Skip to main content

Analysis of a Pairwise Dominance Coevolutionary Algorithm with Spatial Topology

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XX

Abstract

Competitive coevolutionary algorithms are used to model adversarial dynamics. The diversity of the adversarial populations can be changed with a spatial topology. To achieve more clarity in how a spatial topology impacts performance and complexity we introduce a spatial topology to a pairwise dominance coevolutionary algorithm named PDCoEA. The new algorithm is called STPDCoEA. We use a methodology for consistent algorithm comparison to empirically study the impact of topology, problem, and mutation rates on the dynamics and payoffs in STPDCoEA. We compare records of multi-run dynamics on three problems and observe that the spatial topology impacts the performance and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Node B is not necessarily isolated from A if node A is isolated from B.

References

  1. Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for complex tasks. In: Proceedings of the Fifth International Conference (GA93), Genetic Algorithms, pp. 264–270 (1993)

    Google Scholar 

  2. Antonio, L.M., Coello, C.A.C.: Coevolutionary multi-objective evolutionary algorithms: a survey of the state-of-the-art. IEEE Trans. Evolut. Comput. 1–16 (2018)

    Google Scholar 

  3. Axelrod, R.: The Evolution of Cooperation, vol. 10. Basic, New York (1984)

    Google Scholar 

  4. Cardona, A.B., Togelius, J., Nelson, M.J.: Competitive coevolution in ms. pac-man. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1403–1410 (2013)

    Google Scholar 

  5. Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and other search processes. IEEE Trans. Evol. Comput. 22(5), 707–719 (2018)

    Article  Google Scholar 

  6. Czarnecki, W.M., Gidel, G., Tracey, B., Tuyls, K., Omidshafiei, S., Balduzzi, D., Jaderberg, M.: Real world games look like spinning tops. Adv. Neural. Inf. Process. Syst. 33, 17443–17454 (2020)

    Google Scholar 

  7. van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FlipIt: The game of “Stealthy Ttakeover. J. Cryptol. 26(4), 655–713 (2013)

    Google Scholar 

  8. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  9. Ehrlich, P.R., Raven, P.H.: Butterflies and plants: a study in coevolution. Evolution 18(4), 586–608 (1964)

    Article  Google Scholar 

  10. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)

    Article  Google Scholar 

  11. Ficici, S.G.: Solution concepts in coevolutionary algorithms. Ph.D. thesis, Brandeis University (2004)

    Google Scholar 

  12. Fogel, D.: Blondie24: playing at the edge of artificial intelligence (2001)

    Google Scholar 

  13. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc, Boston (1989)

    Google Scholar 

  14. Hemberg, E., Rosen, J., Warner, G., Wijesinghe, S., O’Reilly, U.M.: Detecting tax evasion: a co-evolutionary approach. Artif. Intell. Law 24, 149–182 (2016)

    Article  Google Scholar 

  15. Hemberg, E., Toutouh, J., Al-Dujaili, A., Schmiedlechner, T., O’Reilly, U.M.: Spatial coevolution for generative adversarial network training. ACM Trans. Evol. Learn. Optim. 1(2) (2021)

    Google Scholar 

  16. Jones, S.T., Outkin, A.V., Gearhart, J.L., Hobbs, J.A., Siirola, J.D., Phillips, C.A., Verzi, S.J., Tauritz, D., Mulder, S.A., Naugle, A.B.: Evaluating moving target defense with pladd. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2015)

    Google Scholar 

  17. Krawiec, K., Heywood, M.: Solving complex problems with coevolutionary algorithms. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 687–713. ACM (2016)

    Google Scholar 

  18. Lehre, P.K.: Negative drift in populations. In: Proceedings of the 11th International Conference on Parallel Problem Solving from Nature (PPSN 2010). LNCS, vol. 6238, pp. 244–253. Springer, Berlin (2010)

    Google Scholar 

  19. Lehre, P.K.: Runtime analysis of competitive co-evolutionary algorithms for maximin optimisation of a bilinear function. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’22, pp. 1408–1416. ACM, New York (2022)

    Google Scholar 

  20. Lehre, P.K., Hevia Fajardo, M., Hemberg, E., Toutouh, J., O’Reilly, U.M.: Analysis of a pairwise dominance coevolutionary algorithm and defendit. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’23. ACM, New York (2023)

    Google Scholar 

  21. Lim, C.U., Baumgarten, R., Colton, S.: Evolving behaviour trees for the commercial game DEFCON. In: European Conference on the Applications of Evolutionary Computation, pp. 100–110. Springer (2010)

    Google Scholar 

  22. Luke, S., et al.: Genetic programming produced competitive soccer softbot teams for robocup97. Genet. Program. 1998, 214–222 (1998)

    Google Scholar 

  23. Mitchell, M.: Coevolutionary learning with spatially distributed populations. Comput. Intell.: Princip. Pract. 400 (2006)

    Google Scholar 

  24. Ochoa, G.: Error thresholds in genetic algorithms. Evol. Comput. 14(2), 157–182 (2006)

    Article  Google Scholar 

  25. O’Reilly, U.M., Toutouh, J., Pertierra, M., Sanchez, D.P., Garcia, D., Luogo, A.E., Kelly, J., Hemberg, E.: Adversarial genetic programming for cyber security: a rising application domain where gp matters. Genet. Program Evolvable Mach. 21, 219–250 (2020)

    Article  Google Scholar 

  26. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary Principles, pp. 987–1033. Springer, Berlin (2012)

    Google Scholar 

  27. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evol. Comput. 5(1), 1–29 (1997)

    Article  Google Scholar 

  28. Sims, K.: Evolving 3d morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  29. Togelius, J., Burrow, P., Lucas, S.M.: Multi-population competitive co-evolution of car racing controllers. In: 2007 IEEE Congress on Evolutionary Computation, pp. 4043–4050 (2007)

    Google Scholar 

  30. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Springer (2005)

    Google Scholar 

  31. Toutouh, J., O’Reilly, U.M.: Signal propagation in a gradient-based and evolutionary learning system. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 377–385 (2021)

    Google Scholar 

Download references

Acknowledgements

Lehre and Hevia were supported by a Turing AI Fellowship (EPSRC grant ref EP/V025562/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Hevia Fajardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hevia Fajardo, M., Lehre, P.K., Toutouh, J., Hemberg, E., O’Reilly, UM. (2024). Analysis of a Pairwise Dominance Coevolutionary Algorithm with Spatial Topology. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds) Genetic Programming Theory and Practice XX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-8413-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8413-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8412-1

  • Online ISBN: 978-981-99-8413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics