. For the multiclass problems,
cybersecurity and financial forecasting problems a subset of problems was selected
and parameter settings were tuned and used for the rest of the problems. These set
of parameters were compared to the configurations of the best performing automated
designed classifiers. From the comparisons, there were no discernible patterns or simi-
larities observed. Configuration were established to be problem dependent. Automated
design was able to consider a wider range of design decisions than manual design.

124 Conclusion and Future Work

7. Compare the manual design time to the automated design time on selected prob-
lems.

Manual design time was found to be longer than automated design time. The iterative
nature of manual design time compounded by the trial runs led to longer design times.
The differences in design times of the automated approaches were not significantly
different, although the autoGE achieves shorter design times than autoGA in most
cases.

8. Compare the fitness landscape of the design space searched by a genetic algo-
rithm to the fitness landscape searched by grammatical evolution for a specific
class of problems.

A fitness landscape analysis is generally used to analyse the ease with which an
algorithm can solve a problem at hand. To achieve this objective a fitness landscape
analysis of the design spaces searched by the autoGA and autoGE approaches was
carried using the autocorrelation approach. The results of the analysis were compared
for the respective data instances analysed. The autoGE approach was found to search
smoother landscapes than the autoGA approach on binary and financial forecasting
class of problems. While the autoGA approach searched less rugged landscapes than
the autoGE approach on multiclass and cybersecurity problems.

8.4 Conclusion

This section presents conclusions that can be drawn from the objectives presented above.
This study proposed an approach that automates the design of GP classification algo-

rithms for data classification. The proposed strategy is able to automatically configure GP
classification algorithms. Although it can be argued that the proposed approach introduces
more parameters as both the genetic algorithm in autoGA and grammatical evolution in
autoGE need to be configured. However, to configure GP classification algorithms there are
more parameters to be considered than for autoGA or autoGE as a result the configuration of
autoGA or autoGE is less complex than for GP classification algorithms. The state-of-the-art
classification methods are usually tailored for a specific problem by classification algorithm
designers (experts). These systems are usually expensive and proprietary. In this study, we
proposed an approach that requires less expert knowledge and is suitable to be applied to
multiple problem domains. Both proposed approaches i.e. autoGA and autoGE reduce the
man-hours required for the design of GP classification algorithms. The proposed methods

8.5 Future Work 125

are shown to work on problems from specific domains as well as being able to generalise
across problem domains.

8.5 Future Work

Extension of the research presented in this thesis will involve the following:

• Automated design of multi-objective algorithms
Generally, classification is a multi-objective problem considering the number of metrics
which can be obtained from a classification process such as predictive accuracy, error
rate, false positive rate, true positive rate, etc. The popular approach is to present
the classification result as a single value of predictive accuracy or a weighted final
value. An automated approach that incorporates a multi-objective fitness function will
present more meaningful results. This will involve investigating the automated design
of multi-objective GP classification algorithms for classification problems.

• Correlation of the solution space and the design space
In the study presented in this thesis an analysis of the fitness landscape of the design
spaces evolved by the proposed approaches were compared. It will also be beneficial
to analyse the design space in correlation to the solution space. The results obtained
from such a study may aid in increasing the number of design decisions for automated
design. Additionally, autocorrelation was selected for the fitness landscape analysis.
Using other metrics to analyse the design search space may convey further useful
information that may lead to designs that improve the functionality of the proposed
automated design.

• Automating the design of the automating algorithm.
Genetic programming is a parameterised evolutionary algorithm and in this study we
proposed using a genetic algorithm and grammatical evolution to automate the design
of GP. Both GA and GE are also parameterised evolutionary algorithms this raises the
question of whether is there any benefit in automating the design of the automating
application i.e autoGA and autoGE. This approach is worth investigating as manual
design is carried out for the design of both automated design approaches. If there
are benefits to automating the GP classification algorithms there may be benefits in
automating autoGA and autoGE. What was apparent from the results was that on some
problem domains one approach may on average have performed better than the other
but not all problem instances of that domain. For example, on average the autoGE
approach performed well on financial forecasting problems but the autoGA performed

126 Conclusion and Future Work

better on certain instances of the problem domain such as the amazon dataset. This
presents an opportunity for further research such as automated algorithm selection of
the automated design approach. Where the best performing automated design approach
may be used for a specific problem instance.

• Co-evolution of autoGA and autoGE
Co-evolution is generally described as the evolution of two or more populations.
The populations are usually in competition and they have a coupled fitness function.
According to Nolfi and Floreano [160] the competition between the populations leads to
the evolution of complex structures which may be very efficient at solving the problem
at hand. Future research on this aspect will involve investigation the conditions under
which co-evolution may used by populations evolved by autoGA and autoGE to
evolve complex GP classification algorithms capable of achieving higher classification
accuracies.

8.6 Summary

This chapter presented a brief comparison of manual design and automated design based on
the results obtained in this study. An outline of the objectives and how they were met is also
presented. A conclusion of the study and future work are presented.

References

[1] Affenzeller, M., Wagner, S., Winkler, S., and Beham, A. (2009). Genetic algorithms and
genetic programming: modern concepts and practical applications. Crc Press.

[2] Agarwal, A., Xie, B., Vovsha, I., Rambow, O., and Passonneau, R. (2011). Sentiment
analysis of twitter data. In Proceedings of the workshop on languages in social media,
pages 30–38. Association for Computational Linguistics.

[3] Aggarwal, C. C. (2014). Data classification: algorithms and applications. CRC Press.

[4] Ahn, C. W. and Ramakrishna, R. S. (2002). A genetic algorithm for shortest path routing
problem and the sizing of populations. IEEE transactions on evolutionary computation,
6(6):566–579.

[5] Aitkenhead, M. J. (2008). A co-evolving decision tree classification method. Expert
Systems with Applications, 34(1):18–25.

[6] Al-Sahaf, H., Zhang, M., Johnston, M., and Verma, B. (2015). Image descriptor:
A genetic programming approach to multiclass texture classification. In Evolutionary
Computation (CEC), 2015 IEEE Congress on, pages 2460–2467. IEEE.

[7] Albayrak, M. and Allahverdi, N. (2011). Development a new mutation operator to
solve the traveling salesman problem by aid of genetic algorithms. Expert Systems with
Applications, 38(3):1313–1320.

[8] Aleti, A. and Moser, I. (2016). A systematic literature review of adaptive parameter
control methods for evolutionary algorithms. ACM Computing Surveys (CSUR), 49(3):56.

[9] Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to bi-
nary: A unifying approach for margin classifiers. Journal of machine learning research,
1(Dec):113–141.

[10] Alpaydm, E. (1999). Combined 5× 2 cv f test for comparing supervised classification
learning algorithms. Neural computation, 11(8):1885–1892.

[11] Aly, M. (2005). Survey on multiclass classification methods. Neural Netw, 19:1–9.

[12] Angeline, P. J. (1997). Subtree crossover: Building block engine or macromutation.
Genetic programming, 97:9–17.

[13] Ansótegui, C., Sellmann, M., and Tierney, K. (2009). A gender-based genetic algorithm
for the automatic configuration of algorithms. In International Conference on Principles
and Practice of Constraint Programming, pages 142–157. Springer.

128 References

[14] Arcanjo, F. d. L., Pappa, G. L., Bicalho, P. V., Meira Jr, W., and da Silva, A. S. (2011).
Semi-supervised genetic programming for classification. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation, pages 1259–1266. ACM.

[15] Asuncion, A. and Newman, D. (2007). Uci machine learning repository.

[16] Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., and Nielsen, H. (2000). Assessing
the accuracy of prediction algorithms for classification: an overview. Bioinformatics,
16(5):412–424.

[17] Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic program-
ming: an introduction, volume 1. Morgan Kaufmann San Francisco.

[18] Barros, R. C., Basgalupp, M. P., and de Carvalho, A. C. (2015). Investigating fitness
functions for a hyper-heuristic evolutionary algorithm in the context of balanced and
imbalanced data classification. Genetic Programming and Evolvable Machines, 16(3):241–
281.

[19] Barros, R. C., Basgalupp, M. P., Freitas, A. A., and De Carvalho, A. C. (2014a).
Evolutionary design of decision-tree algorithms tailored to microarray gene expression
data sets. IEEE Transactions on Evolutionary Computation, 18(6):873–892.

[20] Barros, R. C., Carvalho, A. C. P. d. L., Freitas, A. A., et al. (2014b). On the automatic
design of decision-tree induction algorithms. In Congresso da Sociedade Brasileira de
Computação, XXXIV; Concurso de Teses e Dissertações, XXVII. Sociedade Brasileira de
Computação (SBC).

[21] Bartoli, A., Davanzo, G., De Lorenzo, A., Mauri, M., Medvet, E., and Sorio, E. (2012).
Automatic generation of regular expressions from examples with genetic programming.
In Proceedings of the 14th annual conference companion on Genetic and evolutionary
computation, pages 1477–1478. ACM.

[22] Bhowan, U., Johnston, M., and Zhang, M. (2009). Differentiating between individual
class performance in genetic programming fitness for classification with unbalanced data.
In Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pages 2802–2809. IEEE.

[23] Bibi, S., Tsoumakas, G., Stamelos, I., and Vlahavas, I. (2008). Regression via classifica-
tion applied on software defect estimation. Expert Systems with Applications, 34(3):2091–
2101.

[24] Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm
for configuring metaheuristics. In Proceedings of the 4th Annual Conference on Genetic
and Evolutionary Computation, pages 11–18. Morgan Kaufmann Publishers Inc.

[25] Bojarczuk, C. C., Lopes, H. S., and Freitas, A. A. (1999). Discovering comprehensible
classification rules using genetic programming: a case study in a medical domain. In
Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-
Volume 2, pages 953–958. Morgan Kaufmann Publishers Inc.

[26] Bojarczuk, C. C., Lopes, H. S., Freitas, A. A., and Michalkiewicz, E. L. (2004).
A constrained-syntax genetic programming system for discovering classification rules:
application to medical data sets. Artificial Intelligence in Medicine, 30(1):27–48.

References 129

[27] Braga-Neto, U. M. and Dougherty, E. R. (2004). Is cross-validation valid for small-
sample microarray classification? Bioinformatics, 20(3):374–380.

[28] Brain, Z. E., Addicoat, M. A., et al. (2010). Using meta-genetic algorithms to tune
parameters of genetic algorithms to find lowest energy molecular conformers. In ALIFE,
pages 378–385.

[29] Brameier, M. F. and Banzhaf, W. (2007). Linear genetic programming. Springer
Science & Business Media.

[30] Bramer, M. (2013). Principles of data mining. Springer Publishing Company, Incorpo-
rated.

[31] Brieman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and
regression trees. belmont (ca): Wadsworth. Google Scholar.

[32] Brindle, A. (1981). Genetic algorithms for function optimization.

[33] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R. (2010).
A classification of hyper-heuristic approaches. In Handbook of metaheuristics, pages
449–468. Springer.

[34] Byrne, J., Fenton, M., Hemberg, E., McDermott, J., O’Neill, M., Shotton, E., and
Nally, C. (2011). Combining structural analysis and multi-objective criteria for evolution-
ary architectural design. In European Conference on the Applications of Evolutionary
Computation, pages 204–213. Springer.

[35] Carvalho, M. G., Laender, A. H., Gonçalves, M. A., and da Silva, A. S. (2008). Replica
identification using genetic programming. In Proceedings of the 2008 ACM symposium
on Applied computing, pages 1801–1806. ACM.

[36] Chareka, T. and Pillay, N. (2016). A study of fitness functions for data classification
using grammatical evolution. In Pattern Recognition Association of South Africa and
Robotics and Mechatronics International Conference (PRASA-RobMech), 2016, pages
1–4. IEEE.

[37] Chen, Z. and Lu, S. (2007). A genetic programming approach for classification of
textures based on wavelet analysis. In Intelligent Signal Processing, 2007. WISP 2007.
IEEE International Symposium on, pages 1–6. IEEE.

[38] Chennupati, G. (2015). Grammatical Evolution+ Multi-Cores= Automatic Parallel
Programming’. PhD thesis, PhD thesis, University of Limerick.

[39] Chmielewski, M. R. and Grzymala-Busse, J. W. (1996). Global discretization of
continuous attributes as preprocessing for machine learning. International journal of
approximate reasoning, 15(4):319–331.

[40] Corcoran, A. L. and Sen, S. (1994). Using real-valued genetic algorithms to evolve
rule sets for classification. In Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE Conference on, pages
120–124. IEEE.

130 References

[41] Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential
programs. In Proceedings of the first international conference on genetic algorithms,
pages 183–187.

[42] Dandekar, T. and Argos, P. (1992). Potential of genetic algorithms in protein folding
and protein engineering simulations. Protein Engineering, Design and Selection, 5(7):637–
645.

[43] Darwin, C. (1968). On the origin of species by means of natural selection. 1859.
London: Murray Google Scholar.

[44] Davis, L. (1985). Applying adaptive algorithms to epistatic domains. In IJCAI,
volume 85, pages 162–164.

[45] De Falco, I., Della Cioppa, A., and Tarantino, E. (2002). Discovering interesting
classification rules with genetic programming. Applied Soft Computing, 1(4):257–269.

[46] De Freitas, J., Pappa, G. L., da Silva, A. S., Gonc, M. A., Moura, E., Veloso, A.,
Laender, A. H., de Carvalho, M. G., et al. (2010). Active learning genetic programming
for record deduplication. In Evolutionary Computation (CEC), 2010 IEEE Congress on,
pages 1–8. IEEE.

[47] De’ath, G. and Fabricius, K. E. (2000). Classification and regression trees: a powerful
yet simple technique for ecological data analysis. Ecology, 81(11):3178–3192.

[48] DeJong, K. A. and Spears, W. M. (1990). Learning concept classification rules using
genetic algorithms. Technical report, GEORGE MASON UNIV FAIRFAX VA.

[49] Della Croce, F., Tadei, R., and Volta, G. (1995). A genetic algorithm for the job shop
problem. Computers & Operations Research, 22(1):15–24.

[50] Demeyer, S. (2011). Research methods in computer science. In ICSM, page 600.

[51] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine learning research, 7(Jan):1–30.

[52] Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural computation, 10(7):1895–1923.

[53] Diosan, L. S. and Oltean, M. (2007). Evolving evolutionary algorithms using evolution-
ary algorithms. In Proceedings of the 9th annual conference companion on Genetic and
evolutionary computation, pages 2442–2449. ACM.

[54] Dobslaw, F. (2010). A parameter tuning framework for metaheuristics based on design
of experiments and artificial neural networks. In International Conference on Computer
Mathematics and Natural Computing. WASET.

[55] Doerr, B., Happ, E., and Klein, C. (2012). Crossover can provably be useful in
evolutionary computation. Theoretical Computer Science, 425:17–33.

[56] Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised
discretization of continuous features. In Machine Learning Proceedings 1995, pages
194–202. Elsevier.

References 131

[57] Drake, J. H., Kililis, N., and Özcan, E. (2013). Generation of vns components with gram-
matical evolution for vehicle routing. In European Conference on Genetic Programming,
pages 25–36. Springer.

[58] Eiben, A. E., Michalewicz, Z., Schoenauer, M., and Smith, J. E. (2007). Parameter
control in evolutionary algorithms. In Parameter setting in evolutionary algorithms, pages
19–46. Springer.

[59] Eiben, A. E. and Smit, S. K. (2011). Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31.

[60] Eiben, A. E., Smith, J. E., et al. (2003). Introduction to evolutionary computing,
volume 53. Springer.

[61] Eiben, Á. E., van Kemenade, C. H., and Kok, J. N. (1995). Orgy in the computer:
Multi-parent reproduction in genetic algorithms. In European Conference on Artificial
Life, pages 934–945. Springer.

[62] Engen, V. (2010). Machine learning for network based intrusion detection: an investi-
gation into discrepancies in findings with the KDD cup’99 data set and multi-objective
evolution of neural network classifier ensembles from imbalanced data. PhD thesis,
Bournemouth University.

[63] Eshelman, L. J. and Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-
schemata. In Foundations of genetic algorithms, volume 2, pages 187–202. Elsevier.

[64] Espejo, P. G., Ventura, S., and Herrera, F. (2010). A survey on the application of genetic
programming to classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 40(2):121–144.

[65] Estrada-Gil, J. K., Fernández-López, J. C., Hernández-Lemus, E., Silva-Zolezzi, I.,
Hidalgo-Miranda, A., Jiménez-Sánchez, G., and Vallejo-Clemente, E. E. (2007). Gpdti: A
genetic programming decision tree induction method to find epistatic effects in common
complex diseases. Bioinformatics, 23(13):i167–i174.

[66] Fallah-Mehdipour, E., Haddad, O. B., and Mariño, M. (2013). Developing reser-
voir operational decision rule by genetic programming. Journal of Hydroinformatics,
15(1):103–119.

[67] Faraoun, K. and Boukelif, A. (2006). Genetic programming approach for multi-category
pattern classification applied to network intrusions detection. International Journal of
Computational Intelligence and Applications, 6(01):77–99.

[68] Fisher, R. A. (1938). The statistical utilization of multiple measurements. Annals of
Human Genetics, 8(4):376–386.

[69] Flood, R., Hodrick, R. J., and Kaplan, P. (1986). An evaluation of recent evidence on
stock market bubbles.

[70] Fogel, L. J. (1994). Evolutionary programming in perspective: The top-down view.
Computational intelligence: Imitating life.

132 References

[71] Folino, G. and Pisani, F. S. (2015). Combining ensemble of classifiers by using genetic
programming for cyber security applications. In European Conference on the Applications
of Evolutionary Computation, pages 54–66. Springer.

[72] Folino, G., Pizzuti, C., and Spezzano, G. (2001). Parallel genetic programming for
decision tree induction. In Tools with Artificial Intelligence, Proceedings of the 13th
International Conference on, pages 129–135. IEEE.

[73] Freitas, A. A. (1997). A genetic programming framework for two data mining tasks:
classification and generalized rule induction. In Genetic Programming 1997: Proc 2nd
Annual Conf, pages 96–101. Citeseer.

[74] Freitas, A. A. (2003). A survey of evolutionary algorithms for data mining and knowl-
edge discovery. In Advances in evolutionary computing, pages 819–845. Springer.

[75] Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning,
volume 1. Springer series in statistics New York.

[76] García, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced nonparametric
tests for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences, 180(10):2044–
2064.

[77] Garcia, S., Luengo, J., Sáez, J. A., Lopez, V., and Herrera, F. (2013). A survey of
discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE
Transactions on Knowledge and Data Engineering, 25(4):734–750.

[78] Gathercole, C. and Ross, P. (1996). An adverse interaction between crossover and
restricted tree depth in genetic programming. In Proceedings of the 1st annual conference
on genetic programming, pages 291–296. MIT Press.

[79] Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
addion wesley. Reading.

[80] Goldberg, D. E. (2006). Genetic algorithms. Pearson Education India.

[81] Greene, C. S., Hill, D. P., and Moore, J. H. (2010). Environmental sensing of expert
knowledge in a computational evolution system for complex problem solving in human
genetics. In Genetic Programming Theory and Practice VII, pages 19–36. Springer.

[82] Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.
IEEE Transactions on systems, man, and cybernetics, 16(1):122–128.

[83] Grefenstette, J. J. (1999). Evolvability in dynamic fitness landscapes: A genetic
algorithm approach. In Evolutionary Computation, 1999. CEC 99. Proceedings of the
1999 Congress on, volume 3, pages 2031–2038. IEEE.

[84] Griffin, J. M. and Chen, X. (2009). Multiple classification of the acoustic emission
signals extracted during burn and chatter anomalies using genetic programming. The
International Journal of Advanced Manufacturing Technology, 45(11-12):1152.

