o et w o

o e At o PR i, e U T

oyl o a SR AR A LR oty

PM-1 3%"x4" PHOTOGRAPHIC MICROCOPY TARGET
NES 10108 ANSI/ IS0 #2 EQUIVALENT

L

ERER

";;rlz
FEF

'* of CmUbrary

du Canada

Direction des acquisitions et

Your tie Votre référence

Owr e Notre réterence

Acauisitions and
Bibliographic Services Branch des services bibliographiques
Wetiington St 395, rue Welingion
daeuséwa.ONano roet Onau?:(ﬂnmo
K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

if pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1870, c¢. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S$'il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Lol canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

An Analysis of
Genetic Programming

by

Una-May O’Reilly

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science

School of Computer Science
Carleton University, Ottawa, Ontario
Sept 22 , 1995

©1995. Una-May O'Reilly

National Library nationale
el 5 Fy
jions and Direction des acquisitions et
ic Services Branch des services bibliographiques
ot g Ot (Oreay
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell coples of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial

Yowr fde Votre riigrence

Owr e Noire riNrence

L'auteur a accordé une licence
irrévocable et non exclusive
permeftant a la Bibliothaque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits

extracts from it may be printed or substantiels de celle-ci ne
otherwise reproduced without doivent étre Imprimés ou
his/her permission. autrement reproduits sans son

autorisation.

ISBN 0-612-08850-2

General 0473 ics0373 Home Economics 0386

The undersigned hereby recommend
to the Faculty of Graduate Studies and Research
acceptance of the thesis

An Analysis of Genetic Programming

submitted by Una-May O'Reilly, B.Sc. M.C.S.
in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Director, Sc mputer Science

Thesisﬁpésor
/
il ’

[
At
xaminer
{
{

v
,/"

Carleton University

September 22, 1995

An Analysis of Genetic Programming

This thesis analyzes Koza's Genetic Programming (GP) paradigm. a genetic
algorithm for program discovery. In order to improve upon our understanding of
GP and to improve GP, it provides a systematic analysis of GP that is based upon
experimentation and theory.

We assess the role of designer expertise in successfully using GP. Our experiments
show that its performance is influenced by propitious designer choices of the test suite
and primitive set. We also appraise whether GP proceeds in a hierarchical manner.
In experiments with the canonical earliest version of GP, GP did not appear to exploit
a hierarchical process.

The theoretical analysis develops a schema-based framework for describing GP
search behaviour. We formally develop a Schema Theorem for GP, define building
blocks and state a GP Building Block Hypothesis. We proceed to methodically ques-
tion the plausibility that GP exploits a building block process while searching.

We conduct further experimental analysis by comparing GP to alternative algo-
rithms. A mutation-based operator, HVL-Mutate, that generates a syntactically valid
and possibly structurally different program from another is introduced. Two adaptive
search algorithms, Stochastic Iterated Hill Climbing and Simulated Annealing. which
use either HVL-Mutate or GP crossover are implemented to solve exactly the same
class of program discovery problems as GP. The resulting algorithms are comparable
to GP and sometimes even outperform it on a small suite of these problems.

Because these algor.thms are relatively successful at solving the same problems
GP solves, we conjecture that synthesizing a localized search strategv into GP will
complement its global, population-based search and improve it. Qur experiments
with our problem suite confirm ¢ :is insight. When we hybridize GP by adding a hill
climbing component, various versions of the hybrid algorithm achieve higher likelihood
of success and process less candidate programs than GP.

iii

To my sister Glenn Crowder

for showing me courage and strength

Acknowledgments

I wish to thank Ken De Jong, Jean-Pierre Corriveau, John Goldak and Stan
Matwin for agreeing to serve on my thesis committee.

I would like to thank Franz Oppacher for acting as my supervisor. Franz is an
intellectual magnet. 1 will always be in awe of his creativity, analvsis. and compre-
hension. For seven years he has been a great source of ideas, knowledge and feedback
for me. I like to brain-storm with him, argue with him, subject my writing to his
critical eye, and simply hang around with him. If I had spent more time with him - -
this work, it would only have improved.

I would like to thank my family for loving me through all the ups and downs
of these five years. My parents, Bob and Glenda invited me into their home again
and gave me tremendously valuable support while I restructured my life in 1992-93.
When my courage and resolve returned, they confidently waved me off to Santa Fe.
They have always encouraged me to engage in activities that test me.

Unfortunately, working at SFI has meant more time away from my brother and
sister and their families. I miss them all and thank them for being supportive and
patient. My sister Glenn deserves special mention. She is presently engaged in the
toughest test of all - fighting for her life, and I am incredibly proud of the tenacity
and courage she has shown. Her illness forced me to place my life in perspective at
a time when I could have comfortably slipped into the narrow, intensive, isolating
endeavors of academics. She has been an inspiration to me and] would trade my
Ph.D. for a cure for her cancer.

I started my Ph.D. in Ottawa at Carleton University’s School of Computer Sci-
ence. Among the graduate students, I would like to especially thank Dwight Deugo
and Andrew Rau-Chaplin. I don’t know if I simply tried to keep up with Dwight and
Andrew or whether each of us was equally influential in pushing the others. Whatever,
Andrew and Dwight have been true friends. I also especially thank Mark Wineberg
and wish him the best of luck with finishing his dissertation.

The School of Computer Science is staffed by excellent people to whom [am
indebted for efficiently managing teaching assignments, technical reports, computer
administration, etc. as well as patiently replacing my lost keys and forwarding my
mail! I especially thank Marlene Wilson, Barbara Coleman. and Rosemary Carter.

vi

Other influential Ottawa people were Nicola Santoro. Darvl Graf. Laura and
Larry House, and Tony White. Thank you.

I thank Bell Northern Research for two vears of financial assistance.

I spent the greater part of two vears conducting my thesis research at the Santa
Fe Institute in Santa Fe, New Mexico. It is an unsurmountable task to state how
influential SFI has been. I would like to thank Melanie Mitchell and Stephanie Forrest
for considering my first (and second) request to visit. I would like to thank Mike
Simmons, Vice President of Research at SFI, for agreeing that I should stav on as a
graduate fellow once I got there.

SFI has an awesome visitor’s program. Crucial interactions with Peter Stadler
and Richard Palmer came this way. I profited tremendously from many debates with
Bill Macready. How ironic that I had to move to New Mexico to work with someone
from Kanata.

Terry Jones first greeted me standing atop a concrete slab. simultaneously jug-
gling and teasing passers by. His unicvcle was parked around the corner. He has
always offered his help, good cheer and attention. I value it highly. He was a crucial
link to a group of Stephanie Forrest's students. 1 would like to thank them. in par-
ticular Ron Hightower and Derek Smith. for allowing me to occasionally join their
meetings.

I felt at home at SFI almost from the moment I arrived. I would like to thank
Ginger Richardson, Andi Sutherland and Deborah Smith for their warm and friendlv
welcome. I would also like to thank Andi Sutherland for something extra. Marita
Prandoni’s cheerful dailv greeting was wonderful.

Among the many helpful people at SFI I especially thank Walter Fontana, Raja
Das, Nick Vriend. David Wolpert. and Emily Dickinson. [owe a great deal to dear
friends Mihaela Oprea (my first in Santa Fe!). Martijn Huvnen. Melanie Mitchell,
Ann Bell and Kai Nagel.

Last of all, I would like to thenk Blake LeBaron. Blake doggedly attacked the
technical issues that were obstacles to me working in Madison. He taught me that love
doesn’t have to always be romantically expressed. Instead, it can be communicated
by technical support. objectivity. patience. and the relinquishment of a CPU!

Chapter

1

2

TABLE OF CONTENTS

INTRODUCTION.

1.1. ProgramDiscovery
1.1.1. Program Discovery as an Induction Problem . . .
1.1.2. Motivation for Studying Program Discoverv
1.1.3. Thesis Definition of Program Discovery

1.2. Solving The Problem of Program Discovery.
1.2.1. Genetic Algorithms (GAs)
1.2.2. Genetic Programming (GP)

13. Goalofthe Thesis

1.3.1. Assessing the Roles of the Designer and Hierar-

chyinGP
1.3.2. A Schema-Based Theoretical Analysisof GP

1.3.3. Understanding GP through Comparison and Im-

provingUpon GP
14. Aheadinthe Thesis.

THESIS PROBLEM SUITE. GENETIC PROGRAMMING,

ANDITSEXTENSIONS

2.1.1. Motivation for the Problem Suite
2.1.2. 6-Mult: The 6 Bit Boolean Multiplexer
2.1.3. 11-Mult: The 11 Bit Boolean Multiplexer
214. Sort-A
215. Sort-B
2.16. BS:BlockStacking
2.1.7. Format of Experiment Description
2.2. Canonical Geretic Programming
2.3. Examples of Primitive Semantics
2.3.1. Directly Using Built-in Functions as Primitives .

2.3.2. “Firewalling” Built-in Functions as Primitives
2.3.3. Arithmetic Constants as Primitives
2.3.4. Recursion via a Primitive
2.3.5. Iteration via a Primitive
2.3.6. Assignment via a Primitive
2.3.7. Typing Parameters in Primitives
2.3.8. The advantagesof using LISP
2.4. Crossover Operator Properties
2.4.1. Blind choice of crossover points
2.4.2. Svntactically Correct Offspring
2.4.3. Flexible Program Length
2.4.4. Parent-Offspring Fitness Distribution
2.4.5. “True” Combination
2.5. Non-Canonical GP
251 NewOperators.
2.5.2. Alternate Selection and Generation Strategies
2.5.3. Representation Extensions
2.6. Chapter Summarv

AN EXPERIMENTAL PERSPECTIVE ON GENETIC PRO-
GRAMMING

3.1. Assessing Designer Choices and a Hierarchical Pro-
cessinGP
3.1.1. Test suite and Fitness Function Design Issues
3.1.2. Primitive DesignIssues
3.1.3. Primitive Sets for Assessing Hierarchical Process . .
3.1.4. Assessing the Presence of A Hierarchical Process . .
3.2. Improving Hierarchv m GP

3.3. Knowledge-Baser! Primitives and Fitness Function De-
sign as Factors n GP'ssuccess

3.3.1. Deriving Knowledge-Based Primitives from First
Principles
3.3.2. Using Knowledge-Based Primitives.
3.3.3. Designing a Fitness Function
34. GP as a GA for Program Discovery
3.4.1. Program-Based Encoding
342 GPCrossover

3.4.3. Variable Length Solutions. 116
3.4.4. Feature Correspondence Among Solutions 116
3.5. ChapterSummarv 117
4 THE TROUBLING ASPECTS OF A BUILDING BLOCK

HYPOTHESIS FOR GENETIC PROGRAMMING 118
4.1. Schema Definition and Related Concepts 119
42. AGPSchemaTheorem. 126
4.3. Building Block Definition and Building Block Hypothesis 130
44. Conclusion« . 0., 136
4.5. Summary e e e 136

5 SIMULATED ANNEALING AND HILL CLIMBING FOR

COMPARISONTOGP 138

5.1. Stochastic Iterated Hill Climbing (SIHC) for Program
Discovery Problems 138
5.2. Simulated Annealing (SA) for Program Discovery Problems141

5.3. A Hierarchical Variable Length Mutate Operator: HVL-

Mutate e 145
5.4. Experimental Approach 148
5.5. Experiment Results 150
55.1. 6-MultResults 150
55.2. 11-MultResults 152
533. SortingResults, 154
5.5.4. Block Stacking Results 157
5.53.5. Results of Other Literature 158
56. Summary e e 159

6 CROSSOVER HILL CLIMBING AND CROSSOVER SIM-

ULATED ANNEALING FOR COMPARISONTOGP 161
6.1. Combining GP Crossover with SAor SIHC 162
6.2. Crossover Based. Single Point Algorithms 166

6.2.1. Crossover Hill Climbing: XO-SIHC 167
6.2.2. Crossover Simulated Annealing: XOSA 167
6.3. Crossover Based Experiments 169
6.3.1. Results of XOSA, XO-SIHC and GP: 6-Mult 170
6.3.2. Results of XOSA, XO-SIHC and GP: 11-Mult . . . 171

ix

6.3.3. Results of XOSA, XO-SIHC and GP: Sorting 171
6.3.4. Results of XOSA, XO-SIHC and GP: Block Stacking 172

6.3.5. Summary of XO-SIHC and XOSA Results 173

6.4. Hybridization of GP and Local Search 174
6.5. Hybridized GP and Hill Climbing Algorithms 175
6.6. Hybrid Algorithm Experiments 177
6.6.1. Results of Hybrids: 6-Mult 177
6.6.2. Results of Hybrids: 11-Mult 178
6.6.3. Results of Hybrids: Sorting 179
6.6.4. Results of Hyvbrids: Block Stackiug 181

6.7. Summarv of Hvbrid Results 181
6.7.1. Results of Other Literature 182

6.8. Program Discovery Algorithms Reviewed 185
6.9. Chapter Summary 187
CONCLUSIONS ANDFUTUREWORK 189
1. Summarvof ThesisResults. 189
72, Future Work L. 207
73. FinalRemarks. 209
REFERENCES 211

Figure

(1]

-]

10

11

12

13

14

16

17

LIST OF FIGURES

The Value of Program Discovery
Genetic Algorithm (GA) Pseudocode
Single-Point Crossoverin GAs
The Hierarchical Representation of a Program
GPCrossover i i e e
Adaptive Search Algorithm Pseudocode
Genetic Programming (GP) Algorithm Pseudocode
The Compression Operator
Automatically Defined Functionsin GP
Test Suite Credit Functions
Sort-Th-0 Generations X Fitness Plot
Sort-Th-0 Generations X Fitness X Height X Size Plot
Sort-TH-0 Generations X Program Height Plot
Sort-TH-0 Generations X Program Size Plot
Sort-TH-0 Generations X Program Size:Height Plot
Sort-Th-0 Generations X Fitness Plot

Sort-Th-0 Generations X Fitness X Height X Size Plot

Page

93

93

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

36

37

38

Sort-TH-0 Generations X Program Height Plot 94

Sort-TH-0 Generations X Program SizePlot 94
Sort-TH-0 Generations X Program Size:Height Plot 94
Sort-TH-0 Hits Distribution Geperation0 95
Sort-TH-0 Hits Distribution Generation22 95
Sort-TH-0 Hits Distribution Generation33 95
Sort-TH-0 Hits Distribution Generation36 95
Sort-TH-0 Hits Distribution Generation37 95
Sort-TH-0 Hits Distribution Generation38 95
Sort-TH-0 Program Size Distribution Generation 0 96
Sort-TH-0 Program Size Distribution Generation 19 96
Sort-TH-0 Program Size Distribution Generation38 96
Sort-TH-0 Program Height Distribution Generation0 96
Sort-TH-0 Program Height Distribution Generation 19 96
Sort-TH-0 Program Height Distribution Generation 38 96
Sort-TH-1 Generations X Fitness Plot 99
Sort-TH-1 Generations X Fitness X Height X Size Plot 99
Sort-TH-1 Generations X Program Height Plot 99
Sort-TH-1 Generations X Program SizePlot 99
Sort-TH-1 Generations X Program Size:Height Plot 99
Sort-Th-1 Generations X Fitness Plot 100

xii

39
40
41
42
43

44

Sort-TH-1 Generations X Program Height Plot 101
Sort-TH-1 Generations X Program Size Plot 101
Sort-TH-1 Generations X Program Size:Height Plot 101
Sort-Th-2 Generations X Fitness Plot 102
Sort-Th-2 Generations X Fitness X Height X Size Plot 102
Sort-TH-2 Generations X Program Height Plot 103
Sort-TH-2 Generations X Program Size Plot 103
Sort-TH-2 Generations X Program Size:Height Plot 103
GP-schemas: Tree (A) versus Fragment (B) 121
Examplesof GP-schemas 124
Pseudocode for Stochastic Iterated Hill Climbing Algorithm 141
Pseudocode for Simulated Annealing Algorithm 144
Demonstration of HVL-Mutate 147
Plot of Successful SA executionon 6-Mult 151
Plot of Successful SIHC Climbon 6-Mult 151
Plot of Two SA executionson 11-Mult 154
Plot of 3 SIHC Climbson 11-Mult 154

xiii

Table

(v]

-1

10

11

12

13

14

16

17

xiv

LIST OF TABLES

Page
GP Crossoversand 6=Mult 38
GP Crossoversand 11-Mult 38
GP Crossoversand Sort=A 59
GP Crossoversand Sort-B 39
The Effect of Test Suite Sample on Generality: Sort-A 75
The Effect of Test Suite Sample on Generality: 6-Mult 76
The Effect of Fitness Credit Schemes 79
Potential Sort Experiment Primitives 81
Hierarchical Process in GP: All Problems 92
Hierarchical Process in GP: Sort-TH-C 100
Hierarchical Process in GP: Sort-TH-1 101
Hierarchical Process in GP: Sort-TH-2 102
Tr and Stepsize for SA Experiments 145
6-Bit Multiplexer: GP.SA.SIHC 151
6-Bit Multiplexer: SIHCData 152
6-Bit Multiplexer: SIHC Data for Successful Executions 152

Comparison of GP, SA and SIHC on 11-mult 153

18
19
20
21
22
23
24
25
26
27

28

3

31
32

33

36
37

38

SIHCand 11-Mult 153

Sort-A Comparison of GP,SAand SIHC 135
Sort-B Comparison of GP,SAand SIHC 135
Sort-A:SIHCData 156
Sort-A: SIHC Data for Successful Executions 156
Sort-B: SIHC Data 156
Sort-B: SIHC Data for Successful Executions 157
Block Stacking Comparison of GP, SA,SIHC 157
Block Stacking: SIHCData 158
Block Stacking: SIHC Data for Successful Executions 158
Successful Program Size and Structure Data: SIHC, SA.GP 159
GP, XOSA and XO-SIHC Results for 6=Mult 170
GP, XOSA and XO-SIHC Resultsof 11-Mult 171
GP, XOSA and XO-SIHC Resultsfor Sort-A 172
GP, XOSA and XO-SIHC ResultsforSort-B 172
GP, XOSA and XO-SIHC Results for Block Stacking 173
GP and Hybrid Results for 6-Mult 178
GP and Hybrid Results for 11-Mult 179
GP and Hybrid Resultsfor Sort-A 180
GP and Hybrid ResultsforSort-B 180
GP and Hybrid Results for Block Stacking 181

39
40
41
42

43

6-Mult: Comparison of All Algorithms 198

11-mult: Comparison of Al Algorithms 199
Sort-A: Comparison of All Algorithms 200
Sort-B: Comparison of All Algorithms 201
Block Stacking: Comparisonof AlRuns 203

xvi

ABBREVIATIONS

The following abbreviations are used in this dissertation:
§x(y) Section x on page y.
Al Artificial Intelligence.
ADF Automatically Defined Functions. §2.5(68)
AR-GP Adaptive Representation Genetic Programming. §3.2(110)
GA Genetic Algorithm. §1.2.1(8)
GLiB Genetic Library Builder §2.5(66)
GP Genetic Programming. §2.2(40)
HVL-Mutate Hierarchical Variable Leagth Mutate §5.3(145)
SIHC Stochastic Iterated Hill Climbing. §5.1(138)
SA Simulated Annealing. §5.2(141)
XO-SA Crossover Simulated Annealing. §6.2.2(167)
XO-STHC Crossover Stochastic Iterated Hill Climbing. §6.2.1(167)

xvii

CHAPTER 1

Introduction

This chapter gives an overview of the motivations, goals and results of the thesis. Sec-
tion 1.1 first introduces a general definition of program discovery. an inductive search
problem that has been pursued with a diverse set of approaches. After motivating
the study of program discovery, it describes the precise framework for program dis-
coverv used by the particular algorithm that this thesis focuses upon. The algorithm
is named Genetic Programming (GP) [69]. For the remainder of the thesis we adopt
GP’s restricted version of program discovery for the purposes of exposition, focus and
clarity.

GP is introduced in Section 1.2 using the background of Genetic Algorithms
(GAs). GP is an adaptive search algorithm that is based upon neo-Darwinian con-
cepts of evolution. We have chosen to study GP because it is a robust, successful
program discovery algorithm. Chapter 2 provides a detailed description of GP and
its related literature.

In Section 1.3 the goal of the thesis. to analvse and improve GP. is elaborated
upon and accompanied by a high level description of how it is approached and solved.
Section 1.4 succinctly lists the contents of the remaining chapters of the thesis.

1.1. Program Discovery

The goals of program discovery are:
Given a set of input-output pairs or formal specification of behaviour, produce a
computer program that

1. non-trivially computes correct outputs for the inputs of each test case. Non-

trivial computation implies that the program does not directly map from inputs
to outputs by means of some sort of table. Rather, the program is an encoding
of some algorithm.

2. computes outputs in such a way that, if the inputs have been representively
chosen, the program will compute correct outputs for novel inputs.

A diverse set of approaches to solving program discovery problems. including
Automatic Programming (e.g. [11, 8, 98]), Inductive Logic Programming (e.g. [84, 93,
94)), and evolution-based algorithms different from GP (e.g. [29, 110, 16. 30. 40. 109))
have been pursued. A exposition and comparison of them is beyond the scope of this
thesis. The focus of this thesis is to provide a systematic analysis of one program
discovery algorithm called Genetic Programming. Therefore, in Section 1.1.3. we state
a restricted version of program discovery which we shall assume in the remainder of
the thesis.

1.1.1. Program Discovery as an Induction Problem

In so far as a correct program must be induced from test cases, it is obvious that
program discovery is an induction task. Therefore, program discovery inherits all the
merits and pitfalls of inductive reasoning. While it is “creative” and ampliative by
suggesting new hypotheses to link the outputs to the inputs, inductive hypotheses are
always falsifiable and their ability to generalize out of sample (i.e., beyond the suite
of test cases in the case of program discovery) is intrinsically linked to how well the
sample represents the entire problem domain. The sample needs to be representative
of the entire space, if possible. By definition, program discovery is accomplished with-
out the introduction of new primitives, however, this does not preclude the definition
of new “concepts” to replace the original ones. This means that, although there is a
finite set of inductive hypotheses consisting of all possible combinations of them up
to a prespecified maximum depth parameter, the set of inductive hypotheses is very
large and potentially very expressive. The finiteness of this set is constraining only
if a fundamental behaviour (i.e. one that is more simple than any primitive in the
primitive set) can not be expressed by any combination.

1.1.2. Motivation for Studying Program Discovery

What generally makes program discovery special and different from other inductive
search tasks is, quite obviously, that its solutions are expressed as programs. A
program is a useful solution because it is an algorithm; in other words. a specification
of behaviour that works for a general class of problems because it is parameterized
by the use of variables. Finding algorithms is more difficult than finding a single
solution but obviously it is also more useful since generalized solutions work for an
entire class of tasks. Programs can encode high level program semantics such as rules,
logic, iteration, recursion, and sequence as well as simple numbers and numerical
relationships.

What makes a program discovery algorithm useful and, thus, important to study.
is the fact that many problems from a wide range of domains can be translated into
program discovery problems and. should the algorithm succeed, these same problems
will directly have solutions. Figure 1 illustrates this concept. It is also thoroughly em-
phasized and demonstrated in the book “Genetic Programming: on the programming
of computers by means of natural selection™ by John R. Koza. Koza states:

A wide variety of seemingly different problems from many different fields
can be recast as requiring the discovery of a computer program that pro-
duces some desired output when presented with particular inputs. That
is, many seemingly different problems can be reformulated as problems of
program induction. [69, pg. 3]

In Chapter 2 of his book Koza supplies a table that lists 13 problem domains,
describes how the concept of a computer program has an analogv in each. and names
the analogous program inputs and outputs of the domain. For example,

e in optimal control. a control strategy is the equivalent of a computer program.
The control strategy input is state variables and the output is a control variable.

e in planning, a plan mimics a program by using sensor or detector values as
input and producing effector actions.

e in sequence induction, a mathematical expression plays the role of a program
using an index position as input. Its output is a correct sequence element.

] o
i : | CLASS-
| NTROL : E ?
| co iPLANNlNG i | IFICATION ‘STRATEGY
| 2
aA N/ > o

PROGRAM DISCOVERY PROBLEM
FORMULATION

; PROGRAM DISCOVERY
ALGORITHM

SOLUTIONS

Figure 1. The value of Program Discovery: When many problems can be reformulated as program
discovery, a program discover algorithm is advantageous.

» in symbolic regression a mathematical expression is the equivalent of a program
that, using independent variabies. derives dependent variables.

¢ in game playing strategies, a strategy is a program that uses game and move
information as input and produces output that is the direction « ".noves.

e in empirical discovery and forecasting, a model is a form of program which
manipulates independent variables to output dependent variables.

The key to a program induction reformulation is to recognize that, despite dif-
ferent terminology, within the domain of interest there exists a basic need for some

(A1)

algorithm to provide solutions for multiple instances of a problem.

Reformulating tasks into program discovery problems means that. in the course of
the search for a correct program, many candidate programs will have to be executed
and assessed a fitness value. The execution of the programs may take place in a
simulated version of the problem domain or each program may actually be assessed
by using it in the actual lomain. A simulation approach in program discovery is no
different from simulation approaches elsewhere:; care must be taken to authenticate
the simulated environment so that it relays valid information on performance.

1.1.3. Thesis Definition of Program Discovery

In the GP framework of program discovery. the program discoverv algorithm is sup-
plied by the task designers (i.e., the persons who have chosen this approach program
discovery as a means of solving their problem) with a “test suite”. a set of “primi-
tives”, and a “fitness function”.

A “test suite” consists of test cases which are each a specific example of a problem
described in terms of inputs and desired outputs.

“Primitives” are functions or variables that can be used by the algorithm to comn-
pose a program. Each composition of primitives (or program) is a candidate solution
to the posed program discovery problem. The set of primitives must be chosen so that
it has the capacity to represent actual actions and objects (or. operators, operands,
results) that occur or exist in the problem domain. For example, in the task of
block stacking by a manipulator arm. the operators could be represented by the
functions remove-top-block. place-block-on-stack, find-next-needed-block,
etc. and the operands could be represented as the functions next-needed-block.
top-correct-block. Fitting the place-block-on-stack primitive together with
the next-needed-block primitive would form a syntactically correct invocation of
the place-block-on-stack function with its formal parameter being bound to the
result of the next-needed-block function. In this example, a single primitive directly
corresponds to an action or object of the problem domain but this is not necessary.
Instead, the correspondence can be achieved by using a primitive set from which
combinations of primitives correspond to actions or objects.

The set of primitives should be “closed” in the following sense: all primitives
which use parameters must be able accept as actual parameters any primitive in the

set or its result.

A “fitness function” is a measure that can be applied to any program that is
a candidate solution simply by executing the program with the inputs of every test
case bound one at a time to its input variables and then measuring. one at a time.
how similar its computed outputs are to the desired ones. The smaller a program’s
fitness, the more different its outputs are from the desired ones. The onlyv feedback
available to the program discovery process is a program’s fitness value. There is no
feedback which details what a program has done wrong, how a program behaved in
its executions, nor what a program has done correctly. A program that meets all the
functional requirements by virtue of solving all the test cases has perfect fitness.

The objective of the GP algorithm is to find a program of perfect fitness in
the space of candidate solutions using only fitness values as information to adapt its
search process.

Because this thesis is concerned with the analysis of GP, from this point onward
we shall adopt its particular and restricted terminology and framework of inputs and
task as our definition of program discovery. This also improves the clarity of the
document. The reader should bear in mind that a much broader definition prevails
beyond the scope of this thesis.

An Analogy with Jigsaw Puzzles

Program discovery can be loosely thought of as the assembly of a jigsaw puzzle. What
makes the problem more difficult is that, except that the pieces must fit together,
there are only a few stipulations on the final shape of the puzzle: it is not necessary
to use all of the available pieces; and. instead of assembling a picture like the target
already provided, one must create a picture from any of the available pieces that
meets a set of hidden functional requirements.

In other words. think of solving a puzzle using only some or all of the pieces
you are provided with. Your goal is to eventually assemble a puzzle that meets a
certain set of broad conditions. for example. it is “pleasing to the eve” and “bright”.
The complication is: you are not told, nor do you know, what picture characteristics
(e.g. patterns, colour) will accomplish this. After every assembly attempt, you can
stop and ask an external viewer to take a look. Your feedback is simply a grade
from the viewer that indicates how close your puzzle comes to meeting the criteria.

You must continually adapt your current puzzle by interpreting the feedback in order

to eventually provide a correct one. i.e.. a puzzle that is “pleasing to the eve™ and
“bright”.

In the case of the jigsaw puzzle. the picture on the puzzle box presents the goal.
there is a box of unassembled. mixed up pieces and the completed puzzle is the
solution. From one point of view. the completion is simply all of the pieces fitted
together - protruding knobs fitted into sockets. and. from another. it is a picture.

For program discovery, the target could be, for example, a sorting function de-
picted in terms of inputs which are unsorted arrays that exist prior to running the
program and outputs which are arrays of the same elements. but sorted. expected
after executing the program. The box of mixed up pieces is replaced with a sample
of each primitive. Like a puzzie piece, each primitive has a ~knob™ corresponding
to its function or variable name and “sockets™ corresponding to each parameter it
needs when it is invoked. A program can be composed by starting from one L. imitive
and recursively enumerating all of its parameters using any of the primitives. .nv
primitive can be duplicated in any amount. The recursion ends when only primitives
without parameters are left. In terms of puzzle assembly. a socket is filled hy a knob
and assembly is finished when no sockets are left unfilled in the eventual program.
In order to assemble. one has the additional liberty (granted to facilitate the puzzle
analogy) that, as one piece is fit into another. the new compound piece can be shrunk
to the standard size of a single piece. This enables further compound assembly under
the constraints. The assembly process. conducted in this manner. will always result
in a svntactically correct (and executable) program. In program discovery. only the
syntactically correct programs that do not exceed a (parameterized) maximum depth
(measured in the number of nested primitives) and that can be generated from the
initial set of primitives are considered as candidate solutions.

The goal of the assembly process is to obtain a program that sorts correctly.
A program which accomplishes this. using primitives from the set. under the con-
strained rules of assembly. is the solution. From one point of view. the program is
simply primitives fitted together. and. from another. it is a specification of function
invocations and parameters that. when executed. meets the target behaviour.

1.2. Solving The Problem of Program Discovery

The way in which program discoverv is formulated as a problem seems to present
major obstacles. Fitness provides the only feedback to the algorithm. There is no ad-
ditional information concerning what was wrong or correct in a program's execution
or output. For people, programming requires directed design effort which is acquired
only after long training. Novices find it difficult to design algorithms when they are
introduced to programming, and software engineering requires experience. Further-
more, programs are brittle. Programmers, regardless of their experience. recognize
that small flaws (syntactic or semantic) result in incorrect programs. Often minor
changes are all that is required to drastically alter the behaviour of a program and
correct it from being entirely useless to being quite productive. Random changes
to a program almost never help to debug it. An algorithm which does not exploit
knowledge of programming semantics must use what amounts to blind changes. How
is it possible to adaptively search when the search process has no knowledge of the
connection between program and execution?

Despite the seemingly formidable obstacles. the Genetic Programming algorithm
can accomplish program discovery. This adaptive search algorithm was designed by
John R. Koza [62]. GP is an evolution-based search model that is a descendent or
specialized kind of Genetic Algorithm (GA). For this reason. we immediately describe
GAs and introduce GP.

1.2.1. Genetic Algorithms (GAs)

GAs were designed by John Holland [46] and were motivated by his interest in the
general class of problems where “information must be exploited as acquired so that
performance improved apace™ [46. pg. 1]. One way to solve this class of problems is
to emplov a realizable general strategv that both exploits the best tested options and
reduces the chance that other, as vet untested. options may be better. Holland calls
such a strategy an adaptive plan. In an adaptive plan. structures in a search space
are selected and progressively modified by operators according to the quality of their
performance in past trials.

GAs are adaptive plans whose structures and operators can be interpreted by
concepts borrowed from genetics and evolution. The adaptation of structures in a

GA follows a simplified version of evolutionary refinement. In a GA. a set of candidate

structures is a population, each structure is an individual or genotype. and adaptive
operators function like simplified computational versions of selection. crossover and
mutation. A genotype represents the expressions of features in the structures of the
problem domain. A commonly used encoding for a genotype in a GA is a fixed length
bit string.

A GA using a fixed length bit string encoding is described in pseudocode in
Figure 2. The algorithm processes a population of individuals which is usually initially
generated at random. It iterates in a step called a generation. In the course of a step.
pairs of individuals are chosen with fitness proportionate selection tu act as parents
of offspring which will form the next generation. Fitness proportionate selection is
a computational ahstraction of the rule of “survival of the fittest”. An individual is
selected from the population to be a parent with probability proportional to it fitness
relative to the average fitness of the population. Each individual, once decoded. can
be evaluated using an objective function which measures how well it ~fits with the
environment” (i.e., how well it performs the required task). This information is called
“fitness”.

PROGRAM genetic-algorithm-pseudocode

CONSTANTS

m tinteger /+* population size s/
mutation-probability :real in range (0,1] /¢ likelihood of mutation ¢/
crossover-probability :real in range (0,1] /¢ likelihood of crossover =/

perfect-fitness = k :real or intger
bits-in-individual = b :integer /* length of bit-string */
max-generations = n :integer

GLOBAL VARIABLES

generation = 0 :integer

next-generation,

population :array[1..m] of bit-string
pop-fitness :array[7..m] of integer or real

population-summed-fitness,
population-average-fitness :real
perfect-solution = false :boolean

SCRATCH VARIABLES
parentl, parent2,

10

childl, child2: :bit-string

Procedure FITHNESS (var population, pop-fitness, population-summed-fitness,
population-average-fitness, perfect-solution)

/¢ evaluates fitness of each individual in population
calculates population average fitness
checks for perfect solution s/

local vars: individual, sum = 0

do individual = 1 to m
/+ fitness is a positive non-zero value ¢/
pop-fitness[individual] := adjusted-objective-function(population{individuall)
sum := sum + pop-fitness[individual]
perfect-solution := pop-fitness{individual] = perfect-fitness
population-average-fitness := sum / m
endloop
end procedurs FITNESS

Procedure INITIALIZE-POPULATION (m, var population)
/+ set up generation 0 ¢/
local var: individual

do individual = 1 to m

population[individual] := /+ a random bitstring =/
endloop
end procedure INITIALIZE-POPULATION

Procedure CROSSOVER (parenti, paren:2, var childl, child2)
/* crosses over parents to yield two children s/

local vars:
random-value = RAND(O,1)
crossover-point = RAND(O, bits-in-individual)

if random-value <= crossover-probability
then
childi[1..crossover-point] := parenti(i..crossover-point]
childi[crossover-point+i..bits-in-individuall :=
parent2[crossover-point+1..bits-in-individuall

child2(1..crossover-point] :s= parent2[{..crossover-point]
child2[crossover-point+1. .bits-in-individual):=
parenti[crossover-point+1..bits-in-individuall
else

childi := parenti
child2 := parent2

endif
end procedure CROSSOVER

Procedure MUTATION(child)
/* flips each bit of child with mutation-probability =/

do i= 1 to bits-in-individual
if RAND(0,1) <= mutation-probability then
child[i] := not childl[i]
endif
enddo
end procedure MUTATION

Procedure FITNESS-PROPORTIONATE-SELECTION
(population, population-fitness, population-average-fitness,
population-summed-fitness,
var parent)

local vars:
rand-value = RAND(1, population-summed-fitness),
sum = 0, index = 1

vhile index <= m
sum :*= sum + population-fitness[index]
if rand-value <= sum
parent := copy(population(index)
break lcop
endif
endloop
end procedure FITNESS-PROPORTIONATE-SELECTION

/* MAIN PROGRAM =/
begin

initialize-population(m, population)

/* calculate the fitness of this generation ¢/

fitness(population, pop-fitness, population-summed-fitness,
population-average-fitness, perfect-solution)

/% loop per generation and assemble next generation ¢/

vhile (NOT perfect-solution) AND (gemeration <= max-generations)

generation +¢

for new-individual = 1 to (m / 2)

12

/+ select tvo parents ¢/

fitness-proportionste-selection(population, population-average-fitness,
population-summed-fitness, parenti)

fitness-proportionate-selection(population, population-average-fitness,
population-summed-fitness, parent2)

/* crossover over two parents to get two children with some probability ¢/
crossover(parenti, parent2, childi, child2)

/+ mutate each bit of each child with some probability =/
mutate(childl)
mutate(child2)

/¢ store the children ¢/
next-generation(index) := childl

index++
next-generation(index] := child2

index++
endfor

/* calculate fitness of next generation */
fitness(next-generation, population-average-fitness,
population-summed-fitness, perfect-solution)

/+ update new generation to old s/
population := next-generation

endloop

report perfect solution or best of final generation

end MAIN PROGRAM

Figure 2. Genetic Algorithm (GA) Pseudocode

An offspring or child inherits its “genetic” specification as a combination of its
two parents subject to a backgrovad influence of mutation. Two offspring typically
are formed from a pair of parents using crossover. Crossover makes each offspring a
combination of its parents by exchanging alleles amongst them probabilistically. See
Figure 3 and procedure “crossover” in the pseudocode of Figure 2 for an example of
one GA crossover operator named “single-point crossover”. The mutation operator
probabilistically changes an expression of a feature randomly. (procedure mutation
in Figure 2).

PARENT 1 CHILD 1

111111411111111 111111100000000
PARENT 2 CHILD 2

000000q00000000 000000011111111
CROSSOVER POINT

Figure 3. GA single-point crossover on a fixed length binary string

The iterative process of successive generations continues until some a priors,
externally established criterion for termination is met. When GAs are used for opti-
mization the criterion is either that an individual of perfect fitness has been found or
that a maximum number of generations has been reached.

The major parameters of a GA are population size, probability of crossover, and
the probability of mutation. The actual problem determines the features (and their
expressions) that are encoded in individuals and the objective function.

The GA is a search algorithm because, as it successively forms new populations
using fitness proportionate selection. crossover and mutation. it conducts a search
over a space of genotypes under the guidance of an explicit optimization goal. The
wide range of alternative representations supported by encoding allows a GA to be
used in a variety of problem domains. De Jong was the first to demonstrate that GAs
are robust adaptive plans: using the same parameter settings for population size,
mutation rate and crossover rate he showed that a GA could solve a diverse range
of optimization problems characterized by different search landscapes {20]. GAs have
been compared to Evolution Strategies [95, 104] and Evolutionary Programs [26] in
{10] on the basis of their performance on parameter optimization. GAs have been
used in many different ways, e.g. [36, 37, 103, 105, 12, 78, 27, 17, 9]. De Jong and

Holland amongst others have stressed that the general adaptive capabilities of a GA
make it suited for a wider variety of problems than just optimization [46. 22].

1.2.2. Genetic Programming (GP)

GP is a GA designed to solve program discovery!. Populations of programs are
evolved according to their performance on an externally imposed fitness criterion.
GP uses fitness proportionate selection, a revised genetic crossover and no mutation?.
It is a “weak™ method that can be applied a particular problem by choosing primitives.
designating a test suite, and designing a fitness function. When we refer to GP in the
course of this thesis we mean its canonical version. We introduce the salient features
of GP immediately and shall describe it fully in Chapter 2:

e GP genotypes or individuals are programs. A program is directly manipulated
by crossover and evaluated for its fitness value without encoding or decod-
ing. Using GP with the LISP programming language ? [112] a genotype is an
S-expression. The benefit of direct evaluation is that it forestalls the repre-
sentation from imposing any expressive constraints to support encoding and

decoding.

GP programs are not fixed in length or size. The maximum height of the parse
tree of a program is a priori specified to constrain the search space but all
solutions up to and including this maximum are considered. Other examples of
GAs exist which also use variable length genotypes [110, 106. 34, 43, 44] so GP
is not unique in this respect but this feature is useful for program discoverv.

o reproduction is standard: parents are selected with a probability based on their
fitness and the average fitness of the population.

1The substitution of “Programming” in the acronym “GP” for “Algorithm"” in the acronym “GA”
is somewhat misleading because Programming refers to the goal of program discovery whereas
“Genetic Algorithm” is a name for an algorithm. Analogously GP might be named “GA for
Programming”.

?This is true of the GP introduced by Koza in [62] but subsequent extensions vary in this respect.

3The choice of LISP, though not essential, is felicitous.

e GP crossover uses a parse tree representation for a program which is as a rooted
point-labeled tree with ordered branches. For example, in LISP, the name of
the S-expression is the root of the tree and the parameters of the S-expression
(which may recursively be S-expressions) are the ordered children of the root
(see Figure 4. In G crossover the nodes in each of two parent programs are
numbered in depth first search order and then two values, each in the node
number range on a parent, are randomly selected as the crossover points with a
90% probabilistic bias towards non-leaves. The two subtrees of the programs,
each rooted at the node designated by the crossover point, are swapped. Figure5
gives an example. The GP crossover operator allows a genotype to differ from
its parents in structure (size and/or shape).

(IF AO (IF A1D3D0) IF A1D2 DO0))

(15
(4 (17 (15
@) (@ (@) (9 @) @

Figure 4. A LISP S-expression represented hierarchically by its parse tree

GP is not the first attempt to use abstracted mechanisms of evolution for program
induction [16, 30, 29), nor is it the first non-string-based. variable length GA approach
to evolve “programs” [110, 40] but, for a number of reasons, we choose to study it.

First, GP has been demonstrated to be robust. The standard GP we have de-
scribed, successfully performs program discoverv on a wide range of problems. This
facet of robustness was established by using GP with exactly the same parameter

16

Parent 1.

Parent 2.
—— —
(+ f\ &
S —— /((7 /-‘ka_ l‘\‘\\\ — _—»'—‘—‘— - —
-+ a - [& &
T t ———— —— i Jp—.
(0 (. * P& . &
s g) -
P& &
v v
o ‘* e —
-’ ! &
Se—— e
(4—;“ (- . & ‘&
— - & &
[L) - -
. I N &
- - T~ R
. - D
<+ t J e
* & > &
& &) i cT
—_ —_— + +
& &
Chiic 1. Child 2.

Figure 5. GP Crossover: The subtrees at the crossover points are swapped between parents.

settings on a multitude of tasks and showing that it could find solutions for each of
them [69] 4.

Also, GP has yielded many results. Published accounts of GP applications in-
clude:

e a program that classifies a given protein segment as being a transmembrane
domain or non-transmembrane area of the protein. [71]

4Not necessarily for all runs but at least some.

e a controller for a software agent performing a corridor navigation task in a
simulated two-dimensional environment where the inputs to the program are
sensor readings supporting some primitives performing obstacle recognition and
other primitives directing movement. [97]

e a program that specifies the node structure, interconnection and weights of a
sigma-pi or minimal multilayer perceptron neural network. [126}

e an optimal annealing schedule and its parameters so that the same schedule can
be used in solving the Quadratic Assignment Problem for high quality solutions
[119]

e a deterministic finite automaton which functions as a language acceptor for
regular languages. {24}

o a set of rules that decide on the basis of pixeled border features whether an
optical character is a certain letter. [4]

e an optimized topical information query in a document retrieval system resulting
in improved precision (percentage of documents retrieved that are relevant) and
recall (percentage of relevant documents retrieved) {74]

e a detection algorithm for the cores of alpha-helices in protein sequences [42]

o a filter separating the noise from a signal where the filter is a final stage output
filter for a rheometer (measurement of blood flow in the skin). {86]

e a program that decides whether a word in a given context has sentential or
discourse meaning. [107]

It has been shown convincingly that the GP paradigm is general and provides
a single, unified approach to many seemingly different problems in an astonishing
variety of areas [69).

Second, while there are other non-string based, variable length GA approaches
which evolve algorithms ([110, 40]), these “programs” use if-then rules, rather than
the more expressive primitives used by GP. In GP, with some maneuvering, primitives
can directly express recursion, assignment. iteration, conditional execution, arithmetic
operations, data structure access and general symbolic manipulation.

Third, because it works with primitives and forms programs, the representation
of GP is more flexible than the representations of Learning Classifier Systems (LCS)
or neural networks. An LCS must represent its solutions as activation chains of fixed
length classifiers (if-then rules) that operate in a message-list based paradigm. A
neural network must express a solution in terms of weights and network connections.
In LCSs and neural networks, the representation of solutions has no further flexibil-
ity. This means that both paradigms require a solution to “fit to” their specialized
structures. If it does not, obtaining a solution will not be simple; it may be awkward
or even impossible to obtain. When it is known beforehand that a neural net or LCS
is particularly well suited for a problem, the appropriate system is obvious. However,
when the choice is not obvious for a problem, GP is advantageous because many
semantically rich programming constructs can be included in the primitive set and
tried in combination.

1.3. Goal of the Thesis

The goal of this research is to provide a systematic analysis of GP that improves
upon our understanding of how and why GP works. Furthermore. we wish to improve
GP. In order to use comparison to extend our understanding. we design alternative
program discovery algorithms. These offer insight into how to improve GP.

1.3.1. Assessing the Roles of the Designer and Hierarchy in
GP

In Chapter 3 we start pursuing our goal using an experimental perspective. We first
trv to gauge how much GP’s success depends upon designer skill in choosing the
primitive set, test suite and fitness function. This is accomplished by using GP to
solve a novel problem and describing the typical issues that are encountered while
also performing some minor experimentation.

We then proceed to experimentally evaluate the presence of a hierarchical process
in GP. There is a distinction between a hierarchical process and a hierarchical
solution:

o A Hierarchical process identifies and promotes useful primary elements, com-
bines them into composite, modular, reusable, and successively higher level

19

components of a hierarchy, and the guides high level camnonent assembly into
a hierarchical solution.

e A Hierarchical solution has a combination of hierarchical stiucture and con-
trol. Hierarchical control is the execution of a task through the accomplishment
of a series of subtasks. Subtasks can themselves be recursivelv subdivided into
subtasks again and again. Sometimes, different subtasks are achieved by invok-
ing a general purpose module which may be parameterized in order to perform
the task with subtask specific data. This “true™ hierarchical control should not
be confused with the superficial execution branching that takes place when all
programs are run.

In programs, hierarchical structure is the existence of nested levels of procedures
and functions. For example, all elements (e.g., global variables. procedure, func-
tions) in the basic template of a PASCAL program comprise the “outermost™
level and then, recursively, each procedure or function of the top level can be
comprised of local variables and nested procedures as well as statements to
enhance hierarchical structure. One consequence of hierarchical structure is
scope. Nested variables and procedures only have scope within their enclosing
procedure or function.

We suggest six reasons for conjecturing GP proceeds in the manner of a hierar-
chical process.

Reason 1. Hierarchical solutions are typically products of a hierarchical process.
Since some of GP's solutions have subtle hierarchical strategy. a hierarchical
process may be responsible for them.

Reason 2. A hierarchical process allows solutions to be found because it introduces
efficiency into the search process. GP may be exploiting a hierarchical process
when it manages to find solutions in very large search spaces.

It is easier and more efficient to solve a problem using hierarchical structure
and control and by using a hierarchical process than doing so without. A
subtask is simpler and. thus, easier to correctly complete than its more complex
subsuming task. Once subtask components exist, it is only necessarv to define

their assembly and debug the combinative aspect of the solution. As well, if
the same subtask is required more than once, the component functioning in
its capacity can be copied or reused. In all, the identificatior of subtasks. their
solution and the bottom-up combination allows structures of greater complexity
to arise simply and efficiently.

Reason 3. GP crossover depends upon a hierarchical representation of a program.
It swaps subtrees between parents. It is plausible to assume that a subtree com-
monly expresses some logical subtask. If this assumption is correct. crossover
will explore new contexts for subtasks and possiblv Lit upon using them cor-
rectly in combination. In other words, by swapping the subtrees of two parent
S-expressions to form two children, GP crossover may play an integral role in
the exploration and combination of hierarchical sub-control.

Reason 4. Human computer program design requires a hierarchical process. there-
fore, it may also be a requirement of GP program discoverv. Recall that in-
troductory programming courses teach program design as either a top down
decomposition, bottom up composition. or as both processes interleaved. Each
process is a reliable means of efficientlv designing programs. The hierarchical
design processes of humans conducting programming suggest wavs in which GP
could manage to evolve hierarchical solutions.

Reason 5. Hierarchical processes are ubiquitous in evolution. Perhaps. GP's sim-
plified model of evolution is a hierarchical process. GP abstracts four essential
features of evolution: blind variation. survival of the fittest. inheritance and an
extensible geLotype by means of its crossover operator. roulette-wheel selection.
parent selection and program representation. Could the synergy of these sim-
ple factors, which are as compietely bereft of knowledge as their corresponding
principles in nature, direct a hierarchical process?

Reason 6. Because GP is a specialized GA. the implicit paralle] search on hyper-
planes and building block behaviour that is hypothesized to occur in GAs with
binary fixed length strings may occur in GP. The GA Building Block Hypoth-
esis [32] states that a GA combines “building blocks™. i.e.. low order. compact.
highly fit partial solutious, to compose solutions which, over generations, im-

21

prove in fitness. Could it be the case that. first. this Building Block Hypothesis
is justified for GP, and. second, that the GP “building blocks™ > that are pro-
moted and combined in the conjectured implicitly parallel hierarchical building
block combination process are actually discernible subtask elements that are
combined bv a hierarchical (i.e., building block) process into a hierarchical so-
lution?

A GP solution may be hierarchical because the primitives chosen for the problem
alreadv mayv implicitly encode the manner in which the task should be decomposed
and how each subtask of this decomposition should function. For example. it is possi-
ble to give GP a set of primitives where each is a logical subtask of one decomposition
of the problem and then simply to use GP to find the correct combination of subtasks
rather than expect GP to discover subtasks on it own and then link them together.
Therefore. it is important that conclusions on the presence of a hierarchical process
in GP are not drawn solelv from the existence of hierarchical solutions.

In order to show that GP uses an inherently hierarchical process. the correct
question is: can GP evolve a program for some task using a set of primitives that
requires multilevel combinations of them to accomplish subtasks and the top-down
decomposition of the task into the same subtasks? To elaborate on the primitives:
they must not preordain the nature of subtasks that evolve and thev must be suf-
ficientlv general that GP could assemble them in any number of wavs to create a
hierarchical solution. We shall call such primitives “general purpose”.

In Chapter 3 we detail a set of experiments that answer this question. Our
method of experimentation is: for a selected program discovery problem. we start
with primitives which are not specific to the problem in question and which can be
composed in a variety of wavs into subtasks we know can help solve the problem.
We see whether GP is capable of solving a problem that would require a hierarchi-
cal process to exploit these general purpose primitives. If GP is capable, we further
decompose the primitives apd re-test GP. If GP can ultimately use the most gen-
eral primitives to still compose solutions exhibiting hierarchical composition for the
problem. it will have been shown. in at least some instances. that GP's process is
inherently hierarchical.

5We shall define a building block rigorously in Ch-pter 4.

Our experiments tend to confirm that GP, in its canonical form. does not exploit
a hierarchical process to obtain hierarchical solutions. It can not efficiently evolve
trulv hierarchical programs when it is supplied with primitives that must be hierar-
chically processed in order to express a solution. When started from general purpose
primitives, GP is hierarchical only so far as it discovers solutions of superficial hi-
erarchical control and it only randomly finds a solution that is truly hierarchical in
control. In general, this implies that GP is strongly dependent upon primitive se-
lection because, if the primitives are so general as to require a hierarchical process
to formulate a solution, GP is generally incapable of discovering one. To ensure
GP's success, primitives must be chosen that are sufficiently problem specific that a
non-hierarchical process can find a successful combination of them. Furthermore, the
initial human design decisions of test suite specification are crucial because propitious
selection of incremental subtasks as test cases can help guide the evolution of useful
subtasks in the population of programs.

Still in Chapter 3 we then proceed in three directions:

1. We explain that incorporating a hierarchical process into GP would be help-
ful. Since the time of our experimentation. various research motivated by this
goal has been conducted. Three methods: Genetic Library Builder (GLiB) [7].
Adaptive Representation GP (AR-GP) [99] and Automatically Defined Func-
tions (ADFs) [70] have been devised. ADFs do not explicitlv control a hi-
erarchical process while both GLiB and AR-GP do. GLiB relies upon GP's
existing selection and crossover mechanisms to identifv and promote useful sub-
tasks among the modules it randomly creates, but it appears these are insuffi-
ciently powerful. AR-GP bolsters the GP algorithm by maintaining centralized
memorv-based information to help it identify small building blocks. It shows
early promise but its reliance upon centralized mechanisms conflict with GP’s
model of local emergent computation.

2. We expand upon the issue of incorporating domain knowledge into program
discovery primitives. Using knowledge about the problem domain may be ex-
pedient but it may reduce the expression available to solutions and make it
difficult to appraise the general power of GP. We examine a validation ruie and
process one could follow to make the claim of knowledge independence in a

23

program discovery problem.

We determine that, compared to other machine learning approaches. the primi-
tives used in various GP problems are no more specialized to the specific domain
of the problem. Thus the issue of knowledge-based primitives. while significant
in all machine learning discussions including GP, does not strongly diminish the
comparative quality of GP as a general framework (i.c., weak method). GP is
relatively no less capable of deriving rich behaviour starting from knowledge-
impoverished initial conditions than comparable machine learning paradigms.

3. Given that GP is not a true hierarchical process, it remains necessary to explain
GP’s success. The tempered and somewhat obvious answer is that GP is a GA
where critical choices have been made to suit its goal of program discovery. We
list and consider these choices with respect to their necessity, convenience and
design issues.

In short. our first finding in Chapter 3 is that the quality of GP's success is
significantly influenced by choices that are left up to the designer. Those choices
concern the selection of the primitive set. test suite and fitness function. Regarding
hierarchy, GP lacks. not entirelv obvious. nor readily implementable, mechanisms
or principles of evolution that. if present. would give it the power of a hierarchical
process. Another reason for GP’s success is due to it being a GA that is suitably
specialized for program discovery.

1.3.2. A Schema-Based Theoretical Analysis of GP

Continuing with our goal of explicating GP. in Chapter 4 we fully address a conjec-
ture proposed as a possible reason for GP searching hierarchically. Reason 5, page 20,
stated that. because GP is a specialized GA. the implicit parallel search on hyper-
planes and building block beliaviour that is hvpothesized to occur in GAs with fixed
length birzry strings may also occur in GP. We formulate a theory of GP using the
schema-based framework suggested by its close similarity to GAs. We define schemas
rigorously; derive a Schema Theorem; and examine the strength of a GP Building
Block Hypothesis. There have been approximate accounts of GP theoryv in the liter-
ature. For example:

24

The set of similar individuals sharing common features (i.e. the schemata)
is the hyperspace of LISP S-expressions sharing common features. The
overall effect of fitness proportionate reproduction and crossover is that
subprograms (i.e. subtrees, sub-lists) from relatively high fitness individu-
als are used as “building blocks™ for constructing new it dividuals and the
search is concentrated for successive populations into sub- hyperspaces of
S-expressions of ever decreasing dimensionality and ever increasing fitness.
[64, pg. 774]

Our work fills a gap between approximate accounts and a precise schema-based
analysis for GP. The analysis draws attention to the aspects in which GP differs from
other GAs and thus GA theory may not be inherited exactly. While it is precise, it
establishes that precise insights, based upon a Building Block Hypothesis, into how
GP works or why GP may be better than other search algorithms are not forthcoming
using a schema-based approach.

1.3.3. Understanding GP through Comparison and Improv-
ing Upon GP

In Chapters 5 and 6 we extend our svstematic experimental analysis of GP by testing
it and comparing it to program discovery versions of adaptive search algorithms. We
employ a suite of program discovery problems for each of our studies. These problems
are:

e 6-Mult: a 6 bit boolean multiplexer problem

e 11-Mult: an 11 bit boolean multiplexer problem

e Sort-A: sorting an array using a linear fitness function counting mismatches

e Sort-B: sorting an array using a fitness function based upon permutation order
e BS: the block stacking problem

Section 2.1 of Chapter 2 provides a full exposition of the primitive set, test suite
and fitness function of each problem as well as our motivation for choosing each.
Section 2.2 describes the GP algorithm we use in our experiments. The algorithms

are compared in a fair manner by each being allowed to process the same maximum

number of candidate solutions. Chapters 5 and 6 specifv the detailed nature of the
comparisons in terms of what parameter settings were used.

For each algorithm and problem, on a per run basis. we examine the probability
of success. the average fitness of the best individual of each execution and the average
number of individuals processed each execution. The latter two values are expressed
as percentages for uniformity where 100% is perfect fitness or the maximum number
of individuals allowed to be processed (25500) respectively. For successful executions
we show the average number of individuals processed and the size and height of the
parse trees of successful programs. We use a T-test measuring 95% confidence [91]
to state that the difference hetween two results is statisticallv significant. Standard
deviations for results where there is sufficient data are provided.

In Chapter 5 we present two program discovery versions of existing mutation-
based, single-point, search and optimization algorithms: Simulated Annealing (SA)
[1] and Stochastic Iterated Hill Climbing (SIHC) and compare them to GP.

Both SIHC and SA are adaptive search algorithms. A single point, adaptive
search algorithm searches the space of candidate solutions a single candidate at a time
starting from a random candidate. The first random candidate is named current and
its fitness is assessed. Then a mutation of current is generated and called candidate.
A mutation is a modification, typically minor. of current made with the overall in-
tent that most characteristics of current as a solution are retained while a minor
number are changed. Next, the fitness of candidate is assessed. Depending upon
some acceptance criterion (that usually considers the fitness values of candidate and
current) the search either moves to (or “accepts”) candidate (renaming it current)
or generates another mutation based upon current. This process of candidate gen-
eration, fitness evaluation then the choice of accepting candidate is repeated until a
perfect solution is found or some maximum number of candidates have been consid-
ered. If the acceptance criterion permits the acceptance of a candidate that is inferior
in fitness to current, the overall fittest candidate is always retained. The pseudocode
corresponding to this algorithm is in Figure 6.

In basic hill climbing the acceptance criterion is whether candidate is at least
as fit as current. This criterion can be optionally stricter: candidate must be fitter
than current to be accepted. In Stochastic Iterated Hill Climbing, a limit on the

26

begin Adaptive-Search-Algorithm
candidates-processed = 0;
current = random search point;
fitness-current = fitness(current);
REPEAT
candidate = mutate(current);
fitness-candidate = fitness(candidate);
candidates-processed ++;
if acceptance-criterion(fitness-candidate, fitness-current)
then current = candidate
UNTIL
fitness-candidate is perfect OR candidates-processed = limit
end Adaptive-Search-Algorithm

Figure 6. Adaptive Search Algorithm Pseudocode

number of candidates generated as mutations of current is set. If this limit is reached
(i.e. without a candidate being accepted) current is randomly re-initialized.

SA ([1]) is an algorithm modeling the physical process of annealing where a
solid is liquified and then cooled slowly to obtain a minimum energy state. The
minimization of energy based on an arrangement of particles is driven by decreasing
temperature which settles the initial random activity of the liquid state. A sequence
of state transitions occurs on the way to a minimal state. Those sampled states that
result in lower energy are always part of the sequence but a state with more energy
only becomes part of the sequence with probability proportional to the temperature
of the system and the difference in fitness between it and the state from which it was
generated.

The Metropolis algorithm [80] was developed to simulate the physical annealing
process. It is based upon Monte Carlo techniques and generates a sequence of states
according to energy values and a temperature schedule. New sample states are gen-
erated by a slight perturbation of the current state called a “mutation™. They are
accepted into the minimizing sequence under two criteria. First, they are accepted if
they are of lower or equal energy. Second, if they are of higher energy they are ac-
cepted according to a probability which depends on the difference in energy between

27

them and the current state and on the system temperature. This same algorithm.
in Computer Science named Simulated Annealing, can be used to solve computa-
tional optimization problems by substituting states with candidate solutions and the
energy value with the value of an objective function which judges the closeness of
the candidate to the goal. Problems of maximization have merely to be flipped into
minimization problems to use SA.

The typical SA algorithm, one which we use., must be supplied a priori with
its initial temperature, final temperature and the fraction of maximum candidates
that should be sampled at each temperature. The temperaiure schedule is then
calculated to decrease the temperature after each fraction of candidates is sampled
according to a rate specified by exp(ﬂ;ﬁ) where n is the number of temperature
changes. The decision criterion for acceptance of a candidate solution is to always
accept the candidate if it has better (lower) or equal fitness. Or. if the candidate has
worse (higher) fitness, it is accepted with probability exp{=24f¢2%) where A fitness
is the positive fitness difference between current and candidate and T is the current
temperature. In Chapter 5 we shall elaborate upon the rationale for the algorithm
and summarize its underlying theorv.

In order to accomplish program discoverv with these adaptive search algorithms,
a mutation operator is required. Taking our inspiration from tree edit procedures and
tree distance algorithms [102], we have designed the operator “HVL-Mutate” (HVL
= Hierarchical Variable Length) which performs substitution. insertion or deletion
on a program to transform it to a different program of optionally different length or
structure. This operator guarantees the syntactic correctness of a candidate program
bv exploiting a parse tree representation in a manner similar to GP. Using HVL-
Mutate we are able to modifv the SIHC and SA algorithms to attempt program
discovery and test them on the verv same problems we use GP to solve.

We find that on our problem suite these two alternative algorithms also work.
SA, on the whole, is arguable superior to GP and SIHC. Our results indicate that
adaptive mutation and a degree of localized search are useful for program discovery.
Furthermore, based on the success of these algorithms which do not use a population
based approach, do not use crossover and do not use “survival of the fittest™ selection,
a more general reason for GP’s (or any other adaptive search algorithm) success at
program discovery is its representation rather than its unique implementation of a

search strategy. GP considers a large space of candidate solutions where program
length and structure can vary. Any adaptive search algorithm that is sufficiently
powerful to efficiently search this space is likely to succeed at program discovery.
Both GP crossover and HVL-Mutate not only explore this space, they conveniently
generate candidate solutions that are automatically syntactically correct.

In Chapter 6 our first goal is to analyze GP crossover. We describe the concept
of a fitness landscape which was first introduced by Sewall Wright in 1932 ([125]). It
allows a graph theoretic formalization of evolutionary search spaces that encompasses
computational search spaces including those of program discovery problems. In ad-
dition, it provides a way of studying evolutionary dynamics or single point adaptive
search. We use the concepts of a fitness landscape as a framework: we analyse GP
crossover with respect to its “neighbourhood” size by comparing it to GA crossover.
We also analyse GP crossover with respect to a measure we introduce called “syntax
correlation”. Syntax correlation is defined as a measure of similarity in size, structure
and syntax between a parent program and one of its offspring. The svntax correlation
of a fitness landscape is the average of syntax correlation for each parent-offspring
pair in a fitness landscape. By comparative analysis we estimate that GP crossover
vields fitness landscapes with a lower syntax correlation than HVL-Mutate. Hence,
relative to HVL-Mutate, GP crossover is a macro-mutation operator. We observe
its performance when it replaces HVL-Mutate in SA and SIHC. The algorithms are
called Crossover Simulated Annealing, “XOSA™, and Crossover Hill Climbing, “XO-
SIHC". Our conjecture that the combination of a single point search algorithm and
GP crossover is well suited to solve some instances of program discovery problems is
borne out. We provide detailed results based upon studying our problem suite.

Still in Chapter 6. in another set of experiments, we exploit both GP crossover
and HVL-Mautate so that we can improve GP by adding a local search compo-
nent. Specifically, we add a stochastic iterated hill climbing component to GP.
There are two different hybrid algorithms: one uses GP crossover for hill climbing
- “GP+XOHC" and the other uses HVL-Mutate - “GP+MU-HC". There are three
versions of GP+XOHC that differ in terms of how a mate is supplied for the current
solution. Mates are either randomly created, randomly drawn from the population
at large, or drawn from a pool of fittest individuals. On all problems of our problem
suite, with either operator used in the hill climbing component, the hybrid algorithm

29

is better than GP alone with at least one of the parameter settings we tried. Prior
to using this search strategy, GP had not been superior nor sometimes even on par
with SA and SIHC. With hybridization it becomes comparable.

In the final section in Chapter 6 we draw upon a collective framework consisting
of three key concepts of adaptive search in evolution to unite all the algorithms
considered in the thesis. The concepts are: selection, inheritance and blind variation.
By first showing how the GP algorithm expresses each of them, we can proceed to
describe how they are actualized in GP alternatives.

In Chapter 7, the conclusion. we revisit the goal and results of Chapters 3 through
6. We list possible directions of future research in the context of the findings of this
thesis. Broadening our focus, we remind ourselves that our ultimate goal lies bevond
even solving program discovery. Program discovery has been chosen for study because,
at this point in time, it is one relevant step on the road to a grander goal. That goal
is for a computer-based software system to generate sophisticated behaviour while it
operates in an environment that defies a priori formal acquisition and formulation of
task and environment knowledge.

1.4. Ahead in the Thesis

The remainder of the thesis is as follows:

Chapter 2 describe the experimental suite of problems used in the thesis and pro-
vides a detailed description of GP and its extensions.

Chapter 3 assesses how much of GP’s success can be attributed to skillful designer
choice of the primitives. test suite and fitness function. It also describes the
analvsis and experimentation establishing whether there is true hierarchical
process in GP. . It argues the need for hierarchy in solutions and process in GP
and analyses some current extensions made in this regard. It provides a means
of claiming that GP has been run with a general purpose set of primitives.

Chapter 4 focuses on the supposition that a GP equivalent of the GA Building
Block Hypothesis applies to GP. It introduces a definition of a schema that is
suited to GP’s variable length. hierarchical representation and the function of
GP crossover. It derives a GP Schema Theorem (GPST). Finally, it reviews

various interpretations of GPST which, under scrutiny, fail to support a GP
Building Block Hypothesis.

Chapter § describes the mutation operator HVL-Mutate. It provides adaptations
of Simulated Annealing (SA) and Stochastic Iterated Hill Climbing (SIHC) for
program discovery. It compares GP, SA and SIHC on the experimental suite of
problems described in Chapter 2.

Chapter 6 investigates GP crossover by substituting it for mutation in SA and
SIHC: Crossover Hill Climbing (XO-SIHC) and Crossover Simulated Anneal-
ing (XOSA). It then describes hybridized algorithms which combine GP and
Stochastic Iterated Hill Climbing and which improve upon canonical GP. It
compares all these algorithms to GP using the experimental suite of problems
described in Chapter 2.

Chapter 7 is a summary, broad outlook and description of possible future directions
for this research.

CHAPTER 2

Thesis Problem Suite, Genetic
Programming, and its Extensions

This chapter starts by motivating and describing the five problems that we use to
perform comparison of GP with other program discovery algorithms.

Next. in Section 2.2, an extensive description of Genetic Programming (GP)
complementing its introduction in Chapter 1 is presented. Pseudocode of the first and
simplest version of GP is presented and various aspects of the algorithm are explained.
In Section 2.3 we explain how program behaviour such as iteration. recursion and
conditionalitv can be implemented via primitives.

In Section 2.4, we discuss the salient features of crossover operators. We include
a brief description of crossover operators we have experimented with and summarize
their comparison. We also describe research on “context-preserving” crossover and
“greedy recombination”.

In Section 2.5 we describe new genetic operators. selection algorithms and rep-
resentational extensions that are widelv used bv the GP research community.

2.1. Thesis Problem Suite

For the purposes of systematic experimental analvsis. in this thesis we have selected
a suite of five program discoverv problems. The suite contains 6-Mult, 11-Mult.
Sort-A, Sort-B and BS. Varations of these problems which focus upon specific aspects
of GP are employed in Chapter 2. The problems exactly as they are stated here are
used in Chapters 5 and 6 to test our conjectures concerning algorithm performance
and for comparison of algorithms.

32

2.1.1. Motivation for the Problem Suite

We selected Boolean multiplexer problems (6-Mult and 11-Mult) because they ad-
dress Boolean concept learning. They also have alternative interpretation in problems
of electronic circuit design. The search space of these problems is finite and well un-
derstood due to their logical nature. As well, their test suite is finite. The 6-Mult
problem is simple enough to present low computational requirements with GP or,
presumably. most other algorithms. The 11-Mult problem is a scaled up version of
6-Mult so it (and success‘vely larger multiplexer problems) can be used to assess scal-
ability and efficiency. Boolean multiplexer problems are benchmark problems that
have been used in Learning Classifier systems (e.g. [123]), Koza's extensive survey of
GP ([69]), and among the growing GP research community (e.g. [124. 100, 47, 53}).

There are good reasons for selecting sorting. It is a highly practical problem
and, while we know excellent sorting algorithms, it acts as a general indicator of
learning capability. Not only is sorting easy to understand, it is a core problem
in Computer Science. The upper and lower bounds on the complexity of sorting
algorithu.. . e known and it has been subjected to extensive theoretical analysis.
Sorting has an infinite problem space. Using sorting allows the solutions derived
by program discovery algorithms to be compared to the diverse set of algorithms
devised by humans and to be inspected and analysed for comprehension. Sorting has
previously been employed within the realm of evolutionary computation ([45. 13]).
We introduced one particular (with respect to primitive set and fitness function)
version of the sorting problem to GP literature [88] for the purposes of analysing GP
and it has subsequently been picked up and investigated by others [56, 55}. Our two
sorting problems, Sort-A and SOrt-B. differ in only one respect. While they use the
same primitive set and test suite, they use different fitness functions. This allows one
aspect of the sorting problem to be isolated and observed.

We choose block stacking (BS) as a problem because of the long standing consid-
eration in the Artificial Intelligence (Al) community of its related model domain, the
blocks world. 1t is a basic task in the planning domain of Al and can also be regarded
as a control task. It stimulated new approaches to planning, e.g., [25, 101, 113], and
appears to require sophisticated reasoning in the respect that it is nearly decompos-
able. That is, it can be divided into subproblems that only have a small amount of
interaction. It is not strictly decomposeble because the ordering of subproblems is in-

terdependent. It can also be solved more efficiently by taking advantage of primitives
that express iterative control.

2.1.2. 6-Mult: The 6 Bit Boolean Multiplexer
Problem Definition: 6-Mult

Task: Binary Address Decoding of 2 address bits for { data addresses: The task of a
boolean multiplexer is to decode an address encoded in binary and return the
binary data value of a register at that address. A 6 bit boolean multiplexer
has 4 data registers (at decimal addresses 0 through 3) of binarv values and
2 binarv-valued address lines. In tandem the 2 address lines can encode bi-
nary values “00”, “01", 10", and ~11" which translate to decimal addresses (
through 3.

Primitive Set: The primitives that are a priori selected for a 6 bit boolean multi-
plexer are:

IF(cond, true-bran.., false-branch) This primitive expresses a conditional
branch. It has three parameters. The primitive evaluates cond. If the
result is non-nil it evaluates its true-branch. otherwise evaluates its
false-branch.

OR(parm-1, parm-2) This primitive expressess a logical OR test. It returns the
result of logicallv OR-ing parm-1 and parm-2.

NOT(parm-1) This primitive expressess a unarv NOT.

AND(parm-1, parm-2) This primitive expressess a logical AND test. It returns
the result of logically AND-ing parm-1 and parm-2.

xA0, *Alx These two primitives are variables representing the values of two
address lines.

«DOx, *D1x, *D2x, *D3* These four primitives are variables representing the

values of the four data registers.

Test Suite: In order for a test case to be run on a program. all 6 variables are
initialized to test case values. Tle result returned by a program is interpreted

as its answer to the question: “What is the data value at the address encoded
by *AO* and *A1*?" The correct answer is the e priori set binarv value of the
register at the address. A random program has a 50% probability of returning
the correct answ <r even though it may not be functioning anvthing like a boolean
multiplexer.

All 64 possible configurations of the problem are enumerated as test cases.
Out of Training Test Suite: None. The test suite comprises all possible test cases.

Fitness Function: A program’s fitness is the number of configurations for which it
returns the correct data value for the given address plus one (for positive. non-
zero fitness values). This results in values between 1 and 65 where a program
with fitness equaling 1 is the least fit and a program with fitness equaling 65 is
most fit. A program with fitness 65 is deemed a perfect solution.

2.1.3. 11-Mult: The 11 Bit Boolean Multiplexer
Problem Definition: 11-Mult

Task: Binary Address Decoding of 3 address bits for 8 data addresses The task of a
boolean multiplexer is to decode an address encoded in binarv and return the
binary data value of the register at that address. An 11 bit “aolean multiplexer
has 8 data registers (at decimal addresses 0 through 7) of binarv values and
3 binarv-valued address lines. In tandem the address lines can encode binary
values “000” through “111" which translate to decimal addresses 0 through 7.

Primitive Set: The primitive set of 6-Mult is extended to encompass the additional
address line and 3 data registers. We list only new primitives here:

*A2x This primitive representis the value of the third address line.

D4+, *D5x, *D6* These three primitives are variables representing the values
of the fifth through seventh data registers.

Test Suite: In order for a test case to be run on a program. ail 11 variables are
initialized to test case values. The result returned by a program is interpreted
as its answer to the question: “What is the data value at the address encoded

by =AO=, *A1=* and *A2+?" The correct answer is the a prior: set binarv value
of the register at the address. A random program has a 50% probability of
returning the correct answer even though it mayv not be functioning anvthing
like a boolean multiplexer.

All 2048 possible configurations of the problem are enumerated as test cases.
Out of Training Test Suite: None. The test suite comprises all possible test cases.

Fitness Function: A program’s fitness is the number of configurations for which it
returns the correct data value for the given address plus one (for positive, non-
zero fitness values). This results in values between 1 and 2049 where a program
with fitness equaling 1 is the least fit and a program with fitness equaling 2049
is most fit. A program with fitness 2049 is deemed a perfect solution.

2.1.4. Sort-A

Problem Definition: Sort-A

Task: Sorting. The task of sorting is to arrange in ascending order the elements in
an array. This array shall be denoted in candidate programs by the variable
=array*. This is the same task as Sort-B.

Primitive Set: The primitives that are « priori selected for sorting are:

Do-Until-False This primitive is an iterative structure. It has one parame-
ter. The primitive continually executes its parameter until the parame-
ter returns nil. To prevent the loop from : zrating endlessly the prim-
itive cuts off iteration after reaching preset limits defined by variables:
local-loop-limit or global-loop-limit. It updates counters for these
limits.

Swap This primitive uses three parameters. It returns nil if its first parameter
is not an array. When its first parameter is an array. and the second and
third parameters evaluate to integers in the range of that arrav’s size, it
exchanges the elements at the positions corresponding to the integers and
returns true. Otherwise, it returns nil.

36

First-Wrong This primitive uses one parameter. It returns nil if its parameter
is not an array or if the array is sorted. Otherwise it sweeps down the arrav
from the first element and returns the index of the first element which is
out of order (i.e., is less than an element before it) in the array.

Next-Lowest This primitive uses two parameters. [t returns nil if its first
parameter is not an arrayv and its second parameter is not an integer within
the index range of the array. Otherwise it returns the index of the smallest
element in the array after the position indexed by the second argument. If
no element is less than the element at the position indexed by its second
argument. it returns nil.

=array* This primitive is a variable and thus does not have anv parameters.
It evaluates to the value of the variable.

Comments: In order for a test case to be run on a program. we set both
a global variable and =arrays to reference the arrav of the test case.
When the program execution is completed. the same global variable can
be checked for being perfectly ordered (because the array is “shared™ by

=array=* and the global variable).

Test Suite: Each test case input is an arrav that is partially or fullv sorted. The

array will be bound to the primitive *array= and a global variable. The desired
(or expected) output of a test case is the arrav completely sorted in ascending
order. This can be confirmed by an « posteriori examination of the global
variable sharing the binding of =array*. The test suite consists of 48 different
test cases. The array sizes in the test suite range fromn 2 to 6 (2 arravs of size
2. 6 arravs of size 3. 24 arravs of size 4. 10 arravs of size 5 and 5 arravs of size
6)and among the arrays there are 198 elements in total. Among the test suite
are 3 arrays which are initially in sorted order and 47 elements initially in their

correct positions.

Out of Training Test Suite: Since sorting is an unbounded problem and GP is

inductive. it is impossible to use GP to confirm that a perfectly general sorting
solution has been found. Two tests for generalization are possible: first. a
program may be functionally verified by a person. second. a different set of test

cases (distinct from the test suite) can be run on a perfect program. While the

second set of test cases still can not confirm the program is completely general.
at least. it can be decided whether some generalization capacity exists. We
coduct a study into this issue in Section 3.1.1.

Fitness Function: Each test case is run and. afterwards. compared to the desired
perfectly sorted arrayv. Fitness is a count of element mismatches between the
program result and the perfect array. Thus a maximally unsorted array of size
n with this metric has mismatch order n and the range of possible fitness values
is O(n). The raw fitness of a program is the sum of all the test case mismatch
orders subtracted from the maximum possible test case mismatch order sum
plus one. The reason for this arithmetic is that mismatch order expresses a
minimization fur-iion and we prefer to view GP as a maximization process
where fitness values are positive and non-zero. so we flip the extrema and add
1. This results in values between 1 and 199 where a program with fitness
equaling 1 is the least fit and a program with fitness equaling 199 is most fit.
This program is deemed a perfect solution because. for each different binding
of *array=* in the test suite. the original arrav is always perfectly sorted after
the S-expression’s evaluation. \We refer to this fitness function as ~mismatch

order”.

Note: Sort-A and Sort-B onlv differ in which fitness function each uses. Sort-A

uses mismatch order and Sort-B uses “permutation order”.

2.1.5. Sort-B

Problem Definition: Sort-B

Task: Sorting. The task of sorting is to arrange in ascending order the elements in
an arrav. This array shall be denoted in candidate programs by the variable
sarray=.

Primitive Set: The primitives that are « priori selected for sorting are the same as
Sort-A. see page 35:

Test Suite: Sort-B uses the same test suite as Sort-A.

38

Fitness Function: Each test case is run and, afterwards, the permutation order
of its input array is calculated [55]. Permutation order is a count for each
element of the array of the elements that follow it and are lower than it. Thus a
maximally unsorted array of size n has permutation order n « (» —1)/2 and the
range of possible fitness values is O(n?) rather than linear in n. The raw fitness
of a program is the sum of all the test case permutation orders subtracted from
the maximum possible test case permutation order sum plus one. The reason
for this arithmetic is that permutation order expresses a minimization function
and we prefer to view GP as a maximization process where fitness values are
positive and non-zero, so we flip the extrema and add 1. This results in values
between 1 and 340 where a program with fitness equaling 1 is the least fit and a
program with fitness equaling 340 is most fit. This program is deemed a perfect
solution because, for each different binding of *array* in the test suite, the
original array is always perfectly sorted after the S-expression's evaluation.

2.1.6. BS: Block Stacking

Problem Definition: BS

Task: Block Stacking. The task of block stacking is to stack labeled blocks upon one
another in correct order according to a supplied goal list. The task starts from
an arbitrary configuration of a stack with other blocks individually placed on a
table. Only blocks that are intended to be placed on the stack are available on
the initial stack and table, that is, there are no extra blocks.

Primitive Set: BS uses 3 “sensors” which are primitives encoded to return state
information concerning the stack and goal list. All sensor primitives have zero
arguments. It also uses 5 primitives which model operators for manipulat-
ing blocks to remove from or place a particular stack on the stack (always
on top). There are three global variables that are accessed by the primitives:
xgoal-list*, xstack* and *tablex.

move-to-stack(block) Action: If block is on the table, places it on top of
the stack. Return value: nil if block is not on table, true otherwise.

39

move-to-table(block) Action: If block is on top of the stack. remove it to
the table. Return value: nil if block is not on top of the stack. true
otherwise.

do-until-true(cond, body) Action: Evaluates cond and while it returns
false, evaluates body. Returns true.

not(parm-1) Logical not.
eq(parm-1,parm-2) Logical equivalence.

top-correct-block Returns the top block on the stack such that it and the
blocks beneath it are correctly stacked. When. starting from the bottom,
no blocks are correctly stacked. it returns nil.

top-block-on-stack Returns the block on the top of the stack.

next-needed Returns the block immediatelv on top of the top-correct-block.

Test Suite: Ten test cases have an initial configuration where from 0 to 9 blocks are
already correctly stacked and the remaining blocks are on the table. Nine test
cases have 0 to 7 blocks already correctly stacked with exactly one incorrect
block on top. while the remaining blocks are on the table. The remaining 148
test cases are a random sample of possible initial configurations.

Out of Training Test Suite: None.

Fitness Function: Each test case is run and. afterwards. the global variable *stack#
which represents the state of the stack is compared with *goal-list*. If the
two match exactly. the test case scores one point. The fitness of a program is
the sum of all the test case points plus one. This ensures all fitness values are
positive and non-zero. A program with fitness equaling 1 is the least fit and a
program with fitness equaling 168 is most fit. This program is deemed a perfect
solution.

2.1.7. Format of Experiment Description

In this thesis a problem definition consists of:

1. a functional description of the task in terms of program inputs and outputs,

40

2. the primitive set to be used to compose candidate solutions.
3. a fitness function,

4. a test suite,

5. optionally, an additional suite of test cases called the “out of training test
suite”. This suite can be used to evaluate the generality of a solution that
performs perfectly on the test suite.

In this thesis an experiment definition consists of:
1. problem definition

2. run parameters: A run consists of some number of distinct executions of the
algorithm, each started with a different seed for random number generation.

e population-size
e max-generations

e any run parameters with non-standard values

2.2. Canonical Genetic Programming

Pseudocode for a canonical version of GP (with specialized implementation details
omitted) is shown in Figure 7 which starts on page 42. The GP software system
we entirely wrote and use for our experiments is heavily instrumented and includes
a multitude of original extensions as well as some implementations of extensions
reported in the literature. The first version was among the first systems documented.
Simple and specialized versions of GP by various authors later became available on
at least one ftp site.

The pseudocode is divided into three parts. Part 1 lists variable types and
variables. Part 2 is the Main Program and Part 3 is the procedures and functions.

Part 1: Types and Variables: Variables are in four groups. The first group
“problem input parameters” consists of variables that link a GP application (i.e..
problem) to the GP “shell”. (By “shell” we mean the problem-independent part of

41

the GP algorithm that creates the initial population of programs, and processes pop-
ulations by iterating over generations.) These variabies are initialized at the outset of
a GP run so that the shell can generically access a set of primitives. the test suite and
the fitness functions. In addition to the expected variables: testsuite. primitives.
and fitness-function, this group includes testsuite-size and max-fitness.

The second group of variables is parameters guiding the construction of the
initial population: “Generation 0”. The parameters permit the composition. based
upon tree height, i.e., the number (or levels) of function calls. of programs in this
population to be stipulated. The variables max-height-random-tree (standard value
15) and min-height-random-tree (standard value 5) allow the user to set a minimum
and maximum height for programs that are randomly created in “Generation 0".
The “initialization-method” variable of type initialization-methods allows
different functions to be bound into the shell in order to compose “Generation 0”.
Three such functions work in the following manner:

full This function ensures all programs are of tree height: max-height-random-tree.

grow This function ensures all programs are at least min-height-random-tree and
up to max-height-random-tree. It is the standard function of our experiments.

ramped-half-and-half This function ensures an equal number of trees at each
height including and between min-height-random-tree and the parameter
max-height-random-tree.

Also pertaining to the initialization of “Generation 0" is the pseudocode for the
random creation of programs described in Part 3 in function random-program. It
would be invoked by an initialization method and return a program within the height
tolerance stipulated by its input parameters: min-height and max-height. Because
no primitive alone can solve the problem. this function starts by randomly selecting
from the primitive set, with replacement. a primitive which has parameters. It then
recursively draws from the primitive set. with replacement to specifv the parameters
each primitive needs. When the level of function nesting (via parameter specification)
is one short of max-height only the primitives without parameters are drawn from.
Typically the height (and size) of a program are recorded along with the program.
This is convenient information because later the crossover operator is constrained to
produce trees within a maximum height.

The third group is variables that parameterize a GP run in the following manner:
population-size The number of programs in the population each generation.

parents-to-copy Each generation, a portion of the next generation of programs con-
sists of exact copies of parents chosen by roulette-wheel selection. This variable
stipulates the size of this portion. Its standard value is 10% of population-size.

max-tree-height-crossover Because a subtree is removed from the copv of one
parent and a subtree of the copy of the other parent is swapped into its place,
the new offspring (or child) can differ in height from the original parent. As
a means of making the search space finite in size, this parameter imposes an
upper bound on the number of function levels in any program. Its standard
value is 15.

non-leaf-selection-bias A primitive which has no parameters is called a “leaf”.
The GP crossover operator can be controlled by adjusting the probabilistic bias
it uses to choose a non-leaf (i.e. subtree in a program represented as a tree)
over a leaf as a crossover point. For example. the crossover points in a tree are
grouped as leaves and non-leaves. If a random number drawn between 0 and 1 is
greater than non-leaf-selection-bias. the crossover point is next randomly
selected from the leaves versus from the non-leaves. The standard value is 90%.

max-generations The maximum number of generations to run GP. GP is usually
also stopped before this number of generations if a “perfect” solution is found.
Perfection is standardly defined as a program whose fitness equals max-fitness
(see the first group of parameters) but can also be further defined by additional

criteria.

PROGRAM GENETIC-PROGRAMMING-PSEUDO-CODE
TYPE

initialization-methods = {full, grow, ramped-half-half)};

testcase-input-vars = array(i...inputs];

testcase-ocutput-values = array(1i...outputs];

program = a composition of primitives such as list or array

fitness-function = a function that binds program variables to
testcase input variables of a program, executes it and

compares its outputs to testcase output values

RECORD
. primitive-record = {
primitive
number-of-arguments}

testcase-record = {
testcase-input-vars, testcase-output-vars}

VARIABLES
/+ problem input parameters ./
integer:

testsuite-size,

primitives-size,

max-fitness, /+ fitness values will be between 0 and max-fitness s/
array(l..testsuite-size] of testcase-record: testsuite;
array[1...primitives-size] of primitive-record: primitives;
array(1...population-size] of probability: roulette-vheel;

/* GENERATION O INITIALIZATION PARAMETERS «/

integer: max-tree-height-random-trees;
integer: min-tree-height-random-trees;
initialization-methods: initialization-method;

/+* RUN PARAMETERS s/

integer:
max-tree-height-crossover-program,
population-size,
parents-to-copy,
max-generations;

real:
non-leaf-selection-bias;

/+ RUN VARIABLES s/

integer:
generation = 0;

array(1...population-size] of program: current-generation,
next-generation;

boolean: solution-found = false;

/% TRANSIENT VARIABLES ¢/
program: parentl, parent2, childi, child2;

/+ MAIN PROGRAM s/

begin
initialize-problem(testsuite, primitives, fitness-function);

generation-O-parameters(max-tree-height-random-program,
min-tree-height-random-progran,
initialization-method);

run-parameters(max-tree-height-crossover-program,
non-leaf-selection-bias,
population-size,
parents-tu-copy,
population-size);

initialize-random-number-generator(seed);

create-zeroth-generation(current-generation,
primitives,
initialization-method,
max-tree-height-random-program) ;

population-fitness-calculation(current-generation,
testsuite,
roulette-vheel,
solution-found);

report-on-zeroth-generation;
/* generation loop ¢/
vhile (generation < max-gemerations) & NOT solution-found

/+ copy some program directly to next gemeration */
for i:s1 to parents-to-copy

next-generation[i] := roulette-wheel-selection;
endfor;

/# create the remaining offspring for next gemeration with crossover
for i:= parents-to-copy + 1 to population-size by 2

parenti:= roulette-wheel-selection;

parent2:s roulette-vheel-selection;

childi, child2 := gp-crossover(parenti, parent2);

¢/

next-generation{i] := childi;
next-generation{i+1] := child2;
endfor;

population-fitness-calculation(next-gensration,
testsuite,
roulette-vheel,
solution-found);
endwhile;

if solution-found
report-success-and-run-statistics
else
report-run-statistics

end; /¢ main program */

/+ PROCEDURES s/

procedure INITIALIZE-PROBLEM

(testsuite, primitives, fitness-function)

FL

prompts user for testsuite, primitives and fitness-function.

These are usually supplied via functions which can be invoked

to set up the global variables testsuite and primitives.

The fitness-function function would be bound to a function variable
invoked in the calculate-fitness procedure.

s/

procedure GENERATION-O-PARAMETERS
(max-tree-height-random~program, initialization-method)
/* prompts for and sets these values ¢/

procedure RUN-PARAMETERS
(max-tree-height-crossover-program,
non-leaf-selection-bias,
population-size,
parents-to-copy,
population-size);

/% prompts for and sets these values ¢/

procedure INITIALIZE-RANDOM-NUMBER-GENERATOR (seed);
/% a run can be recreated by starting it with the
random number generator with the same seed =/

procedure CREATE-ZEROTH-GENERATION

(current-generation,
primitives,
initialization-method,
wax-tree-height-random-progran);
/e
Using primitives, max-tree-height-random-program and initialization method,
places population-size s-expressions into the array current-generation s/

for i:=1 to population-size

/¢ compute the height restrictions on a random program based upon
the initialization method (e.g. ramped half-half, full, grow) =/
set-max-min-height (initialization-method, i, min-height, max-height);

/% create the nev program with the height restrictions ¢/
program := nev-program(primitives, max-height, min-height);
current-generation(i] := program;

endfor

end procedure CREATE-ZEROTH-GENERATION

procedure POPULATION-FITNESS-CALCULATION(
current-generation,
testsuite,
roulette-vheel,
solution-found) ;

local variables

array(1...population-size] : fitness-array;
pop-avg-fitness : real or intager;

/% procedure body ¢/

assess-fitness(current-generation, testsuite,

pop-avg-fitness, solution-found, fitness-array);

form-roulette-vheel (pop-avg-fitness, current-generation, roulette-vheel,
fitness-array);

end procedure POPULATION-FITNESS-CALCULATION

procedure ASSESS-FITNESS(current-gen ration, testsuite,
pop-avg-fitness, solution-found, fitness-array)

/*

- Binds the test inputs to the program inputs for each member
of current generation,

- Executes the current member of the population

- Invokes the problem fitness-function function vhich compares output or global

variables affected by execution to desirsd values for the test case and
assesses a fitness value put into fitness-array
-~ accumulates sum for average fitness of population and computes average.

46

47

./
end procedure ASSESS-FITNESS

procedure FORM-ROULETTE-WHEEL(pop-avg-fitness, current-generation, roulette-wheel
fitness-array)

/e

- Using the population average fitness assesses each member a range of
non-zero positive probability for being selected as a parent proportional
to the population average fitness. These ranges are converted to incremental
values (by member index) to go in the roulette vheel. When a random
number between O and 1 is dravn, the roulette wheel is searched for the range
enclosing it. THe index corresponding to the range refers to the member of
population that is chosen to be a parenmt.

./

procedure REPORT-ON-ZEROTH-GENERATION;

/e
report average fitness of population, lowest, greatest, sizes and heights etc
./

procedure SET-MAX-MIN-HEIGHT(initialization-method, i, min-height, max-height)

/* compute the height restrictions on a random program based upon
the initialization method (e.g. ramped half-half, full, grow)

full: all trees have max-height = min-height = max-tree-height-random-program,
grov: all trees have min-height = min-tree-height-random-program,
and max-height = max-tree-height-random-program
ramped-half-half: for each height from min-tree-height-random-program
to max-tree-height-random-program a equal portion of trees are full
and grow. =/

end procedure SET-MAX-MIN-HEIGHT

Figure 7. Genetic Programming (GP) Algorithm Pseudocode

The fourth group consists of variables used to control the main loop of the GP
algorithm which iterates in generations (generation) over populations (current-

generation and next-generation) that are successivelyv created via roulette-wheel-
selection and GP-crossover (parenti, parent2, childl and child2) of a certain
portion of parents. The iteration stops if the variable solution-found ever becomes
true.

Part 2: Main Program Within the Main Program there are three basic steps
to the algorithm. The first step performs problem parameter. run parameter. “Gen-
eration 0" parameter. and random number generator initialization. Successively the
following procedures are called:

e initialize-problem
e generation-O-parameters
e initialiZe-random-number-generator

¢ run-parameters

® create-zeroth-generation
The final two sub-.teps of the first step are:

1. Each program in the zeroth generation is evaluated with each test case in the
test suite to obtain a fitness value for it and to set up a “roulette- wheel”. The
“roulette-wheel” data structure is used to draw members from a population via
fitness-proportionate selection.

2. A report is generated supplying data on the characteristics of “Generation 0.

The second step of the Main Program is a loop for each generation of the run. The
loop is controlled by the variables max-generations and solution-found. Inside the
loop the following processing is done:

e A number of programs (parents-to-copy) of the current generation are chosen
via roulette-wheel selection (i.e.. fitness proportionate probabilistic selection) to
have exact copies of themselves directly propagated to the next generation.

¢ A number of programs (equaling population-size - parents-to-copy) are
created for the next generation by drawing two parents at a time from the cur-
rent generation via roulette-wheel selection and copying them. A pair of copies
(called parent1 and parent2) is then crossed over via procedure gp-crossover
to create two new members (childl and child2) of the next generation.

49

o The fitness of each program in the next generation is calculated and the roulette-
wheel data structure is updated to reflect the new fitness proportionate proba-
bilities for selection.

e next-generation. replaces the current generation: current-generation.

o Generation level statistics are recorded and reported. Run level statistics are
updated.

The third step of the Main Program starts after the loop terminates. If a perfect
solution has been found. information concerning it is reported. As well. run statistics
are reported.

Part 3: Functions and Procedures This part of the pseudocode covers
the functions and procedures that supplement the Main Program. Most are self-
explanatory bv name. the short comments provided ‘n the pseudocode and the de-
scriptions just provided. The function of GP crossover is illustrated in Figure 5 on
page 16.

Procedure form-roulette-wheel perhaps needs more description here. It must
implement the GP and GA notion of “Survival of the Fittest™. It does this by giving
each member of the population a probability of being selected as a parent {or to have
its exact copy directly propagated to the next generation) that is proportional to its
fitness. relative to the average fitness in the population. The term “roulette-wheel” is
used as an analogy to the process of spinning a roulette-wheel which is split into slices
(one for each population member) that are sized according to the relative fitness of a
member to the average fitness. The spinning is a probabilistic element and. because
the slices are proportionately sized. the selection process is blind.

Canonical GP does not use a mutation operator. One reason is that a general
mutation operator i.e.. one which can perform substitution of primitives and increase
or decrease program length anvwhere in the existing program while preserving svntac-
tic validity. is not immediately obvious though we shalil provide one later. Mutation
operators that only modify entire subtrees or only substitute one primitive for an-
other are not as general but obvious to design. Knowledge-based mutation operators
that ~tweak™ primitives according to their meaning are also available. A variety have
been used in reported experiments. e.g. [6. 57] but either they are not accompanied

by a comparison (to not using mutation at all). One comparison, on 6-Multm coes
not indicate they produce significantly superior results [62].

One reason why GP may not aeed mutation is that. unlike other GAs. a primitive
is very unlikely to disappear from a GP run. In other GAs a population can become
homogeneous at a feature (i.e., all the members of a population have the same bit
value at a certain string position) and mutation provides the only means of allowing
that feature to be re-introduced into the population. In the non-positional, variable
length representation of GP, the probability of a primitive completely disappearing
from the population is usually very low (given the population size and the cardinality
of the primitive set), so there is no role for mutation in pr-v.-nting permanent primitive

disappearance.

2.3. Examples of Primitive Semantics

A degree of skillful manipulation is required to translate a problem into a GP frame-
work. Most obviously, the primitives must be chosen with the problem in mind. In
general. GP is successful because a carefully considered formulation of the problem
definition and experiment. that is. one that is amenable to search, is chosen. Often
the setup of the problem environment is expedient.

In this section we discuss considerations that arise once the general nature of
a primitive has been decided upon (e.g., it will perform iteration, it will express a
conditional branch). These issues are not specific tc using LISP to implement a
primitive but we illustrate them in a LISP context because we evolve and use LISP
programs' in our GP software system. It is important to note that here we discuss
how semantics can be expressed in primit. es but not how the choice and design of
primitives affects the difficulty of the problem or the efficacy of GP.

2.3.1. Directly Using Built-in Functions as Primitives

The boolean functions AND. OR and NOT. the arithmetic functions +, —. =,
if-then or if-then-else functions. and any function which similarilv is built in
and can accept a fixed number of parameters, can be directly used as primitives.

'More correctly, “programs” in LISP are S-expressions.

For example, a cond construct in LISP can be used as a primitive if its number of

conditional clauses is fixed.

Restricting a primitive to accepting only a fixed number of parameters is a gen-
erally acknowledged convenience of minimal cost (in terms of expressiveness and flex-
ibility). For example, the nesting progns of two parameters still allow an arbitrary
number of sequential S-expressions.

2.3.2. “Firewalling” Built-in Functions as Primitives

To ensure closure or prevent the chance of an execution trap. sometimes a function
taken directly from the programming language must be extended before it is used as
a primitive. The “firewall” extension inspects the tvpes of all parameters to ensure
a run-time error will not occur because an operator is applied to a parameter of
an unanticipated or incorrect tvpe. For example. zero-protected integer division is
commonly written as the primitive %. The extension mayv also use different versions

of an operator depending upon the tvpe of a parameter.

2.3.3. Arithmetic Constants as Primitives

Recall that the problem of symbolic regression is to find a mathematical expression of
independent variables that computes a dependent variable. This problem and others
require the use of arithmetic constants. When using a long range of constants as
primitives (or a range of real numbers). it is not sufficient to place them among the
other primitives of the set because their quantity will “swamp™ the others and bias
the composition of random programs (or. in the case of a range of real numbers, they
can not be enumerated). Instead. so-called “ephemeral constants™ [69] are used. A
dummy primitive (e.g.. named int-constant) is placed in the primitive set and each
time it is drawn (in the making of a random program). it is replaced by a constant
drawn randomly from the range.

2.3.4. Recursion via a Primitive

A simple wav to provide recursion is to allow a program to call itself. This must
be implemented a bit circuitously by using a helper primitive named, for example,
self. self) must be placed in the primitive set and it must express the base case

of the presumed recursive function. A program invokes itself when it contains the
primitive self and self is evaluated. In order to make the evaluation of self
the equivalent of calling the program, before the program is valued. the algoiithm
names it “on the fly”, as a LISP function, and by using a global variable. Suppose
self-defun is the assigned name for the program.2. When the program is tested and
the primitive self is evaluated, self:

1. checks whether any base case to end the recursion exists. If it does. self returns
the result of the base case. The base case may rely upon the value of self’s
parameters or some global state.

2. saves all input and state variables that exist in the calling program’s execution
context.

3. uses its parameters to alter current state, if necessary.

4. evaluates its calling program (i.e., makes the recursive call) by using funcall
with self-defun as a parameter.

5. restores the calling program’s execution context.
6. returns the result of the recursive call.

So. in fact, recursive calls with one program are implemented by using an intermediary
function that must be included as a primitive. This style of recursive primitive is used
in the problem of inducing the formula for the Fibonnacci sequence in [62] from its
first 20 elements. In that example. the base case examines the value of a sequence
index which is a primitive. If the index is not between 0 and the current global value
of the index less 1 it returns 0. An obvious drawback to the implementation of this
style of recursion is that it has to be somewhat specialized to the specific problem
because the base case must be anticipated or a designer imposed recursion depth limit
must be imposed.

2 Actually the program does not have to be named or defined as a LISP function, it simply needs
to be pointed at by a global variable. To invoke the prograin, an eval can simply be used with the
global variable as its parameter.

Another form of recursion in which procedure A calls procedure B which in turn
calls procedure A is available in advanced GP models. We describe Automatically
Defined Functions ‘ADFs) which are an advanced form of primitive representation
allowing procedures and a “main program” to co-evolve on page 68. They permit this
form of recursion.

2.3.5. Iteration via a Primitive

There are at least four obvious ways to implement a primitive that performs iteration.
For example:

Example 1: One Parameter for Loop Condition and Body: Repeat-Until-
Nil(X): The primitive always evaluates X (which. recall, is a primitive which is
a variable or function) at least once and continues to evaluate it until it returns
nil.

Example 2: Two Parameters for Loop Condition and Body: While-Do
(condition,body): Repeatedly evaluates condition and then body if the pa-
rameter condition returns non-nil.

Example 3: For Loop Parameterization: FOR(loop-var, loop-start,loop-end,
loop-incr, loop-body).

Example 4: Specialized to Data For-each-element(X): Loop over the data struc-
ture and access the next element each time. Access is gained via binding a
variable to the element or its index. Other primitives can use this variable (it
must have a default value) or the variable can be a primitive itself.

The need for a “deadman’s brake”: It is imperative that a loop body alters
the part of the execution state that eventually causes the looping condition to halt the
iteration. However, programs composed out of typical primitives are vulnerable to not
displaying such behaviour. To prevent a loop from iterating endlessly, all iterative
primitives must include a means of cutting off iteration. Usually, they do so by
updating the corresponding counters of preset variables called 1ocal-loop-limit and
global-loop-limit and using the variables to terminate iteration. These variables
are somewhat hidden from attention in GP but pose some problems. First, their

settings must be chosen ad-hoc. Second, a program's execution may depend upon
the settings. For example, a “perfect” program may only be perfect with the GP
run’s values of the parameters because they control the iteration as much as the
iteration primitive’s parameters. If they are changed, the execution changes. When a
very complex progam is evolved, it may not be readily comprehensible (because GP
programs are usually larger than a human-designed program using the primitives and
may contain extra inconsequential primitives) and such a dependence may exist. In
these cases, either tedious program simplification and explanation must be done or
the program should be tested on other examples of the problem.

Almost all primitive sets are likely to generate programs that experience end-
less loops. This is an inherent effect of using hlind program initialization and blind
crossover in program reproduction.

We shall defer specific issues concerning choosing an iterative primitive design
to Chapter 3.

2.3.6. Assignment via a Primitive

LISP uses the function SETF(*var*, *value*) to change the value of a variable pa-
rameterized by *var* to *valuex. Using a primitive that accepts any variable and
any value introduces the problem that the parameter *var* may not actually be a
variable. It may be possible to design the primitive to test this. Or, alternatively, spe-
cialized primitives changing a variable’s state may be appropriate. Both or one of the
parameters of the SETF can be explicitly included within the primitive and removed
as parameters. For example, INC-#x% is a primitive of no parameters that always
adds one to primitive *x* and returns the new value of *x*. Or, set-*x*(*valuex)
always sets the primitive *x* which is a variable to the return value of *value*.

This capacity of a primitive to alter a variable or memory location has existed
since the inception of GP [62]. More recently, attention has being focused on allowing
GP to generate “Turing-complete” programs by adding memory access and update
capability [118].

2.3.7. Typing Parameters in Primitives

The use of type definitions in parameters and for the return value of primitives (i.e..
the typing of primitives) is sonewhat swept aside in the definition of Program Discov-
ery or in canonical GP because use the context of LISP and functional programming.
However, typing is required in other languages and it could be useful in the context of
program discovery regardless of the programming language used to express programs.
One reason is that typing constrains primitive combinations and automatically elimi-
nates completely useless ones. A second reason is that typing may foster hierarchically
controlled solutions by providing additional structure for sub-tasks to evolve and sub-
task assembly to take place. Various schemes of typing in GP have been investigated
[69. 70, 48]. In order to use typed primitives. the GP crossover operator must be
modified to only allow subtree swaps between subtrees of compatible type and the
random program creation procedure must be modified to only construct programs
meeting the tvpe constraints. This type of crossover is named “structure preserving”.
The tradeoff with typing is one of search constraint versus loss of flexibility. Active
investigation into it continues.

2.3.8. The advantages of using LISP

Primitives can be implemented in any programming language and GP can blindly
construct programs, manipulate their parse trees in crossover. and evaluate them
when they are expressed in any language. However. LISP offers some noteworthy
conveniences for both purposes. First, it is interpreted so a program can be created
and evaluated conveniently “on the fly". Second, it does not require any typing in
function and parameter definition and therefore, types do not have to be respected
when primitives act as actual parameters or when a function returns a value. It is
very easy to ensure syntactic and run-time correctness using LISP S-expressions as
programs. For example, in LISP, when a condition is evaluated, a strictly boolean
result (i.e., true and false) is not required. Instead, any result that is not nil is
considered the same as true and a nil is treated as false.

2.4. Crossover Operator Properties

In considering different crossover operators for evolutionary program discovery. the
following criteria exist for a crossover operator’s behaviour:

2.4.1. Blind choice of crossover points

GP is supposed to function as “weak™ method and must therefore direct its search
strategy without problem specific knowledge. As this dictate pertains to crossover, it
implies that a crossover operator should choose crossover points randomly or blindly
(i.e., without bias dependent upon the specific problem). We shall make the same
distinction as [14] between random and blind behaviour. Random behaviour selects
choice with equi-probability whereas blind behaviour selects choice with a bias but
probabilistically. GP crossover is typically blind rather than random because it uses
a probabilistic bias (see page 42) to choose between leaves and non-leaves when it
selects a crossover point.

Another motivation for not incorporating any problem specific knowledge into
a crossover operator (e.g. by choosing specific crossover points) is that doing so
presents hazards. First, it may result in guiding the search away from potentiallv
useful solutions. Second, it may reflect upon the resourcefulness of the task designer,
rather than the power of the GP search algorithm. In an application setting, this
second hazard is actually welcomed as a pragmatic method of exploiting problem
knowledge. But, in a research setting. with the power of the GP model being studied,
it detracts from a clear assessment.

It is debatable whether choosing crossover points blindly correctly models genet-
ics. No crossover is strictly analogous to biological crossover because the representa-
tions are not the same as those of real genomes. But, some evidence in biology exists
that certain points on a genome mayv be more predisposed to being crossover points
than others. This evidence would lend credence to the claim that GP crossover in
some slight way models biological crossover.

Concurrent with the investigation of this thesis we conducted some brief inves-
tigation into the role of non-leaf-selection-bias in the canonical GP crossover.
This parameter is usually set to 90%. The use of a bias in crossover point selection
implies that the average amount of genetic material swapped in a crossover operation

is related to the capability of the crossover. It is stated that:

this distribution promotes the reconibining of larger structures whereas
a uniform probability distribution over all points would do an inordinate
amount of mere swapping of terminals from tree to tree in a manner more
akin to point mutation than to recombining of small substructures or
building blocks. [68, pg 114].

However, this claim was not supported by any comparison or analysis that has
been reported. The impact of the bias really seems less clearcut than stated because
the process by which programs are initially generated. the blind aspect of crossover
and the syntactic constraints of the set of primitives all interact to generate unpre-
dictable leaf to non-leaf ratios. In fact, when leaves actually comprise less than 10%
of the size of a tree, GP crossover is non-compositionally biased towards leaf selection
contrary to the rationale of the bias. As well. exchanging a leaf with another leaf
looks like a “tweak™ or rather small change to a program. This, of course, assumes
that leaf primitives are constants, variables or predicates. In fact, they could be quite
complicated functions that simply have no parameters. In this case a point mutation
will in fact be “sufficiently” explorative. When the leaves are constants. variables
or simple predicates it is also possible that tweaks may be appropriate as localized
exploration in the search process.

This relationship can be investigated by comparing crossover operators that differ
solelv in the bias applied to crossover point selection to GP crossover (which we
abbreviate as GP-X0). We experimented with the followiag crossover operators:

Height Fair Crossover (Height-Fair-X0) groups subtrees of a program bv height,
with equal probability chooses a height-group and then randomly selects one
subtree of this group as the crossover point. (A leaf has height 0 and a program
has height + 1 levels). Thus, each height-group is chosen with probability E!?t;

and choosing between leaves or the root or subtrees of the same height is equi-

1 X 1
{hetght—group| levels’

probable. Each crossover point is chosen with probability
Fair Crossover (Fair-X0) randomly selects any subtree as a crossover point. It
does not use a leaf or non-leaf selection bias.

Our measures of a better crossover point choice bias {(and therefore a better crossover
operator) are:

e A statistically significant fewer number of individuals are processed to find a
perfect solution

e A statistically significant better probability of finding a perfect solution in an
exed ‘tion given a maximum number of individuals processed.

We compared the crossover operators with four different problems: 6-Mult, 11-Mult,
Sort-A and Sort-B each executed with a run of at least 30 executions. The runs
used: population size of 500 and max-generations of 50. The problem definitions

of 6-Mult, 11-Mult and Sort-A are provided in Section 2.1.

6-Mult and Genetic Programming (GP) Height-Fair-X0 GP-X0 Fair-X0

Percentage of Successful Executions 86.7 (34.0) 79.5 (40.3) | 60.9 (49.8)

Confidence Interval (99%, 95%, 90%) 16,12,10 17.13.11 23,18,15

Fittest Individual at End of Run (% of Opt) 98.3 (4.5) 98.0 (4.5) | 96.7 (4.6)

Fitness of Population (% of Opt) at End of Exec 77.6 (4.6) 78.2 (5.2) | 81.6 (3.9)

Evaluations in a Successful Exec (% of 25500) 51.4 (15.0) 48.4 (21.4) | 574 (2uv.1)

Evaluations Over All Executions (% of 25500) 55.2 (21.9) 35.7 (27.8) | 72.0 (26.2)

Tree Height of Successful Programs 7.9 (2.7) 6.9 (3.2) 8.4 (2.3)

Tree Size of Successful Programs 40.4 (18.4) 42.8 (32.0) | 48.8 (25.1)
Table 1. GP Crossovers and 6-Mult

11-Mult and Genetic Programming (GP) || Height-Fair-XO | GP-XO | Fair-XO

Percentage of Successful Executions 0 0 0

Best Fitness Found (%) 93.8 87.6 87.9

Fittest Individual at End of Run (% of Opt) 80.9 (5.0) 79.2 (3.5) | 76.2 (4.3)

Fitness of Population (% of Opt) at End of Exec 74.0 (3.65) 74.1 (4.4) { 71.2 (3.9)

Evaluations Over all Execs (% of 25500) 100 100 100

Table 2. GP Crossovers and 11-Malt

Tables 1, 2, 3, and 4 show comparison data. Figures in parentheses are standard
deviations. A t-test [91] with 95% confidence was used to judge statistically signifi-
cant difference. The height and size of perfect solutions are recorded for interest in

problems 6-Mult, Sort-A, and Sort-B.

Sort-A and Genetic Programming (GP) [Height-Fair-X0 GP-X0 Fair-X0
Percentage of Successful Executions 63.3 (49.0) 80.0 (40.7) | 73.3 (43.0)
Confidence Interval (99%, 95%, 90%) 20,15,12 19.14.12 21.16.13
Fittest Individual at End of Exec (% of Opt) 42.2 (21.8) 49.7 (18.1) | 47.2 (19.3)
Fitness of Population (% of Opt) at End of Exec 15.8 (2.8) 18.7 (7.1) 15.1 (1.6)
Evaluations in a Successful Exec (% of 25500) 44.6 (25.9) 39.1 (26.6) | 48.3(31.4)
Evaluations Over All Execs (% of 25500) 64.9 (35.0) 51.3 (35.0) | 62.1 (36.2)
Tree Height of Successful Programs 6.9 (3.2) 6.8 (2.8) 3.8 (1.9)
Tree Size of Successful Programs 22.2 (21.5) 25.0 (23.3) | 17.0 (8.7)
Table 3. GP Crossovers and Sort-A

Sort-B and Genetic Programming (GP) || Height-Fair-X0 GP-X0 Fair-X0
Percentage of Successful Executions 63.7 (49.9) 67.7 (47.1) | 93.3 (25.4)
Confidence Interval (99%. 95%. 90%) 23.17.11 22.17.11 128.7
Fittest Individual at End of Exec (% of Opt) 80.6 (25.9) 85.3 (22.6) | 96.5 (13.4)
Fitness of Population (% of Opt) at End of Exec 49.5 (3.3) 48.7 (2.6) | 352.2 (7.7)
Evaluations in a Successful Exec (% of 25500) 44.3 (26.1) 40.6 (28.2) | 33.8 (24.3)
Evaluations Over All Execs (% of 25500) 64.7 (35.2) 60.4 (37.5) | 38.2 (29.3)
Tree Height of Successful Programs 6.96 (2.9) 3.7 (1.4) 6.9 (2.8}
Tree Size of Successful Programs ﬂ} 19.88 (15.7) 19.4 (15.0) | 425.4 (19.0)

Table 4. GP Crossovers and Sort-B

For 6-Mult the results show that Height-Fair-X0 and GP-X0 have a significantly
better expected probability of success than Fair-X0. Another significant difference
was the average fitness of the popnlation at the end of a execution (a execution

was terminated as soon as a perfect individual was found) where. in contrast to

the comparison in terms of probability of success, Fair-X0 achieved a significantly

better result and GP-X0 and Height-Fair-X0 were indistinguishable. The two results
together might be explained by the fact that Height-Fair-X0 is slower to converge
because it requires a higher population fitness before it can create an individual fitter
than the present fittest in the population. Both Height-Fair-X0 and GP-X0 needed
a significantly less mean number of evaluations than Fair-X0 but they did not differ

with each other significantly.

GP using any of these crossovers could not solve 11-Mult with 25500 evaluations.
Both Height-Fair-X0 and GP-X0 obtained significantly better best fitness and pop-
ulation fitness than Fair-X0 but they did not differ between themselves significantly.
Height-Fair-X0 found the fittest program (93.8% of optimal) while the fitness of the
best program found by Fair-X0 was 87.9% and GP-X0 was 87.6%.

In Sort-A there was no statistically significant difference in the probability of
success, evaluations required, fitness, height or size of programs with any crossover
operator. In Sort-B it was possible to rank the crossovers according to probability
of success:

1. Fair-X0: 93.3%
2. GP-X0: 67.7%
3. Height-Fair-X0: 63.7%

GP-X0 produced programs which as trees had significantly shorter height than the
other two crossovers but there was no significant difference in tiee size. In terms of the
percentage of evaluations required, Fair-X0 used significantly less than Height-Fair-X0
and GP-X0 but only significantly less evaluations than Height-Fair-X0 when only suc-
cessful executions were considered. There was no significant difference in population
fitness or the expected fitness of the best individual.

In summary, the results show that none of the crossover operators was consis-
tently better, under both criteria. in all experiments. Nor was one crossover operator
always significantly better than the others, on a single experiment. The results sug-
gest that the capability of the crossover operator depends much more upon the specific
nature of a problem (i.e.. its primitives, its fitness function) than its bias in crossover
point selection. Furthermore, while a crossover selection point bias may be effective,
choosing an appropriate one is not simple. There is a need to further understand
what information concerning the character of the search space relates to crossover
selection point bias.

2.4.2. Syntactically Correct Offspring

Because GP is supposed to be a “weak method”, it is crucial that a crossover op-
erator in GP generate programs that are syntactically correct. In other GAs, this

61

requirement is equivalently “the crossover operator must generate encoded offspring
that decode to valid candidate solutions™. Should this requirement not he met. an
ad-hoc, problem specific repair algorithm has to be added to either search algorithm
detracting from its generality.

To avoid the ad-hoc aspect and the computational expense of repair. GA de-
signers carefully choose an encoding that under the crossover operator is assured to
vield only syntactically correct offspring. However. in cases when the design of the
encoding is orthogonal to other properties of the search strategy. such as combination
of solutions via crossover, designers use an encoding and crossover operator that do
not vield svntactically correct offspring and resort to heuristic repairs [87. 33. 79].

In contrast to other GAs, because there is no encoding in GP (see page 14) and
because GP crossover takes advantage of tree representations for a pair of parent pro-
grams, GP preserves syntactic correctness in both (or a single) offspring by swapping
subtrees. Every offspring composed in this manner is directly syntactically valid.

2.4.3. Flexible Program Length

With program discovery. it is crucial that the size (number of primitives) or struc-
‘ure (pattern of primitive nesting) of a candidate solution need not be specified in
advance of searching for a solution. GP crossover, again by taking advantage of using
a tree-based representation of a program. generates offspring that. while thev are
svntactically valid. may differ in size and structure from their parents.

2.4.4. Parent-Offspring Fitness Distribution

Altenberg [2] has shown that the search bias in GP exploits an underlying assumption
concerning the fitness distribution of the set of offspring produced by crossing over
a pair of parents at all posssible points. This assumption is that a portion of the
probability density covers fitness values greater than either parent (i.e.. some of the
possible offspring are fitter than both their parents). Most preferably the distribution
of fitness among a pair of above average parents’ offspring hould have a large upper
tail. This would indicate that many different crossover points chosen among the two
parents yield offspring more fit than both parents.

The quality of a crossover operator in this respect. depends upon the specific

62

problem because both the fituess function and primitive set influence parents-offspring
fitness distribution. As yet it is not clear how to a priori assess this quality or how
to assess it while running GP (and possibly improve it). Random sampling of the
distribution may be be helpful in judging a crossover operator’s quality but this is
still purely speculative.

Tackett [115]) uses a “Greedy Recombination™ operator (also earlier referred to
as “Brood Selection™ [117]) instead of GP crossover as a means of estimating a pair
of parents’ offspring fitness distribution and improving the fitness of offspring on
average. The following description is from the Conclusions section of Tackett's thesis:

In standard GP recombination, offspring are chosen uniformly at random
from among the large number possible from a single pairing. The Greedy
Recombination operator samples from among these potential offspring and
chooses the best from that sample, thereby substituting a greedy choice
for a random choice. Arguments were presented based both upon prob-
ability and upon search, predicting that Greedy Recombination should
produce fitter offspring, on average. An important result obtained em-
pirically was that a different fitness evaluation mav be used for selecting
among potential offspring. In particular. that evaluation can have greatly
reduced cost relative to the fitness evaluation of mature population mem-
bers. The result was that Greedy Recombination consistently produced
improved performance at reduced cost relative to the standard method of
recombination. {116

2.4.5. “True” Combination

One role of crossover is to “trulv” combine parents’ features by propagating one
or the other parent’s expression of a feature into an offspring. We use the adverb
“truly” or adjective “true” in this context to distinguish this rich sort of combination
from the superficial combination of parent:’ srimitives using a ..ro;sover operator.
Superficial combination simply exchanges “genetic material” (e.g., primitives) but
does not ensure that material removed from one parent is replaced by material playing
a similar role in the other parent (i.e., does not ensure feature correspondence).

“T-ue” combinative function is simple to incorporate into a crossover operator
when the feature expressions in a parent correspond (sometimes by precise placement
on the bit string. other times by a feature-expression association). Many GA rep-
resentations can be trulv combined. Of course, the combination is complicated by
feature interactions (i.e. epistasis) but. without loss of generality, “true™ combination
can take place via a crossover.

In GP. “true” combination is largelv impossible (within the constraints of blind
crossover point selection and ignorance of primitives’ behaviour) because two pro-
grams do not have a strict one to one correspondence in the function and behaviour
of their primitives. In other words. in GP the clearcut notion of “expression of a fea-
ture” and the direct correspondence between two parcnts’ genetic material does not
exist. Therefore. GP crossover and its variations do not “trulv” combine. GP makes
a tradeoff: its representation allows expressive flexibility (i.e.. programs of different
length and structure) but it obliterates expression correspondence that could provide
a basis for “true” combination via crossover. As well. as with other GAs. in GP the
strong relationship between a swapped subprogram and the program enclosing i: (i.e.
epistasis) make it more complicated to argu - the existence of a combinative role in
crossover.

The representational tradeoff in GP between flexibility of expression and expres-
sion correspondence, prompts the question of whetker a crossover operator can be

devised which focuses on “true” combination. This has been investigated by [23]

where the author devises two new crossove r operators in which only subtrees at a
more or less (see strong versus weak) corresponding tree position of both parents can
be swapped:

Strong Context Preserving Crossover (SCPC) A subtree of parent-1 is eligi-
ble for crossover point selection if there exists a subtree with the same node
coordinate in parent-2. Node coordinate is defined by the path followed irom
the root to a node. Once the first crossover point is chosen. the subtree in
parent-2 that has the same node coordinate is directly chosen for the swap.

Weak Context Preserving Crossover (WCFC) Once again, only subtrees which
have a node coordinate common to both parents are eligible for crossover point
selection. However, any subtree of the corresponding node coordinate subtree

is chosen for the swap.

The experimentation investigates mixing SCPC with GP-X0 or using WCPC
100% of the time. For some problems, one mix or the other (e.g.. 25/75. 50/50)
of SCPC with GP-X0 was better than GP-X0. However, for one problem GP-X0 was
better than any mix of SCPC or WGPC. WCPC was cons'stently worst. The results
suggest that this form of crossover may be too restrictive [23] or. alluding to epistasis
and the range of effect by changing a program, that the context of expression corre-
spondence is not well modelled by the spatial character of a parse tree. More details
and explanation for the results is given in the reference [23].

2.5. Non-Canonical GP

The GP literature can be grouped into three categories:

1. Applications of GP or extensions of GF to problems translated to Program

Discoverv problems,
vp

bo

Extensions of GP. that is non-canonical versions of GP.
3. Inv. tigations to improve the understanding of GP and its extensions.

Some articles. naturally, span more than one category. Extensive bibliographies are
available from [69, 70. 76]. We shall not attempt to encompass the entire literature
in this setting. Instead, in subsequent chapters. we discuss GP investigations and
extensions relevant to our research when thev are applicable. In this section. we briefly
review a few GP extensions which have become either de facto standard options to
GP software systems or contribute some interesting aspect of GP. We categorize the

extensions into:
e Mew Operatols
o Alternate Selection and Generation Strategies

e Representation Enhancements

2.5.1. New Operators

Canonical GP was introduced by a series of conference papers each demonstrating
its application to a different set of problems [60. 63. 61, 65, 67. 66]. As well. [62]
and subsequently [69] definitively described GP. The report and book both also in-
clude examples of “GP-Mutate”. “permute”. “define-building-block™. and “structure-
preserving crossover” (see page 33) operators which. by our chosen definition of GP,
are non-canonical or extensions.

A GP operator works on either a pair of parents or a single parent. We assume
that the required number of parents are drawn by fitness proportionate selection and
a parent is first copied before being manipulated by an operator.

The GP-Mutate operator chooses a subtree in a single parent program at random
and replaces it with a randomly created subtree. The sole parameter of the operator is
a maximum tree height limit for the new subtree. IKoza reports that. in his experience,
when GP-)utate replaced GP crossover, no experiment run ever produced a solution
to anv problem [62). The same basic sort of mutate operator is often used alongside
crossover in other researchers’ experimentation without anv explicit justification. The
explicit role of the operation has not been experimentally nor theoreticallv analvsed
to our knowledge {for a brief discussion see page 49).

The permute operator chooses a subtree in the program at random and then
permutes the order of its immediate subtrees. For example. if the subtree root was
a primitive of two parameters. the subtree representing the first parameter would be
swapped with the subtree representing the second paranieter. When there are more
than two parameters. any new permutation of the actual parameters is chosen with
equal probability. Once again. Koza reports that. in his experience. in terms of the
probability of success of a run or the computational effort required to find a solution,
no benefits were observed with this operator.

Kinnear introduced the “hoist™ operator in [57] as a special case of crossover. A
subtree in a single parent program is chosen at random and elevated (i.e., hoisted up)
to program status. The remainder of the parent is discarded. A “hoist™ is designed
to ensure that an offspring program has fewer primitives than its parent.

Kinnear also introduced a “create” operator where a new program is created
randomly (like in Generation 0) and inserted into the current population in lieu
of a program propogated by parent selection and crossover and/or mutation. This

operator can be refined to ensure that a random new program is of smaller height

than the population average or shorter than a tree drawn by fitness proportionate
selection [57]. No isolation study of the benefits of the hoist and create operators has
been conducted.

Both Koza and Angeline [62, 5, 7] designed an operator that extracts and en-
capsulates & portion of a program (roughly a subtree) and makes it into a module.
A module is e« eutially a new primitive. Angeline’s operator is called “compression”
whereas Koza's is called “define-building-block”. The module is given a name “on the
fly” when it is created and then substituted in the program for the subtree it encap-
sulates. When a program using a module is evaluated, the definition of the module in
a module library is used. This operator does not change the execution of a program
but it does change its specification. A name creation server and module library to
manage module references are required for implementation of the operator. Angeline
names his system “GLiB” for Genetic Library Builder. The “define-building- block™
operator is the same as “compression” except that its modules have no arguments be-
cause the entire subtree rooted at the encapsulation point is made into a module. In
contrast, “compression” modules have parameters because the portion of the program
that is encapsulated is marked by both a root point and a depth compression level.
Each subtree branch below depth compression level is represented by a parameter in
the module definition. See Figure 8 for a pictorial description. Even though copies of
the extracted subtree may exist elsewhere in the program. onlyv the extracted subtree
is substituted by the module.

To complement “compression” Angeline uses another operator named “expan-
sion” that randomly selects a compressed module in a program and replaces it by its
original definition. We shall discuss in more detail the motivation for and efficacv of

these operators in Chapter 3.

2.5.2. Alternate Selection and Generation Strategies

Tournament Selection The use of tournament style fitness based selection is pop-
ular in GP research. It is used exactly as in GAs [33]. A number of programs are
chosen as “tournament competitors” by being drawn with random uniform selection
(without replacement) from the population. The program with the best fitness is the
winner of the tournament and becomes a parent. In [57] the tournament size is seven.