References 133

[85] Gunn, S. R. et al. (1998). Support vector machines for classification and regression.
ISIS technical report, 14(1):5–16.

[86] Hagan, M. T., Demuth, H. B., Beale, M. H., et al. (1996). Neural network design,
volume 20. Pws Pub. Boston.

[87] Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques.
Elsevier.

[88] Hand, D. J. (1997). Construction and assessment of classification rules. Wiley.

[89] Hansen, J. V., Lowry, P. B., Meservy, R. D., and McDonald, D. M. (2007). Genetic
programming for prevention of cyberterrorism through dynamic and evolving intrusion
detection. Decision Support Systems, 43(4):1362–1374.

[90] Haraldsson, S. O. and Woodward, J. R. (2014). Automated design of algorithms and
genetic improvement: contrast and commonalities. In Proceedings of the Companion
Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation,
pages 1373–1380. ACM.

[91] Harper, R. and Blair, A. (2005). A structure preserving crossover in grammatical
evolution. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3,
pages 2537–2544. IEEE.

[92] Hirsch, L., Saeedi, M., and Hirsch, R. (2005). Evolving text classification rules with
genetic programming. Applied Artificial Intelligence, 19(7):659–676.

[93] Holst, T. and Pulliam, T. (2001). Aerodynamic shape optimization using a real-number-
encoded genetic algorithm. In 19th AIAA Applied Aerodynamics Conference, page 2473.

[94] Hong, J.-H. and Cho, S.-B. (2004). Lymphoma cancer classification using genetic
programming with snr features. In European Conference on Genetic Programming, pages
78–88. Springer.

[95] Hong, L., Woodward, J., Li, J., and Özcan, E. (2013). Automated design of proba-
bility distributions as mutation operators for evolutionary programming using genetic
programming. In European Conference on Genetic Programming, pages 85–96. Springer.

[96] Hordijk, W. (1996). A measure of landscapes. Evolutionary computation, 4(4):335–360.

[97] Hu, T. and Banzhaf, W. (2008). Nonsynonymous to synonymous substitution ratio
k_ {\mathrm a}/k_ {\mathrm s}: Measurement for rate of evolution in evolutionary
computation. In International Conference on Parallel Problem Solving from Nature, pages
448–457. Springer.

[98] Hutter, F. (2009). Automated configuration of algorithms for solving hard computational
problems. PhD thesis, University of British Columbia.

[99] Hutter, F., Babic, D., Hoos, H. H., and Hu, A. J. (2007a). Boosting verification by
automatic tuning of decision procedures. In Formal Methods in Computer Aided Design,
2007. FMCAD’07, pages 27–34. IEEE.

134 References

[100] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). Paramils: an
automatic algorithm configuration framework. Journal of Artificial Intelligence Research,
36:267–306.

[101] Hutter, F., Hoos, H. H., and Stützle, T. (2007b). Automatic algorithm configuration
based on local search. In Aaai, volume 7, pages 1152–1157.

[102] Iman, R. L. and Davenport, J. M. (1980). Approximations of the critical region of the
fbietkan statistic. Communications in Statistics-Theory and Methods, 9(6):571–595.

[103] Isele, R. and Bizer, C. (2011). Learning linkage rules using genetic programming.
In Proceedings of the 6th International Conference on Ontology Matching-Volume 814,
pages 13–24. CEUR-WS. org.

[104] Isele, R. and Bizer, C. (2012). Learning expressive linkage rules using genetic
programming. Proceedings of the VLDB Endowment, 5(11):1638–1649.

[105] Isele, R. and Bizer, C. (2013). Active learning of expressive linkage rules using genetic
programming. Web Semantics: Science, Services and Agents on the World Wide Web,
23:2–15.

[106] Ishibuchi, H., Nozaki, K., Yamamoto, N., and Tanaka, H. (1995). Selecting fuzzy
if-then rules for classification problems using genetic algorithms. IEEE Transactions on
fuzzy systems, 3(3):260–270.

[107] Johnson, C. (2006a). What is Research in Computing Science. http://http://www.dcs.
gla.ac.uk/~johnson/teaching/research_skills/research.html. [Online; accessed 19-January-
2017].

[108] Johnson, C. (2006b). What is research in computing science. Computer Science Dept.,
Glasgow University. Electronic resource: http://www. dcs. gla. ac. uk/˜ johnson/teach-
ing/research_skills/research. ht ml.

[109] Johnson, H. E., Gilbert, R. J., Winson, M. K., Goodacre, R., Smith, A. R., Rowland,
J. J., Hall, M. A., and Kell, D. B. (2000). Explanatory analysis of the metabolome using
genetic programming of simple, interpretable rules. Genetic Programming and Evolvable
Machines, 1(3):243–258.

[110] Jones, T. et al. (1995). Evolutionary algorithms, fitness landscapes and search. PhD
thesis, Citeseer.

[111] Karafotias, G., Hoogendoorn, M., and Eiben, Á. E. (2015). Parameter control in
evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary
Computation, 19(2):167–187.

[112] Kerber, R. (1992). Chimerge: Discretization of numeric attributes. In Proceedings of
the tenth national conference on Artificial intelligence, pages 123–128. Aaai Press.

[113] Khoshgoftaar, T. M., Seliya, N., and Liu, Y. (2003). Genetic programming-based
decision trees for software quality classification. In Tools with Artificial Intelligence, 2003.
Proceedings. 15th IEEE International Conference on, pages 374–383. IEEE.

 http://http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html
 http://http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html

References 135

[114] Kishore, J. K., Patnaik, L. M., Mani, V., and Agrawal, V. (2000). Application of
genetic programming for multicategory pattern classification. IEEE transactions on
evolutionary computation, 4(3):242–258.

[115] Kotsiantis, S. and Kanellopoulos, D. (2006). Discretization techniques: A recent sur-
vey. GESTS International Transactions on Computer Science and Engineering, 32(1):47–
58.

[116] Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006). Data preprocessing for
supervised leaning. International Journal of Computer Science, 1(2):111–117.

[117] Koza, J. R. (1990). Concept formation and decision tree induction using the genetic
programming paradigm. In International Conference on Parallel Problem Solving from
Nature, pages 124–128. Springer.

[118] Koza, J. R. (1992a). Genetic Programming II, Automatic Discovery of Reusable
Subprograms. MIT Press, Cambridge, MA.

[119] Koza, J. R. (1992b). Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press.

[120] Koza, J. R. (1994). Genetic programming as a means for programming computers by
natural selection. Statistics and computing, 4(2):87–112.

[121] Kurgan, L. A. and Cios, K. J. (2004). Caim discretization algorithm. IEEE transactions
on Knowledge and Data Engineering, 16(2):145–153.

[122] La Cava, W., Silva, S., Danai, K., Spector, L., Vanneschi, L., and Moore, J. H.
(2018). Multidimensional genetic programming for multiclass classification. Swarm and
Evolutionary Computation.

[123] Langdon, W. B. and Buxton, B. F. (2001). Genetic programming for combining
classifiers. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation, pages 66–73. Morgan Kaufmann Publishers Inc.

[124] Langdon, W. B. and Poli, R. (2013). Foundations of genetic programming. Springer
Science & Business Media.

[125] Lee, A. C., Lee, J. C., and Lee, C. F. (2009). Financial analysis, planning & forecast-
ing: Theory and application. World Scientific.

[126] Lessmann, S., Baesens, B., Seow, H.-V., and Thomas, L. C. (2015). Benchmark-
ing state-of-the-art classification algorithms for credit scoring: An update of research.
European Journal of Operational Research, 247(1):124–136.

[127] Li, J. (2000). FGP: a genetic programming based tool for financial forecasting. PhD
thesis, University of Essex.

[128] Li, J. (2001). Fgp: A genetic programming based financial forecasting tool. Unpub-
lished doctoral dissertation, Department of Computer Science, University of Essex.

136 References

[129] Li, X. and Ciesielski, V. (2004). Using loops in genetic programming for a two
class binary image classification problem. In Australasian Joint Conference on Artificial
Intelligence, pages 898–909. Springer.

[130] Liao, W. (1987). Graph bipartitioning problem. Physical review letters, 59(15):1625.

[131] Lim, A. H. and Lee, C.-S. (2010). Processing online analytics with classification and
association rule mining. Knowledge-Based Systems, 23(3):248–255.

[132] Lin, J.-Y., Ke, H.-R., Chien, B.-C., and Yang, W.-P. (2007). Designing a classifier
by a layered multi-population genetic programming approach. Pattern Recognition,
40(8):2211–2225.

[133] Lin, J.-Y., Ke, H.-R., Chien, B.-C., and Yang, W.-P. (2008). Classifier design with
feature selection and feature extraction using layered genetic programming. Expert
Systems with Applications, 34(2):1384–1393.

[134] Liu, H., Hussain, F., Tan, C. L., and Dash, M. (2002). Discretization: An enabling
technique. Data mining and knowledge discovery, 6(4):393–423.

[135] Liu, H. and Setiono, R. (1997). Feature selection via discretization. IEEE Transactions
on knowledge and Data Engineering, 9(4):642–645.

[136] Lobo, F., Lima, C. F., and Michalewicz, Z. (2007). Parameter setting in evolutionary
algorithms, volume 54. Springer Science & Business Media.

[137] López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. (2011). The irace
package, iterated race for automatic algorithm configuration. Technical report, Technical
Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium.

[138] Lourenço, N., Pereira, F., and Costa, E. (2012). Evolving evolutionary algorithms.
In Proceedings of the 14th annual conference companion on Genetic and evolutionary
computation, pages 51–58. ACM.

[139] Lourenço, N., Pereira, F. B., and Costa, E. (2013). The importance of the learning
conditions in hyper-heuristics. In Proceedings of the 15th annual conference on Genetic
and evolutionary computation, pages 1525–1532. ACM.

[140] Loveard, T. and Ciesielski, V. (2001). Representing classification problems in genetic
programming. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on,
volume 2, pages 1070–1077. IEEE.

[141] Luke, S. and Panait, L. (2001). A survey and comparison of tree generation algorithms.
In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation,
pages 81–88. Morgan Kaufmann Publishers Inc.

[142] Ma, C. Y. and Wang, X. Z. (2009). Inductive data mining based on genetic program-
ming: automatic generation of decision trees from data for process historical data analysis.
Computers & Chemical Engineering, 33(10):1602–1616.

[143] Maden, İ., Uyar, A., and Ozcan, E. (2009). Landscape analysis of simple perturbative
hyperheuristics. In Mendel, volume 2009, page 15th.

References 137

[144] Malan, K. M. and Engelbrecht, A. P. (2013). A survey of techniques for characterising
fitness landscapes and some possible ways forward. Information Sciences, 241:148–163.

[145] Marsland, S. (2015). Machine learning: an algorithmic perspective. CRC press.

[146] Merz, P. and Freisleben, B. (2000). Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitioning. Evolutionary Computation, 8(1):61–91.

[147] Miller, G. F., Todd, P. M., and Hegde, S. U. (1989). Designing neural networks using
genetic algorithms. In ICGA, volume 89, pages 379–384.

[148] Miller, J. F. and Thomson, P. (2000). Cartesian genetic programming. In European
Conference on Genetic Programming, pages 121–132. Springer.

[149] Miranda, P. B. and Prudêncio, R. B. (2015). Gefpso: A framework for pso optimization
based on grammatical evolution. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pages 1087–1094. ACM.

[150] Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

[151] Montero, E., Riff, M.-C., and Neveu, B. (2014). A beginner’s guide to tuning methods.
Applied Soft Computing, 17:39–51.

[152] Mousavi, S., Esfahanipour, A., and Zarandi, M. H. F. (2014). A novel approach to
dynamic portfolio trading system using multitree genetic programming. Knowledge-Based
Systems, 66:68–81.

[153] Muni, D. P., Pal, N. R., and Das, J. (2004). A novel approach to design classifiers using
genetic programming. IEEE transactions on evolutionary computation, 8(2):183–196.

[154] Munoz, L., Silva, S., and Trujillo, L. (2015). M3gp–multiclass classification with gp.
In European Conference on Genetic Programming, pages 78–91. Springer.

[155] Nannen, V. and Eiben, A. (2007a). Efficient relevance estimation and value calibration
of evolutionary algorithm parameters. In Evolutionary Computation, 2007. CEC 2007.
IEEE Congress on, pages 103–110. IEEE.

[156] Nannen, V. and Eiben, A. E. (2007b). Relevance estimation and value calibration of
evolutionary algorithm parameters. In IJCAI, volume 7, pages 975–980.

[157] Naudts, B. and Kallel, L. (2000). Comparison of summary statistics of fitness land-
scapes. IEEE Trans. Evol. Comp, 4:1–15.

[158] Nazif, H. and Lee, L. S. (2012). Optimised crossover genetic algorithm for capacitated
vehicle routing problem. Applied Mathematical Modelling, 36(5):2110–2117.

[159] Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2012). Evolving reusable
operation-based due-date assignment models for job shop scheduling with genetic pro-
gramming. In European Conference on Genetic Programming, pages 121–133. Springer.

[160] Nolfi, S. and Floreano, D. (1998). How co-evolution can enhance the adaptive power
of artificial evolution: Implications for evolutionary robotics. In European Workshop on
Evolutionary Robotics, pages 22–38. Springer.