67

OR COMPRESSION NEW-DEFU
, —y
NOT OR D1 NOT Do
AND NOT D2 bo
D1 NQT Do NEW-DEFUN (P1 P2 P3) ->
60 (OR (NOT (AND P1 P2))
(OR (NOT P3 D2)))

Figure 8. Angeline’s compression operator encapsulates a subtree of a maximum depth, creates a
function for the subtree and replaces the subtree with a call to the new functions ([5. 7).

Other typical sizes are three and five. Tvpically. one speaks of a GP svstem using
fitness based™ selection and then qualifies the selection as either fitness proportionate
selection. tournament (with tournament size) or something else.

Steady State GP The use of a steady state model in GP instead of a genera-
tional model [96] is the same exchange as that made in other GAs [20.121.114.19]. A
steady state model is one in which programs are created one at a time, evaluated im-
mediately for fitness. and then merged into the population in place of an existing low
fitness program. In contrast. in the generational model (in canonical GP) an entirely
new population is created each generation and then thev are all evaluated for fitness.
In Reynold’s steady state GP model the uniqueness of a program is guaranteed to
maximize diversity. If fitness proportionate selection is used. the difference is that the
fitness proportions are readjusted with each new program in the case of steady state
whereas in a generational model they are readjusted after the entire new population
is created. Because there is no generation strictly in the steady state model, creating
a population-size number of new nrograms constitutes the equivalent of a generation.
This is helpful for comparisons. [114. 31] provide insight into the advantages and
disadvantages of these methods.

68

2.5.3. Representation Extensions

One of the most widely recognized de facto standard extensions to GP is the use
of Automatically Defined Functions (ADFs) which were introduced in [72. 70]. Koza
argues that ADFs can be used in conjunction with GP to improve its efficacy on large

problems.

An automatically defined function (ADF) is a function (i.e., subroutine,
procedure, module) that is dynamically evolved during a run of genetic
programming and which may be called by a calling program (e.g.. a main
program) that is simultaneously being evolved. {70, pg. 1]

In using ADFs, one employs a template for program structure that remains fixed
over the course of the search while the detailed components within the structure are
permitted to co-evolve in the process of the search. By structure, we mean that a
program is divided into one “result producing branch™ (rp-branch) and a a priori
selected number of “ADF” branches. GP has to find effective primitives to compose
the rp-branch and each ADF branch. One type of structure is usually used for every
program in the population though an assortment of structures can be a priori chosen
with some crossover restrictions we shall mention later.

The template is that part of the program which never evolves because it is not
involved in crossover. In LISP, a template consists of a PROGN at the root of the
program S-expression that has nested within it: the name, parameter list. and values
form of a defun form for each ADF, and another values form which is the last form
of the PROGN. Conversely, the evolvable elements are the body of each defun form
which are the ADF branches and the second last form of the PROGN which is the
rp-branch. This distinction between what is evolved and what is fixed is illustrated
in Figure 9 via a line. The portion of the program above the line is not manipulated
by GP.

The rp-branch functions like a main program in the sense that it serves as a means
of calling functions (i.e.. ADFs) and finally returning the result(s) of the program.
Each ADF branch is an a priori named function which can optionally use parameters.
A different set of primitives is used for each ADF branch and the rp-branch. By
introducing an ADF function name into the primitive set for the rp-branch one allows
a possible function call of that ADF function from the main program. ADFs allow a

RESULT
ADF0 | PRODUCING
BODY BRANCH
BODY

Figure 9. When using ADFs in LISP the template is a PROGN S-expression with DEFUN forms
for each ADF and a one form for the result producing branch. Only the primitives below the dotted
line are evolved ([70]).

hierarchy of scope to be designed prior to the search by choosing which ADF names
are placed in the various primitive sets. Some primitives among the sets can be the
same: e.g., primitives that function as global variables. Other primitives will be
exclusive to one set because the task designer decides beforehand on a division of
capability. Recursion can be facilitated by allowing a pair of ADFs to call each other
(though care will have to be taken to avoid or halt endless recursive calls). Typically
the different primitive sets are chosen with rough predetermined functions for an
ADF branch in mind and with a rough decomposition of the task into sub-tasks in
mind. This is because ADFs (because thev require additional primitives) could vastly
increase the size of the search space and therefore, require a gentle human hand to
constrain the space to a size that can be tackled by GP and present computers.

Figure 9 illustrates the use of ADFs to solve the Two-Boxes problem in which
a program should compute the difference in volume between two boxes given their
heights. lengths and widths and some simple arithmetic operators. Here the program
template uses one ADF branch named Volume of three parameters named ARGO, ARG1,
and ARG2. This ADF is on the left hand side. The rp-branch is on the right side and
it invokes the ADF Volume twice.

Because the primitive sets are different among ADF branches and the rp-branch.
GP crossover with ADFs is specially constrained. Crossover is only allowed at points
where primitives from the same primitive set will be exchanged. ADF crossover first
randomly selects a crossover point anywhere within the evolvable part of the program
(i.e.. outside the template). Once that point has been determined, in the other parent
it restricts itself to choosing among points that are in the same kind of branch. This
restriction preserves the different primitive sets thus preserving the designer's rough
task decomposition.

ADFs pay off because they require less computational effort and produce smaller
solutions than using GP without them. On the studied problems, this pavoff increases
as problem size grows [70]. Main points 1 and 2 of GPII offer interpretation of why
ADFs are effective and how they work:

Main Point 1. Automatically defined functions enable GP to solve a variety of prob-
lems in a way that can be interpreted as a decomposition of a problem into sub-
problems, a solving of the subproblems, and an assembly of the solutions to the
subproblems into a solution to the overall problem (or which can alternatively
be interpreted as a search for regularities in the problem environment. a change
of representation, and a solving of a higher level problem).

Main Point 2. Automatically defined functions discover and exploit the regulari-
ties, symmetries. homogeneities, similarities, patterns. and modularities of the
problem environment in ways that are different from the stvle emploved by

human programmers. [70]

Earlier in this section we discussed “compression™ and “define-building-block™ op-
erators. They are introduced as operators but could just as easilv be introduced
under the subtitle of representation extensions. In contrast to ADFs which dictate
a representational structure that remains static during a GP run, the “compression”
and “define-building- block” operators dynamically modify a representation in the
course of a run. At this point, we refer the interested reader to a comparison between
ADFs and the complementary “compression™ and “expansion” operators in [57]. In
the context of hierarchical process we shall discuss both ADFs and “compression” in
Chapter 3.

There is another extension of GP that alters representation dvnamically in the

general vein of “compression” and “expansion” called Adaptive Representation GP
[99] but with important distinctive differences. It is neither an operator based exten-
sion nor a static representation alternative so we defer its description to Chapter 3
where it is also examined.

Many other extensions to canonical GP have been introduced but are omitted
here because they are not directly relevant or are not apparently “standard™.

2.6. Chapter Summary

The purpose of this chapter was to describe the problem suite of the thesis and to
provide background on the GP paradigm and its extensions. We also provided insight
into the nature of primitive design. With the pseudocode of GP we intended to provide
the reader with a clear concept of the algorithm and its potential application. We
analvzed the requisite features of a genetic crossover operator in order to emphasize
their role in the search algorithm.

CHAPTER 3

An Experimental Perspective on Genetic
Programming

The first section of this chapter is devoted to judging how much of GP’s success arises
from skillful designer choice of the primitives, test suite and fitness function and to
determining whether hierarchical process is present in GP.

To assess how much of GP’s success arises from skillful designer choice of the
primitives, test suite and fitness function, we examine designing these three elements
and describe experiments that further illustrate various issues. We report that a
strong conflict existed between refraining from preordaining a solution by choosing
strongly influential primitives and trving to reasonablv constrain the search space
and model the task environment.

To determine the presence of hierarchical process, it is not sufficient to examine
GP for hierarchical solutions and from that to conclude its search process is hier-
archical because it is possible to a priori encode subtasks as primitives and then
simply use GP for subtask assembly rather than subtask identification and subtask
assembly. Hierarchical process must be confirmed by testing whether GP can evolve
solutions from general purpose primitives. We describe experimentation following
this approach which indicates that a hierarchical process does not arise from GP's
evolution-based mechanisms.

In Section 3.2, we advocate hierarchy in solutions and process in GP for the ad-
vantages of scalability and efficiency. We analyse Koza's ADFs (page 68). Angeline's
GLiB (page 66) and Rosca and Ballards’ Adaptive Representation GP (AR-GP).
ADFs improve the hierarchical character of GP programs but do not explicitly pro-
mote a hierarchical process. Both GLiB and AR-GP direct hierarchical process but

they do not seem powerful enough or sufficiently efficient.

In Section 3.3 we define how a primitive et could be judged sufficiently general
to avoid the criticism of being too specific to the problem at hand. \We appraise
whether primitive sets of GP problems express specialized task knowledge that helps
them find a solution. We point to fitness function design as an important but difficult
research issue.

GP is a GA where critical choices have been made to suit its goal of program
discoverv. In Section 3.4 we list and consider these choices with respect to their
necessity, convenience and design issues.

3.1. Assessing Designer Choices and a Hierarchi-
cal Process in GP

For this assessment. we shall try to solve a r:c ’el problem using primitives that do
not unduly a priori constrain the definition of subtasks and councurrently report on
the choices a GP designer encounters and the extent of designer influence in GP's
likelihood of success. Sorting fits this requirement because we are the first to introduce
it as a program discovery problem [88]. It has other advantages which are mentioned
in Section 2.1.

3.1.1. Test suite and Fitness Function Design Issues

Two closely related setup steps in GP are the composition of the test suite and the
definition of a fitness function.

Generality and the Test Suite Sample

The composition of the test suite can influence how general a solution may be found.
Typically the test suite must be a sample over the distribution of desired behaviours
in order to enforce an acceptable degree of program generality. For sorting, a sort
program which can sort an array of any size (given *array-size* as a constant) is
clearlv desirable.

The test suite can be significantly shortened by consolidating various inherently
similar initial configurations and by sampling. There is a pragmatic reason for doing

this: fitness evaluation is the most computationally expensive aspect of GP. However,
there is a trade-off between running the risk of over simplifving the test suite {by
using a small sample) and spending a lot of time evaluating fitnesses. In GP there is
no formuia available that determines a sample size according to computational and
generzalization goals. With sorting, prior to experimental trials. similarly. it is unclear
how many test cases are sufficient to evolve a general sort program.

Obviously the expressive ievel of primitives is a major factor in how general
a program can be discovered. However, for a set of primitives. by decreasing the
number of test cases progressively, it is possible to judge the relationship between
test suite sample size and generality. For this purpose we used the primitives and
fitness function of problem Sort-A and varied the size of the test suite progicssively
in the sorting problem. In the sorting problem the “baseline™ or standard test suite
(called Sort-A-standard) consists of 48 different vectors of 5 different sizes. For
the smaller sizes (2-4) every permutation of elements is a test case. Larger sizes are
sampled (10 arrays of size 5 and 3 arrays of size 6). We created two other smaller
test suites called Sort-A-small and Sort-A-medium. Our experiment runs GP on
Sort-A with them and assesses solutions scoring maximum fitness for generality by
their fitness on a more extensive test suite.

Experiment Title: Effect of Test suite Sample on Generality: Problem Sort-A

Problem Definition: Sort-A with 3 different test suites and an out of training test
suite.

Test suite Sort-A-Small consists of 8 different vectors: 2 of size 2 and 6 of size 3.
Everv permutation of elements with these sizes is a test case. Among the test
suite are 2 arrays which are initially in sorted order and 7 elements are initially

in their correct positions. There are 22 elements in all.

Test suite Sort-A-Medium consists of 32 different vectnrs of 3 different sizes (2. 3.
and 4 elements). For each size everv permutation of elements is a test case.
Among the test suite are 3 arrays which are initiallv in sorted order and 24
elements are initially in their correct positions. There are 118 elements in all.

Test suite Sort-A-Standard consists of 48 different vectors of 5 different sizes. For
the smaller sizes (2-4) every permutation of elements is a test case. Larger sizes

are sampled (10 arrays of size 5 and 5 arrays of size 6). Among the test suite

are 3 arrays which are initially in sorted order and 47 elements are initially in
their correct positions. There are 198 elements in all.

Out of Training Test suite This consists of 150 different arrays of random sizes
(between 5 and 15) that contain random elements. No array is initially sorted.
There are 514 elements in total with 43 elements in their correct positions. With
150 programs randomly generated from the Sort-A primitives (heights between
5 and 11). the average performance on the out of training test suite was 44

elements placed correctly and no arrays correctly sorted (i.e. 0 hits).

Generality: Sort-A Sort-A-Small || Sort-A-Medium | Sort-A-Standard

Y%.age Successful Executions | 63.3 63.3 63.3

%age Individuals Processed | 68.0 (33.7) 68.8 (33.1) 68.6 {33.1)
Hits (150 max)

Ave 60 (68.8) 122.3 (54.3) 134.2 (46.0)
Min 0 0 0

Max 130 | 150 150

Fitness (4)

Ave 50.7 (37.9) 81.4 (31.2) 90.1 (28.0)
Min 8.9 8.9 8.9

Max 100.0 100.0 100.0

Table 5. The Effect of Test Suite Sample on Generality: Sort-A

Results

Decreasing the size of the test suite did not change the probability of an execution
finding a solution with 100% fitness and this probability was the same for each test
suite. The number of individuals processed to find a solution did not differ between
the test suites. Concerning generality. as expected. the larger the testsuite, the more
capable a perfect solution was in solving the out of training suite. These results are
shown in Tabi> 5. The table shows the average number of hits (i.e. arravs perfectly
sorted) and average fitness (as a percentage) of the perfect solutions. While the

perfect solutions obtained by the small test suite could correctly sort 60 of the arrays
and place 50.7% of the elements in their correct place, the perfect solutions of the
standard test suite achieved 134.2 hits and averaged a fitness of 90.4%.

\Ve repeated the experiment using the problen 6-Mult. Test suites 6-Mult-half
and 6-Mult-3/4 respectivelv use one half and three quarters of the entire standard
6-Mult test suite. In 6-Mult-half each address is represented equally in the test suite
with half the possible register value combinations (32 test cases). In 6-Mult-3/4 there
are 48 test cases where each address is represented equally in the test suite with three
cuarters of the possible register value combinations. We used a population size of 500
and scaled the fitnesses with linear and power scaling.

Gemrality 6-Wult | 6-Mule-hatt J 6-Muiv-3/4
Y%age Successful Executions | 53.3

Y%age Individuals Processed | 70.6 (27.8) 88.4 (21.4)
Hits (64 max)

Ave 37.7 (6.8) 60.6 (3.3)
Min 43 92
Max 64 64

Table 6. The Effect of Test Suite Sample on Generality: 6-Mult

The results in Table 6 show that. while an incomplete test suite can produce a
100% general solution in 6-Mult. most often the solution it finds does not. Counter to
expectations. 5 of the 16 solutions found running the 6-Mult-half test suite scored
100% fitness (equivalent to G4 hits). while onlv 2 of the 12 solutions found running
6-Mult-3/4 scored 100%. However. on average the solutious from 6-Mult-3/4 per-
formed better (60.3 compared to 37.7 hits). For a baseline comparison we ran 150
programs randomly generated from: the 6-Mult primitives with heights ranging from
5 to 11. On average a program scored 40 hits (fitness of 62.5%.).

Other work examining GP’s capacity to generalize is {116]. The ~donut™ problem
provides a problem that is tunable in terms of how much noise exists in the data in
addition to how large a sample of test cases is used. The conclusion was:

For a given training set size. the classification performance as a function
of noice variance was within approximately a constant amount of the

Bayesian limit. Reasonable solutions were obtained using as few as 40

training samples. These results ... suggest that Genetic Programming
derives some performance advantages through an ability to generalize.
[116}

The Coaching Aspect of Test Suite Composition

A subtle aspect in the choice of a test suite is vhe “incrementa! encouragemen*™ that
can be exerted. For example, in the Block Stacking problem. solving the test case
which puts the only block on the table onto the (alreadv ordered) stack is worth as
1inuch as solving the test case that involves removing all blocks from the stack and
restacking them correctly. Thus, the reward for doing a little task correctly is equal to
that of doing a large task. In this manner. a “building block™ subprogram for solving
harder test cases would be created by solving the simple test case. This suggests that
test cases whose solutions are likelv to be r2used could be given relativelv greater
weights. and that the eventual solution could be “coached™ along bv progressive
incentives arising from an interplay between the fitness function and a cleverly chosen
test suite.

We experimentally assess the influence of incremental encouragement by varving
the fitness credit of test cases and checking whether this affects the numbe: of indi-
viduals that need to be processed in order to find a solution. Once again we base our
variations upon problems Sort-A and Sort-B. In both equal element and equal
test case. because there are fewer smaller arrays. the relative credit of a group of
test cases a=cording to the size of the array increases in a non-linear function. The two
other credit schemes, exponential and linear are deliberately designed to provide
incrementai encouragement by assigning test case g1 wups credit so that the relative
credit of a group of test cases according to the size of the arrav decreases with arrav
size. All runs are executed without scaling so that effects of the ~redit scheme are
not further amglified.

Figure 10 is a plot of array size versus the fitness credit of test cases grouped
by arrav size. The graph shows these four ‘est case credi. functions. Note that
coincidentally equal test case and equal element are very similar.

Experiment Title: Coaching Iucentives: Problems Sort-A and Sort-B

PM-1 3%, x4” PHOTOGRAPHIC MICROCOPY TARGET
NBS 10102 ANSI/ISO #2 EQUIVALENT

Illl =

e 22 m22
g D e
“ g E20

A T

w

20

Cregit to overall fitness (%-age)

0wy

array size

Figure 10. Different credit functions accord-
ing to array size for Sort-A

Problem Definition: Sort-A and Sort-B with 4 different test case credit schemes.
First. the “base” fitness associated with a test case is caleulated using mismateh
order (see page 35) for Sort-A and permutation order for Sort-B. Then the
“base” fitness is weighted according to the credit scheme to vield a weighted
fitness. The weighted fitness of all test cases are summed to vield the fitness of

the program. The credit schemes are:

Equal test case Array size is ignored, every test case is worth 1 or O depending
on whether its base fitness is perfect. Maximun program fitness is 48, A

test case has a fitness credit of 'iIT«

Equal element The number of elements in a test case array determines the

credit of the test case in the overall fitness of a program. For example,

2
TO%
elements can be ordered correctly and the test suite consists of 198 elements

each array of two elements confers partial fitness equal 1o because two

in total. This is the standard Sort-A scheme. The weighted fitness equals
the base fitness. Maximum program fitness is 199,
Exponential Test cases with arravs of size 2 use a weight factor of 2400, size

3 use a weight factor of 800, size 4 use a weight factor of 50, size 5 use a

weight factor of 60 and size 6 use a weight factor of 60. As a result. each
group of test cases grouped according to array size has a credit factor in
the program fitness that decreases by a half as the array size increases.

Maximum program fitness is 9300.

Linear Test cases with arravs of size 2 use weight factor 2.5. size 3 use weight

! L and size 6 use }.

factor % size 4 use &. size 5 use As a result. each

group of test cases grouped according to array size has a credit factor in

the program fitness that decreases by =

increases.

i
15

(i.e.. linearly) as the arrayv size

Sort-A Equal Element | Equal Test Case Linear Exponential
r.-'-‘7«,-age_Su('cessful Executions 50.0 63.3 63.3 | 30.0
Avy Generations/Exec 36.7 (15.3) 33.8 (15.3) 37.3(14.5) | 37.8 (15.1)
Successful Execs Only
Avg Generations 44.0 (11.3) 420 (11.4) 26.2 (11.5) | 25.7 (12.7)
Max Generations 44 42 45 49
Min Generations _ 3 J) 2
Sort-B) o
Y-age Successful Execs 46.7 26.7 33.3 36.7
Avg Generations/Exec 39.4 (13.3) 43.4 (14.0) 35.7 (15.7) | 37.2 (14.7)
Successful Execs Onlv
Avg Generations 27.2 (10.1) 25.1 (16.8) 23.2 (11.3) | 27.5 (12.8)
Max Generations 48 49 43 49
| Min Generations 9) 4 3

Table 7. The Effect of Fitness Credit Schemes

Results As Table 7 indicates, in the case of Sort-A. there is no clearly superior

scheme.

The rough winner is Linear because it achieved the best probability of

success and, while it did not differ in terms of average generations per execution

considering all executions, it processed less individuals on average in its successful

executions. While Exponential did not have the best probability of success. it did.

on average. process the least individuals in a successful execution. With Sort-B the

onlv differentiation between the schemes concerned Equal Test Case: it had a much
lower probability of success.

Overall. for these primitive sets, the credit assigned to test cases according to
array size makes some difference in the outcome of GP. Unfortunately. that ditference
is neither consistent nor predictable. Thus, the GP task designer can influence the
quality of GP's success by making these decisions but has little indication of how to

proceed.

3.1.2. Primitive Design Issues

The design of a GP experiment also necessitates selecting a primitive set. The process
can be similar to being told to pack a knapsack to travel to a known destination, with-
out being told the means of convevance or the mode of the vovage. Harder choices are
required to select suitable primitives for our sorting than for the Boolean Multiplexer
problems 6-Mult and 11-Mult (where primitives are either logic operators, IF, or
registers). We found the process fraught with second-guessing in an effort to deteet
bias and somewhat frustrating because it is difficult to predict even crude hehavior.

The basic tasks or utilities one could expect to be useful in sorting have to be
given to GP in the direct form of primitives or via primitives that can be combined
to express them. It can be quickly decided to make use of the one value we wish to
generalize over: *array-size* (i.e., a program is not expected to induce the concept
of an array size). As well, an examination of well-known sorting algorithms (such as
Bubble Sort and Selection Sort) quickly suggests the need for the following program
constructs:

e iteration primitives,

e a conditional primitive,

e a swap primitive, and

e array element referencing.

This basic identification does not make further choices clearer. The following,

issues exist:

81

Trading off the expressive “power” of a primitive with constraining the
search space to make the search space manageable in size.

e A (relatively) constrained primitive has one or more of its operands and oper-

ators unparameterized, e.g.. alwavs uses a fixed value or global variable as an

operand.

o A (relatively) expressive primitive has its behavior determined to a large extent

bv ihe tvpe and value of its parameters.

“‘onstrained primitives search a smaller space, and are thus more efficient. but
limit the shape of the eventual solution in advance (at worst, they may preclude
finding a solution). Expressive primitives do not restrict the final solution as much.
but, since thev have more arguments, they recursively define a larger search space (at
worst. they mav fail to find a solution in an acceptable time). Consider the simple
examples in Table 8. Example A returns the value of a variable decremented by 1,

example B accesses an arrayv element, and example C exchanges two values.

C. Exchange

A. Subtraction | B. Array Reference

(- var value) (aref array index)

(swap (aref array index1)
(aref array index2)

implicit use

of a temporaryv

Anv value is
subtracted from var

(minusi var) (aref-*array* index) (swap-*array* indexl index2)
value is *arrav* is always *arrav* is always

always 1 referenced referenced

(var-minusi) (aref-*array*-index-k) | (swap-*array*-first-last)
value and var index-k and *arrav* first and last elements

alwayvs referenced always referenced of *arrav* always swapped

Table 8. Potential Sort Experiment Primitives

The same issue affects iteration primitives: The primitive

(FOR loop-var, loop-start, loop-end, loop-incr, loop-body)

illustrates how every factor in a looping condition can be determined by parameteriza-
tion rather than being encoded implicitly or explicitly within a primitive. Obviously,
this example offers the greatest degree of flexibility for expressing solutions.

This tvpe of primitive. however. is rarely ever used. One reason is that the
size of the search space increases with the number of parameters in a primitive. At
some search space size, a program discovery algorithm may simply not be powerful
enough. As well, many of the primitives in the primitive set mayv be of a tvpe that is
incompatible with the intended function of the parameters. Thus, many junk versions
of iteration will be formed in “Generation 0" and via crossover and have to be searched
through. The flexibility of the FOR primitive may be traded off with constraining the
search by choosing a more constrained iteration primitive.

Trading off exploiting problem specific knowledge (by incorporating it into
the primitives) with a priori biasing or constraining the outcome.

We did not add the integers in the index range of the array to the terminal set hecause
this would have greatly increased the search space and. more importantly, would have
facilitated a highly specialized solution which fits the test suite precisely.

The choice of a loop primitive also encounters the specialization issue. The
primitive (do-until loop-test true-form) iterates until loop-test is false hut it
relies upon the true-form performing a side-effect which changes some variable in
loop-test. it uses no loop variable which seems to make it less suited for array
sorting.

(do-until loopVar startValue endValue varDelta loop-test true-form)
has its belhaviour completely dictated by the values of its arguments. loopVar
is set to startValue and each time through the loop is changed using varDelta.
startValue is compared to endValue using the relation loop-test . [f the result
is true, true-form is executed. true-form could even he a progn of primitives but
this creates the further unresolved issue of how to reasonably specify the nmnber of
primitives within the progn.

Any one of these arguments could be absorbed into the primitive to limmit its
potential behaviour. For example. (do-until-Up-with-#j* startValue endValue
true-form) uses the variable *j* as implicit loopVar. The primitive sets #j3¢ to,
startValue, and it always increments *j* at the end of each repetition, using an

83

implicit varDelta of 1+. It alwayvs tests whether «j» <= endValue. with an implicit
loop-test of <=. to conditionally execute true-form .

Similarly. (do-until-Down-with-*i* startValue endValue true-form) loops
downward using *i* as the loop variable. These last two primitives require that *i*
and *j* he made variables for the program. Note that the loop variables must be
different globals to facilitate nested loops that might sweep up and down an array. A

alid question arises: does this choice of incremental and decremental loops constitute
too strong an advance bias?

Besides using loops there are many ways to instill domain specific knowledge into
primitives. Complex operators or operands that already exist in the problem domain
can be directly translated into primitives. Or. the task designer can construct complex
operators or operands for the task domain, translate them into primitives and then
give them to GP. This is practical if capitalizing on existing knowledge of the problem
may mean the difference between obtaining a solution or not getting one at all.

Conversely, there is cause to be cautious when specializing primitives. Special-
ization reflects an a priori rough notion in the task designer’s mind of the structure
of the solution in terms of subtasks or subunits of processing. A set of specialized
primitives may preordain that only solutions in the form of this rough structure are
successful whereas less specialized primitives could permit different program struc-
ture to successfully solve the problem. From an investigative viewpoint. designer
knowledge makes it difficult to determine the power of GP.

Deciding upon Scope.

Programs in canonical GP are blindly composed (either by random creation or with
blind crossover) so it is impossible to provide a local scope for a primitive: all of the
parameters may be represented by any primitive in the set and all primitives can be
used anvwhere in a program (where svntax allows). This means that variables of a
program (such as a loop variable) may be changed via side effects (e.g.. in the loop
body) rather than solely in a primitive intended for that purpose (e.g., via the loop
increment parameter).

These side effects distort the structured behaviour of a program and may also
have an impact on the effectiveness of crossover. A decision must be made to either
“put up” with this state of affairs. use structure-preserving crossover (see Chapter 2

page 33). or enforce scope by a less transparent means by using global variables in
various primitives but not including them in the primitive set. Both the latter choices
require the designer to make a decision for GP that constrains expression and GP°
has no wayv of reversing the decision to gain more expressive capacity. On the other
hand. both latter choices may also constrain the search space in a reasonable manner
which offers a better chance for obtaining a solution.

To summarize the primitive set selection process, it is impossible to quantitatively
determine whether a primitive is too constrained or specialized or whether scope s
chosen with a minimumn of bias. Choice is tvpically motivated by an intuitive trade-off
between a feasible size of search space and a reasonable chance to achieve unanticr-
pated eventual solutions. The GP methodology relies at various crucial junctures on

designer expertise to focus its search space.

3.1.3. Primitive Sets for Assessing Hierarchical Process

A reasonable conjecture explaining GP’s success is that it searches using a “hierarchi-
cal process”. A “hierarchical process™ is one which identifies and promotes modular
reusable elements. builds composite higher level componeuts of a hierarchy, and,
guides their assembly into “hierarchical solutions™.

“Hierarchical solutions™ exhibit hierarchy in terms of control and structure. Hi-
erarchical control is the execution of a task by the accomplishment of a series of
subtasks. Each subtask in the series can be recursively sub-divided into a series of
subtasks also. Often different subtasks are accomplished by repeated invocation of
one pre-defined module that functions in a general manner but by parameterization
applies its operations to different data.

Hierarchical control can be obtained by the top-down division of tasks into sub-
tasks. the design of general purpose or specialized modules to accomplish each subs-
task. and then, the bottom-up composition of levels of subtasks using modules.

Programs are obviously hierarchical in control in an unimportant sense hecause a
procedural or functional program follows a sequential execution path which branches
to sub-divide ar:t direet control of the algorithm. The control is alse guided by
conditional and iteration statements which cause the execution to branch or repeat.

True hierarchy in control, however, is more than the superficial execntion se-

quence that underlies all programs. It is the observable, strategic direction of task

accomplishment. Hierarchical control is somewhat in the “eve of the beholder™ vet
can also be deseribed in quantitative and qualitative terms. For example. one pos-
sible quantitative evidence of it is fewer statements in a program in compari. on to
another. Or. hierarchical control can be detected by qualitatively gauging the degree
of statement or procedure reuse, the ease of functional description and the flexibility
of the program to be extended in functionality. Not all this evidence is necessary nor
does one type suffice for concluding that hierarchical control exists in a program.

For example, consider the task of writing a program to divide and multiply the
pairs of integers “1 and 2”7 | “2 and 3". 3 and 4", and “4 and 5" and display the
resiilts. One program to accomplish this task uses an arithmetic statement and an
output statement for each division combination and ~ach multiplication combination
(16 statements in total). One would not claim that _:. s program exhibits hierarchical
control. Conversely, another program that uses a loop (from index values 1 to 4)
and each time through the loop multiplies the loop index value to itself plus one,
divides the loop index value from itself plus one and outputs them (5 statements in
total) would be considered hierarchical in control because it encapsulates one sub-
task (dividing. multiplving two numbers and displaving results) within a subtask of
iterating and supplving two numbers at a time. If one wants to modify a program to
an extension of the task (e.g.. taking the power of one integer to the other in a pair
or adding new pairs). the hierarchical control of the second program makes it easier
to adapt. Statements can be inserted inside the loop to perform exponentiation, the
loop indexing can be changed. etc. In contrast. to change the first program in the
same way as its basic linear design requires inefficient effort: e.g.. adding 2 statements
for each new arithmetic task per pair of integers.

An S-expression evolved by GP can be truly hierarchical in control. In some
examples the subtle richness of a GP solution is due to hierarchical strategy. For

example,

e the algorithm of one GP solution to solve the Block Stacking problem is: 1)
remove all blocks that are stacked. 2) one by one stack the needed blocks in the

correct order. [62]

e another algorithm of another GP solution to Block Stacking more efficiently
removes only the blocks to the point where the stack is correct and then stacks

-
&

-~

-

the remaining blocks correctly. [62]

e The Boolean Multiplexer problem is solved by a GP program using a default
hierarchy (i.e. a set of rules covering a variety of situations in which one subrule
(called the default rule) handles a majority of the situations and one or more
specific rules handle specific exceptional cases): the default rule handles the

case of whether the Multiplexer address equals 3 which immediately splits the
fitness cases 16:32. [69]

e An algorithm in a GP program on the task of classifving hyvdrophobicity in
transmembrane protein sequences categorizes among factors that are similar to
hand designed hydrophobicity constants.[41]

Hierarchical structure is a static characteristic of a solution rather than a dy-
namic characteristic like control. In programs, it is the existence of nested ievels of
specification. For example, the outermost level of a PASCAL program is the program
template consisting of program name. constants, tvpes, variables, functions, proce-
dures and main program. The variables, constants and types of the outermost level
are “global” in scope. Almost the entire program template can be recursively nested
within any procedure or function (with the exception of a program name) to form
another level. One consequence of hierarchical structure is scope. Nested variables
and procedures only have scope within their enclosing procedure or function.

A superficial hierarchical structure is always present in a GP S-expression simply
by virtue of the wav in which GP assembles primitives. Each primitive is a primary
element. Each subtree in the parse-tree representation of an S-expression is a compos-
ite element. However. we do not consider this hierarchicality sufficient to state that
hierarchical structure is truly present because it is too superficial and merely a direct
result of closure and how primitives are composed into GP programs. True hierarchi-
cal structure in GP S- expressions is not really possible without some extension that
allows procedures to be defined.

There is an important distinction between hierarchical solutions and hierarchi-
cal pro--sses: hierarchical solutions exhibit true hierarchical features (control and
structure) while the notion of a hierarchical process refers to a specific manner in
which hierarchical solutions arise. Expressed from the perspective of GP, hicrarchical
control is exemplified by strategic task decomposition and subtask composition aud

even subtask redundancy. A hierarchical process in GP. if it exists. is a particular
capacity in GP that identifies and promotes key primitives so that they become used
in higher level composite combinations that perform logical subtasks. and. ultimately.
assembles lavers of composite subtasks that accomplish the task.

When subtasks are a priori defined, the important subprocess of subtask identifi-
cation in a hierarchical process is not required. Because it is possible to start GP with
primitives that already encode subtasks, it can not be firmly established whether GP
proceeds in a hierarchical manner by simply examining its solutions for hierarchical
character. Rather. in order to confirm or deny that GP proceeded hierarchically. it is
necessarv to ask whether GP can evolve a program starting from a set of primitives
that demands their combination into subtasks plus the assembly of the subtasks. The
primitives must not preordain the definitions of subtasks that could be formed. In
other words, thevy must be “general purpose™: GP could use different combinations of
them to form different solutions. We use this framework in our assessment of whether
GP proceeds hierarchically.

The particular versions of the sorting problem we shall use in this experiment (dis-
tinguishable by their primitive sets from Sort-A and Sort~-B) are called Sort~-TH-0.
Sort-TH~1 and Sort-TH-2 where ‘‘TH’’ stands for “Truly Hierarchical” and the
number indicates a level of primitive set generality (with 0 being the least general).
The experiment uses the same test suite and fitness function as Sort-A.

In theory, a primitive set that is sufficient to solve sorting should contain: a
general loop, (= var value), (aref array index) . (if-1t x v true-form). and (swap x
v).! To simplify our task we do not experiment with this verv general primitive set
but use three increasingly more general primitive sets: Sort~TH=-0. Sort-TH-1 and
Sort-TH-2. Should GP prove capable of discovering solutions with both primitive
sets, the complexity of primitives in Sort-TH-2 could be further decomposed and the
robustness of GP retested from an even more general starting point.

In Sort-TH-2 we make a deliberate decision NOT to use the following primitive:

(if~-1t-swap indexi index2).

1Simplifving further, (swap x y) should be replaced with (setf x y) and a temporary variable
should be made available. Thus a swap function would evolve by the following subtask: (setf tmp
x) (setf x y) (setf y tmp).

i/
P

This primitive would compare the elements of *array* at index1 and index2 and
swap them if the first were less than the second. By hinking comparison and ex-
change,. this function is obviously a desirable building block in cither an iterative or
a recursive solution to sorting. But we want GP to discover it rather than start from
it?2. Since if-1t-swap does several things. for our purposes it is “too cooked™. To
meet the criteria of hierarchical process. GP should be capable of evolving a program
which has itself discovered the conjunction of comparison and swapping in ovder to
sort3, The evolving system should identify two simpler “building blocks™, compan:
and exchange, as subprograms, and establish a larger building block by combining the
subtrees through selection and crossover. We use distinct compare and swap primi-
tives: (if-1t valuel value2 true-form) and (swap*Array* indexi index2) for
this purpose. We choose minusl and aref-*array+ (sce Table 8. page 81) with
reasonable confidence that the generality or the structure of the eventual solution
will not be unduly influenced in advance. We use two iteration primitives that are
not completely without challenge: they risk side effects and thev are not verv con-
strained but they meet our criterion of expressive generality (i.c.. they are peneral
purpose). They are (do-until-up-with-*j* gtart-value end-value body-form)
and (do-until-down-with-*i* start-value end-value body-form).

In Sort-TH-1 we do use if-1t-swap. This primitive replaces if-1t as well as
swap-*array* and allows aref-+*array# to be removed.

In Sort-TH-0. in addition to using if-lt-swap. we also use more constrained
and specialized versions of the loops. The starting values of the loop indices are fixed,
The decrementing loop starts with the index of the last element. of the array and the
incrementing loop starts at 0. The primitive *j* is set. to the value of the loop variable
at the start of each iteration of the incrementing loop and the primitive *ix js set to
the value of the loop variable of the decrementing loop at the start of cach iteration.
This behaviour is encoded inside the primitive and not subject to clange by any
parameterization of the primitive. Because the loop indices are copied to primitives,

2Using it would also allow us to decrease the search space by dropping svap-+arraye from the
primitive set.

3n fact, GP should also be able to discover the connection between an array and its reference
function using an index. That is. (arefsArrays indexl) is itself a building block which is implicitly
included in the if-1t-swap primitive.

the primitives mayv be changed in the body of the loop but thev are alwavs reset and
advanced just before the next iteration of the loop. The only parameters to each loop
are the value which limits the itetation: end-value. and the form to be executed ax
the bady of the loop: body-form.

All three sets of primitives are capable of expressing a correct sort program so
they ensure another criterion of program discovery: the primitives must have the

capacity to express a solution.
Problem Definition: Sort-TH-0
Task: Sorting

Primitive Set: (minus1 var) This primitive returns the value of one subtracted
from its parameter unless the parameter is not numeric. In this case 1t
returns nil.

(if-1t-swap-*array* index! index) This primitive returns nil if its pa-
rameters do not evaluate to integers in the element range of variable
array. If thev do. it exchanges the elements at the positions corre-
sponding to the integers if the first element is less than the second and

returns true.

(do-until-up-with-*j*~from-1 end-value loop-form) uses a private loop
-ariable that starts at 1. increments each time through the loop and causes

loop termination when it equals end-value. It sets *j=* to the current value

of the loop variable at the start of each iteration. The body of the loop is

defined by loop-form.

(do-until-down-from-arraysize-less-one end-value loop-form) usesa pri-
vate loop variable that starts at (1 - =arraysizex). decrements each
time through the loop and causes loop termination when the variable equals
end-value. It sets *ix to the current value of the loop variable. at the
start of each iteration. The body of the loop is defined by body-form.

xj*, *i*, *array-size*: These primitives are variables and constants.
Test suite: Same suite as Sort-A and Sort-B.

Fitness Function Same as Sort-A.

i

Problem Definition: Sort-TH-1
Task: Sorting

Primitive Set: (minus1 var) This primitive returns the value of one subtiacted
from its parameter unless the parameter is not numeric In this case i
returns nil.

(if-1t-swap-+array* indexl index) This primitive returns nal af its pa
rameters do not evaluate to integers in the element raupe of variable
=array. If they do. it exchanges the elements at the positions corre-
sponding to the integers if the first element is less than the second and
returns true.

(do-until-up-with-*j* start-value end-value body-form) usesthe vari-
able *j* as a loop variable. It sets *j* to start-value. and it always
increments *j* at the end of each repetition. It alwavs tests whether
j <= end — value, with an implicit loop-test of <=. to conditionally
execute body-form.

(do-until-down-with-*i* start-value end-value true-form) usesthe vinr-
able =i* as a loop variable. It sets *ix to start-value. and it alwavs
decrements *ix at the end of each repetition. It alwavs tests whether
*ix >= end — value. with an implicit loop-test of >=. to conditionally

execute body-form.

xjx, xix, 1, ®*array-size*: These primitives are variables and constants.
Test suite: Same suite as Sort-A and Sort-B.

Fitness Function Sanie as Sort-A.

Problem Definition: Sort-TH-2
Task: Sorting

Primitive Set: (minusi var) This primitive returns the value of one subtpacted

from its parameter unless the parameter is not pumene. Iy this case it

returns nil.

91

(if-1t valuel value2 true-form) This primitive returns the value nil if
its first two parameters are not integers. If they are. it compares them and
if the first is less than the second. it evaluates and returns true-form.

(swap-+array+* index1 index2) This primitive returns nil if its paraemters
do not evaluate to integers in the element range of variable *array=*. If
thev do. it exchanges the elements at the positions corresponding to the
integers and returns true.

(aref-»array* index) This primitive returns nil if its parameter is not a
valid index of *array*. Otherwise it returns the element of »array= at
index.

(do-until-up-with-*j* start-value end-value body-form) uses the vari-
able *jx as a loop variable. It sets *j* to start-value. and it always
increments *=j* at the end of each repetition. It always tests whether
xj* <= end — value. with an implicit loop-test of <=. to conditionally
execute body-form.

(do-until-down-with-*ix start-value end-value true-form) uses the vari-
able xi* as a loop variable. It sets *i* to start-value. and it always
decrements *i* at the end of each repetition. It alwayvs tests whether
i >= end — value. with an implicit loop-test of >=. to conditionally

execute body-form.
Test suite: Same suite as Sort-A and Sort-B.

Fitness Function Same a Sort-A.

Experiment Title: Testing for Hierarchical Process in GP: Sort-TH-0, Sort-TH-1
and Sort-TH-2

Problem Definition: Sorting with thiree different primitive sets named Sort-TH-0,
Sort-TH-1 and Sort-TH-2.

Run Parameters :

o population size: 300 and 500. For Sort-TH-2 1000 also.