138 References

[161] Oates, B. J. (2005). Researching information systems and computing. Sage.

[162] Ochoa, G., Qu, R., and Burke, E. K. (2009a). Analyzing the landscape of a graph based
hyper-heuristic for timetabling problems. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pages 341–348. ACM.

[163] Ochoa, G., Vázquez-Rodríguez, J. A., Petrovic, S., and Burke, E. (2009b). Dispatching
rules for production scheduling: a hyper-heuristic landscape analysis. In Evolutionary
Computation, 2009. CEC’09. IEEE Congress on, pages 1873–1880. IEEE.

[164] Oltean, M. and Dioşan, L. (2009). An autonomous gp-based system for regression
and classification problems. Applied Soft Computing, 9(1):49–60.

[165] Ong, C.-S., Huang, J.-J., and Tzeng, G.-H. (2005). Building credit scoring models
using genetic programming. Expert Systems with Applications, 29(1):41–47.

[166] O’Neill, M. and Ryan, C. (2000). Crossover in grammatical evolution: A smooth
operator? In European Conference on Genetic Programming, pages 149–162. Springer.

[167] O’Neill, M., Ryan, C., Keijzer, M., and Cattolico, M. (2001). Crossover in grammatical
evolution: The search continues. In European Conference on Genetic Programming, pages
337–347. Springer.

[168] Papagelis, A. and Kalles, D. (2001). Breeding decision trees using evolutionary
techniques. In ICML, volume 1, pages 393–400.

[169] Patki, P. S. and Kelkar, V. V. (2013). Classification using different normalization
techniques in support vector machine. In International Conference on Communication
Technology, pages 17–19.

[170] Perlman, R., Kaufman, C., and Speciner, M. (2016). Network security: private
communication in a public world. Pearson Education India.

[171] Phyu, T. N. (2009). Survey of classification techniques in data mining. In Proceedings
of the International MultiConference of Engineers and Computer Scientists, volume 1,
pages 18–20.

[172] Pitzer, E. and Affenzeller, M. (2012). A comprehensive survey on fitness landscape
analysis. In Recent Advances in Intelligent Engineering Systems, pages 161–191. Springer.

[173] Pitzer, E., Affenzeller, M., Beham, A., and Wagner, S. (2011). Comprehensive and
automatic fitness landscape analysis using heuristiclab. In International Conference on
Computer Aided Systems Theory, pages 424–431. Springer.

[174] Poli, R. (2003). A simple but theoretically-motivated method to control bloat in
genetic programming. In European Conference on Genetic Programming, pages 204–217.
Springer.

[175] Poli, R., Langdon, W., and McPhee, N. (2008). A field guide to genetic programming
(with contributions by jr koza)(2008). Published via http://lulu. com.

[176] Poli, R. and Langdon, W. B. (1998). Schema theory for genetic programming with
one-point crossover and point mutation. Evolutionary Computation, 6(3):231–252.

References 139

[177] Punch III, W. F., Goodman, E. D., Pei, M., Chia-Shun, L., Hovland, P. D., and
Enbody, R. J. (1993). Further research on feature selection and classification using genetic
algorithms. In ICGA, pages 557–564.

[178] Qing-Shan, C., De-Fu, Z., Li-Jun, W., and Huo-Wang, C. (2007). A modified genetic
programming for behavior scoring problem. In Computational Intelligence and Data
Mining, 2007. CIDM 2007. IEEE Symposium on, pages 535–539. IEEE.

[179] Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

[180] Ratle, A. and Sebag, M. (2001). Avoiding the bloat with stochastic grammar-based
genetic programming. In International Conference on Artificial Evolution (Evolution
Artificielle), pages 255–266. Springer.

[181] Raymer, M. L., Punch, W. F., Goodman, E. D., and Kuhn, L. A. (1996). Genetic
programming for improved data mining: application to the biochemistry of protein
interactions. In Proceedings of the 1st annual conference on genetic programming, pages
375–380. MIT Press.

[182] Rechenberg, I. (1984). The evolution strategy. a mathematical model of darwinian
evolution. In Synergetics—from microscopic to macroscopic order, pages 122–132.
Springer.

[183] Reinelt, G. (1991). Tsplib—a traveling salesman problem library. ORSA journal on
computing, 3(4):376–384.

[184] Rouwhorst, S. and Engelbrecht, A. (2000). Searching the forest: Using decision trees
as building blocks for evolutionary search in classification databases. In Evolutionary
Computation, 2000. Proceedings of the 2000 Congress on, volume 1, pages 633–638.
IEEE.

[185] Ryan, C. and Azad, R. M. A. (2003). Sensible initialisation in grammatical evolution.
In GECCO, pages 142–145.

[186] Ryan, C., Collins, J. J., and Neill, M. O. (1998). Grammatical evolution: Evolving
programs for an arbitrary language. In European Conference on Genetic Programming,
pages 83–96. Springer.

[187] Sabar, N. R., Ayob, M., Kendall, G., and Qu, R. (2015). Automatic design of a hyper-
heuristic framework with gene expression programming for combinatorial optimization
problems. IEEE Trans. Evolutionary Computation, 19(3):309–325.

[188] Sætrom, P. (2004). Predicting the efficacy of short oligonucleotides in antisense and
rnai experiments with boosted genetic programming. Bioinformatics, 20(17):3055–3063.

[189] Sætrom, P. and Hetland, M. L. (2003). Unsupervised temporal rule mining with
genetic programming and specialized hardware. In Proceedings of the 2003 International
Conference on Machine Learning and Applications (ICMLA’03), pages 145–151.

[190] Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data mining and knowledge discovery, 1(3):317–328.

140 References

[191] Sastry, K., Goldberg, D. E., and Kendall, G. (2014). Genetic algorithms. In Search
methodologies, pages 93–117. Springer.

[192] Sen, S. and Clark, J. A. (2011). Evolutionary computation techniques for intrusion
detection in mobile ad hoc networks. Computer Networks, 55(15):3441–3457.

[193] Sevaux, M., Sörensen, K., and Pillay, N. (2018). Adaptive and multilevel metaheuris-
tics. Handbook of Heuristics, pages 1–19.

[194] Shao, L., Liu, L., and Li, X. (2014). Feature learning for image classification via mul-
tiobjective genetic programming. IEEE Transactions on Neural Networks and Learning
Systems, 25(7):1359–1371.

[195] Shen, S., Sandham, W., Granat, M., Dempsey, M., and Patterson, J. (2003). A new
approach to brain tumour diagnosis using fuzzy logic based genetic programming. In
Engineering in medicine and biology society, 2003. Proceedings of the 25th annual
international conference of the IEEE, volume 1, pages 870–873. IEEE.