€2

¢ maximum generations: 50 after the creation of generation 0. For Sort-TH-2

100 generations also.

e maximum height of programs in generation 0: 5

e maximum height of programs generated by GP crossover: 15

e parents directly propagated each generation: 10% of population size

e conduct 30 executions with each primitive set and each population size as

a run

Y%-age Success | All Executions | Successful Executions

‘ Inds Processed | Inds Processed
Sort-TH-0, pop = 300 70.0 9360 (3370) 6810 (4200)
Sort-TH-1, pop = 300 16.7 14640 (2130)) | 11400 (3000)
Sort-TH-2, pop = 300 0.0 B
Sort-TH-0, pop = 500 93.3 10250 (7550) 9150 (6450)
Sort-TH-1, pop = 500 23.3 22750 (12980) | 13700 (6750)
Sort-TH-2. pop = 500 0.0 25500 : .
Sort-TH-2. pop = 1000 0.0 51000 —
Sort-TH-2, 100 gen 0.0 51000 -

Table 9. Hierarchical Process in GP: All Problems

Results: Addressing the question of how well GP could perform using “general
purpose” primitives. GP could solve sorting using the primitives of Sort-TH-0 and
Sort-TH-1 but not with those of Sort-TH-2. For direct comparison, see Table 9 where
the percentage of successful executions is listed in second column. The differences
in success between primitive sets is statistically significant. With a population of
500. using Sort-TH-0 GP found a perfect sorting program 93.3%, of the time. When
the number of individuals processed is examined. it is clear that, as expected, GP
processes fewer individuals in order to find a solution to Sort-TH-0 than Sort-TH-1.

Because the search space of Sort~TH~2 is larger than the others (it has more
primitives with more parameters), the demand for GP to use hierarchical process is

93

- 200f
e
- : 180F —— Bestintividual Fitness |
i —— ; -~ Heght Best Indovidual ']
T e s 160 —~e— Siz¢ Best Individual : L
i3 M '
140
H
a0 ﬁ IN -
z 5 =
Bl ;o :
H & sof
"
6o}
b * i
P4 “
wt T et 0}
AAAAALAALM AL ASASAN obs
L) "0 i) L1 0 0
Generatsons

Figure 12. Sort-Th-0: Fitness, height and size

Figure 11. Sort-Th-0: Fitness of best individ-
of best individual in successful execution

ual and population in successful execution

I . :
L]
N Best Individual s --- Best Individual i
- Population PR T - Population "
x4 Iy
Ee i
5] .
h
£z SRR
¥ e A ¢t
< v A
2 N
2 ST
3 - vov
2)
a n 0 w [4] 10 20 0 0 0 b 1] 0
{ wocrstons CUonecasons Ciencratsons.

Figure 13. Sort-Th-0: Pro- Figure 14. Sort-Th-0: Pro- Figure 15. Sort-Th-0: Pro-

gram height in successful execu- gram size in successful execution gram size:height in successful

tion execution

20 F
(LN o
s
$e0 |-
=== Do ladevidanl
- == Poplabos
Wl w— Perttct Filiicss
il
oo
. 0
ol . P S R
. ' I it T et in sl et tol)
LM 4
[!]
& r, ; : N
] M 4
Py VeSUwaI 4
i i i N
L] w 2 o -« L4
Geacoations

Figure 16. Sort-Th-0: Fitness of best individ-
ual and population in unsuccessful execution

a4
200
180 ’ ST
: ,'.“ ! "
160 :o"' oo J
130 o 1
U [T
" ¢
i”.!’ 120 ,:a
w0 g
%o cu H
g ! :' ~ A =
o« 80] TR
'
60 .
ot ~— Fitness Best Indviduat |
=== Heght Best indwvidual
—o— Size Best indsvidual
20 4
0 10 20 0 a0 0
Gencrations

Figure 17, Sort-Th-0: Fituess, height and size
of best individual in unsuccessful execution

1.0
]
I -
140 12
£
-} 120 §w
g 0 E . ,
g * ‘
o : P
< L=l // H
o0
% Vs
’ 4
@ === Best Individual —— ::m :mtmm
2 n — fopulation ’ 'opulatron
1] 10 yi] 30 &0 Loy 0 111 b w0 40 [o w0 ™ 7 pra rr
Gemerson Ccncratusn PR

Figure 18. Sort-Th-0: Pro- Figure 19. Sort-Th-0:

Pro-

Figure 20. Sort-Th-:

Pro-

gram height in unsuccessful ex- gram size in unsuccessful execu- gram size:height in unsuccessful
execution

ecution tion

95
™ w0 o
m m s
e 2% 20
m 24 2}
00 20 30
118 m 175
1% 10 1%0
"7 97 £}]
(L] 100 a0
™ ™ "
0 L3 S0
» 24 2
;]] = o -
S M g W 2 W W 40 s %0 SO0 1% 0 I W IS a0 4% W $ 10 45 20 2 30 I a0 48 W
Number of Hats Nomber of Hits Noembes of Hus
Figure 21. Sort-TH-0: Hits dis- Figure 22. Sort-Th-0: Hits dis- Figure 23. Sort-Th-0: Hits dis-
tribution, Generation 0 tribution. Generation 22 tribution, Generation 33
" 150 12
2 128 100
Hn muh
”
™ kal
0
] 0
»n 2 »
[L ' 3 s) 0 ' [] -
S 10 1% D 2% WY N W S 1 18 XN O W I #0 8 W S 10018 D X W M & 4 W0
Ny of Hus Numhey of it Nusiber of Hets

Figure 24, Sort-TH-0: Hits dis- Figure 25. Sort-Th-0: Hits dis- Figure 26. Sort-Th-0: Hits dis-
tribution, Generation 36 tribution. Generation 37 tribution. Generation 38

Norsher of Infrviduals
i ¥

Figure 27. Sort-TH-0: Pro- Figure 28. Sort-Th-0: Pro- Figure 29. Sort-Th-0:
gram size distribution. Genera- gram size distribution, Genera-

L) ®. im

tion 0

Nemibet of Individuas
¥

Figure 30. Sort-TH-0: Pro- Figure 31. Sort-Th-0:
gram height distribution, Gen-

EL I

Program Sex

M M0 W

« 3 8 8 8 §

2

eration 0

a6

Neewbes of Indrvidashs
i

» |

m O W Im 1 e e D W

Sue

» - oam l‘ M M MR e W

Pro-
gram size distribution. Genera-

]

H

Pro- Figure 32. Sort-Th-0:
gram height distribution. Gen- gram height distribution, Gen-
eration 19

tion 19 tion 38
i. i,
2. 2
= T -
i- i
-y iﬂ!
i I_.I..I_.I.Ll_l_l..JA_‘A- : ‘-.:llll'll.n'

4 ? L]]
Program Howev

Pro-

eration 38

97

greater. However, the larger search space may, reasonably. be expected fo require the
sampling of more individuals. However, there are 10200 more individuals processed
in executions with population of 500 compared to executions with population of 300
(when both executions proceed for 50 generations) and, consulting Table 12 which
shows Sort-TH-2 run data, there still is very little improvement from the run with the
larger population. To further investigate, we also ran Sort-TH-2 with a population
of 1000 for 50 generations and with a population of 500 for 100 generations. in effect
doubling the effort available to GP. The results are listed in the final two rows of
Table 9. Despite doubling the effort. GP could still not find a solution.

For comparison we present a number of plots of various executions and summarize
the overall executions performance with each population size in separate tables for
each primitive set. Starting with the most specialized set of primitives Sort-TH-0:

e Table 10 provides a comparison of the runs with population size 300 and 500.
The number of individuals processed did not statistically significantly differ
with the two population sizes. Nor was there any appreciable difference in the
program size, height and size to height ratio of the perfect programs. Standard
deviations are in parentheses.

e Figure 11 and Figure 16 plot the fitness of the best individual and population
by generation for. respectively, a randomly chosen successful and unsuccessful

execution.

e To examine whether there is crude correlation between program growth and the
success of an execution. Figures 12 and 17 plot. for the selected typical successful
and unsuccessful execution respectively, the fitness of the best individual and
the height and size of the best individual by generation. There is a suggestion
that an increase in size and height is correlated with an increase in fitness in
the successful execution. This correlation does not seem to be apparent in the

unsuccessful execution.

e Figures 13 and 18 depict the height of the best individual and average height
of the population per generation for the same executions (successful and unsuc-
cessful). For these two executions there is an obvious difference in the trend.

In the successful execution the height increases slowly, whereas, in the unsuce-
cessful execution. the height increases verv quickly between generations 10 and
20 and remains close to the maximum. The height of the best individual after
generation 25 stavs slightly higher than that of the population.

Figures 14 and 19 depict the size of the best individual and average size of the
population per generation for the same executions (successful and unsuccessful).
In the successful execution the average size of the population stavs constant
until gencration 30 (approximately 16) after which it quickly rises to 35, In
the unsuccessful execution. the size stavs steady at 16 for 12 generations then
steadily rises to 80 by generation 30 and stavs between 80 and 100 for the rest
of the execution. Smaller programs seem to be correlated with the success of an
execution. In both executions the size of the best individual fluctuates greatly
around the average size of the population.

Figures 15 and 20 depict the ratio of size to height of the best individual and
average ratio of the population per generation for the same executions (success-
ful and unsuccessful). In the successful execution the population average ratio
stays between 2.9 and 3.8 while, after generation 20 the ratio of the best indi-
vidual fluctuates around it ranging from 2 to 4. In the unsuccessful execution,
the range of the population average ratio is much wider: 3 to 7 and the range of
the best individual is 3 to 10.5 with many large fluctuations. This may suggest
that structural homogeneity in the population is advantageous for suceess.

The distribution of hits (i.e.. correctly sorted arrays), program size and program
height to number of menbers of the population over the course of an exeeution
can be animated in a histogram o1 shown in a series of plots. Figures 21 o 32
are series of hits distribution, size distribution and height distribution for the
selected successful execution. With only three generations selected, it is obvious

that the height distribution becomes normal whereas this does not occeur with

the size dis‘- *bution.

99

200 - 200
- -~ Best individual 1 180
150 - +- Population et
~—— Perfect Solution : 160
160 I‘ *
'_: '” -
1o} » % 120}
v o b
- "l / s
é 120§ ; * g 100
;T ¢ g
[] ,‘ i w 4
100 aES " ! P
N *0’ 60r
N *
80 : £ ol
'l 4“
[- "M‘ 20} 44
reaatNENED . . . oL . . X
o 10 20 30 40 0 10 20 30
Generstions Generaions
Figure 33. Sort-TH-1: Fitness of best indi- Figure 34. Sort-TH-1: Fitness. height and
vidual and population in successful execution size of best individual in successful execution

"o
£3
L]
*
w0 -
; i.
L 4
d]
DY =- 7
L s
! LY
i &
w0 Yoo
« — Best Individual s
0 4 K
0 4 W s ®» BN W W o S 10 15 ¥ B W M 6 0+ W K2 B W N
{ioneramons. CGansratiens. Gensrasons

Figure 35. Sort-Th-1: Pro- Figure 36. Sort-Th-1: Pro- Figure 37. Sort-Th-1: Pro-
gram height in successful execu- gram size in successful execution gram sizecheight in successful
tion execution

For Sort-TH~1 we only show plots of a successful execution. The same type
of plots except for distributions are provided. The case for correlated height, size
and fitness is weaker but still suggested. The size of programs is about 5 times
bigger than Sort-TH-0 (average 46.7 compared to 252.9 for population size of 300).
The height is also bigger: 10.5 versus 13.9. Table 11 provides a comparison of the
executions with population size 300 and 500. The number of individuals processed

1K

200¢ 200
-~ - Best Individual 180
180f -+ population "
—— PerfectSolution @~ T 160
101 ' 140 ©»
- 1o o~ ﬂ'M ﬁg 120 0z
: P 5 100 £
g 120 d H &
.. o 2
; p) i & L
100 }] *
s ! 4‘ 1] 4
1 l“u ! Qj [}
80 -I' ‘-" g - £0
. et :
of .+ * 2 4
.W. _ s X . 0 D . N R .
0 10 20 30 40 S0 0 10 » 0 4 S0
Generations Generations
Figure 38. Sort-Th-1: Fitness of best individ- Figure 39. Sort-Th-1: Fitness, height and size

ual and population in unsuccessful execution of best individual in unsuccessful ecution

did not statistically significantly differ with the two population sizes. Nor was there
any appreciable difference in the program size, height and size to height ratio of the
perfect programs.

Recall that Sort-TH-2 was never solved by GP under our experimental setup.
We show the plots of a typical execution in Figures 43 to 47 and the data of the set
of executions in Table 12. Initially the test suite contains 3 correctly sorted arrays
(hits) and 47 elements placed correctly (fitness 24.1%). With a population of 300,

Pop = 500
%-age Successful Executions | 70.0 (46.0) | 93.3 (25.0)
Successful Executions

Individuals Processed G810 {4200) | 9150 (6450)
Best Ind: Height 10.5 (3.1) 10.5 (3.2)
Best Ind: Size 46.7 (36.0) | 40.1 (23.6)

Best Ind: Size:Height Ratio 4.0 (2.1) 3.6 (1.3)
Population: Size:Height Ratio | 4.0 (1.6) 3.7(1.3)

Table 10. Hierarchical Process in GIP: Sort-TH-0

101

* - 8 ~

Avt ¢Toee Sine Tree Mesghts

Figure 40. Sort-Th-1: Pro- Figure 41. Sort-Th-1: Pro- Figure 42. Sort-Th-1: DPro-
gram height in unsuccessful ex- gram size in unsuccessful execu- gram size:height in unsuccessful
ecution tion execution

Pop = 300
% age Successful Executions 16.7 (37.0) 23.3 (42)
Successful Executions

Individuals Processed 11400 (3000) | 13700 (6750)
Best Ind: Height 13.9 (1.0) 12.9 (1.9)
Best Ind: Size 209.0 (73.2) | 153.1 (66.8)

Best Ind: Size:Height Ratio 14.9 (4.8) 11.3 (3.9)
Population: Size:Height Ratio | 14.1 (3.0) 10.8 (3.3)

‘Table 11. Hierarchical Process in GP: Sort-TH-1

the best execution succeeded in correctly sorting 18 arrays and placing 125 elements
in the correct position vielding an (adjusted) fitness of only 62.8%. On average the
best individual of an execution pl.ced 40.5% of the elements correctly and sorted 8.3
{3.3) arravs correctly.

We observe that GP prematurely converges and processing more individuals does
not appear to prevent this. Diversity in the population is not likely an issue because
though scaling usually limits diversity in later generations of GAs. there is sufficient
diversity in a GP population even among the candidates strong enough for selection.
GP executions remain diverse because crossover does not take place on strictly denned
structure boundaries. In fact. once the 60% neighbourhood has been reached, we see
disparity in fitness, (implving diversity in programs) return to the population. On an

102

animated histogram the “undulating slinky movement from left to right™ [62] halis
and a downward wave to the left occurs.

Sort-TH-2

Pop = 300

Pop = 500 | Pop = 1000

Pop=350
Gen=100

Y%age Successful Execs 0 0 0 0

Best Ind: Hits (max 47) | 8.3 (3.3) 9.0 (4.0) 10.8 (5.0) 9.8 (3.3)
Best Ind: %-age fitness 40.5 (7.9) 42.0 (9.5) 46.4 (10.1) 45.0 (7.8)
Best Ind: Height 14.0 (1.5) 13.6 (1.3) 13.7 (1.4) 14.6 (0.6)
Best Ind: Size 200.6 (80.7) | 199.2 (66.4) | 237.0 (104.7) | 311.1 (84.0)
Best Ind: Size:Height Ratio 14.2 (5.2) 14.6 (4.3) 16.9 (6.8) 21.8 (5.6)
Papulation: Size:Height Ratio | 13.6 (3.8) 14.4 (3.9) 15.4 (3.4) 19.8 (3.1)
Best Execution

%-age fitness 62.8 65.3 78.9 57.8

Hits (max 47) 18 18 31 17

Table 12. Hierarchical Process in GP: Sort-TH-2

200+
==+ Best Individual
180F - -
— Pesfect Fitness
160 |
140t
z 120
100} -
----- ’,
SOt] -
-------- e 4‘
l' of
e} ¢ W
0 10 20 30 40 50
Generatsons

Figure 43. Sort-Th-2: Fitness of best individ-
ual and population in unsuccessful execution

Fitness or Size
s s g8 88 EE&E

Height

10 . 1] W

40 1]

Figure 44. Sort-Th-2: Fitnens, height and size
of best individual jn unsuceessfu) execution

103

-~ Best Individual
o 1a] —— Population
i.
g %0 g
E e
¥ 3
¥ o £
¥
3
.
-«
4
] w x W o 40 (]] n » L L L] " 2 » L] w
Cisnerowean Cicvmranews Cienerahons

Figure 45. Sort-Th-2: Pro- Figure 46. Sort-Th-2: Pro- Figure 47. Sort-Th-2: Pro-
gram heighi in unsuccessful ex- gram size in unsuccessful execu- gram size:height in unsuccessful
ecution tion execution

3.1.4. Assessing the Presence of A Hierarchical Process

These experiments reveal that canonical GP can not robustly find a solution with a
truly “general purpose” primitive set. This premature convergence to a non-optimal
solution could be due to a number of complicated factors. First, note that a subtask
is defined collectively by a subprogram of primitives and by the behaviour of these
primitives in the setting of a larger program. Plausible explanatory scenarios are:

¢ 't may be the case that a subprog.am of primitives which appear to function as
a subtask onlv perform as such intermittently. That is, in different settings of
surrounding primitives. sometimes thev do perform the subtask and sometimes.
they do not. The sensitivity of primitive behaviour to context because of the
nature of prograns lends this scenario plausibility. In one generation a subtask
may be discerned as valuable and preserved and promoted by crossover (i.e..
programs containing the subprogram and exhibiting the subtask behaviour are
fitter and favoured by selection to propagate as “parents”™. the subprogram of
primitives is copied from a parent into one child and “grafted” from the same
parcut to another child) but. in the next generation. in the context of a dif-
ferent program, the subtask disappears because the subprogram of primitives
no longer behaves in the same manner as before. GP can not discover a sub-
task because the group of primitives specifving the subtask do not consistently
perform the subtask function in all prograia contexts. GP does not have any

104

explicit mechanism for concurrently preserving the context of a subtask along
with the subtask itself.

Assuming that a subprogram of primitives does consistently, regardless of con-
text. perforin a discernible and useful subtask . it mayv be the case that the sub-
program is disrupted by crossover despite selection promoting programs which
contain it. Therefore a subtask is not promoted over geneiations and does
not become more prevalent among programs in the population as generations
proceed.

To elaborate on this conjecture more precisely, it would he necessary to know,
when they are of equal size and fitness, wliether GP crossover promotes some
subprograms faster than others on the basis of their embedding structure in
programs. Unfortunately. this is not known.

One facile but incorrect conjecture would be that GP crossover promotes a
subprogram that is a subtree of primitives faster than a subprogram that is
“fragmented” throughout a program (assumin ' theyv are equally fit and of equal
size). The conjecture is incorrect because, in . ~ equal disraption likelihoad
for differently embedded subprograms is not guaranteed cven if the subprograms
have the same number of primitives. A subtree could be embedded in a small
tree and a fragmented subprogram could be emb.edded in a larger program. In
this case. a fragmented subprogram would be promoted, on average. more often
than one that is a subtree.

Consider the case when GP crossover promotes a subprogram that is a subtree
of primitives faster than a subprogram that is fragments because it has a lower
likelihood of disruption. The subtask that is a fragmented subprogram would
not be propagated bv GP crossover despite its equivalent value and GP would
not discover and promote it.

A final scenario places emphasis on the influence of the GP crossover bias in
crossover point selection and on the maximum tree height parameter. These two
factors introduce new non-linear complications to GP. They could be sufficiently
influential to interfere with the promotion of fitter than average subtasks that

105

have low probability of disruption despite the behaviour of 5P crossover and

selection.

These scenarios. the experiment results, and the complicated nature of the GP
algorithm lead us to suspect that the GP algorithm we have assessed is not as general
and powerful with respect to hierarchy as it may appear from many successful exam-
ples described in the literature. GP is only hierarchical in the superficial sense that it
exploits the hierarchical representation of a programn as a tree and sometimes discovers
programs with hierarchical control. GP is most often successful if a solution does not
require hierarchical subtask process to efficiently identify and promote subtasks or if
it is @ priori given “high level™ or complex primitives that encode subtasks. Complex
primitives, because thev are encapsulated. are protected from disruption and thus
protect subtask behaviour allowing GP to simply discover a correct combination of
subtasks into the problem task.

In Chapter 1 we supplied six reasons for conjecturing that a hierarchical process

may proceed in GP. These reasons can be revisited:

Reason 1. Hierarchical solutions are tvpically products of a hierarchical process and
GP sometimes produces hierarchical solutions in terms of control.

In our experimerts which demand that solutions must be discovered using a
hierarchical process. we have observed no evidence of hierarchy in solutions.

Reason 2. GP may derive its search efficiency from a hierarchical process.

In our hierarchy experiments GP did not exploit a hierarchical process in terms
of solution design. When the search space was increased. even though a hier-
archical process could have been used to search efficiently. GP could solve the
sorting problem with our most general primitive set.

Reason 3. GP crossover may contribute to a hierarchical process because it is based

upon tree representations of programs.

In our experiments we observe no influence by GP crossover in contributing to
a hierarchical process though our methodology does not focus upon this aspect.
In Section 3.3 we shall explain the research of [124] which does concentrate on
the contribution of hierarchy to GP crossover.

106

Reason 4. GP may require a hierarchical process for program design because hu-
mans do.

GP seems to rely upon its evolution-based algorithm for power in discovering
programs as opposed to a hierarchical process similar to lnunan program design.

Reason 5. GP’s simplified model of evolution may be sufficient to inherit a hierar-
chical process that is intrinsic in genuine evolution.

This does not appear to be true.

Reason 6. A GP equivalent of the GA Building Block Hypothesis could justifiably
be assumed to operate in GP because GP is a kind of GA. If it is, a hvpothet-
ical building block search process could identify subtasks, promote them and
assemble them in GP.

We shall defer the conjecture that a Building Block Hvpothesis is justifiable
for GP to Chapter 4. Since we do not observe a subtask level building block
process in our experiments, we at least conjecture that there is no such process
based upon a schema based building block hvpothesis.

3.2. Improving Hierarchy in GP

Extending GP to foster hierarchical evolution will not. of course, change the basic
computational power of GP’s solutions or the computability of GP. However, it could
lead to improved algorithms in terms of scalability, computational effort and prin-
cipled organization of solutions. These issues are sufficiently valuable to pursue the
idea.

On the issues of scalability and computational effort, hierarchy improves the ca-
pacity of a search algorithm to effectively search a space. Simon {108] gives an elegant
example of the efficiency of hierarchy in his watchinaker parable. The identification of
reusable components for solution assembly eliminates redundant work. One solution
suffices for equivalent tasks. Once a component of a hierarchy has been “debugged”,
reuse of that component does away with repeating the effort.

On the issue of principled organization, GP does not currently produce any
solutions that are realistically comparable to solutions designed by hmnans. Sone

107

people would claim this is an asset by responding that a GP solution does not need to
solve a problem in a way recognizable or comprehensible to humans: One should not
insist that the way humans phrase solutions is the best or only way. Moreover. there
mav be phenomena in our environment which we will never be able to understand
given the perspective of human cognition. An approach demanding comprehensibili.y
and design principles is too restrictive because there may be principles opaque or
unknown to us.

This response is debatable. If we regard GP as an artificial system of program de-
sign (i.e., automatic programming) we can legitimately desire integration of its results
with “natural” (i.e.. human written) programs and software engineering practices of
validation. maintenance and librarv building. Thus we want sound algorithms which
are comprehensible. The properties of a good algorithm entail a logical and efficient
decomposition of problem elements complementary to an efficient control strategy
which combine to formulate a coherent robust approach. For example. algorithms
exploit useful functions which have been generalized. they execute with a tolerable
computational complexity and they handle special cases simply.

When the goals of automatic programming are put aside and the impetus to
use GP is to study and observe adaptive behaviour it is again reasonable to desire
some degree of principled organization. GP models evolution and genetics because
evolved genetics-based natural systems are robust., successful examples of “solutions™
for difficult problem domains. Biological svstems commonly demonstrate reasonably
adequate genotvpic and phenotvpic competence in hazardous. noisv and often un-
predictable environments. Theyv are composed of integrated subsvstems and it is
often possible to interpret the function of each subsvstem to account for the overall
behaviour. Since challenging machine learning problems have the same requisite of
efficiency and plasticity in noisy and novel domains. nature indicates that a solution
of principled operation and principled organization may be advisable.

(C‘anonical GP uses only fitness proportionate selection and a crossover-based
form of genetic propagation as its computational version of evolution. This sim-
plification is one reason why it falls short of achieving programs that are as well
constructed as natural svstems. Thus. a new question is:

How can a hierarchical process be incorporated into the GP paradigm?

108

The oldest approach to making GP more hierarchical focuses upon encapsula-
tion and decomposition. In Chapter 2 we described the GLIB svstem of Angeline
{7] which used a “compression™ operator and “expansion” operator as well as the
~define-building-block™ operator of Koza (page 66). Encapsulation and decomposi-
tion operators are applied at random to 10% of the population after crossover. A
subprogram is chosen for encapsulation by virtue of being a subtree. A new primi-
tive (also called module) which mav or may not have parameters (depending upon
whether a decision is made to entirely encapsulate the subtree or “cut it off ™ at a cer-
tain depth) is created to replace the subtree. Afterwards, because the new primitive
encapsulates a subprogram, its function will never be disrupted by crossover. It will,
lhowever, be subject to selection. The impact of these two effects will be that useful
sub-tasks are identified among the new primitives and exploited for solutions.

Koza reported that his “define-building-block™ operator did not tmprove the
probability of success nor the amount of computational effort required to solve the
6-Bit Boolean Multiplexer problem. He also made a general statement that this
approach was not worth pursuing [62].

Angeline used this approach to solve the classic Tower of Hanoi problem and
to evolve programs to play and beat an automated Tic-Tac-Toe opponent. In the
Tower of Hanoi problem he reported that modules consistently improved a variety
of intermediate problem configurations. True hierarchiral structure was pro. ent bat.
discernable hierarchical control was absent. He reported:

Unfortunately. more specific properties have been extremely difficult to
identifv. One observation is that the evolved modules do not employ the
tvpical conceptual breakdown for plaving Tic-Tac-Toe. ... the program
modularity that results is not amenable to normal analvsis technignes.
As expected from an evolutionarv process, the usage and semanties of the
evolved language is extremely non-standard. For instance, several mod-
ules encode numerous side effects in the test position of a conditional. In
short. the resulting programs, while containing multiple moduales, are not
examples of modular programming but share more commonality with the
distributed representations of procedural knowledge found in connection-
ist networks.

Overall, this approach does not produce encouraging results. It would be rea-

109

sonable to expect both improved computationa! efficiency and hierarchical solutions
neither of which seem to occur. Why?

The approach relies upon the existing “survival of the fittest™ and reproduction
mechanisms in GP to identify, select and exploit the useful sub-tasks among the
randomly created new modules and use them in combination with existing primitives.
It creates two levels of search: one explicitly for subtasks and. a second. for a solution
using existing primitives and subtasks. Both levels of search must be supported by
this single set of mechanisms.

Regarded in this perspective, several reasons can be suggested for the lack of

SUCCess:

e Given that “normal” GP operators (e.g.. GP crossover) are used much more
often than the “hierarchy™ operators (i.e.. a ratio of 9 : 1) the population size is
not large enough, nor is the time scale of the search sufficiently long. There is
no basis to the choice of applying operators with this ratio. It is plausible that
in nature, the operator ratio is equal allowing multilevel search to take place
over relatively huge populations on a relatively long time scale. Unfortunately,
increasing the population size. maximum number of generations or operator
ratio is too simplistic a cure for GP because the algorithm is complicated by
program growth. If it is run for more than 50 generations, the programs become
so large and have so much epistasis and “junk™ primitives that the algorithm
ceases to be effective at improving population or best individual fitness. Large
population sizes pose computational demands that can be unrealistic or that
make it worthwhile pursuing alternative solution methods.

o Once two levels of search exist within GP it is hard to expect a single set of
mechanisms functioning with only one time scale and one problem environment
to aptly coordinate them. In other words, plausibly a second level of fitness
function i.e., one that judges more explicitly the value of modules should coex-
ist with the primarv GP one. And. a separate selection mechanism might be

necessary.

Implementing a two level environment (by two fitness functions for example)
poses problems. The second level fitness function would have to be specified
a priori and this would seem to force the designer to identify what subtasks

110

are desired. It also seems impossible to identify appropriate time scales for
each level of evolution. Furthermore, other aspects of GP might hold this sort
of approach back: GP offers no model for how subpopulations with different
fitness functions and time scales should interact. All extensions collectively
might swamp the basic power of the algorithm because they vastly increase the
search space size and depend upon designer foresight.

A second approach is to use Automatically Defined Functions. They are de-
scribed in [70] and summarized on page 68 of Ch. 2. ADF's are an explicit mechanism
for improving the hierarchical structure of solutions but they do not explicitly guide
hierarchical process. Koza is careful in his claims: he states that GP’s solution process
can be interpreted (my emphasis) as hierarchical but not that it actually is hierar-
chical (see Main Point 1 quoted on page 70). ADFs do not explicitly guide logical
sub-task formation but they allow GP to be scaled (see Ch 2).

A third approach is introduced by [99] and named “Adaptive Representation GP™
(AR-GP). The authors suggest that the fitness of a subprogram can be estimated by

o the average fitness of the programs which use it
e some designer provided criteria
e its performance on the subset of test cases for which it has dependent. variables

In their experiments thev use the last criterion listed above. AR-GP tracks the
fitness of small subprograms (only those that are complete subtrees of small maxinumn
height). When a subprogram achieves perfect fitness. it is encapsulated to compose
a new primitive and the algorithm enters a new epoch. At the start of an epoch, the
weakest members of some portion of the population are replaced by new programs
that are randomly created using the updated primitive set. It was observed that
the frequency of fit subprograms increased in the population over time providing
validation of the basic idea of promoting fit subprograms. The systemn was evaluated
on the even-n-parity problem in which the task is to “find a logical compaosition of
primitive Boolean functions that computes the sum of n input bits over the field of
integers modulo 2°. AR-GP was able to solve higher order even-parity probles
that GP could not . It could solve all problems requiring less generations to find
a solution with 99% probability and using smaller programs compared to GP with

111

ADFs. While the AR-GP results are encouraging. one particularly troublesome issue
is that the approach relies upon a global memory based mechanism to detect building
blocks which is not a plausible natural mechanism.

3.3. Knowledge-Based Primitives and Fitness Func-
tion Design as Factors in GP’s success

3.3.1. Deriving Knowledge-Based Primitives from First Prin-
ciples

Any claims that, when simply “left to its own devices™, using obvious general purpose
operators and operands of straightforward origin in the problem domain. GP robustly
solves a wide spectrum of problems can be questioned in light of Section 3.1 which
shows how GP demands knowledge intensive work of its task designers. The generality
of GP is constrained by this demand and this constraint promotes skepticism as to
the true power of the search algorithm.

The design of the primitives for a GP experiment requires modeling operators
and operands from the problem domain. When the operands of the problem domain
are simple ohjects that can be designated by constants or variables. their choice is
not open to criticism. Naming them in order to abstract a solution is not problem-
atic. However, operands which are not directly from the problem domain but which
require knowledge-based definition are more contentious. For example. consider the
Block Stacking problem which uses the primitives nextNeeded, topCorrectBlock
and TopBlockOnStack as operands. These operands are sensors which are knowl-
edge based: they require some preprocessing of knowledge concerning the problem
before being defined. How operators are expressed with primitives is another source
of contention. If anyv of the operators are expressed by combinations of primary prob-
lem domain operations. GP has again started from input which is more specialized
than implied by the general claim. These primitives may be recognized by their being
written as special forms rather than being built-in programming language statements.

From the perspective of judging the power of GP, two specific objections arise
from using knowledge-based operators and operands: First. GP is using a language
Lt which is a specialized subset of the programming language, L, that is used to write

I

the primitives. L/ may not include general elements of L and this may constrain the
flexibility of solution expression. Second, L/ expresses knowledge-based properties of
the problem domain which GP exploits in its adaptation process. A skeptic can fairly
argue that GP may not have been able to solve the problem without the guidance
this knowledge provides.

For program discovery, domain dependent knowledge can be claimed not to exist
in programs when the primitives of L/ are applicable to many different domains. A
methodological policy to ensure control over this aspect of L/ might be: Operands
and operators in the problem domain must be directly represented by a primitive
data type or form of L. For example, in LISP, the policv dictates that L7 can not
include primitives that are user written macros or user written special forms, but it
may include built-in functions such as IF and cond. When GP solves the problem
with such primitives, it does so bv means of its own adaptive process and without
dependence on domain knowledge.

We could now revisit GP problems and clearly evaluate whether the primitives
are knowledge-based by examining whether this policy is followed. GP seems to have
solved the G6-Multiplexer problem without problem specific knowledge. The primitives
are AND. OR. NOT, IF. A0, Al. and DO ... D3. Both the operands (registers) and the
operators (built-in Boolean operators) come directly from LISP.

Conversely, referring to the policy, it allows us (o recognize that the primitives
of the Block Stacking problem are knowledge-based. The special forms or macros
DU (do-until), NOT. and EQ are built-in forms of LISP so they conform to the policy.
However, blocks are not encoded using variables. Thev are expressed by special forms
which process sensor information and return a block. Two sensors, TB (top correct.
block) and NN (next needed). base their respective responses ou specific assessients
of the stack. The CS (block on top of stack) sensor could be coded using the LISP
car function but it is hard coded to access the stack. The operators MS (move-ta-
stack) and MT (move-to-table) reference the stack and table but not as parameterized
operands. Neither the stack or the goal list are operands in the Block Stacking
primitive set. This absence glaringly points out that the designer has shown GP a
problem specific way of using them.

To conform to the policy. GP would have to solve the Block Stacking problemn
starting with variables #*block=. *stack*. *goal-list*, *table=. an assortment of

113

list operators to iterate, add, delete and access (since the stack, goal list and table are
lists), a conditional statement (e.g. if-then-else). and NOT and EQ for comparison. This
seems far too demanding! No one else expects to solve the Block Stacking problem
from this low a level.

At this point it is fair to backtrack and say there is nothing wrong with using
an L+ that does not conform to our policy, except that it implies that claims of
GP’s power have to he qualified: L/ should be recognized as the language used by
GP, not L. This ensures a more accurate assessment of GP's true power. It is
always reasonable to scrutinize L/ to see if it conforms to an adequate level of general
functionality as typically seen in programming languages. Does it contain primitives
which are applicable to many different domains and which are sufficient for many
different compositions? Does it contain epistemologically valid classes of data (i.c.
tvpes) and operators which are not particular to a narrow domain of problems and do
not employ knowledge of a specific problem domain? If so. accurate claims concerning
the true power of GP can be made without it being argued that GP is assisted by
domain dependent knowledge.

Alternatively. it is also sufficient to establish that the knowledge-based operators
and operands may themselves have evolved. One would then be showing that an
“evolutionary pathway™ " exists from the general purpose statements of a programming
language to the primitives. It should be remembered that such a pathway does not
have to solely arise from selective pressure to solve the particular problem at hand. It
may be the case that existing helpful small sub-tasks arising for other reasons could
be exploited rather than be built once again from scratch. In GP it would be sufficient
to “reverse engineer any primitive in L. i.e., show that it could arise from a more
general set of primitives using GP.

However, while reverse engineering produces an account of how a particular prim-
itive could have arisen. it would be more interesting to discover successively more
complex knowledge-based primitives. In other words. one could ask what series of
languages would evolve by starting from “scratch™ and building new languages using
primitives taken from solutions in the previous language. This would most likely
involve hand selecting the elements of the new language and the fitness functions
because, at present, it appears that there is no way GP could perform this processing

automatically.

114

3.3.2. Using Knowledge-Based Primitives

If the primitives used in representative GP problems are more specialized to the
specific domain of the problem than the knowledge incorporated and used by other
machine learning approaches. GP would not be as powerful a “weak™ method as
these other methods. It would support a claim that GP is less capable of deriving
rich behaviour starting from knowledge impoverished conditions than them.

Upon careful examination most primitive set choices are naturally directly de-
rived from the domain or they express domain kuowledge that is not substantially
different from the knowledge supplied to other paradigms. For example. in the GP
experiment to learn wall-following behaviour. the same primary motor functions aud
sensor data were used as in the original subsumption approach [68]. The Block Stack-
ing problem does use specialized primitives but these primitives precisely model the
same operators and operands used to solve the problem with the original planning
svstem of [85]. It is only because GP is able to solve a broad array of problems that
it has the appearance of requiring substantial domain knowledge. This impression
simply arises from observing all of the problems together. Other paradigms do not
give the impression of dependence upon domain knowledge because they are tvpically
demonstrated with only a few examples and this prevents it from being noticed. If
another existing paradigm could solve all the problems GP can (which none can), the
same dependence upon domain knowledge would be apparent.

3.3.3. Designing a Fitness Function

The fitness function clearly has a large impact on the success of GP bhut. to date the
research community has figured out little useful information concerning its design.
The answer lies in a better understanding of how different fitness functions iteract
with GP by changiug the character of the search space in terms of factors such as: the
number of global optima, the number of local optima, the size of “basins™ (a basin
is defined by the solutions from which a “hill climb” will result in finding one global
optimum), and the fitness values of solutions within a neighbourhood defined by a
search operator.

Altenberg [2] has shown that GP is successful when the fitness distribution of

the set of offspring that could possibly be produced by crossing over a pair of parents

has a large upper tail. The penultimate secret of GP would indicate how to adjust
a fitness function to improve the likelihood of such distributions among parent pairs.
It may be too difficult however and in the immediate future it is more likelv that
improvement could be gained by pursuing changing a search operator given a fitness

function.

3.4. GP as a GA for Program Discovery

Given that GP is not a true hierarchical process. it remains necessarv to explain
GP’s success aside from designer oriented factors such as primitive selection. test
suite design and fitness function definition. GP is a GA with choices made for the
sake of accomplishing program discoverv. These choices are:

e GP uses a program-based encoding for solutions

o GP crossover

¢ GP manipulates variable length solutions

e GP solutions do not have a direct feature correspondence with each other

It is useful to consider which of these design choices are necessary for GP to work,
which are simply convenient. and which are simply good tradeoffs.

3.4.1. Program-Based Encoding

GP directly manipulates programs composed of primitives. This is a favourable design
decision. A different choice would result in substantial inconvenience and require
design deliberation. There is no way to conciusively argue that changing this decision
would significantly alter GP’s success though it may impact its efficiency.

3.4.2. GP Crossover

One obvious aspect of GP appears to be its crossover operator. However, is this
choice of operator over other GA crossover operators superficial or significant to GP’s
success? The question was pursued by [124] and the difference was found to be su-
perficial. The EP-]1 system is a GA that solves program discovery by choosing a

116

representation that embeds a program of program discovery primitives into a fixed
length linear string. Programs are able to varv in length because not all positions of
the string are always interpreted as the program. The embedding works in i manner
that pern.its linear-based GA crossover operators (e.g.. one-point. uniform) to be ap-
plied to parent strings and produce directly syntactically correct offspring that could
differ in size and structure from their parents. The net effect of those GA crossover
operators is the same as GP crossover but the representations for that purpose differ.
In terms of probability of success, on a small suite of standard GP problems (e.g..
6-Mult and Block Stacking). no statistically significant difference between EP-1 and
GP was found. Thus it was concluded that the use of a tree or hicrarchical represen-
tation for crossover is. contrary to intuition. not essential to GP’s power but merely
a convenience that allows program size and structure to change.

3.4.3. Variable Length Solutions

Because GP processes programs directly, it can explore solutions that differ in size and
structure. Program discovery needs this flexibility because many different. programs
can be written to all accomplish the same task and it is impaossible to know in advance
the minimal or optimal size of a program. Any restriction of a search space in size or
structure may actually make the problem more difficult to solve. We conjecture the
choice to use variable length solutions in GP is a crucial feature in its suceess. We
shall exploit variable length solution encoding when we try different search algorithms
for program discovery hecause it is arguably a necessarv property.

3.4.4. Feature Correspondence Among Solutions

As observed in Chapter 2 (page 62). in GP two programs do not have a strict one to
one correspondence in syntactic structure or behavioural structure. By using primi-
tives and its particular means of assembling them into a program or creating programs
with GP crossover, GP makes a tradeoff: it allows expressive flexibility (i.e., programs
differ in syntactical and behavioural structure) but foregoes correspondences among
programs that could provide a basis for “true” combination of them via crossover. It
seems clear that this expressive flexibility is essential to accomplish program discov-
ery because the structural nature of the desired program is not known in advance,

117

Therefore, this tradeoff seems key to fostering GP’s success.

3.5. Chapter Summary

GP's success is stronglv dependent upon expedient primitive and test suite design
and fortuitous fitness function design. Based upon the experiments detailed in this
chapter, we observe that GP does not exploit a true hierarchical process. GP is a
GA outfitted for program discoverv. Several design decisions in equipping the GA
play a critical role in its ability to solve program discovery: GP manipulates programs
directly. searches a space of solutions which vary in length and structure. and trades off
svntactic and behavioural structural correspondence among programs for expressive

flexibility:.

CHAPTER 4

The Troubling Aspects of a Building
Block Hypothesis for Genetic
Programming

In Chapter 3 we pursued experimental evidence that GP conducted i luerarchical
search process. One of the reasons for our conjecture was that a GP equivident of the
GA Building Block Hypothesis perliaps could be assumed to operate in GI” hecanse
GP is a specialization of a GA.

We precisely define a schema in GP and derive a lower bound on the growth of
the expected number of instances of a GP-schema from one generation to the nexi.
Following precedent of the literature for GAs which use fixed length Linary s~trings.
we refer o this as the GP Schema Theorem (GPST). We also wish to show that
although a notion of building blocks arises from an interpretation of the GP’ST. 1
is questionable whether such building blocks reliably exist throughout the course of
a GP run. Finally. we emphasize that. as with GAs that use fixed length binary
strings. hypotliesizing building block combination requires greater liberty with the
interpretation of the Schema Theorem than is justifiable.

Qur investigation is motivated by the historical precedent of the Schema livoremn
and BBH as an explanation of the search power of GAs [46. 32). Hollind's analy
ses lave been the foundation for more precise explanations (some diverging {1om 4
schema-based approach) of GA search bebaviour. GA theory for lixed length s
strings promises to be a useful source of analogy for GP because. just like other GAs
it uses the same central algorithm loop which applies the basic evolution-iuiwed ge
netic operators and both act as a “shell” which accepts fitness function and problem

119

encoding as parameters. Other GAs and GP use genetic exchange within the popu-
lation {(crossover) and fitness-based selection (and both have been widely emploved
with fitness proportional selection). The similarity of operators and central algorithm
make it worthwhile to formulate a GP theory along the lines of GA theory for fixed
length binary strings.

Some recent experimental [82. 28] and theoretical [32. 92. 38. 120. 2. 3] research
has questioned the value of the Schema Theorem and BBH as a description of how the
G A searches or as the source of the GA's power. In this chapter we confirm that the
GPST and a GP BDBH similarly fail to provide an adequate account of GP's search
behaviour and that various plausible interpretations of the GPST fail to support a
GP BBH. Some reasons for the inadequacy of the interpretations are the same as
for GAs which use fixed length binary strings. others pertain more directly to GP.
and are due to its representation and crossover operator. We hope. however. that is
investigartion of how interpretations of the GPST fall short of supporting a GP 3BH
will provide insights for subsequent improved accounts of GP’s search Lehaviour.

The chapter is organized as follows:

Section 4.1 discusses various options for a schema definition. and a more general
definition than the one given in [69] is chosen. We also give formal definitions of
GP-schemas and of schema order and defining length.

Section 4.2 presents the GPST as a recurrence relation that expresses the lower
bound on expected instances of GP-schemas from one generation to the next.

In Section 4.3 we discuss the approximations and questionable assumptions in-
volved in interpreting the GPST to hypothesize that a building block process char-
acterizes GP search.

Section 4.4 concludes the chapter.

4.1. Schema Definition and Related Concepts

The tfirst question to be considered is: what schema definition in GP is useful in
formulating a description of GP search? Scliemas. or similarity templates. are simply
one way of defining subsets of the search space. There are obviously many ways in
which the GP search space could be partitioned (e.g. according to function. fitness.
number of nodes in tree. height of tree) but it is logical to stay close to the spirit of

120

the GA schiema definition because it permits a description of the crossover operator’s
behaviour to be incorporated into the recurrence relation that counts the schema
instances each generation. For example. if we were to insiead choose to define subsets
of the space according to fitness. we would not be able to explicitly formulate how
many instances within a partition of a given fitness would propagate to the next
generation since it is not known how crossover affects the samples of this partition.

The first schema definition we will consider is from [69. p. 117 118}. According
to Koza.

a schema in GP is the set of all individual trees from the population that
contain. as subtrees. one or more specified trees. A schema is a set of
LISP S-expressions (i.e.. a set of rooted. point-labeled trees with ordered
branches) sharing common features.

The distinctive aspect of Koza's schema definition is that a schema is a nunber
of S-expressioas each of which is isomorphic to a tree. See Tree A of Figure 48. It can
be parsed inorder to form the S- Expression (IF (< 3 4) (+ 1 2) (dec x)) where I,
<. +. and dec are names of S-expressions with 3. 2. 2 and 1 argument. respectively,

Koza's definition implies that no schema is defined by an incompletely specified
S-expression such as (+ # 2) where “#" is a wildcard denoting the substitution of
any S-expression. There are wildcards implicit in the Koza definition but they are
restricted to S-expressions which enclose the schema rather than ¥+ within it. Thus.
the schema can also be written correctly as (# (IF (< 3 4) (+ 1 2) (dec x))). with
the interpretation that the wildcard can be matched by any S-expression which has
at least one argument matching the schema. In other words. the schema can be
embedded as a subtree anywhere in a larger tree. In consideration of the variable
length representation in GP a wildcard can also be null (i.e. represent nothing and
the parentheses which match it are eliminated). In this case the schema defines a
partition of one instance.

There are less restrictive schema definitions which are worthy of consideration.
First. while this schema definition seems intuitive because subtrees or syntactically
complete S-expressions are swapped by GP crossover. it ignores the possibility of an
incompletely specified S-expression such as (+ # b) or (+ (# 3 4) b). This sort of

S-expression has a specific name (or root in the corresponding tree. + in this exaple)

121

but some parts within it are not specified because of the presence of internal wildcards.
One obvious example of such an incompletely specified S-expression is the part of the
parent tree “left behind” to be joined with a subtree taken from the other parent.
We call the hierarchical structure (which is not strictly a tree) corresponding to what
is left intact by repeated crossovers a tree fragment or simply a fragment. An
example is Fragment B of Figure 48 which corresponds to a schema (# (IF (< # #)

(+ 1 #) (dec #))).

IF IF
S e e Y i
PN | NN |
3 4 1 2 x # # 1 # #
A B

Figure 48. GP-schemas: Tree (A versus Fragment (B). A is a tree because it can be parsed inorder
to form a syutactically complete S-expression. All of A’s leaves are variables. constants or primitives
that do not require arguments. B is a fragment. not a tree. because it has wildcards as leaves.

A fragment is essentially a tree that has at least one leaf that is a wildcard. It
corresponds to an incomplete S-expression with wildcards inside it. There is always a
wildcard at the root of a fragment to denote that it can be fully embedded in a tree.

[t should be noted that the root wildcard (implicit in Koza's schema definition)
can be matched more freely than a fragment's leaf wildeard. Although both kinds
of wildcard eventually match with a primitive. a primitive can match a leaf wildcard
only if it is in a specified position of an argument list. A primitive can match the root
wildcard each time one of its arguments matches the specified part of the schema.
This is because the schema definition does not state what position the specified part
has in the root primitive’s argument list. For example. both (— (+ 3 4) 5) and (— 5
(+ 3 4)) are instances of the schema (# (+ 3 4)) because the definition does not state
which argument (+ 3 4) must match. The schema definition is not restricted so as to
require a specific argument position. such as the first. or the n-th. to match because. in
order to designate the match. wildcards of different arity would have to be introduced.
This. in turn. would defeat the generality a wildcard is supposed to provide. Instead

this ambiguity is accepted as a natural consequence of a representation which does
not use fixed positioning.

Considering fragments. an even more general schema definition is possible. A
schema may be defined as an unordered collection of both completely detined S-
expressions (as in Koza's definition) and incompletely defined S-expressions (i.e..
fragments). The schema definition does not specify exactly how the fragments or
S-expressions are linked within an instance but it requires that they must all be
mactched.

For example. consider the unordered 3 element collection of (+ 3 4). (+ 3 4) and
(— # #) and three individuals:

1. IF(+ 34 (+34) (—x2)).
2.(IF(—=x2)(+34)(+34) and
3. (AND(+34)(+34H(+34 (—xVy)

Individuals 1 and 2 instantiate the sch::ma once and individual 3 actually instan-
tiates it three times because there are three combinations of two (+ 3 4) subtrees and
one (— # #) fragment. Figure 49 shows a different example in terms of trees.

This general schema can be written more simply as a set {i.e. an unordered
collection without duplicates) of pairs by pairing each fragment or completely defined
S-expression with the number of its occurrences thut must be matched by an instance,
and the root wildcard is implicitly assumed. In the above example. the schema would
be represented as {((+ 3 4).2). (— # #).1)}.

The more general schema definition is relevant because it allows the descrip-
tion of partial solutions in GP. i.e.. of combinations that persist for more than one
generation as crossover dissects and substitutes the parts of a tree corresponding to
wildcards. Another reason is this: Consider that GP estimates the fitness of a schema
by sampling the fitness of its instantiations (i.e. by sampling the fitness of a program
each time the schema is found in it). The accuracy of the estimate depends on how
many different samples GP processes. Other considerations being equal. the accuracy
of thie estimate is not related to whether the schema is a complete S-expression tree
or multiple fragmeants and trees.

We therefore chioose to define GP-schemas as follows:

123

A GP-schema H is a set of pairs. Each pair is a unique S-expression
tree or fragment (i.e.. incomplete S-expression tree with some leaves as
wildcards) and a corresponding integer that specifies how many instances
of the S-expression tree or fragment comprise H.

An individual program in the population instantiates a GP-schema once for
each way it matches the number of occurrences of trees and fragments in the GP-
schema. For example. in Program ii of Figure 49 schema H ={((+ 3 4). 2)} is matched
by six different combinations of two subtrees and. thus. Program ii instantiates H six
times. While argument position is not considered when placing a fragment into the
parse tree. the order of the arguments found inside a fragment must match the order
of the arguments in the target subtree. Thus the program (+ 4 3) does not match
with the schema {((+ 3 4). 1)}.

We stress that a program instantiates a GP-schiema once for each way it matches
the GP-schema because we are ultimnately interested in counting the expected oc-
curences of a program pattern. Our GP-Schema definition captures the notion of
a program pattern and. due to GP’s representation. a program pattern (i.e.. GP-
schema) can occur more than once in a program. Consider a program &. An instan-
tiation of a schema H by a program k. inst(h. H). is an element of Inst(h. H). which.
in turn. is a function that produces a set of all matches of H by the target program h.
based on the matching procedure described above. Figure 49 shows 6 instantiations
of H ={{(+ 3 4). 2)} by Program ii. Though an instantiation designates one specific
match of the GP- schema. the notation inst(h. H) does not specify the designation.
The designation is. however. important and should be implicitly noted because it
1s later required in counting the edges connecting the GP-schema instantiation to
determine its defining length.

Once a GP-schema definition has been adopted. the next task - in analogy to GA
theory for fixed length binary strings - is to define measures of GP-schema specificity
or order and of GP-schema defining length. These two concepts are used together
- again in analogy to GA theory for fixed length binary strings - to determine the
likelihood that a GP-schema will be disrupted by crossover. The notion of order makes
it possible to compare the relative sample sizes of schemas. and can be transferred
directly from GA theory for fixed length binary strings. The notion of defining length.
liowever, can not be directly lifted from the GA domain because of the variable

124

structure of trees and fragments.

[] - -
/\ o ® ~——
s ° o e
/\\ A /\B C - . D
+ + + + + +
N N N ~TN PN SN

3 4 3 4 3 4 3 4 3 4 3 4

Program i Program ii

Figure 49. The GP-schema A = {((+34).2}} has one instance in Program i and s~ix instances
in Program ii (AB. AC. AD. BC. BD. CD). The order of H is 6 and Dy ..yt H) = 4. In Pro-
gram i Dyar(h) = 2. The instances in Program ii (see previous list) have D,.,(h) = 2. L L1 L2
respectively.

The order of a GP-schema is the number of nodes in the graphs corresponding
to its S-expressions and fragments. For example. in Figure 49 the schema H ={((+ 3
4). 2)} has order 6. the schema {((IF # # #). 1)} has order 1. and the schema {((1F
a # #). 1)} has order 2.

Order is a straight-forward concept for GP-schemas. Schemas of higher order
or greater specificity. other considerations being equal. will have fewer instances in a
population than those of lower order or lesser specificity.

The defining length D of a GP-schema instantiation is the sum of its variable
and fixed defining lengths:

D(inst(h. H). H) = Djiyyed(H) + Dyarlinst(h. H). H)

Below. we let D(k.H) be short for D(inst(h.H). H). and D .(h. H} be short for
D, (inst(h. H). H).

The fixed defining length of a GP-schema H. Dy, . 4(f1}). is the number of
edges within each S-expression or fragment of H. not including edges connected to a
wildcard. It is derivable from the GP-schema alone. independently of any progriam.
For example. in schema H ={((+ 3 4). 2)} of Figure 49. Dy .4t H) equals 4.

The variable defining length of a GP-schema instantiation. D,.,.(h. H)_ is the
number of edges which connect together the S-expressions or fragments in H. 1.e.. the

125

sum of the lengths of the shortest paths between a schema fragment and the deepest
conunon ancestor of all the schema fragments in the instantiation. D...(fi. H) must
be calculated for each instantiation and depends upon how the schema instance is
embedded in the program. For example. in Program ii in Figure 49. instantiations AD
and CD have a variable defining length of 2 and the others have a variable defining
length of 4.

Disruption of a GP-schema instantiation inst(h. H) occurs when a node in 4 is
selected as a crossover point and the swapping of the subtree rooted at the crossover
point with a subtree from another program changes h sufficiently so that it no longer
instantiates H.

Let the sample space of disruption of a GP-schema instantiation be the number
of nodes in program h. Size(h). and let Py(h.H) be short for Py{inst(h.H).H).
The upper bound on the probability of disruption under crossover of a GP-schema
instantiation is its defining length divided by the number of nodes in h:

Dyized(H) + D.or(h. H)
Size(h)

Proof: The defining length of a GP-schema instantiation equals the number of
crossover events that can destroy it. Size(h) is the number of available crossover
locations. In the worst case. no subtree swapped in will re-create the instantiation.
0

Py(h.H) =

For example. when h = Program i in Figure 49 and H ={((+34).2)}, Ps(h.H) =
2 since D(h.H) = 6 (D.ar{h. H) = 2. Dy;,.a(H) = 4) and the total program consists
of 9 nodes.

Most reported experiments of GP are run with a probabilistic bias in the crossover
point selection. Leaf crossover points are probabilistically selected with a leaf bias
L, = 0.1 and interior points are probabilistically selected with bias 1 — L, = 0.9.
Let the number of leaf nodes in a schema H be V(H). Since the changing of a leaf
node by crossover is accounted for by Dy;,q(H) and not D, (h. H). the probability
of disruption can now be biased accordingly to yield the more precise formulation of
Pih.H):

LV (H) + (1 = L,)(D(h. H) — V(H))

Path-H) = Size(h)

Proof: The probability that a leaf in schema H will be chosen as a crossover
point is LyV'(H). The probability that an interior point in schema H will be chosen
is (1 — Loy)(D(h. H) — V' (H)). The space of all crossover events is Size(h). O

For example. using again Program i in Figure 49 as h. Py(h. H) = 0.24 since
L,WV(H) =04 (L, =0.1 and V(H) = 1) and the program consists of 9 nodes.

We define the compactness of a GP-schema instantiation as the converse of
its probability of disruption: c(h) equals 1 —~ Py(h. H). Thus. when the probability
of schema disruption of an instantiation is high. its compactness is low. and. when
the probability of disruption of an instantiation is low. its compactness is high. Since
Py(h. H) is a upper bound on the probability of disruption. c{h, H) is the lower bound
on the compactness.

In summary. in this section we have motivated and introduced a general GP-
schema definition and defined concepts of specificity. disruption and compactness
relating to this definition.

4.2. A GP Schema Theorem

This section formulates a GP Schema Theorem (GPST) that expresses the lower
bound of the growth of the expected number of instances of 4 GP-Schiema.

Recall that the GA Schema Theorem for fixed length binary strings expresses
the lower bound on growth in expe-ted membership of a schema in the population
from time t to t + 1. It has three factors:

1. the expected membership of the schema at time t in a population of n strings.

2. the reproductive factor of the expected membership of a schema contributed by
fitness proportional selection. and

3. thie lower bound estimate of whether a schema member will survive crossover

and mutation.
To formulate a similar lower bound for GP the following adjustments are required.

1. The GA Schema Theorem refers to expected members of a schema. Mem-
bership is appropriate in GAs that use fixed length binary strings because a
string instantiates a given schema at most once. The GPST needs to count

127

the expected instances of a GP-schema because a program may instantiate a
given schema more than once (see Section 4.1). Let i(#.t) be the number of
instances (by virtue of instantiation) of schema H at time ¢ in the population
of programs. E[i(H.t)] denotes the expected number of instances of schema H.

The expected number of instances of a schema H that are reproduced via fitness
proportional selection of programs must be calculated. Let f(H.t) denote the
estimated average fitness of schema H at time t.

Lemma 1 E[i(H.t+1)]= i(H,t)%‘—)- .

Proof: Let n denote the population size and f(t) the average fitness of all
programs in the population. Let f(j) denote the fitness of program j. Since
the number of times a program & instantiates schema H can be calculated as
|Inst(h. H)|. the number of instantiations of A in the population at generation
t. i(H.t). is given by i(H.t) = X, |Inst(k. H){. Fitness proportional selection
reproduces a program k wich probability:

f(k)
J-l f(.l)

The expected number of times that program k will be copied into the next

generation is:

i)
;':-—l f (J)
and the number of instantiations of H that will be in the next generation because
of program k is:

f(k)
n S 70)!Inst(k.H)l

Thus. the expected total number. E[i(H.t + 1)]. of instantiations of H in che
next generation. is:

Eli(H.t +)] = i n--ﬂ--)-—-llnst(k H)|

k=1 “1—3 j

E::l I‘J)

n

Since f(t) =

128

E[i(H.t + 1)] = T(ITZ FGN Inst(k. H)|
k=1

i(H.t)i J(&)|Inst(k, H))
)y & I(H.t)

Since the estimated average fitness is:

E{i(H.t + 1)] =

~ _ o f(K)lInst(k. H)|
fH0 =3 =

Therefore. E[i(H,t + 1)] = i(H, t) .(ﬁ';) O

To see how a schema that appears several times in a program can be expected
to reproduce in proportion to its fitness via fitness proportional selection on
programs. it is important to realize that the average fitness of a schema H is
the sum of the partial contributions of the fitnesses of programs that instanti-
ate . The fitness contribution of a program is proportional to the number of
instantiations the program adds to the total instantiations of # in the popula-
tion. If the above divisor were the number of programs that are members of tse
schema. rather than {(H.t). fitness proportional selection would not guarantes
expected reproduction relative to estimated average fitness.

3. Because the standard GP [69] does not use mutation. we do not account for jt.
We define an estimate of the probability of disruption of any instantiation of H
because Py(h. H) is not the same for every GP-instantiation involving H. The
upper bound probability of disruption of any instantiation of H is defined as
follows:

Py(H.t) = sup Py(h.H) at time t.

Py(H.t) is a very conservative upper bound. The GPST would be more pre-
cisely bounded if the probability of disruption of schema instances were more
accuvrately represented.

The modifications result in the following GP Schema Theorem. where £ [(H.0))
denotes the expected number of instances. not members. of H at ¢. fIH 1) is the

129

observed average fitness of the instances of the GP-schema H. f(t) is the average
fitness of the population. Py(H.t) is the upper bound on the probability of schema
disruption. and P,, is the probability of using crossover:

GP SCHEMA THEOREM: E[i(H, t+1)] 2 i(H,)48 (1~ P Py(H, 1))

Proof: By Lemma 1. without crossover. the expected reproduction of schema H is

u(H,t) ‘z: . With crossover. the lower bound probability that schema H survives

intact is (1 — P, Py(H.t)) because Py(H.t) is an upper bound on the probability that

a schema H will be disrupted. O

On first glance. the above recurrence is the same as the GA Schema Theorem but
an interesting difference is due to the “crossover survival term” (1 - P, FP;(H.t)).
This is an estimate of the minimal number of schema instances that survive crossover.
As in GAs that use fixed length binary strings. the actual minimum likelihood of
survival may be greater than the estimate and may change each generation. Whether
this is indeed the case depends upon the composition of the population from which
mates are drawn. Given an appropriate subtree from its mate. a schema disrupted
by removing a subtree at the crossover point can be “repaired” and reinstantiated.
The estimate of crossover survival in both accounts is inaccurate because it does not
account for such an event.

However. in GP. the inaccuracy of the crossover survival term is further exac-
erbated by the fact that both the size and shape of a program containing a schema
instance can change in a generation even when the schiema instance is not disrupted.
As a consequence of the variable length representation and the behaviour of the
crossover operator. the defining length of a schema and the size of the program in
which it is embedded both can change. These changes will also impact the observed
probability of disruption.

Not only is crossover probabilistic. but fitness proportional selection is not ex-
plicitly correlated to program size and height!. These facts. together with the facts
stated in the previous paragraph. imply that the probability of disruption of a schema

!Fitness proportional selection is probably implicitly correlated to program size and height but
the relationship is not known and it may differ for each GP problem.

130

- while an upper bound can be formulated - changes so drastically from generation o
generation. and in such an unpredictable fashion. that it can best be represented as
a random variable. Since the term Py(H.t) in the CPST can be considered a random
variable. we refer to it as D,.

D, represents the observed probability of disruption of schema H in the popu-
lation at time t. We use D, to formulate definitions of disruption and compactness.
This allows us to interpret the GPST with respect to the allocation of trials among
schemas.

Schema Disruption: Let R be the event that. at time t. D, is less than .J. a
coustant. The disruption likelihood of a schema H is defined as the probability of
event R, Pr. For Pr < a. a constant. a schema is disruption prone.

Schema Compactness: Compactness is defined as 1 —Pg. If. at time t. Py > o,
a constant. a schema is compact. Intuitively a schema is compact if its maximum
probability of disruption is low regardless of the size and structure of the programs
which contain it.

4.3. Building Block Definition and Building Block
Hypothesis

[n rhis section we propose and critically examine a definition of GP building blocks
and a GP Building Block Hypothesis (BBH). Both the definition and the hypothesis
result from an interpretation of the GPST and are intended to be fui.y analogous to
the definition of building blocks for GAs that use fixed length binary strings and w
the BBH for GAs that use fixed length binary strings. However, as will ve pointed
out below. our seemingly straightforward interpretation of the GPST rests on several
questionable assumptions. Without these assumptions. no GP BBH can be formu-
lated in analogy with the GA BBH.

GP building blocks: GP building blocks are low order. consistently compact
GP schemas with consistently above average observed perform.ance that are expected
to be sampled at increasing or exponential rates in future generations.

GP Building Block Hypothesis (BBH): The GP BBH states that GP com-
bines building blocks. the low order. compact highly fit partial solutions of past
samplings. to compose individuals which. over generations. improve in fitness.

131

Thus. the source of GP’s power. (i.e.. when it works). lies in the fact that selection

and crossover guide GP towards the evolution of improved solutions by discovering.

promoting and combining building blocks.

1.

t

Let us now review the assumptions presupposed by the GP BBH.

The GP BBH refers to the combining of schemas vet the GPST. by referring to
the expected instances of only one schema., fails to describe the interactions of
schemas. In this respect. the GP BBH is not supported by any interpretation
of the GPST.

Previous GA work in the context of fixed length binary strings [39. 77. 122} has
made this point in much more detail. Many complicated interactions between
competing schemas and hyperplanes take place in the course of a GA run.
Noue of this activity can be described by a Schema Theorem because the latter
simply considers one schema in isolation. Since the GPST does not differ from
the GA Schema Theorem in this respect. the above argument applies with equal
strength to GP.

Vose has pointed out that. without knowing the composition of the population
in a GA. it is impossible to precisely state how schemas combine and how many
schemas can be expected [120]. Again. this point applies equally to GP.

. The GPST also fails to lend support to the GP BBH because hyperplane compe-

tition in GP is not well defined. In GAs. trial allocation competition takes place
among hyperplanes which ke 2 common features but where each “competitor™
differs in the expression of that feature. The lack of a feature-expression ori-
entation in the GP representation (i.e.. GP’s non-homologous nature) results
in an unclear notion of which hyperpianes compete for trial allocation. This
inherent lack of clarity concerning hyperplane competition seems to indicate
that schema processing may not be the best abstraction with which to analyze
GP bLehaviour.

Grefenstette [38] kas called the classic GA BBH a -Static Building Block Hy-
pothesis™. This Le states as

132

Given any short. low order hyperplane partition. a GA is expected to
converge to the hyperplane with the best static fitness (the “expected
winner”). [38. p. 78]

Static fitness is defined as the average of every schema instance in the enture
search space to distinguish it from the observed fitnesses the GA uses as an es-
timate of static schema fitness. He argues that “the dynamic behavior of a GA
cannot in general be predicted on the basis of static analvsis of hyperplanes™ |38,
p. 76]. Two of the reasons that the true dynamics of a GA is not estimated
by the static fitness of schemas are “collateral convergence” and high titness
variance within schemas. The first reason is that. once the population begins
to converge even a little. it becomes impossible Lo estimate static fitness as.
ing the information present in the current population. The second reason is
that. in populations of realistic size. high fitness variance within schemas. even
in the nitial geuecration. can cause the estimate and static titness to hecome

uncorrelated.

This argument applies to GP. Furthermore. the issue of high fitness varance
within a schema may be especially important in GP. As far as we know. the
amount of fitness variance for GP schemas has not heen empirically sampled.
To discuss the issue. one must consider that schemas in GP are “pieces of
program” . A schema instance acquires the fitness of the program which embeds
it. If the primitives are functionally relatively insensitive 1o context. there nay
be schemas in cthe search space that are also relatively insensitive Lo program
embedding and thus have low fitness variance among their instances. GP s
also known to evolve large programs full of functionally inert material. his
material may act to shield partial solutions from interference with each other
and prevent their fitness from changing when surronnding code is sampled . In
contrast. 1, intuitively s »ms that rearranging code or simply inserting a4 new
statement into a prograiu can lead to drastic changes in its itness, This argues

that the fitness variance of a schema’s instances may be high.

2 Aduiittedly this is simplistic: in programs it is difficult to ever clearly state that preves of code
do not interact.

133

4. The assumption of expected increasing or exponential trials for building blocks
requires certain behaviour to be constant over more than one time step. The
GPST does not describe behaviour for more than one time step and it is not
the case that the required behaviour is constant.

The inaccuracy in the assumption arises from estimating the long term be-
haviour of the reproduction and crossover survival terms in the GPST. In fact.
the GPST describes behaviour for only one step and this hides important de-
pendencies in the iteration *. The GPST states that in the next generation
schema H grows or decays depending upon a multiplication factor that is the
product of two terms: the probability of the schema being reproduced (i.e. the
schema's fitness relative to the population average) and the proba: 'ty that the
schema is not di rupted.
fH. 1)

MultiplicationFactor :-—}-,-(-5-(1 — PPy H.t)) (4.1)

Clearly if the Multiplication Fuctor (4.1) is greater or equal to 1. the expected
trials of a schema will increase in the next generation.

Interpreting the GPST to describe the expected allocation of trials to a schema
asymptotically or over more than one generation relies on interpreting
the Multiplication Factor in the GPST for more than one time step. If the time
dependence of the terms were ignored by assuming that the margin by which
a schema's estimated average fitness is better than the population average is
constant and that Py(H.t) never changes. the claim of expected exponentially

increasing trial allocation would be justified.

If we resist ignoring the time dependence of the two terms (because they are
a reality!) to avoid misleading over-simplification. the assumption that the ex-
pected number of trials will grow exponentially is weakened by the qualification
that the Multiplication Factor must be stationary:

M(l - PruPd(H-t” = f(H.t * 1)

70 T+ 1) (1 = PoPy(H.t +1))

ISee (3] for a different and crucial Schema Theorem dependency

134

and the crucial time dependent relationship is the logarithmic growth of the
reproductive term relative to the negative logarithmic growth of the crossover
survival term:

Alog-{-(?-l{t'—t) = —Alog(l - P.oPy(H.t))

5. As a schema starts dominating. the margin by which it is ficter than the average
ficness of thie population decreases. The only thing that enables it to continue
growing is a decrease in its probability of disruption. The problem is that there
is no guarantee that D, decreases at a rate ensuring positive growth of expected

allocation of trials over the same interval.

We can only consider the plausibility of this decrease in the upper bound on
disruption likelihood in this situation. An exact answer is not possible!. Con-
sider the growth of programs in GP runs: In GP the maximum height or size
of a program is set to a lower value for the initial population than the value
crossover is constrained to use in creating trees in subsequent generations. This
allows programs to grow larger each generation (up to the maximum). We can-
not make precise statements about the size and height distribution of a schema’s
instances but if one assumes they are uniformly distributed within the popula-
tion. program growth in each generation may indeed cause the upper bound on
the probability of disruption to decrease. Whatever the circumstances of pro-
gram growth. in GP any decrease in the likelihood of disruption is fortuitous
or roundabout rather than explicit in the algorithm. That is. the crossover
operator and selection process do not explicitly control the size and shape of
programs in a correlation with fit schemas. It should be noted that the deciease
in probability of disruption caused by program growth also works in favor of
unfit program fragments. Because of the variable length representation of GP.
the ‘cushioning’ of unfit programs due to program growth is more of a problem
thian it would be in GAs that use fixed length binary strings.

6. Building blocks may only exist for a time interval of the GP run because the

1Because it requires an account of population composition that is lacking in the GPST.

135

estimated fitness relative to the population fitness and upper bound probability

of disruption of a schema vary with time.

Consider an interpretation of the GPST that is intended to explain why a par-
ticular GP run did not find an optimal solution. An explanatory hypothesis
might be that consistently highly fit partial solutions are not consistently com-
pact. Or. that consistently compact partial solutions are not highly fit. These
hvpotheses reveal a caveat of the BBH : a partial solution is a building block
only if its sample is counsistently both above the population average in ficness
and compact (i.e.. consistently has a low maximum probability of disruption).
When the Multiplication Factor is not greater than one. despite fit partial
solutions or compact partial solutions. building blocks do not exist.

To elaborate further. consider an interval when a schema’s margin of fitness
above the population stays constant. This could happen when the observed
average fitness of the schema increases (due to updated sampling) at the same
rate as the population fitness. In this interval. the upper bound probability of
the schema’s disruption becomes the crucial factor in determining whether it
will be a building block. Relative to its fitness. the schema could be allocated
fewer trials for one interval than a comparable schema because the tree sizes
and shapes of its instances have changed. This implies that. in some sense.
partial solutions can be inert as building blocks at some generations
and active at others. It is not a conceded fact that a building block persists in
the subsequent course of the run. Indeed. in the described circumstance highly
fit partial solutions may never be building blocks because. despite reproduction.

they could be too prone to disruption.

The BBH assumes that solutions can be arrived at through linear combination
of highly fit partial solutions. This is a statement about the problem of program
induction rather than GP. There is no basis for assuming that a solution’s sub-
components are independent. The BBH is a statement about how GP works

-1
.

only if there is linearity in the solution.

The basic lesson is that the GPST (and any similar schema theorem) omits
important dependencies from the recurrence and is. thus. bound to oversimplify GP

136

dynamics. In particular. the dynamics of crossover and selection that are of interest
last longer than one time step. The BBH also assumes the existence of the same
building blocks throughout a run and is not specific about the dynamics of building
block discovery. promotion and combination in the course of a run.

In summary of Section 4.3. we presented a definition of GP building blocks and
a GP Building Block Hypothesis. We then discussed crucial issues in their usefulness
and credibility. The most serious issue cuncerns the time dependent behaviour of
schema disruption and observed average fitness relative to the population titness. We
also have cautioned that there are times when the BBH will not hold because the
BBH presupposes the existence of building blocks despite the fact that compactness
and consistent fitness are not guaranteed.

4.4. Conclusion

We conclude that the GP BBH is not forthcoming without untenable assumptions.
Our critical discussion has led us to identify what we take to be perhaps the major
problem of GP: it exerts no control over program size but program size directly
affects disruption probabilicy. Furthermore. how the probability of disruption of a
schema changes over time. even from one generation to the next. is unpredictable.
This time dependent behaviour is almost certainly a stochastic process (i.c.. it way
have underlying structure but is primarily driven by randomness): while selection
and crossover determine the structure of individuals for the next generation. they
control program size - which affects disruption probability - in only a roundabout
way. A more useful and precise GP building block definition should state something
about the time dependent behaviour of the probability of disruption but this is not
quantifiable without some empirical data or simulation.

4.5. Summary

In this chapter we carefully formulated a Schema Theorem for GP using a schema def-
inition that accounts for the variable length and the non-homologous nature of GP's
representation. In a manner similar to early GA research. we used interpretations
of our GP Schema Theorem to obtain a GP Building Block definition and to state

137

a “classical” Building Block Hypothesis (BBH): that GP searches by hierarchically
combining building blocks. We report that this approack is not convincing for several
reasons: it is difficult to find support for the promotion and combination of building
blocks solely by rigourous interpretation of a GP Schema Theorem: even if there were
such support for a BBH. it is empirically questionable whether building blocks always
exist because partial solutions of consistently above average fitness and resilience to
disruption are not assured; also. a BBH constitutes a narrow and imprecise account
of GP search behaviour.

 ther related work conducted into formulating an understanding of GP based
upon schema or building block processing has been proposed ([90]) and conducted
((115)).

The doubts raised in this chapter about the GP BBH strengthen our conclusion
in Chapter 3. that was based upon experimental investigation. [t is unlikely that GP
conducts its search exploiting true hierarchical process.

Furthermore. the formal investigation of this chapter fails to support any claim
that cthe evolution-based search process of GP plays an exclusive role in the success
of program discovery. It suggests that other search algorithms may also succeed in
discovering problems described in the program discovery framework. It is in this di-
rection we shall now proceed. Rather than assuming that GP is better than other
techniques on the general grounds that it accumulates good partial solutions in par-
allel and hierarchically combines them. we shall empirically investigate other search
algorithms and compare them to GP.

CHAPTER 5

Simulated Annealing and Hill Climbing
for Comparison to GP

This chapter asks how GP compares to other. existing adaptive search algorithms
when they are outfitted to solve program discoverv. Will an adaptive search algorithm
that is not based upon processing a population with fitness proportionate selection
or using crossover be as powerful as GP?

We modify Simulated Annealing (SA) and Stochastic Iterated Hill Climbing
(SIHC) so that they can be used to solve program discovery problems. In Sections 5.1
and 5.2 we describe the adjusted versions of these algorithms. The adjustment is the
introduction of a novel mutation operator. We have named the operator “HVL-
Mutate”. Its design and function are described in Section 5.3. If these algorithis
can successfully solve program discovery problems, they will provide insights into the
nature of program discoverv approaches.

We test our versions of SA and SIHC with the 5 problems (6-Mult, 11-Mult,
Sort-A, Sort-B, and Block Stacking (BS)) of the thesis suite (see Section 2.1). The
bases of comparison are described in Section 5.4 followed by the results and analysis
in Section 3.3.

5.1. Stochastic Iterated Hill Climbing (SIHC) for
Program Discovery Problems

The pseudocode for the SIHC algorithm is shown in Figure 50. At the start SIHC
generates a program called current at random and then applies the mutation op-
erator HVL-Mutate to it. HVL-Mutate is completely described in Section 5.3. It is

139

sufficient for the description of SIHC to state that HVL-Mutate creates a variant (or
"mutant™) of current named candidate in the manner of inheritance and random
variation which ensures that candidate is svntacticallv correct and has the possibil-
ity of differing from current in the number of its primitives (size) or its hierarchical
structure. The acceptance criterion of SIHC is: if candidate is superior or equal
in fitness to current, it replaces current and the search moves onwards from it.
Otherwise another mutation on the original point, current, is tried. The maximum
namber of mutations to generate from the program current before abandoning it
and choosing a new one at random is a parameter of the algorithm which we call
max-mutations. Values of 50. 100, 250, 500, 2500. and 10000 for this parameter will
be tried. The mutation counter for current is reset to zero each time current is re-
placed by candidate. The algorithm always keeps track of the fittest program. When
a maximum number of programs (candidates-processed = limit) have been gen-
erated and each tested for fitness or a perfect solution has been found, the algorithm
terminates. Because of the random restart behaviour controlled bv max-mutations,
this basic hill climbing algorithm is prefixed with “Stochastic Iterated”.

One possible variation of the acceptance criterion of SIHC accepts candidate
onlv when it is better in fitness than current. i.e.. it accepts onlv strictly better
moves. Without max-mutations as a control, SIHC with this variant will get “stuck”
at a program whose one-mutation offspring (“neighbours”) are all of equal fitness
even though one of those neighbours may itself have a neighbour which is more fit.
Ou search spaces which have many local minima of this nature, processing is wasted
once such a local minimum is encountered. Therefore, we elected as an initial choice
to proceed with the acceptance criterion that accepts equal or more fit candidates.

We use the following terminology for describing sequences recognized in the run-
ning of SIHC.

step: The acceptance of a mutant because it is an improvement. A step is not to
be confused with an acceptance. Acceptance includes both equal and improved
mutants whereas steps count moves to strictly fitter programs.

climb: A succession of steps ending with the random creation of a new current
because either max-mutations is reached or ending when a perfect program is
found.

140

evaluations: This defines the number of mutations performed in a climb. The term
“evaluations” is not the same as climb because it accounts for mutations re-
gardless of whether theyv resulted in accepted programs. In tables this value is
abbreviated as "evals™.

begin Stochastic-Iterated-Hill-Climbing Algorithm

INPUT PARAMETERS

limit :integer /* maximum candidates searched e/

max-mutation :integer /+* maximum mutations of current */

GLOBAL VARIABLES
current, candidate,best :program

current-fitness,

candidate-fitness,

best-fitness :integer or real
candidates-processed=0 :integer
mutation-count=0 :integer

Sub-Routine acceptance-criteria
if candidate-fitness > current-fitness
then
best := candidate;
best-fitness := candidate-fitness;
endif
return (candidate-fitness >= current-fitness);
end sub-routine

MAIN PROGRAM

current := random search point;

fitness-current := fitness(current);

REPEAT
candidate = HVL-Mutate(current);
fitness-candidate = fitnesa(candidate);
candidates-processed ++; mutation-count++;

if acceptance-criteria

then current = candidate;
current-fitness := candidate-fitness;
mutation-count := 0;

endif;

if mutation-count > max-mutation

then candidate := random search point;
fitness-candidate := fitness(candidate);
candidates-processed++; mutation-count .= 0;
if candidate-fitness > current-fitness

141

then best := candidate;
best-fitness := candidate-fitness;
endif
current := candidate;
current-fitness := candidate-fitness;
endif
UNTIL
fitness-candidate is perfect
OR
candidates-processed == limit

report best, best-fitness, candidates-processed;

end Stochastic Iterated Hill Climbing Algorithm

Figure 50. Pseudocode for Stochastic Iterated Hill Climbing Algorithm (cont’d from
previous page)

5.2. Simulated Annealing (SA) for Program Dis-
covery Problems

Simulated Annealing ([1]) is an algorithm modelling the physical process of annealing
used in condensed matter phvsics. The goal of phyvsical annealing is to obtain the
minimal energy state of a solid placed in a heat bath. The solid (e.g. a metal)
is heated to liquid so that all its particles are randomlv arranged and randomly
interacting. It is then gradually cooled to a solid state when the particle arrangement
becomes a highly structured lattice and the energy of the arrangement is minimized.
Aunealing works because. as a plivsical substance is cooled. it naturally moves towards
a minimum energy state. The rearrangement of particles is driven by temperature
and random activity. An arrangement movement that decreases energy always falls
into the sequence of particle arrangements leading to minimal energyv configuration.
An arrangement change which increases the energy of the system will fall into the
sequence with a probability p = «’.rp(-’;?,#) where AFE is the positive change in energy.,
ky is Boltzmann's constant and T is the temperature.

142

In 1953 Metropolis et al {80] developed the Metropolis algerithm that allowed the
annealing process to be simulated as a system reaching thermal equilibrium at each
of a series of discrete, decreasing temperatures. The algorithm is based upon Moute
Carlo techniques. It generates a sequence of states of the solid by, first, generating
one state from the current via a slight distortion (simulating a perturbation) of the
particle arrangement. Let the current state be denoted by 7 and the new state by
J and their respective energy by E, and E,. If the energy difference of the two
states, (E; — E)). is greater than or equal to zero. j is accepted as the eurrent state.
Otherwise, j is accepted with probability

e.rp() (o.1)

This acceptance rule is known as the Metropolis criterion. If the temperature in the
Metropolis algorithm is lowered slowly enough. the solid can reach thermal equilib-
rium at each temperature. This requires a large number of transitions to be generated
at each temperature. Thermal equilihrium is characterized by the Boltzmann distri-
bution: Pr{X =i} = 7(1.)e.rp() where:

e 1\ is a stochastic variable denoting the current state of the solid.

e Z(T) is the partition function defined as Z(T) = L, c'rp(lki:l) where the sum-
mation extends over all possible states. 1]

In the SA algorithm used in Computer Science (typically for combinatorial opti-
mization [58, 59]) the energy state is exchanged with an objective or fitness function
which measures how close a candidate solution is to the goal state, the particle ar-
rangement is a candidate solution and the problem is reformulated into one of mini-
mization. A mutation operator is designed to randomly “tweak™ the current solution
to produce a candidate that is a slight distortion of it. (For example, if a binary rep-
resentation is used. a mutation operation simplyv randomly chooses one bit position
and flips the bit at that position.) The algorithin has an annealing schedule which
dictates hiow the temperature changes. The Boltzmann constant is incorporated into
the value of temperature. Typically the algorithm is ¢ priort supplied with an initial
and final temperature, and the fraction of candidates to be sapled at each tempera-

ture. The temperature is discrete and changed according to a decreasing exponential

143

rate. SA uses exactly the acceptance criterion of the Metropolis algorithm (Equa-
tion 5.1): the probability with which a mutant with lower or equal fitness than its
parent is accepted decreases with the temperature of the system and depending upon
the difference in fitness between them according to a Boltzmann distribution.

begin Simulated Annealing Algorithm

INPUT PARAMETERS

T-start, T-end :real

num-steps :integer

limit :integer /* maximum candidates searched +/

GLOBAL VARIABLES

current, candidate, best :program
current-fitness,

candidate-fitness,

best-fitness :integer or real
candidates-processed=0 :integer
cooling-rate,

current-temp :real

Sub-Routine acceptance-criteria /¢ for minimization s/
fitness-delta := current-fitness - candidate-fitness;
if delta >= 0.0
then if current-fitness > candidate-fitness then
best := candidate;
best-fitness := candidate-fitness;
endif
return true
else return (exp(fitness-delta / current-temp) > random(0,1));
endif
end sub-routine

MAIN PROGRAM

current := random search point;
fitness-current := fitness{current);
current-temp :s T-start;
rate := pow(T-end / T-start, 1.0 / num-steps);
REPEAT

candidate = HVL-Mutate(current);

fitness-candidate = fitness{(candidate);

candidates-processed ++;

if acceptance-criteria

then current = candidate;

current-fitness := candidate-fitness;
endif;
/+ adjust the temperature if necessary s/

144

if mod(candidates-processed, num-steps) == 0
then current-temp := current-temp ¢ cooling-rate;
UNTIL

fitness-candidate is perfect OR
candidates-processed == limit

report best, best-fitness, candidates-proce~- i;

end Simulated Annealing Algorithm

Figure 51. Pseudocode for Simulated Annealing Algorithm

The SA algorithm is guaranteed to asymptotically converge to the set of globally
optimal solutions under the condition that the stationary or equilibrium distribution
of the system is attained at each temperature in the annealing schedule. This demands
that the cooling be done sufficiently slowly and an infinite number of candidates are
processed at each temperature. Clearly the latter condition is impractical. Even
achieving a quasi-equilibrium where the actual distribution is ¢ close to the stationary
distribution and ¢ is small requires at each temperature the sampling of candidates
that number in the quadratic order of the solution space. This in turn leads to
an exponential time execution of the algorithm. In practise, the designer resorts to
practically adequate schedules where typically the trade off between sampling size
and temperature decrement favors small temperature decrements and small samples.
The schedule is often experimentally tuned. The reference {1] should be consulted for
a complete exposition of theoretical analvsis of SA.