[196] Sherrah, J., Bogner, R. E., and Bouzerdoum, B. (1996). Automatic selection of
features for classification using genetic programming. In Intelligent Information Systems,
1996., Australian and New Zealand Conference on, pages 284–287. IEEE.

[197] Silva, S., Foster, J. A., Nicolau, M., Machado, P., and Giacobini, M. (2011). Genetic
Programming: 14th European Conference, EuroGP 2011, Torino, Italy, April 27-29, 2011,
Proceedings, volume 6621. Springer Science & Business Media.

[198] Silva, S. and Tseng, Y.-T. (2008). Classification of seafloor habitats using genetic
programming. In Workshops on Applications of Evolutionary Computation, pages 315–
324. Springer.

[199] Smit, S. K. and Eiben, A. (2010). Parameter tuning of evolutionary algorithms:
Generalist vs. specialist. In European Conference on the Applications of Evolutionary
Computation, pages 542–551. Springer.

[200] Smith, T., Husbands, P., and O’Shea, M. (2002). Fitness landscapes and evolvability.
Evolutionary computation, 10(1):1–34.

[201] Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4):427–437.

[202] Song, A., Ciesielski, V., and Williams, H. E. (2002). Texture classifiers generated by
genetic programming. In Evolutionary Computation, 2002. CEC’02. Proceedings of the
2002 Congress on, volume 1, pages 243–248. IEEE.

[203] Song, D., Heywood, M. I., and Zincir-Heywood, A. N. (2005). Training genetic
programming on half a million patterns: an example from anomaly detection. IEEE
transactions on evolutionary computation, 9(3):225–239.

[204] Souffriau, W., Vansteenwegen, P., Berghe, G. V., and Van Oudheusden, D. (2008).
Automated parameterisation of a metaheuristic for the orienteering problem. In Adaptive
and Multilevel Metaheuristics, pages 255–269. Springer.

References 141

[205] Srinivas, M. and Patnaik, L. M. (1994). Adaptive probabilities of crossover and
mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics,
24(4):656–667.

[206] Stadler, P. F. and Happel, R. (1992). Correlation structure of the landscape of the
graph-bipartitioning-problem. J. Phys. A: Math. Gen, 25:3103–3110.

[207] Stadler, P. F. and Schnabl, W. (1992). The landscape of the traveling salesman problem.
Physics Letters A, 161(4):337–344.

[208] Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of
the third international conference on Genetic algorithms, pages 2–9. Morgan Kaufmann
Publishers.

[209] Tanev, I., Ray, T., and Buller, A. (2005). Automated evolutionary design, robust-
ness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE
Transactions on Robotics, 21(4):632–645.

[210] Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. (2009). A detailed analysis
of the kdd cup 99 data set. In Computational Intelligence for Security and Defense
Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6. IEEE.

[211] Tavares, J. and Pereira, F. B. (2012). Automatic design of ant algorithms with
grammatical evolution. In European Conference on Genetic Programming, pages 206–
217. Springer.

[212] Tavares, J., Pereira, F. B., and Costa, E. (2008). Multidimensional knapsack problem:
A fitness landscape analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 38(3):604–616.

[213] Tewari, A. and Bartlett, P. L. (2007). On the consistency of multiclass classification
methods. Journal of Machine Learning Research, 8(May):1007–1025.

[214] Van Belle, T. and Ackley, D. H. (2002). Uniform subtree mutation. In European
Conference on Genetic Programming, pages 152–161. Springer.

[215] Veček, N., Mernik, M., Filipič, B., and Črepinšek, M. (2016). Parameter tuning with
chess rating system (crs-tuning) for meta-heuristic algorithms. Information Sciences,
372:446–469.

[216] Vella, A., Corne, D., and Murphy, C. (2009). Hyper-heuristic decision tree induction.
In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on,
pages 409–414. IEEE.

[217] Vladislavleva, E. J., Smits, G. F., and Den Hertog, D. (2009). Order of nonlinearity
as a complexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Transactions on Evolutionary Computation, 13(2):333–349.

[218] Wager, T. D. and Nichols, T. E. (2003). Optimization of experimental design in fmri:
a general framework using a genetic algorithm. Neuroimage, 18(2):293–309.

142 References

[219] Wang, P., Tsang, E. P., Weise, T., Tang, K., and Yao, X. (2010). Using gp to evolve
decision rules for classification in financial data sets. In Cognitive informatics (ICCI),
2010 9th IEEE international conference on, pages 720–727. IEEE.

[220] Weinberger, E. (1990). Correlated and uncorrelated fitness landscapes and how to tell
the difference. Biological cybernetics, 63(5):325–336.

[221] White, D. R. and Poulding, S. (2009). A rigorous evaluation of crossover and mutation
in genetic programming. In European Conference on Genetic Programming, pages
220–231. Springer.

[222] Whitley, L. D. et al. (1989). The genitor algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. In ICGA, volume 89, pages 116–123.
Fairfax, VA.

[223] Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing.
Academic press.

[224] Winkler, S., Affenzeller, M., and Wagner, S. (2007). Advanced genetic programming
based machine learning. Journal of Mathematical Modelling and Algorithms, 6(3):455–
480.

[225] Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

[226] Witten, I. H., Frank, E., Trigg, L. E., Hall, M. A., Holmes, G., and Cunningham, S. J.
(1999). Weka: Practical machine learning tools and techniques with java implementations.

[227] Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82.

[228] Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in
evolution, volume 1. na.

[229] Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D.,
Williams, K., and Zhao, H. (2003). Comparison of statistical methods for classification of
ovarian cancer using mass spectrometry data. Bioinformatics, 19(13):1636–1643.

[230] Xu, C.-G. and Liu, K.-H. (2008). A gp based approach to the classification of
multiclass microarray datasets. In International Conference on Intelligent Computing,
pages 340–346. Springer.

[231] Ye, L. and Keogh, E. (2011). Time series shapelets: a novel technique that allows
accurate, interpretable and fast classification. Data mining and knowledge discovery,
22(1-2):149–182.

[232] Zhang, L. and Nandi, A. K. (2007). Fault classification using genetic programming.
Mechanical Systems and Signal Processing, 21(3):1273–1284.

[233] Zhang, M. and Ciesielski, V. (1999). Genetic programming for multiple class object
detection. In Australasian Joint Conference on Artificial Intelligence, pages 180–192.
Springer.