The pseudocode for the SA algorithm we use is shown in Figure 510 It s a
standard version where HVL-Mutate is used as the mutation operator. Fitnesses
are normalized to lie in [0.1]. The temperature decreases according 1o the expo-
nential cooling schedule set up by the algorithm. In the pseudocode the variable
cooling-rate is calculated in this manner.

In our experiments a starting temperature of 1.5 is always decreased to a user
specified final temperature. The variable current-temp decreases after each of a user
supplied fraction of candidates are processed. Table 13 lists the final temperature (Ty)
and stepsize for each problem.

Problem | T¢ Stepsize

Table 13. Tr and Stepsize for SA Experiments

5.3. A Hierarchical Variable Length Mutate Op-
erator: HVL-Mutate

In Chapter 3 it was stated that, for program discovery, it appears crucial that pro-
grams that vary in length and structure are considered as candidate solutions. Fur-
thermore, it is very convenient when attempting program discovery to generate can-
didate programs which are svntactically correct without requiring anv ad-hoc repair.

On this basis it is straightforward to decide that the HV'L-Mutate operator should

meet the following criteria:

o In the spirit of the phvsical annealing process. the operator must create a new
program from current that is a “small distortion™ of it. Some of the structure
and character of current must be retained and novelty must be introduced

through randomly guided decisions.

¢ The operator must produce a directly evaluable program (i.e. svntactically
correct) without any ad-hoc repair functions being required.

e The operator must be capable of generating a mutant that differs in number of
primitives (size) and/or hierarchical structure from current.

To meet the criteria, like GP. HVL-Mutate conveniently exploits a hierarchical
representation for programs. It draws its inspiration from the method for calculating

16

the distance between trees [102]. That approach defines distance as the minimum cost
sequence of editing one tree, step by step. to become the other using 3 clementary
operations: substitution. insertion and deletion which are designated with costs.
HV'L-Mutate first randomly selects a node in a copv of current’s parse tree.
This node is called chosen-node. HV'L-Mutate then flips a fairlv biased three-sided
coin to decide upon one of three sub-operations to perform: insertion. deletion, or

substitution.

o If the sub-operation is substitution. chosen-node is directly replaced with an-
other primitive of the primitive set which has an equal number of parameters.
This is demonstrated in Figure 32.

o [f the sub-operation is deletion. the largest subtree of the tree rooted it chosen-
node is promoted to replace it. This is demonstrated in Figure 52, \When wore
than one subtree of the tree rooted at chosen-node is largest, one of the Lrgest
is chosen randomly. When a leaf is chosen for deletion. it is replaced by a

different randomly chosen leaf.

o If the sub-operation is insertion. a primitive is chosen from the primitive set at
r- adom. It will replace chosen-node but if it requires primitives the subtree
rooted at chosen-node will act as its first parameter. All remaining children of
the newly inserted node will be randomly drawn from the subset of primitives
that require no parameters (i.e. are leaves).

All these sub-operations preserve the svatactic correetness of the mutant and
try to minimize the change to a program within the constraints of supporting i non-
binarv variable length hierarchical representation. HVL-Mutate does not guarantee
that mutation will not drastically change the size and shape of a tree, but does reduce
the probability of that event. All three sub-operations are random perturbations of
current.

147
ORIGINAL PROGRAM as PARSE TREE
1
5 A «<Mandomly chosen node
L
4 5
SUBSTITUTION DELETION
1 new node of 1 largest child
same arity - of chosen
e 2 @
4 5
INSERTION
1 new ncde with chosen node

as first child, other children
leaves.

2 D<o
- L v

3 A E F
B c)
4 5
Figure 52. Demonstration of HVL-Mutate: The parse tree of the current program is used. A node
is chose at random. A sub-operation (substitution. deletion or insertion) will occur at that node.

5.4. Experimental Approach

We compare the performance of SA. SIHC and GP using the five problems in the
thesis problem suite. These problems are described in Section 2.1. For recall. they
are:

e 6-Mult

11-Mult

Sort-A

Sort-B

Block Stacking (BS)

The combinations of algorithms (3) and problems (3) comprise 13 experiments.
An experiment (or run) consists of 30 executions (with an exception for SIHC') of the
algorithm using the same parameter settings but each started with a different seed
for the random number generator. In SIHC experiments approximately 10 excecutions
are run when variations on max-mutations are tried. Then one or two settings of
max-mutations are chosen and executed for a total of 30 times.

The three algorithms are comp=red by run when each execution of a run is allowed
to process a maximum of 25300 candidate solutions or individuals.

Thus, each GP execution is permitted to process for a maximum of 50 generations
bevond the initial population because the population size is 300. Processing implies
a candidate solution being selected and then crossed over and evaluated for fitness, if
1.2cessary. It also includes the random generation and fitness evaluation of generation
0. This vields a maximum of 25500 individuals processed. The fitness values in the
GP runs for all 5 problems were scaled by linear and exponential factors of 2. Each
GP execution uses a “generation gap” of 0.9 which means that the crossover operator
is applied 90%, of the time with the remaining 10%. of individuals chosen by selection
being directly copied into the next generation. The latter individuals are not re-
evaluated for fitness, therefore GP performs a maximum .7 23000 fitness evaluations

!. Because the latter individuals are copied, a definite lower bound on the number of

1500 + (10% x (50))

149

duplicate candidate solutions GP considers is 10%. GP does not check for duplication
generated by crossover or selection.

In an execution of SA or SIHC processir , implies an individual (or candidate)
being generated by mutation and evaluated for fitness. SA and SIHC will evaluate
the fitness of every candidate solution because they do not check for duplicates.

Fitness evaluation is the most computationally expensive aspect of all three al-
goritums. Therefore, another basis of equality would be fitness evaluations rather
than how many individuals are processed. This is not unreasonable but our choice
allows the generation gap to be changed as a parameter of a GP run without affect-
ing requiring the other two algorithms to be re-evaluated with different maximums
on processing. Furthermore, it accounts for the selection process in GP: while some
individuals are copied directly, they first are selected. Selection is a crucial element
of the algorithm because GP relies upon a population-based mechanism. As well,
an unresolved issue arising when using fitness evaluations is how to account for an
implementation of the algorithm that considers duplicates but. by recording fitnesses,
does not have to re-evaluate them for fitness.

The comparison uses a consistent set of parameter settings for each algorithm
across the problems of the problem suite. There is no “tuning” of a technique to its
best potential on a particular problem. For example. in GP, for a given problem and
primitive set, while it is known that population size can affect performance. only a
oune population size was used in this experimentation. In SA, for example, the cooling
schedule could also have been adjusted to improve effectiveness but was not.

For each experiment. on a per run basis. we show the probability of success,
the average fitness of the best individual of each execution and the average num-
ber of individuals processed each execution. The latter two values are expressed as
percentages for uniformity where 100%. is perfect fitness or the maximum number of
individuals allowed to be processed (25500) respectively. For successful executions
we show the average number of individuals processed and the size and height of the
parse trees of successful programs. We use a T-test measuring 95%. confidence [91]
to state that the difference between two results is statistically significant. Standard

deviations for results where there is sufficient data are indicated in parentheses.

150

5.5. Experiment Results

5.5.1. 6-Mult Results

Table 14 summarizes the results obtained for the 6-Mult problem. Figures 53 and
54 plot typical executions for a typical SA experiment and one climb of a successful
SIHC experiment respectively.

Both SA and SIHC are capable of solving this particular program discovery
problem. In fact, the probability of SA succeeding was 100%. This is statistically
significantly better than GP which was successful 79.5% (40.3) of the time. We had
no intuition of a sensible value for max-mutations in the SIHC experiment so we tried
5 different runs with the parameter ranging from 10 to ten thousand. The results for
all executions and just those that were successful are displayed in Tables 15 and 16.
When max-mutations was ten thousand a solution was found in 77% (50.4) of the
run's executions. This value does not differ significantly from the GP likelihood of
success but it does differ from that of SA.

On average SA processed 34.2% (7.7) of the maximum individuals allowed. This
is approximately 13770 (1836) out of 25500 individuals. GP processed only slightly
more - 33.7% (27.8) of the maximum individuals allowed, over all executions but on
successful executions processed only 48.4% (21.4). There are large standard devia-
tions in the GP data compared to the standard deviations of the SA data. SIHC
(max-mutations = 10000) processed the most individuals: 61.3% of maximum, over
all executions and 57.7% (30.2) over just successful ones. Statisticallv, there was no
distinction on this criterion among the three algorithms.

Because SA solved all executions of its run, it achieved a 100% fitness on average.
Despite STHC and GP solving less executions, the average fitness of the best individual
was 98.8% (2.8) and 98.0% (4.5) respectively. SA is statistically significantly hetter
than SIHC and GP in this respect. SIHC and GP do not significantly differ.

Table 28 displays the height and size of the parse tree of successful programs
for all problems and experiments. Interestingly, on 6-Mult SIHC did find successful
programs which were significantly shorter (i.e. had less primitives or fewer nodes)
and of less depth (i.e. the height of the program trees was less).

With SIHC the best setting for max-mutations was ten thousand. With it, on
average, a successful climb was 9.4 steps and the number of evaluations per step in a

131

63 65
60 ol
Z 88 g
© 55
® -1
2 £
¥ i°l
i
st
§ § as$
o} 2
‘o -
3
as
0 R . " . . - N R N
3000 10000 15000 20000 25000 5000 10000 15000 20000 25000
Individuals Processed Individuals Pracessed

Figure 53. Plot of successful SA Run on 6-
Mult. data recorded every 500 mutations.

Figure 54. Plot of successful STHC climb on 6-
Mult when max~-mutations = 5000. Data was

recorded at each step, a step is denoted by a
diamond.

successful climb was 7336 resulting in an average of 777.1 evaluations per step. One
way of interpreting this value is that it quantifies the local nature of the landscape. i.e.,
with the given operator, how much effort is required to find - higher point than the
present one. The fact that SIHC was successful implies that there may not be many
local optima to stymie the search or that there may be many peaks of optimal height.
Notice that the steps per climb and evaluations per step increase as max-mutations
is increased but not at a linear pace. It appears that it hecomes harder to find a

Rate of
Success

(%)

6-Mult

Fittest
Individual

(%)

Inds
Proc'd

Inds Proc'd
in Succ Exec

(%)

GP 79.5 (40.3) | 98.0 (4.5) | 55.7 (27.8) 48.4
SIHC. max-mu = 300 |l 40.0 (49.0) | 96.6 (2.3) 81.8 61.3
SIHC. max-mu = 10K || 76.7 (50.4) | 98.8 (2.8) 61.5 57.7
S4 100.0 100.0 54.0 54.0 (7.2)

Table 14. Comparison of GP. SA and SIHC on 6-Mult

Max Rate of | Best Fitness Steps Evals Evals: | Evals: Exec

Mutations | Success (%) per Climb | per Climb | Step (%)
(%)

50 10 89.8 (3.1) 2.6 80 30.8 94.0
100 20 91.4 (3.6) 3.9 165 47 81.%
250 20 93.5 (3.5) 4.4 425 97 9.0
500 40 96.6 (2.3) a.4 855 159 81.8
10000 77 98.8 (2.8) 9.3 9787 1052 61.5

Table 15. 6-Bit Muiltiplexer: SIHC Data

Max Steps Evais Evals: | Evals: Exec
Mutations | per Climb | per Climb | Step (%)
50 2.6 79.8 31.1 | 59.0 (25.9)
100 3.1 166.4 51.2 17.8
250 4.0 394.1 99.7 | 58.7 (28.2)
500 5.0 833.4 165.6 | 61.3 (22.0)
10000 9.3 11271.4 | 1207.6 | 57.7 (30.2)

Table 186. 6-Bit Multiplexer: SIHC data for successful executions

better candidate as the number of overall steps in a climb increases. Regardless of
max-mutations. a successful execution requires approximately the same number of
evaluations.

5.5.2. 11-Mult Results

Results for the 11-Mult problem are summarized in Table 17. Only SA among the 3
algorithms was able to obtain a perfect solution. This it accomplished on 3 out of 30
runs. One solution was a program with tree height of 14 and 1891 nodes. On average
SA found a solution which was 93.0%. of the optimum (adjusted fitness of 1905.6 out
of 2049). Figure 55 shows a typical and successful SA execution.

Neither GP or SIHC could solve 11-Mult with 255C0 evaluations. The fitness
of the best program found by GP was 87.6% of the optimmum. When the value of
max-mutations was 5000, the fittest program SIHC could find was 88.9% of the

153

optimum. The results for SIHC when the maximum mutations parameter was varied
from 50 to 10000 were not significantly different. They are displayved in Table 18.
Three SIHC climbs are plotted in Figure 56. It is interesting to note that a verv simple.
greedy heuristic that can be coded in less than one page outperforms a complicated
and computationally expensive algorithm such as GP.

Rate of | Best of | Fittest | Inds | Inds Proc'd

11-Mult All Execs Ind Proc’d in Succ
(%) (%) | (%) | Exees (%)
GP 87.6 79.2 1060
SIHC
max-mu = 500 0 844 81.6 | 100.0
max-mu = 5000 0 95.31 88.9 | 100.0
16.7 100.0 93.0 | 99.5 98.2

Table 17. Comparison of GP, SA and SIHC on 11-mult

SIHC Best Climbs

Max Steps Evals: | Evals: Best Steps: | Evals: | Evals: | Best Fit-
Mu | per Climb | Climb | Step | Fitness (%) || Climb | Climb | Step | ness (%)

50 3.0 1076 | 21.5 73.6 20 476 23.8 77.35
100 6.6 2290 | 34.5 79.5 32 325 16.4 76.62
250 10.5 637.2 | 60.8 81.2 60 2273 | 379 87.95
300 15.0 1466.0 | 97.0 81.6 32.5 2436 744 84.38
2500 13.2 3939.0 | 296.6 74.1 57 12203 | 214.1 95.31
2000 2.9 25189 | 429.3 | 88.9 (34.2) 8.4 22093 | 2630.1 95.31
10000 25.6 21059.0 | 822.6 | 88.4 (39.0) 40 25000 | 625 96.88

Table 18. SIHC and 11-Mult

The 11-Mult problem experiments were also interesting because the degree of
success of the three search techniques varied. SA is statistically superior to GP or
SIHC based upon rate of success. When the expected best fitness is compared, GP
and STHC when max-mutations = 5000 do not differ statistically significantly. GP is
slightly out-performed by hill climbing when the best values are compared: the best

) 5000 10000 15000 20000 25000 0 2000 4000 6000 H000 10000 12000 13000
Individuals Processed Individuals Processed

Figure 55. Plot of typical and successful SA Figure 56. Plot of 3 SIHC climbx on 11-Mult.

executions on 11-Mult, data recorded every 500 Data was recorded at each step, a step is de-

mutations, noted by a symbol, max-mutations = 2500, all

climbs from same execution.

fitness ever obtained by GP was 87.6% of the optimum and with SIHC it was 96.88%.
of the optimum (max-mutations = 10000).

5.5.3. Sorting Results

Recall that we have two different versions of the problem called Sort-A and Sort-B.
Each uses the same set of primitives and test suite but employs a different fitness
function. See Chapter 2 for details.

On both Sort-A and Sort-B SA had approximately an 88%. probability of success
and the expected fitness at 23500 evaluations was very close to optimal {87.4%, and
91.2% respectively). This is comparable to GP for Sort-A which solved 80Y%. of the
executions and superior to GP for Sort-B which solved 66.7% of the executions.

On both Sort-A and Sort-B SA processed approximately 63%, of the maxinum
allowed individuals in all executionus and about 53% of maximum allowed individuals
in successful executions. This is more than GP for both Sort-A and Sort-B. Sort-A
processed 51.3% of individuals in all executions and 39.1% in successful executions.
Sort-B processed 60.4% of individuals in all executions and 40.6%. in successful exe-
cutions. SIHC processed the most individuals: 72.2% of maximu, for all executions

but fewer than both GP and SA on successful executions (37.5% vs. 39.1% vs 534.6%).
This difference is not statistically significant however.

The size and height of the trees of successful programs in Sort-A with SA were
less than those obtained with the GP. We could not test for statistical significance
because the samples were too small.

Inds Inds Proc’d

in Succ Exec
(%)

Rate of Fittest

Sort-A

80.0 (40.0) | 49.7 (18.1) | 51.3 (35.0) { 39.1 (26.6)

SIHC. max-mu = 100 || 46.7 (49.9) | 72.6 (40.7) 72.2 37.9 (27.6)

SA 83.3 (37.9) | 87.4 (28.3) | 62.2 (31.0) | 54.6 (28.5)
Table 19. Sort-A Comparison of GP. SA and SIHC

Rate of Fittest Inds Inds Proc’d

Sort-B in Succ Exec

(%)

GP 67.7 (47.1) | 85.3 (22.6) | 60.4 (37.5) | 40.6 (28.2)
STHC. max-mu = 50 600 |79.1 (31.3) 62.5 37.5 (13.4)
SA 88.3 (37.3) | 91.2 (19.7) | 64.0 (30.5) | 56.6 (28.5)

Table 20. Sort-B Comparison of GP. SA and STHC

Tables 21 and 22 provide the details of SIHC and Sort-A. Tables 23 and 24
provide the details of STHC and Sort-B. We discover that it is possible to hill climb
to a solution in the fitness landscape regardless of the value of the max-mutations
parameter. In fact. there is no significant difference in the probability of success for
different values of the max-mutations parameter among the settings we tried. From
the details of successful climbs one can see that, surprisingly. most climbs take between
one and two steps. From this it appears that there are many randomly spaced small
equally sloped peaks. This phenomenon was confirmed when the SA executions were
examined in detail. Frequently there were sequences of onlv one or two mutations
that produced a fitter program. This data shows a contrast in search space character

when it is compared with that of 6-Mult and BS. In 6-Mult the steps per climb varies
from 2.5 to 9.3 and in BS. regardless of max-mutations. there are approximately -
steps per climb. The greedy nature of SIHC seems likely to he responsible for
significantly lower probability of success when compared to GP or SA.

Max Rate of | Best Fitness Steps Evals Evals: | Evals: Exe |
Mutations | Success (%) per Climb | per Climb | Step (%)
(%)
30 50 67.6 (47.7) 0.003 49.98 16406.4 64.3
100 46.7 72.6 (40.7) 0.008 100.2 12302 2.2
250 50 62.1 (53.9) 0.0135 249.7 18400.4 2.2
200 46.7 63.2 (50.0) 0.0326 499.7 15343.2 68.2

Table 21. Sort-A: SIHC Data

Max Steps Evals Evals: | Evals: Exec
Mutations | per Climb [per Climb Step (%)
o0 1.4 (0.3) 28.6 (18.4) 20.4 | 78.7 {15.3)

100 1.6 (0.5) | 79.4 (32.3) 90.5 | 37.9 (27.6)
250 1.8 (0.4) | 153.6(91.4) | 853 | 44.3 (16.7)
300 2.0 (0.5) | 388.3(255.4) | 194.1 | 31.1 (25.9)

Table 22. Sort-A: SIHC data for successful executions

Max Rate of | Best Fitness Steps Evals Evals: | Evals: Exee
Mutations | Success (%) per Climb | per Climb | Step (/)
(%)
50 60.0 81.8 (43.8) 0.0034 49.98 14489.3 62.5
100 30.0 79.1 (31.3) 0.006 100.1 16399.8 83.6
250 50.0 79.4 (42.4) 0.018 249.5 14050.5 716
500 40.0 74.1 (43.7) 0.02 498.9 22837.1 80.6

Table 23. Sort-B: SIHC Data

Max Steps Evals Evals: | Evals: Exec
Mutations | per Climb | per Climb | Step (%)
o0 1.3 (0.5) 27.2(12.3) 204 | 37.5(13.4)
100 1.7 (0.9) 60.7 (38.6) 36.4 | 31.7 (34.7)
230 1.8 (0.4) | 1036 (65.8) | 576 | 43.5 (26.1)
500 1.7 (0.8) |305.2 (248.7) | 174.4 | 52.2 (20.9)

Table 24. Sort-B: STHC data for successful executions

5.5.4. Block Stacking Results

Tables 25 and 26 show the comparative results and details of the different SIHC runs
where max-mutations is varied for BS. GP. with a success rate of 76.7% (16.3). had
a significantly lower rate of success than either SA or SIHC. SA had a 100% rate of
success and SIHC had a 94.3% rate of success. The ouly significant difference in the
number of individuals processed was between GP and SA (43.7%. to 28.5%). There
was no significant difference in individuals processed when only successful executions
were considered.

The ranking for tree heights was statistically significant: STHC had the shortest
trees (7.7). GP followed (10.1) and SA was 13. SIHC also produced significantly
shorter programs (in terms on numbers of uodes) when compared to GP and SA
(25.7. 36.9 and 45.1 respectively). Thus there is a trade off between probability of
success and compactness of solution. SA seems to guarantee a solution but. perhaps.
at the expense of 1eadability and efficiency of solution.

Prob of Fittest Evals Evals Used

Block Stacking Success | Individual Used in Succ Run
) (%) (%) (%)

GP B 76.7 (16.3) | 87.7 (31.9) [43.7 (32.1) | 35.1 (26.6)

SIHC. max-mu=100 | 94.3 (23.2) 949 34.5 30.5 (24.0)

SA 100.0 100.0 28.5 (22.2) | 28.5 (22.2)

Table 25. Block Stacking Comparison of GP, SA, SIHC

Max Rate of | Best Fitness Steps Evals Evals: | Evals: Exec

Mutations | Success (%) per Climb | per Climb | Step)
(%)

90 40.0 (24.0) | 70.0 (30.7) 0.96 61.8 4.6 e R
100 94.3 (5.4) | 94.9 (26.6) 1.2 121.0 104.6 34.5
250 80.0 (4.5) | 84.8 (43.0) 1.3 285.6 21243 43.8
500 70.0 (21.0) | 72.5 (34.4) 1.3 327.8 106.5 40.7
1000 66.7 22.3) | 72.2 (54.5) 1.4 1028.2 9.9 60.G

Table 26. Block Stacking: SIHC Data

Max Steps Evals Evals: | Evals: Exec
Mutations | per Climb | per Climb | Step (%)
a0 4.0 07.3 143 | 36.0 (28.2)
100 35 94.4 26.9 | 30.5 (24.0)
230 4.4 173.7 39.7 | 296 (27.0)
500 4.1 181.3 43.6 | 228 (13.7)
1000 39 507.6 131.8 | 41.7 (26.5)

Table 27. Block Stacking: SIHC data for sucressful executions

5.5.5. Results of Other Literature

Subsequent to [89] another comparison of hill climbing and GP was conducted. Juels
and Wattenberg ([52]) compared GP to a hill climbing algorithm on one problem,
11-Mult. Their hill climbing algorithm is equivalent to ours if max-mutations is set
to the maximum number of individuals processed.

The authors only describe a specialized mutation operator in the context of

11-Mult.
primitive which is drawn with 309 probability from the set. of AND, OR. NOT and

It first chooses a node of the program parse tree at random. Another

IF and 50% probability from the set of address and data values is substituted for the
chosen node. If the new primitive has too many parameters. an appropriate pumber
are randomly deleted. If it has too few. random primitives drawn from the set of
address and data values are added.

Obviously this operator has a generalization though the authors did not state

Problem SA GP SIHC

6-Mult Tree Height | 8.6 (2.8) 6.9 (3.2) 3.0 (1.9)
Tree Size 58.0 (49.4) | 42.8 (32.0) | 23.9 (0.2)
Tree Height | 5.64 (2.0) 6.8 (2.8) 6.7 (1.7)
Tree Size 12.9 (6.0) | 25.0 (25.3) | 48.3 (7.8)
Tree Height | 5.6 (2.0) 2.7 (1.4) .3 (L.5)
Tree Size 12.6 (5.6) | 19.4 (15.0) | 44.3 (5.9)
Tree Height 13 (1.2) 10.1 (3.0) | 7.7 (1.8)
Tree Size 45.1 (16.3) | 36.9 (16.3) | 25.7 (1.0)

159

Table 28. Successful Program Size and Structure Data: SIHC, SA. GP

or test one. Qualitatively it does not differ from HV'L-\Mutate because it generates
svntacticallv correct programs and allows a mutant to differ in size and structure
from its parent. Quantitatively one would expect small differences between it and
HVL-Mutate that will depend upon the primitive set which is used. The distribution
of leafs to nodes in a primitive set influence the detailed specific behaviour of each
operator.

Similar to our findings the authors reported that their algorithm could solve
11-Mult. Theyv provided a comparison to a version of GP that used a population
size of 4000. It was based upon 20000. 40000. 60000. and 80000 fitness evaluations.
Thev reported that, while GP had a 28Y% likelilhood of solving 11-Mult after 40000
cvaluations and a 75% likelihood after 60000 evaluations. the hill climbing algorithm's
probability of success was 619 and 98Y respectively. More details are available from
the paper ([52]).

5.6. Summary

By wav of analyzing GP using comparison, we introduced program discovery ap-
proaches for two traditional single point based adaptive search algorithms: Simulated
Annealing and Stochastic Iterated Hill Climbing. Despite not tuning SA, it was
capable of outperforming GP in certain respects on a majority of the problems we ex-
perimented with. We observed mixed or comparable differences between operator and

160

search techniques across different problems. This confirms the notion that the suit-
abilitv of a scarch technique depends upon the fitness function and primitives chosen
for a particular problem since these influence the nature of the search landscape.

It seems critical that program discovery algorithms are carefully compared and
well understood to aveid premature conclusions regarding superiority. Our finding
that GP is not alwayvs better than other program discovery algorithms on the problem
suite is not surprising. Altenberg {3] has shown the particular search bias GP exploits
for power and the search landscape character it depends upon in order to succeed.
While the restricted definition of program discovery that we use in this thesis orig-
inates from the GP paradigm. quite obviously nothing within it stipulates that GP®
will alwavs be best.

The experimental results of our comparison clearly suggest something that s
may initially strike one as counter-intuitive: that adaptive mutation and a degree of
localized search are useful for program discovery. Typically one Jhinks that programs
are so sensitive to context that tweaks are too radical. Sinee GP? swaps subtrees
which are actually sub-programs there is some semantic level exchange of encapsulated
function which makes crossover seem more intuitive than mutation. Yet, HVL-Mutate
seems to indicate that any intuition that this sort of exchange is necessary is mcorrect
the hierarchical representation seems to allow tweaks to explore the search space in
an efficient manner.

Many of the exy.iments in this chapter prompt further investigation. Related
work that could be pursued includes:

e searching for statistical measures which would indicate the superior technigue

for a particular problem or the superior crossover operator to choose in GP?

e finding out how these search algorithms compare on larger program discovery
problems, i.e. how well do they scale? Automatic definition of functions (ADF)
[70] is claimed to improve performance on big problems. ADF is i technigue
of representation rather than an operator so it scems likelv that HVL-n:utate
can be modified to support it. It would be interesting to find out whethey S/
or SIHC with the extended HVL-Mutate are sufficiently powerful to handle the
same scale of problems as GP using ADFs.

CHAPTER 6

Crossover Hill Climbing and Crossover
Simulated Annealing for Comparison to
GP

The crossover operator is a crucial factor in the power of GAs because of its com-
binative nature. It is one reason GAs may be superior to other search techniques
for certain problems (or certain fitness landscapes). Recent GA research has focused
upon finding ont for what class of problems GAs are more effective than other al-
gorithms (e.g. [83]). In the context of program discovery, this implies that role of
GP crossover needs to be understood. The first goal of this chapter is to investigate
the basic nature of the GP crossover operator by observing its performance when it
replaces HVL-Mutate in Simulated Annealing and Stochastic Iterated Hill Climoing.

In Section 6.1, we describe the concept of a fitness landscape and introduce a
measure we call "svntax correlation”. We estimate that the parent-offspring syntax
correlation of GP crossover is lower than that of HVL-Mutate. Ci nsequently, among
the class of fitness landscapes created by GP crossover, there ure plausibly some
landscapes that are amenable to search by SA or SIHC. In Section 6.2 we describe
crossover based SA and SIHC algouithms. In Section 6.3 we compare the performance
of these algorithms to GP using the suite of problems of the thesis.

A second goal is to improve GP. In Section 6.4, based on the ireasonable success
of the alternatives we compared to GP. we suggest that integrating a local search
into GP will improve it by complementing its global search power. In Section 6.5
we provide a variety of hybrid schemes combining GP and stochastic iterated hill
climbing. The hybrid algorithms are tested for viability and compared in Section 6.6.

1G2

They indeed result in better performance than GP.

Our final goal is to broaden our attention from individual algoriths to the collee-
tive group of algorithms this thesis has either introduced or described. In Section 6.8
we reconcile their important differences at one level. by describing their similari-
ties at a more general. qualitative level. Succinctly, the algorithms are united v
a framework of evolution-based concepts: selection. inheritance and blind variation.
Each is a unique design and implementation of the collective concepts. Recognizing,
this alliance sets the stage for future directions in research into computation-based

behaviour.

6.1. Combining GP Crossover with SA or SIHC

The notion of a fitness landscape was introduced by Sewall Wright in [125]. It is a
concept in evolutionary theory that supports study of the dynamics of evolutionary
optimization by providing a formal definition of the underlying structuie of the search
space. It is used to study the dynamics of any adaptive search ([81. 31]), even those
hased upon single point dvnamics rather than population dvnamies. It can obwiously
be extended to help analyze the dvnamics of GAs [50]. Stadier [111] deseribes a

fitness landscape as:

a collection of genotypes arranged in an abstract metric space, with each
genotype next to those otlier genotypes which can be reached by a single

mutation, as well as a value assigned to each genotype [111]

A clear correspondence between fitness landscapes concerned with nrogram discovery

and those concerned with biological evolution exists:
e A candidate solution (i.e. a program) corresponds to a genotype,
¢ An application of a genetic operator corresponds to mutation.

e The fitness of a candidate solution in program discovery is the value assigned

to each genotype.

A graph theory perspective and vocabulary is often used to discuss fitness land-

scapes. A fitness landscape corresponds to a graph of vertices and edges. A vertex

represents a candidate solution (or more). Two vertices in the graph are connected

163

if an application of the search operator to the corresponding program (or programs)
generates the other'. A search is a graph traversal along edges that occurs when
a search operator is applied and the search moves from one candidate solution to
another.

A fitness landscape has an associated notion called neighbourhood. The neigh-
bourhood of two mates involved in GP crossover is the set of all offspring that can
possibly be generated from crossing over the two mates and that are different from
them. The neighbourhood of a program involved in HVL-Mutate is the set of all
mutants that can possibly be generated by applying HVL-Mutate to it and that are
different from it. The term neighbour is svnonyvmous with offspring. child or mutant.

Concerning neighbourhoods, it is interesting to contrast the size of those of GP
crossover to those of single-point crossover combined with a fixed length bit string. In
GP crossover, the maximum size of the neighbourhood is the product of the number of
crossover points in each parent. The actual size depends upon the sizes of the specific
parents involved in the crossover and upon the redundancy of offspring (duplicate
offspring are not counted in the size of a neighbourhood).

In GAs that use a fixed length representation. the maximum size of the single-
point crossover neighbourhood is 2/ where [is the length of the representation. The
actual size of the neighbourhood is 2/ less the number of duplicates. The fixed position
representation implies that, if each mate has the same value at a given position. all
offspring will only have that value at that position. Let us term this incident “allele
redundancy”™. In a binary representation. the probability of allele redundancy at a
bit. position in two independent strings is 30% and this considerably constrains the
neighbourhood size. With an alphabet of higher cardinality the probability of allele
redundancy is less but nonetheless when the two mates are equal, the number of
duplicates equals 2! and the neighbourhood size equals zero.

In GP crossover, there are two reasons to expect less redundancy among the
neighbours of two mates. First, GP has a non-binarv alphabet which reduces the
probability of the recipient and donor containing an identical subtree. Second, be-

cause there is no fixed positioning in the representation, any primitive(s) in the donor

"We assume the parent-mutant or parents-children relationship is symmetric. That is. the oper-
ator is capable of generating vertex A from B as well as vertex B from A

164

can be placed anywhere in the recipient and thus provide another offspring. For ex-
ample, consider two duplicate 2 node S-expiessions with a distinct root and child.
This is akin to the case of a binarv alphabet and identical mates. In GP there are |
possible crossovers and while two of these produce duplicates, the remaining 2 pro-
duce original trees. As another example, consider two duplicate 3 node S-expressions
where the root has 2 children and each node is a distinct primitive. There are nine
offspring in the crossover of the two mates but only three of the nine produce a
duplicate.

Succinctly the contrast is: with GP crossover, a crossover neighbourhood is likely
to be larger than that resulting from a single-point crossover applied to binary strings
because its maximum size is the product of both mates’ sizes rather than 2/ and
because GP crossover is likely to generate fewer duplicates.

We can compare GP crossover to HVL-Mutate in a different respect. \When
considered independent of a particular program discovery problem, GP crossover
landscapes and HVL-Mutate landscapes generally differ in syntar correlation. Syntax
correlation is a measure of similarity in structure. size and primitives between one
parent and one offspring. The greater the similarity between a parent and offspring
in these respects. the greater the svntax correlation. The svntax correlation of a
landscape is the estimated average of all individual svntax correlations.

We have not ever precisely calculated this measure on landscapes of GP crossover
or HVL-Mutate but propose a way of doing so: use a tree distance metric {102] where
1) the cost difference between primitives of equal number of parameters is one less
than the cost difference between primitives of unequal numbers of parameters and
2) the basic cost of insertion, deletion and substitution is equal. Without precisely
calculating syntactic correlation. is nonetheless possible to make an approximate rela-
tive comparison by comparing each sub-operation of HVL-Mutate to one application
of GP crossover (the generation of one offspring from two parents). For reference
the sub-operations of H\'L-Mutate are described on page 52 and the GP crossover

operator is shown in Figure 5 and deseribed in Section 1.2.2:

e Substitution HVL-Mutate simply exchanges chosen-node for another primi-

tive which has the same number of parameters as it.

165

GP crossover can only substitute a leaf node. For one leaf to be replaced with
another requires a leaf node to be chosen as the crossover point in both parents.
The likelihood of leaf substitution in GP crossover is low among the likelihood

of other changes.

This implies that, when one compares the one third of all independent instances
where substitution is HVL-Mutate's chosen sub-operation to an equivalent num-
ber of independent GP crossover operations, on average, GP crossover results
in an offspring that is more different than its parent compared to HV'L-Mutate.

Deletion If chosen-node is a leaf, it is replaced by another leaf. This is
essentially a substitution. Otherwise, HVL-Mutates removes the subtree rooted
at chosen-node and replaces it with that subtree’s largest child. Two svntactic

differences result:

1. The child has fewer nodes than its parent.

2. All the nodes of the child are a subset of its parent.

To determine the closest equivalent to deletion in GP crossover. consider a pair
of parents and the generation of one offspring. One parent can be designated
the “donor™: it gives a subtree to the otlier. and the other can be designated
the “recipient™: it has a subtree removed and replaced with one of “donor’s”.

A deletion occurs on the donor.

Now consider syntax correlation hetween either donor or recipient and the off-
spring. The size and structure of the donated material is completely random
with respect to the recipient. It could be smaller or "arger than the removed
subtree. The odds that it is different in primitive composition is verv high.
Furthermore, all the nodes of a child do not come solely from one of its parents.
This leads one to conjecture that., when one compares the one third of all in-
stances where deletion is HVL-Mutate's chosen sub-operation to an equivalent
number of GP crossover operations, on average, GP cirossover results in more

material being different between the parent and offspring.

Insertion If the new primitive is a leaf. chosen-node is replaced by it. This
is equivalent to substitution. Otherwise. a new primitive replaces chosen-node

166

and. if the new primitive requires parameters. the entire subtree rooted at
chosen-node is used as one child and primitives without parameters are used

as the remaining others.

The closest interpretation of an insertion with GP crossover is the same as that
given for deletion but from the perspective of the recipient. The relative svntax
correlation is the same also: an HVL-Autate insertion preserves more material

when generating an offspring from its parent.

This estimated, qualitative comparison allows us to argue that

e GP crossover usuallv generates an offspring which is more different in size,
structure and primitives to its parents than the offspring generated by HV].-
Mutate

o fitness landscapes created by HVL-Mutate have a higher svntax correlation than
those created by GP crossover

In fact, GP crossover is a macro mutation operator that performs larger fweaks of
a candidate solution than HVL-Mutate. Therefore, GP crossover may improve the
performance of SIHC or SA in circumstances where the GP crossover landscape has
fewer local optima or where the algorithm is able to exploit the existence of a shorter
path to the glubal optima.

It also seems unlikely that macro-mutation will alwavs work well because it
mayv not be sufficiently “fine grained™ in some circumstances. That is, when it is
appropriate to “fine tune” a solution that is almost optimal by modifving it only
slightly, GP crossover is unable or has very low likelihood of generating 2 smnll change.

We now proceed to test our conjectures.

6.2. Crossover Based, Single Point Algorithms

GP crossover based versions of SA and SIHC are modifications accommodating the
fact that GP crossover requires two parents. The search traverses two points at a

time and an adjustinent is made to the acceptance eriteria.

167

6.2.1. Crossover Hill Climbing: XO-SIHC

Crossover hill climbing was first described by Terry Jones [50. 49). The basic design of
crossover hill climbing still uses better or equal fitness as the move acceptance criterion
of the search but substitutes GP crossover as the move-operator. The candidate
solution is, therefore, generated from one *“current”™ solution and a random mate
using a version of GP crossover that is a simple two-parent to one-child function.

The algorithm always maintains the fittest-overall-solution (i.e. the fittest point
of all points examined) and a current-solution. At the outset, a iaate for the current-
solution is randomly generated. For some number of attempts. mate-xo-tries-limit.
offspring are generated via crossover from the pair of current solution and mate. If an
attempt vields an offspring that is accepted. the offspring replaces the current solution
and the process repeats with the number of crossover attempts reset to zero and the
same mate. If the number of crossover attempts reaches mate-xo-tries-limit with-
out an offspring being accepted, a new mate is chosen for tlie current-solution. The
uumber of times the current-solution is used, xo~tries-limit, is also a parameter
of the algorithm. After xo-tries-limit crossovers, the current-solution is discarded
and a new one randomly generated. After a fixed number of fitness evaluations or
when a perfect solution is found the algorithm terminates and returns the fitness of
the fittest-overall-solution.

We experimented with values for both parameters of this algorithm. Since a
mate is randomly generated. the algorithm was not verv sensitive to the value of
mate-xo-tries-limit. However, xo-tries-limit is integral to the algorithm be-
cause it sets a limit for crossover attempts after which the search moves randomly else-
where. If its value is set too low. the search may not find a fitter candidate even though
one exists in the neighbourhood. If it is set too high. the search may be trapped in a
local optimum. We used values equal to the most successful max-mutation settings
in the SIHC runs.

6.2.2. Crossover Simulated Annealing: XOSA

The XOSA algorithm uses GP crossover (to generate candidate points from two
“current” solutions) and the SA acceptance crite:'sn. It has one new parameter:

xo-tries-limit. Everv xo-tries-limit crossovers. the weakest current solution is

168

replaced with a random program. This ensures suflicient novelty.

The acceptance criterion is revised to use 2 parameters instead of global vari-
ables. The formal parameters are: current-fitness and candidate-fitness. The
predicate uses the current temperature. a calculated fitness differential and a random
number generator to indicate whether the candidate state of the svstem should be
accepted.

There are three different versions of XOSA: XOSA-Average., XOSA-One, and
XOSA-Each. which differ in terms of what values are passed as arguments to the
acceptance criterion predicate and in terms of which current solution is replaced if
acceptance is indicated.

In XOSA-Average, the actual paramecter for current-fitness is the average
fitness of the two current solutions. The actual parameter for candidate-fitness
is the average fitness of two candidate solutions derived from twice crossing over the
current solutions. If acceptance is indicated, both the candidate solutions replace
the current solutions. Since XOSA-Average uses the SA component for each pair of
fitness evaluations, the SA component is adjusted to use half as many steps in the
cooling schedule.

In XOSA-One, ounly one child is generated. via crossover, from the current so-
lutions. The fitness of the weaker parent is the value for current-fitness and
the fitness of the child is the value for candidate-fitness. The weakest parent is
replaced by the child, if acceptance is indicated.

XOSA-Each uses a 2-parent to 2-children crossover function with the option of
accepting one child or both. If the weakest current solution can be replaced by the
fittest child. this is done and then an attempt is made to exchange the fitter current
solution for the weakest child. Otherwise. an attempt is made to exchange the weakest
parent for the weakest child.

The only parameter of the crossover component of the algoritlun 1s xo-tries-limit.
Once this many crossover attempts have been made with the same pair of parents,
the weaker parent is replaced by a random program. Like xo-tries-limit in X()-
SIHC this parameter is a sort of patience threshold. We used the same values for it
in XOSA as in XO-SIHC.