References 143

[234] Zhang, M. and Wong, P. (2008). Genetic programming for medical classification:
a program simplification approach. Genetic Programming and Evolvable Machines,
9(3):229–255.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Purpose of the Study
	1.1.1 Manual Design

	1.2 Objectives
	1.3 Scope of the Study
	1.4 Contributions
	1.5 Thesis Layout
	1.5.1 Chapter 2 - Literature Review
	1.5.2 Chapter 3 - Methodology
	1.5.3 Chapter 4 - Manual Design of Genetic Programming Classification Algorithms
	1.5.4 Chapter 5 - Design of Genetic Programming Classification Algorithms using a Genetic Algorithms
	1.5.5 Chapter 6 - Design of Genetic Programming Classification Algorithms using Grammatical Evolution
	1.5.6 Chapter 7 - Results and Discussion
	1.5.7 Chapter 8 - Conclusion and Future Work

	2 Literature Review
	2.1 Introduction
	2.2 Classification
	2.2.1 Metrics of Evaluating Performance of Classifiers
	2.2.2 Comparing Classification Algorithms
	2.2.3 Datasets
	2.2.3.1 Discretisation
	2.2.3.2 Normalisation
	2.2.3.3 Partitioning

	2.3 Evolutionary Algorithms
	2.3.1 Genetic Algorithm
	2.3.1.1 Initial Population Generation
	2.3.1.2 Fitness Evaluation
	2.3.1.3 Selection
	2.3.1.4 Crossover
	2.3.1.5 Mutation
	2.3.1.6 Population Replacement
	2.3.1.7 Termination
	2.3.1.8 Applications of GA

	2.3.2 Genetic Programming
	2.3.2.1 Initial Population Generation
	2.3.2.2 Fitness Evaluation
	2.3.2.3 Selection
	2.3.2.4 Genetic Operators
	2.3.2.5 Population Replacement
	2.3.2.6 Termination
	2.3.2.7 Applications of GP

	2.3.3 Grammatical Evolution
	2.3.3.1 Initial Population Generation
	2.3.3.2 Mapping
	2.3.3.3 Selection
	2.3.3.4 Genetic Operators
	2.3.3.5 Population Replacement
	2.3.3.6 Termination
	2.3.3.7 Applications of Grammatical Evolution

	2.4 GP and Classification
	2.4.1 GP Classifier Models
	2.4.2 Population Initialisation
	2.4.3 Fitness Function
	2.4.4 Selection
	2.4.5 Genetic Operators
	2.4.6 Population Replacement
	2.4.7 GP and Multiclass Classification
	2.4.8 GP Parameters for Classification Problems
	2.4.8.1 Parameter Tuning

	2.5 Automated Design
	2.5.1 Definition of Automated Design
	2.5.1.1 Design Decisions

	2.5.2 Automated Design using Genetic Algorithms
	2.5.3 Automated Design using Grammatical Evolution
	2.5.4 Analysis of Automated Design

	2.6 Fitness Landscape and Fitness Landscape Analysis
	2.6.1 Fitness Landscape
	2.6.2 Fitness Landscape Analysis
	2.6.2.1 Fitness Landscape Analysis Metrics

	2.7 Summary

	3 Methodology
	3.1 Introduction
	3.2 Research Methodologies
	3.3 The Proof by Demonstration Methodology
	3.3.1 Objectives One and Two
	3.3.2 Objective Three and Four

	3.4 Comparative Analysis
	3.4.1 Experiments
	3.4.1.1 Manual Approach
	3.4.1.2 Automated Design Approaches

	3.4.2 Statistical Tests
	3.4.3 Fitness Landscape Analysis

	3.5 Datasets
	3.5.1 Multiple Problem Domain Datasets
	3.5.2 Single Domain Datasets
	3.5.3 Fitness Landscape Analysis Datasets
	3.5.4 Data Pre-processing

	3.6 Technical Specification
	3.7 Summary

	4 Manual Design of Genetic Programming Classification Algorithm
	4.1 Introduction
	4.2 Genetic Programming Classification Algorithm
	4.2.1 Classifier Type
	4.2.2 Fitness Function
	4.2.3 Multiclass Classification Method

	4.3 Initial Population Generation
	4.4 Selection
	4.5 Genetic operators
	4.6 Algorithm Termination
	4.7 Parameter Tuning
	4.7.1 UCI Datasets
	4.7.1.1 Binary classification
	4.7.1.2 Multiclass classification

	4.7.2 Cybersecurity Datasets -NSL-KDD99 20% Values
	4.7.3 Financial forecasting datasets

	4.8 Summary

	5 Design of GP classification algorithms using a Genetic Algorithm
	5.1 Introduction
	5.2 GP Design Decisions
	5.2.1 Determination of Parameters Values
	5.2.1.1 Categorical Parameters
	5.2.1.2 Numerical Parameters

	5.2.2 Determination of Genetic Operators
	5.2.3 Determination of the Control Flow

	5.3 Automated Design of GP Classification Algorithms using a Genetic Algorithm
	5.3.1 Genetic Algorithm for autoGA
	5.3.1.1 Representation

	5.3.2 Initial Population Generation
	5.3.3 Fitness Function and Selection
	5.3.4 Crossover
	5.3.5 Mutation
	5.3.5.1 Elitism

	5.3.6 Termination
	5.3.7 AutoGA Parameter Settings

	5.4 Summary

	6 Design of GP classification algorithms using Grammatical Evolution
	6.1 Introduction
	6.2 GP Design Decisions
	6.3 Automated Design of GP Classification Algorithms using Grammatical Evolution
	6.3.1 Grammatical Evolution Algorithm for AutoGE
	6.3.1.1 Representation

	6.3.2 Initial Population Generation
	6.3.3 Mapping
	6.3.4 Fitness Function and Selection
	6.3.5 Crossover
	6.3.6 Mutation
	6.3.7 Elitism
	6.3.8 Termination
	6.3.9 AutoGE Parameter Settings

	6.4 Fitness Landscape Analysis Settings
	6.5 Summary

	7 Results and Discussion
	7.1 Introduction
	7.2 Multiple Domain Problems
	7.2.1 Binary Classification Results
	7.2.1.1 Training
	7.2.1.2 Testing
	7.2.1.3 Configurations

	7.2.2 Multiclass Classification Results
	7.2.2.1 Training
	7.2.2.2 Testing
	7.2.2.3 Configurations

	7.3 Cybersecurity
	7.3.1 Training
	7.3.2 Testing
	7.3.3 Configurations

	7.4 Financial Forecasting
	7.4.1 Training Results
	7.4.2 Testing Results
	7.4.3 Configurations

	7.5 Design Times
	7.6 Fitness Landscape Analysis
	7.6.1 Binary Classification Problems
	7.6.2 Multiclass Classification Problems
	7.6.3 Cybersecurity Problems
	7.6.4 Financial Forecasting Problems

	7.7 Summary

	8 Conclusion and Future Work
	8.1 Introduction
	8.2 Manual Design vs Automated Design
	8.3 Objectives
	8.4 Conclusion
	8.5 Future Work
	8.6 Summary

	References