169

6.3. Crossover Based Experiments

We experiment with XO-SIHC and XOSA and compare them to GP. We use the
problem suite of the thesis (described Section 2.1) just as we did in Chapter 5. The

problems are:
e 6-Mult
e 11-Mult
e Sort-A
e Sort-B
e Block Stacking (BS)

The three algorithms are also compared by the same standards as Chapter 5. To
reiterate, each execution of a run is allowed to process a maximum of 25500 candidate
solutions or individuals. A GP execution is permitted to process for a maximum
of 50 generations bevond the initial population because the population size is 500.
Processing implies a candidate solution being selected and then crossed over and
evaluated for fitness, if necessary. It also includes the random generation and fitness
evaluation of generation 0. This vields a maximum of 25500 individuals processed.
The fitness values in the GP runs for all five problems were scaled by linear and
exponential factors of 2. Each GP execution uses a “generation gap” of 0.9 which
means that the crossover operator is applied 90% of the time with the remaining 10%
of individuals chosen by selection being directly copied into the next generation. The
latter individuals are not re-evaluated for fitness. therefore GP performs a maximum
of 23000 fitness evaluations®.

In an execution of XOSA or XO-SIHC processing implies an individual (or candi-
date) being generated by mutation and evaluated for fitness. We use the same initial
temperature (1.3) for all XOSA runs and the final temperatures listed in Table 13 on
page 140.

For each experiment. on a per run basis, we show the probability of success
the average fitness of the best individual of each execution and the average num-

2500 + (109 x (50))

170

ber of individuals processed each execution. The latter two values are expressed as
percentages for uniformity where 100% is perfect fitness or the maximum number of
individuals allowed to be processed (253500) respectively. For successful exeentions
we show the average number of individuals processed and the size and height of the
parse trees of successful programs. \We use a T-test measuring 95% contidence [91]
to state that the difference between two results is statistically significant. Standard
deviations for results where there is sufficient data are indicated in parentheses.

6.3.1.

Results of XOSA, XO-SIHC and GP: 6-Mult

6 Bit Boolean Multiplexer

Rate of

Fittest
Individual

Inds
Proc'd

Inds Proc'd
in Suce Exec

(%) (%) (%)
GP__ 75403]98040 57 i8)] 81 |
X O — STHC xo-tries-lin.- = 100 1000 | 2036 20.56 (14.2) |
XO — SIHC, xo-tries-timit = 1000 || 96.7 (17.8) 23.2 23.2
XOSA - Each 36.7 (48.2) 92.0 80.5 |
XOSA - One 16.7 (37.3) | 646 948 70.0
XOSA4 - Ave 3.3 (17.9) 87.0

Table 29. GP. X0OSA and XO-SIHC Results for 6-Mult

Clearly 6-Mult is an easy prograin discovery problem for all the algorithins considered
in this thesis because each of them found solutions. Of the three algorithms (GP,
XOSA. XO-SIHC) shown in Table 29 on page 170, XO-SIHC stood out from GP and
XOSA by solving the problem 100% of the time or 96.7% {(17.8) of the timne depending,
on the value of xo-*ries-limit. XOSA performed much worse than the other two
algorithms. Its most successful version, XOSA-Each only solved 6-Mult with a rate
of 36.7%. This equates to 11 executions out of 30, All the rates of success for XOHC
are significant despite the large standard deviations.

171

6.3.2. Results of XOSA, XO-SIHC and GP: 11-Mult

The results for 11-Mult are shown in Table 30 on page 171. \We remarked in Chapter 5
that processing a maximum of 25500 individuals was too great a constraint for GP in
attempting to solve 11-Mult. The same result held for XOSA regardless of whether
the version was XOSA-each, XOSA-one. XOSA-average. However, like the SA result
of Chapter 5, XO-SIHC was able to solve this problem. Its rate of success was 16.7% (5
executions out of 30) which was the same as SA. XO-SIHC with xo-tries-limit set
to 5000 only needed to process an average of 60% of the maximum allowed individuals
on its successful executions. While XOSA did not find a solution, the best solution it
fouud over all executions and the average fitness of the best solution of each execution

was not significantly different from GP.

Rate of | Best of | Fittest Inds Inds Proc'd

11 Bit Boolean Multiplexer Success | All Rans Ind Proc'd in Succ
Execs ()

NOSA - Fach .
NOSA —-One 0 789 68.5 | 100.0
.\'()S.j - Are 0 81.3 71.7 1 100.0

Table 30. GP. XOSA and XO-SIHC Results of 11-Mult

6.3.3. Results of XOSA, XO-SIHC and GP: Sorting

The results for Sorting are a contrast to those discussed already and Block Stacking.
XO-SIHC performed the wor;t of the three algorithms rather than best. In Tables 31
and 32 we show the best result of XO-SIHC given the different values we tried for
xo-tries-limit. It only solved Sort-A with a 10% rate of success and Sort-B with
a 40% rate of success. This was significantly lower than either GP or XOSA.
Furthermore. whereas XOSA did not perform well on 6-Mult. 11-Mult or BS. on
Sorting at least one version matched or equalled the strong success of GP. For sort-A

GP had a success rate of 80% (40.0) and XOSA-one had a success rate of 93.37 (25.0).
While this difference is not statistically sigrificant. in terms of individuals processed
for all executions and only successful executions. NXOSA required significantly less.
For Sort-B GP had a success rate of 67.7% (44.1) and XOSA-average had a rate of
90.0% (30.0). This difference is significant.

Rate of Fittest Inds Inds Proc’d
Success Ind Proc'd in Suce Exece
(%) (%) (%) (%)

391.3 (35.0)

39.1 (26.6)

N7 (22.9)

GF [s00@0[®7asy)]

XO — STHC. xo-tries-limit= 50 || 10.0 (30.0) 57.8

XOSA - Each 70.0 (45.8) . 56.8 25.3 (25.5)
X0SA - One 93.3 (25.0) 98.0 25.1 22,5 (22.5)
NOSA — Ave 66.7 (47.1) 85.2 67.8 22.0 (31.5)

Table 31. GP. XOSA and XO-SIHC Results for Sort-A

Rate of Fittest Inds Inds Proc’d
Success Ind Pro¢'d in Suee Exec

(%)
67.7 (47.1)

(%)
85.3 (22.0)

(%) (4)
60.4 (37.5) [106 (28.2) |

XO — STHC . xo-vriestimin=50 || 30.0 (49.0) [82.0 (17.5) [81.4 53.6 (31.1) |
XOSA - Each 80.0 589 [48.75(25.1)
XOSA4 = One 83.3 91.2 18 3823 (30.9)
XOSA = Arve 90.0 (30.0) G55 | 615 (17.9)

Table 32. GP. XOSA and XO-SIHC Results for Sort-B

6.3.4. Results of XOSA, XO-SIHC and GP: Block Stacking

The results of Block Stacking confirm that it seems to be a simple program discov-
erv problem despite the apparent sophistication of the task. Thev are displaved in

Table 33. Once again. XO-SIHC was tremendously successful. It solved the proble

173

with a 100% rate of success and ounly processed an astonishing 2.6% of the maxi-
inum allowed individuals. XOSA-One was close to XO-STH(in rate of success but
on successful runs it required, on average. processing 2.58%. (27.1) of the maximum
individuals. This value is significant despite its large standard deviation. GP ranked
third on this problem. Its rate of success was 76.7% (16.3) and it processed an average
of 25.1%. of the maximum allowed individuals on successful executions.

Rate of [Inds Procd

Block Stacking Success | Individual | Proc'd | in Suce Execs

(%) (%)

eGP Jwi(6a] s [®s [3120 |
N0 - STHC. xo-tries =250] _ 1000 | 1000 | 26 | 26(23)]
NOSA -~ Each 70.0 (45.8) 64.7 (26.5)
NOSA—-One 96.7 (17.8) 98.4 28.3 25.8 (27.1)
NOSA - Ave 60.0 (49.0) 84.5 88.4 80.8 (18.96)

Table 33. GP. XOSA and XO-SIHC Results for Block Stacking

6.3.5. Summary of X0-SIHC and XOSA Results

Among these XO-SIHC and SA algorithms, it is puzzling thrt. on any given problem.
neither both algorithms with the same operator. nor. both operators with the same
algorithm had correlated performance. Future work investigating precise reasons for
this is worth pursuing.

NXQO-SIHC is definitely a search algorithm worth consideration for program dis-
covery problems. even given the small number of problems in our test sujte. It out-
perforins or equals the best of the other algorithms on 6-Mult. 11-Mult and Block
Stacking. However. its poor performance on Sorting. relative to the other algorithms.
is a reminder that, because there is a sensitive relationship between a problem. search
operator and fitness landscape. it can not be expected to always be superior.

In contrast to the strong performance of XO-SIHC, the XOSA results are not
as uniformly good. This concurs with our earlier conjecture that XOSA may not
work because the GP erossover operator generates offspring that are too different

from their parents when the temperature is quite low. We observe that there was a

174

consistent relationship between NOSA ani XO-SIHC in one respect: whenever NO-
SIHC performed well. XOSA did not. and. whenever XOSA performed well. NO-STHC
did not.

From this suite it was impossible to claim that one version of NOSA was superior
overall to the others. On each problem. except Sort-B. there was spnificant difference
among the three versions (Average. Each. One). While Average was pever solely best,
Best and Each exchai ged rankings on different problems.

Our goal at the outset was to determine if GP crossover would prove useful when
coupled with SA or SIHC. The answer is affirmative but it demands qualification.
That is. NOSA and NXO-SIHC can solve program discovery problems, but. their of-
ficiency depends upon hew suited the algorithm is to exploit the fitness Landseape
created by the GP crossover operator.

Given this qualification (which holds more generally for any algorithm and the
fitness landscapes of any search operator). one avenue of future work concerns deter-
mining how an algorithm (complete with search operator) should be chosen I o
there exist a statistical test that. given the computational overhead of executy oy i,
can indicate what algorithm is best to use? Should this test he centered around s -« ch
onerator behaviour? ' it best to run this test before selecting, an algorithm or, can
one algorithm combining all oaperators and searcl strategies ¢v gunically evaluate s
performance and adaptively select the method it uses?

For more serious problems. (i.c.. those that are not benchmarks), a practical issue
to investigate is how much parameter tweaking s required to squeeze ont”™ the best
result? Does the difficulty in parameter selection. 1api - o rankmg, in the usefulness

of the algorithms?

6.4. Hybridization of GP and Local Search

The results of the alternative algorithis we compared to GF are suflicientiv en-
couraging to suggest adding a .ocal search component to GI* towiads the goal of
improving it. GAs are a population-based technique that provides a mesns of gckly
focusing search on a fit area of the search space. This is the recogmzed offect of 1.
algorithm as. over time. the population becoees mote homogeneous due 1o selection

based upon fitness and the combinative effect of crossover. Mutation s usnally et

OF/DE

PM-1 31:"'x4” PHOTOGRAPHIC MICROCOPY TARGET
NBS 1010a ANSI/1SO #2 EQUIVALENT

Koed N =
'm ‘;‘m
il
[

fr
r
fe

EEF

1To

to a background rate and playvs only a minor role in terms of exploitative scarch (it
ensures no premature allele loss). However, once a GA has found fit areas of the
search space, it searclies over only a small fraction of the neighbourhood around each
search point. It must derive its power from integrating multipie single neighbour-
hood explorations in parallel over successive generations of a population. This “many
points, few neighbours™ global strategy is in direct contrast to a hill climber or sim-
ulated annealer (at low temperature) which potentially focuses effort on o preater
fraction of the search neighbourhood of one point but only around one point at a
time. This locai strategv might be called “few points. many neighbours™. The two
strategies have been complementary (15, 18. 54. 21] in other problem domains with
the GA component serving to “zero in" on regions of high fitness and the local search
component serving to thoroughly explore the regions the GA has found. Therefore,
our conjecture is that GP plus a hill climbing component might be profitable on our
suite of problems and. more generallv. program discovery.

We implement two major tvpes of hvbridized algorithm: one uses the stochastic
iterated mutation-based hill climbing algorithm of Chapter 5, “GP+MU-H(" and the
other uses the GP crossover stochastic iterated hill climbing algorithm of Section 6.2.1.
This permits the comparison of the hybrid with a mutation based hill climber (using
HVL-Mutate) to a crossover-based one. The algorithms are described in Section 6.5.

The obvious qualitative difference worth analvzing is that mutation introduces
totallv unselected genetic material while the crossover operator (if it draws a mate
from the population at large or from the pool of fittest individuals) replaces swapped
out genetic material with material that has undergone selection by surviving through
GP’'s simulated process of evolution.

6.5. Hybridized GP and Hill Climbing Algorithms

The algorithms designed for hybridized GP and hill climbing, GP + XOPC and
GP + MU-HC are simple: thev are controlled by user specified parameters and they
do not adapt their behaviour based upon performance,

Every g generations, the f fittest individunals in the population are used as the

starting points of a hill climbing search. Each hill climb processes ¢ candidate soly-

tions. For convenience. in this section we shall call each candidate solution processed

a “step”. The best individual from each hill climb is placed in the next generation and
then the remaining individuals of the population for that generation are generated
standardly (i.e. with crossover or direct reproduction). For an execution the move

operator of the hill climb is either entirelv GP crossover or entirely HVL-Mutate.

The interesting design issue is how to obtain mates for the crossover hill climb.
Should one exploit the knowledge embodied by the current population by using its
membership as a source of mates? The answer provides insight into the role of GP
crossover. We experiment with 3 versions of GP + XOHC:

Random: Mates are not drawn from the population at all, but are randomly cre-
ated. This is simnilar to using the implemented version of XO-SIHC. It allows
non-selected material to he combined with selected material but seems to run
contrary to exploiting the fact that a population of GP programs has undergone

selection.

Best: Mates are drawn from the group of individuals with the highest fitness. This
group will vary in size from one to population size (early in an execution). Best
potentially increases the chances that a crossover recombination will generate
a very fit offspring under the assumption that genetic material from the best
members is a source of building blocks because it has undergone selection.

Population: Mates are randomly drawn from the population at large. This version
is "middle of the road” between best and random. The population is a more
diverse source of genetic material co:npared to the best pool, but, unlike the

random option. it has undergone selection.

We decided to check for the presence of a perfect individual caly at the end of a
generation. With this decision it does not matter whether hill climbing is done before
or after the normal GP crossover of a generation. One consequence is that the actual
number of fitness evaluations reported for successful runs is slightly over-estimated
but no more than if a standard GP run were executed and the same check done at

the end of each generation.

6.6. Hybrid Algorithm Experiments

We compare this selection of hvbrids to GP. We use the same test suite and standard
GP experimental parameters previously used in Chapter 5 and Section 6.3. For
brevity the reader is referred to the description of Section 6.3 starting on page 169.

The parameters g, f, and e are supplied before execution and are consistent for
a run. We run three parameter settings. All runs hill elimb from the five fittest
programs: f = 3. When the climb is 500 evaluations, the interval ¢ is either 2 or 5
generations. When the climb is 100 evaluations, the interval g is 3 generations.

The maximum number of generations of a hvbrid algorithim execution is adjusted
to take into account the additional processing of individuals by the hill climbing ele-
ment. A maximum which gives a close approximation to the « priori given maxinnm
number of individuals processed and population size is calculated. In the “ase of 25500
evaluations and a population of 500 (which is used in every GP+HC run), for a run
with f = 5. ¢ = 3 and e = 100 the maximum generations is 39 and the maximum
individuals processed is 26435. For f = 5, ¢ = 2, ¢ = 500, the maximum generations
is 15 and the maximum individuals processed is 25465. Finally, for f = 5, ¢ = 5,
e = 500, the maximum generations is 26 and the maximum individuals processed is
25975.

6.6.1. Results of Hybrids: 6-Mult

The GP+XOHC-population hyvbrid solved 6-Mult 100% of the time when the five
best programs were selected for hill climbs of 300 steps everv two generations. This
was statistically superior to GP bv 20 percentage points. In the GP runs the suc-
cessful executions with higher probability of success unfortunately processed more
individuals than the successful runs with lower probability of success. The individu-
als processed by GP+XOHC-Population were (significantly) 10 - 20% lower than GP.
Thus, GP+XOHC-Population was not only more reliable but also less computation-
ally expensive.

The parameters favouring more frequent and longer hill climbs proved better than
the others. Any version of GP+XOHC i.e., Population, Best or Random, which, every
second generation. executed five 500 step crossover hill climbs (g = 2 and » = 500)

was comparable or better than GP. However, when the crossover hill climbing element

178

GP+MU-HC, f=5

(40.3)

Rate of Fittest Inds Inds Proc’d
6 Bit Boolean Multipiexer Success | Individual Proc'd in Succ Exec
(%) (%) (%) (%)

e=500,g=3 93.3 (25.0) 99.5 45.2 43.3 (22.5)
c=500,g=2 90.0 {30.0) 99.5 32,5 30.6 (5.1)
e=100,9=3 80.0 (40.0) 47.7 (21.3)
GP . XOHCy=5¢=100.9=3

DBest 50.0 (50.0) | 96.8 (3.7) | 74.0 (29.8) | 50.0 (24.9)
Random 60.0 (14.7) | 96.9 (4.2) | 72.1 (29.6) | 32.1(17.9)
Pop 63.3 (14.5) | 95.7 (4.2) | 65.3 (32.53) | 44.9 (20.8)
GP+J\.0HCI=5.C=500.Q=2

Best 86.7 (10.2) { 99.4 (1.7) 44.7 32.4 (17.9)
Random 93.3 (7.3) | 99.7 (1.2) 45.9 44.9 (17.7)
Pop 100.0 100.0 31.3 31.3 (17.4)

Table 34. G and Hybrid Results for 6-Mult

was instead changed to execute 100 steps every three generations (g = 3. ¢ = 100),
the corresponding rate of success fell quite below that of GP alone.

GP+MU-HC also had a significantly better rate of success than GP. As with the
crossover hill climbing hybrids, the executions with hill climbs of 500 steps were more
successful than the hill climbs of 100 steps. There was no statistical difference in rate
of success hetween executing the 560 step hill climb every five or two generations.
The choive of anv ¢ or g was comparable or better than GP. The best result had a
rate of success equaling 93.3% (25.0).

6.6.2. Results of Hybrids: 11-Mult

Once hill climbing was combined with GP., a GP-based algorithm finally existed that
could find a perfect solution to 11-Mult while processing less than 25500 individuals.
GP+XOHC-Random and GP+MU-HC, both executing with five hill climbs of 500
steps every second generation, each managed to solve 11=Mult once in 30 executions.

179

This had not ever been done with GP alone. While these two GP hybrids did vield an
imnrovement over GP. they did not better XO-SIHC and SA which were significantly
the best. Both XO-SIHC and SA had a rate of success equal to 16.79% versus the 3.3%
rate of the former two hybrids. It comes as little surprise that the Random version
of GP4+XOHC would fare as well as GP+MU-HC because using a random partuer
is similar to HVL-Mutate's use of random material. The fact that using selected
material did not improve the crossover hill climbing versions best and population did
not find a solution) concurs with results of Section 6.2.2 and Chapter 5: both XOHC
and SA achieved success rates of 16.7% and they do not exploit selected material

either.

Rate of { Best of | Fittest Inds | Inds Proc'd
11 Bit Boolean Multiplexer Success | All Execs Ind Proc'd in Suce

(0/8) (%\) (%) (%) =Exm' (%)

GF . [o [86 [m2 [10 |
GP+MU -HC,f=5 T
e=300,g=5
e=500,g=2
GP+ XOHC. f =5.¢=500,g =2
DBest
Random
Population

100.0
99.5

0 91.9 89.6 | 100.0
3.3 100.0 90.2 | 99.8 97.9
91.4 85.0 | 100.0

Table 35. GP and Hybrid Results for 11-Mult

6.6.3. Results of Hybrids: Sorting

Once again there are indications that the fitness landscapes of both sorting problems
differ from the rest in our test suite. Recall that only sorting did not respond to XO-
SIHC and did respond to XOSA. In the case of hybrid experimentation, crossover hill
climbing did not vield significant improvement over GP but mutation hill climbing
did. On both Sort-A and Sort-B. GP+MU-HC runs, with a 100 step hill cfinb
every three generations (¢ = 100, g = 3) were 100%, successful. When more effort was
devoted to hill climbing more frequently and longer, (500 steps every two generations),

180

the rate of success was still good: 93.3%, but not as high. These two results concur
with the low number of improvement steps per climb (between 1 and 2) observed in
the successful STHC executions that weve reported in Chapter 3.

GP+MU-HC, f=5

Gr___ [s0@0

Rate of Fittest Inds Inds Proc’d
Sort-A Success Ind Proc'd in Succ Exec
(%) (%) (%)

51.3 (35.0)

39.1 (26.6)

e=500,g=2

93.3 (25.0)

94.9 32.5 (29.8)

11.3 (20.0)

e.2100,g=3
GP+ NOHC,Pop, f=35

100.0

100.0 42.0

42.0 (26.9)

i ——

e=500,g=2

70.0 (45.8)

88.5 (20.3) | 58.4 (31.2)

434 (18.2)

c=100,g=3
GP + XOHC, Random, f =35

80.0 (40.0)

89.4 (21.0) | 50.6 (34.3)

39.6 (26.6)

e =100,9g=3

90.0 (30.0)

42.5 (29.8)

Table 36. GP and Hybrid Results for Sort-A

Sort-B

GP+MU~HC,f=5

Rate of

Success

(%)

GP___ %00 aw)

Inds
Proc’d

Fittest
Ind
(%)

49.7 (18.1) { 51.3 (35.0) | 39.1 (26.6)

Inds Proc'd
in Succ Exec

(%)

c=500,.g=2

93.3 (25.0)

96.5 32.3 (30.0)

30.9 (30.0)

[c=100,g=3
GP + XOHC . Pop. f =5

100.0

100.0 40.3

40.3 (27.2)

¢ .500.g=2

66.7 (47.1)

88.5 (20.3) | 58.8 (31.0)

44.3 (184)

¢ =100,9=3
GP + XOHC. Random, f =5

80.0 (40.0)

89.4 (21.0) | 50.8 (34.0)

40.0 (26.2))

e=100,g=3

90.0 (30.0)

97.1 (10.5) | 43.2 (29.3)

Table 37. GP and Hybrid Results for Sort-B

36.8 (25.1)

6.6.4. Results of Hybrids: Block Stacking

Rate of Fittest Inds | Inds Proc'd
Block Stacking Success | Individual | Proc’d | in Suce Exec
(%) (%) (%) (%)

GP+MU-HC,f=5 -
e=500,g=2
e=100,g=3
GP + XOHC,Pop, f =5
e=500.g=2
e=100,g=3
GP + XOHC, Random. f =3
e=100,g=3

100.0 5.3 5.3 (3.3)
100.0 2. 12.5 (10.9)

ot]

|-

.
——

2.3 5.3 (3.3)
13.1 13.1 (11.8)

100.0 100.0 106 | 106 (6.3)

Table 38. GP and Hybrid Results for Block Stacking

In this problem hybrids produced a difference that boosted the rate of success up to
100% compared to 76.7% with GP. However. as specified, Block Stacking scems an
easy program discoverv problem. While everv version and parameter combination of
GP plus hill climbing hybrid solved BS 100% of the time, so did XO-SIHC and SA.
Among the hybrids there is differentiation based upon how many individuals were
processed. The hybrids which hill climbed for 500 steps every two generations (¢ =
500, g=2) were better regardless of whether crossover or mutation hill climbing was
used. These processed approximately 5.3% of available individuals. This result also
concurs with the fact that the algorithms which strictly hill climbed (XO-SIHC and
SIHC) were very successful.

6.7. Summary of Hybrid Results

Hyvbridization of GP and local search via hill climbing improved GP. At least one ver-
sion of a hybrid of GP plus Hill Climbing was better than GP alone on all problems,
in both forms - GP4+XOHC, GP4+MU-HC, with at least one setting of the pa-
rameters. We observed no consistent significant ordering hetween the mutation hill

182

climbing option or crossover hill climbing option across the test suite. Prior to using
this search strategy, GP had not been superior nor sometimes even on par with either
crossover-hased or mutation-based versions of SA and SIHC. With hybridization the
evolution inspired search model is. at the least, comparable. It is more encouraging
in view of the simple parameterized style of the algorithms. Future work could pur-
sue adaptive hybrid versions which adjust hill climb duration or the timing of a hill
climbing according to the rate of fitness change of the population or best individual.
Also. a meta-level parameter selection scheme might relieve the designer of parameter
choices and improve a hybrid algorithm by improving its adaptability.

Regarding the relative merits of the Random, Best, and Population versions of
GP+XOHC. current data is not decisive. Additiona: .perimentation. bevond the
present scope. seems called for. Qualitatively, Best may not be explorative enough
because it is limited to a mate pool that may be verv small. Preliminarily. Best was
outperformed on 6-Mult but comparable on 11-Mult. Population worked better than
Random on G-Mult but the results were reversed on 11-Mult. On Block Stacking
and both sorting problems Random and Population were equal. Another direction
future work might follow would be to understand what better performance of a hybrid
version implies about the efficacy of non hvbrid algorithms. If, on a given problem.
random material proves as useful as dulv evolved and selected material. single-point
search algorithms such as SA and SIHC may perform superior to GP.

6.7.1. Results of Other Literature

Lang in [75] also investigated the role of GP crossover and asked whether

the idea that the pool of highly fit individuals selected from earlier gener-
ations constitutes a valuable genetic resource that facilitates the creation
of even more fit individuals in the future [75. p. 340]

Lang used a version of crossover hill climbing that starts with a single random
program and always keeps track of the best program seen. At each step, one candidate
new program is probabilistically created and compared with the current single best.
If the new candidate is at least as fit as the current best program, it becomes the new

best program.

183

The candidate is created differently on alternate steps. On the even-numbered
steps (starting with time step 0). the new candidate is a randomly created entirely new
program. On the odd-numbered steps. the new candidate is the offspring produced by
crossing over the current best program with a randomly created new program using
GP crossover.

Lang's algorithm over even-numbered steps is simply random search. Such steps
have little effect on the success of a climb with large problem spaces. Thev are
inefficient. Lang’s algorithm over odd-numbered steps only and our own relate in the
following way: If Y is the number of times Lang's algorithm is iterated and X is the
maximum number of odd-numbered steps in one iteration (e.g.. in Lang’s experiments,
Y was 100 and X was 625 because he examined 100 runs with a maximum of 1250
individuals processed in each hill climb). then Y executions of our crossover hill climb
algorithm with mate-xo-tries-limit set to one, xo-tries-limit set to X and the maximum
number of individuals processed set to X is equivalent. Given the random belaviour
of Lang's algorithm over even-numbered steps. one expects it to perform, overall, less
efficiently than ours.

Lang based his comparison on 100 runs of all 80 distinct 3-paramater Boolean
functions. He compared his algorithm to GP run with a population of 50 for a
maximum of 25 generations vielding a maximum of 1250 individuals processed. He
considered both the probability of success and the number of candidate solutions
processed. The latter value he measured using the ratio of candidates to solutions
during the complete set of runs for a given target function. He found that on any
given run the hill climbing algorithin was four times less likelv that GP to find a
solution. Howaver. when it found a solution it did so about fiftv times faster. Given
this. because hill climbing can be used in an iterated manner. he states, “hill elimbing,
is more efficient than genetic programming on this task™ (|75), p. 341).

He concluded

Since we found solutions much faster that GP did, apparently the high-
fitness population maintained by GP was a worse than random source of
con:ponents for building improved individuals. [75. p. 342)

Because Lang had results for onrly one small problem, his conclusions appear over-
extended. First. his conclusion begs the question of choosing between the length of a
hill climb and how many hill climbs to performm when a maximum nunber of fitness

evaluations can be devoted to iterated hill climbing. As our analvsis has shown this
is an important vet opaque decision that may influence performance.

Second, Koza in [73] responded to Lang's conclusions with an explanation of
why they will not extend to boolean problems that are only slightlv larger. He points
out. that Lang's hill climbing algorithm will not scale to 4 and J bit paritv problems
when judged by the same maximum number of fitness evaluations (1250). As the
hill climb continues upward, its even-numbered steps become practically irrelevant
because the likelihood of finding a better solution in the space is less than a million.
This leaves the onus of the algorithm on the odd-numbered steps and Koza surmises
these steps improve fitness because Lang’s hill climbs continue upwards even as the
even-numbered steps become useless. Our crossover hill climbing results can validate
what Koza surinises because it has success. Qur results both support and qualify it
because, while crossover hill climbing was successful with Boolean multiplexer prob-
lems that are similar to parity functions and Block Stacking, it did not perform well
on the Sorting problems. Thus, it is plausible to expect Lang's even-number steps to
perform well on the parity problem but not, in general, on all probler:s.

By his analysis Koza finds a measure of justification for stating that, contrary
to Lang’s claim. the population pool is an important element in GP. In crossover hill
climbing the current best solution is itself selected and it is (the sole member of the)
population pool However, to us. it appears that crossover hill climbing states little
about the role of GP crossover in GP because the population of GP is much larger
and undergoes selection differently. The important insight we derive from crossover
hill climbing is that. in this algorithm, GP crossover functions as a macro-mutation
operator.

Our hybrid versions of GP provide a better means of gaining insight about the
utility of the population pool than a crossover hill climbing algorithm. As we state
in Section 5.6, our hybrid comparisons. despite using a larger suite and one with
one problems that increases in scale from another, are not extensive enough to shed
definitive light on the issue. It appears that the issue may be quite complicated and
not sharply divided. The issue is important for GAs in general and recent work by
Terry Jones ([49] using his “Headless Chicken” test is quite extensive. The Headless
Chicken test compares a GA with crossover to one which uses crossover that only
selects one parent from the population and uses a random solution for its mate. Jones'

test suite does not include any program discovery problems or GP* but a Headless
Chicken test on a GP with a suite of program discoverv problems would complement
the crossover analvsis of this chapter.

6.8. Program Discovery Algorithms Reviewed

Each algorithm investigated in this thesis: GP, SA, SIHC, XOSA, XO-SIHC, GP+XOH(C,
and GP+MU-HC., obviously has one or more salient. features that distinguish it from
the others. These particular differences earn it a special niche among the others and
afford it some degree of merit. They can be found by examining which search operator

an algorithm uses and how the algorithm controls traversal of the search space. They
also indicate the importance of exploiting knowledge of the character of the search
space and understanding the behavioural interactions of search operators and search
strategies on a search space.

A stronger, general observation about the collection of algorithms is that none
of them is always superior to the rest. Thus, it is as important to understand their
commonalities as it is to contrast them.

Why do all these different algorithms work? Thev all face the problem of search-
ing the large space of programs that vary in length and structure hy assuming the
framework of program composition from primitives. Both search operators: GP
crossover and HVL-Mutate generate programs that differ in size and strueture from
their parent(s). Thev both also. generate programs that. while capturing some inher-
ited features and introducing other random ones, are always syntactically correet. A
valuable insight is that a variable length hierarchical representation may be a more
fundamental asset to program discovery than any particular search technigue.

Another crucial commonality among the algorithms is that each implements a
unique version of three principles which are characteristic of the adaptive search
process of evolution. These principles are: selection, inheritance and blind variation.
While there is little argument that this contention holds for GP, it is not immediately
obvious how it holds for SA. XOSA, SIHC and XO-SIHC. By explaining how the
principles are expressed in GP. it becomes clearer how they are realized in SA, XOSA,
SIHC and XO-SIHC:

o Selection “Survival of the fittest™ in biology is an evolutionary selection process

186

in which superior individuals survive long enough to reproduce and propagate
in greater numbers than inferior ones. In GP. roulette-wheel selection of parents
is probabilistically biased towards programs with greater than average fitness.
When a program is chosen by roulette-wheel selection. it is given the oppor-
tunity to propagate itself or its “features”. in effect. following the principle of
-survival of the fittest™. All offspring survive in the sense that they form the
next generation. This survival is completely deterministic. In SA or XOSA the
search always moves when a candidate program (generated from the current
point) is equal or superior in fitness to the current point. In this respect. de-
terministically the fittest survive. Because SA accepts a candidate program of
inferior fitness with a probability dependent upon the svstem temperature and
the different in the two programs' fitnesses, it has a similarity to roulette-wheel
selection which alwavs accords each individual in the population. regardless of
fitness, a non-zero chance of being selected as a parent. SIHC is the simplest
implementation of selection: the search only moves to candidate programs of

equal or superior fitness.

Inheritance In the sexual reproduction of biology. an offspring inherits its ge-
netic material from its parents. The GP crossover operator implements sexually
derived inheritance. Whether the crossover creates two ~child” programs from
a pair of parents or simply one. an offspring inherits from its parent(s) in so
far as before any crossover. it is a copy of one parent and, after crossover, it is
a combination of both. The HVL-Mutate operator implements asexual inher-
itance in the respect that it generates a candidate program that retains some
of its parent program contents. Therefore, any algorithm making use of either
GP crossover or HVL-Mutate, implements inheritance.

Blind Variation In biologyv. mutations play the role of blindly changing a
genome and allowing an offspring to express a genetic feature that is not com-
mon to its parents. The GP crossover operator does not have a direct corre-
spondence for mutation in this context. However, it has a “blind™ aspect which
is the manner in which a crossover point is chosen. Blind crossover point se-
lection provides blind variation in the sense that the place of combination of
“genetic information™ from the parent programs is not deterministically chosen.

HV'L-Mutate obviously expresses blina variation.

One issue concerning the appropriateness of an evolution-based, common de
scriptive framework arises because. while GP is population-based. SA. XOSA, SIHC
and XO-SIHC do not appear to be. A coarse argument is that the GP alternatives all
consider and process a population of size one. In fact. it is possible to be more eareful
about this response. The evolution of a population results in a set of parallel ancestyy
lines. In the case of GP these ancestry lines are interconnected, concurrent and svan-
chronously processed. In GP alternatives, thev simply are neither interconnected norp
concurrent. If each line of ancestry is placed beside cach other, the programs at corie-
sponding time points in the parallel sequences represent a population. The members
of each ancestrv line can be seen as evolving independently and asynchronously,

A final question arises: why is this common framework useful”? Admittedly, it
does not help the task of selecting an algorithm to accomplish a task efticiently. Dif-
ferences are arguably more useful to study than similarities for this purpose. However,
a common, evolution-hased framework indicates:

e that new implementations of selection, inlieritance and blind variation are only
limited by the scope of our imagination

o that future effort should be devoted to studving the “real”™ process of evolu-
tion and using it as a model for extensions to all adaptive search algorithms.
For example. when SA is viewed as an annealing process it appears to have
limited extension. However, parallelizations of it and the substitution of pew
search operators. based on ideas horrowed from evolution, provide it with pew
potential.

e that it is important to ask how a sub-process or characteristic of anv model can
be incorporated into each of the algorithms rather than just one of them. Any
proposed extensions to one algorithm in the forin of an operator or selection
strategy should be generalizable to the rest.

6.9. Chapter Summary

In this chapter we demonstrated that GP crossover. when integrated into SA and

SIHC as a substitution for HVL-Mutate has some success with program discovery

problems. We conjectured this much based upon comparing the svntax correlation
of GP crosscver landscapes to those of HVL-Mutate and our recognition of it as a
macro-nmtation operator.

We introduced hvbridized algorithms that combined GP and stochastic iterated
hill elimbing. The hill clunbing components of the algorithms differed in terms
of whether they used HVL-Mutate or GP crossover. Three different versions of
GP+XOHC were proposed and tested: Population. Best. and Random. Our test-
ing did not reveal enough about the versions to provide a adequate comparison but
we compared them on a qualitative basis.

In Chapter 7 we shall review the goal and results of the thesis. expand to a
broader focus in order to place them in perspective and suggest possible new related

agendas

CHAPTER 7

Conclusions and Future Work

7.1. Summary of Thesis Results

The overall goal of this thesis was to analvze GP so we could extend our understanding
of GP. We also desire to improve GP.

Essentially, Chapters 3 and 4 clarified how GP works. In Chapter 3 our specific
goals were to judge how much of GP's success arises from skillful designer choice
of the primitives, fitness function and test suite and to verifv a conjecture that GP
was hierarchical in solutions and process. They were accomplished by considering a
novel program discovery problem called Sorting. We analvsed the choices encountered
considering primitive selection and test suite choice while concurrentlyv we tried to
solve the preblem using primitives that did not unduly a priori constrain the definition
of subtasks. Independently we considered fitness function design.

Concerning the first goal. we report a strong dependence of success upon the
skillful choice of designer-supplied primitives and the design of a test suite. Fitness

function design. at present, is fortuitous rather than deliberately controlled.

o regarding test suite design. we considered the influence of test suite size on the
degree of solution generality. We found that for a problem with an unbounded
number of possible test cases - Sort-A, as we enlarged the sample we improved
generality. A test suite of approximately 200 array elements in 48 different
arrays was sufficient to produce solutions that could correctly solve an out of
training test suite approximately three times larger approximately 90%, of the
time. For the problem 6-Mult which had a finite number of possible test. cases,
the test suite with half the possible number generalized better than the test

190

suite with three quarters. As well, the sample test suites only found a 100%

correct solution 23% of the time.

o regarding test suite design, we experimentally assessed the influence of ex-
pressing incremental encouragement, “coaching”. via test case weighting. \Ve
weighted the same suite of Sorting test cases using four different fitness credit
schemes: linear, exponential, equal test case and equal element. The
credit assigned made some difference in performance but that performance was
unpredictable. This suggests a need for designer expertise.

e regarding fitness function design, we conclude that it has a large influence in
determining the character of the search space in terms of optima and basins.
Ideally. a fitness function should be chosen because it helps define a search space
with characteristics amenable to GP search. However, despite its large impact,
little information is vet available to designers to guide their choices. Good
fitness function choices appear to be fortuitous rather than trulv deliberate.

o regarding primitive design. we related the design decision process when solv-
ing Sorting with GP. We reported that the designer makes decisions on the

following issues:

~ trading off the expressive power of a primitive with constraining the search
space to make the search space manageable in size.

— trading off exploiting problem specific knowledge (by incorporating it into
the primitives) with a priori biasing or constraining the outcome.

~ deciding upon the scope of variables for control of program side effects

In addition, the graduated primitive sets used in the exercise of verifying hier-
archical process showed that GP’s success depends upon its being supplied with
primitives of a sufficientlv high level of functionality. As primitive generality
increased, GP’s ability to solve the Sorting decreased.

Regarding the second goal, the process of confirming a hierarchical process de-
mands that GP be tested using primitives that do not preordain the definitions of
subtasks that could be formed. We devised a detailed set of experiments that used

191

progressively more generalized primitive sets. We compared runs using two popula-
tion sizes - 300 and 500, executed for a maximum of 50 generations. We examined
the percentage of successful executions. individuals processed on average in an execu-
tion. and individuals processed on average in successful executions. As the primitive
sets became increasingly general, GP became less able to use them to compose a
solution - even when it was permitted to search through twice as many candidate
solutions. On the most specialized primitive set its rate of success was 93.3%.. On the
next two graduated primitives sets, its rate of success fell to 23.3% and 0%. When
the population size or maximum generations were doubled. GP could still not find
a solution among the most general primitive set. The evidence indicates that GP is
not a hierarchical search process. It was unable to consistently identify and promote
critical building blocks that we knew existed and that could be exploited to construct
efficient solutions.

We suggested that a number of complicated factors may underlie GP's inability
to proceed in the manner of a hierarchical process.

¢ GP may not discover a subtask because the group of primitives specifying it do
not consistently perform the subtask function in all program contexts.

¢ a subprogram that does consistently accomplish a subtask may be disrupted
by GP crossover despite selection promoting programs which contain it. In GP
this is poss;ble because a subprogram’s disruption likelihood depends not. just
upon its structure (a subprogram may not be a subtree of a GP program’s parse
tree) but also upon its embedding in a program.

¢ the bias of non-leaf selection over leaf selection and the maximum tree height
parameter may introduce non-linear complications to GP that interfere with
the promotion of fitter than average subtasks that have a low probability of
disruption despite favourable treatment by GP crossover and selection.

GP is only hierarchical in the superficial sense that it exploits the hierarchical
representation of a program as a tree and sometimes discovers hierarchical programs.
GP is most often successful if a solution does not require hierarchical subtask iden-
tification and assembly or if it uses “high level” or complex primitives that directly

encode subtasks. Complex primitives, because they are encapsulated, are protected

192

from disruption cnd thus protect subtask behaviour allowing GP to simplyv discover
a correct combination of subtasks into the problem task.

We argued for improving hierarchy in GP because it offers efficient computational
effort. and principled organization in solutions. We traced the difficulties of current

approaches to a number of sources:

o the need for a long time scale and large population can not be directly met.
because of the rate of program growth and computational expense

e multiple levels in a hierarchy most likely require distinct time scales and selec-
tion forces which may be difficult to concurrently evolve and integrate

¢ possible dependence upon a centralized, external memory is implausible for an
evolution based mode]

We stated that claims of GP's power and success must be qualified in terms of
the programming language subset it uses. GP's success on one problem should be
assessed according to the level of general functionality its primitive set meets. If
an “evolutionary pathway™ explaining the derivation of specialized primitives can be
demonstrated, the importance of general functionality is justifiably reduced.

When GP 15 compared to other weak methods, it fares well because a fair compar-
ison shows that, for a given problem. usually the same amount of domain knowledge
is exploited by all paradigms.

Given that GP is not a true hierarchical process, it remains necessary to explain
GP’s success aside from designer oriented factors such as primitive selection, test
suite design and fitness function definition. Several design decisions in making GP
a GA specialized to solve program discoverv play a critical role in its success. GP
manipulates programs directly. searches a space of solutions which vary in length and
structure, and trades off syntactic and behavioural structural correspondence among
programs for expressive flexibility.

In Chapter 4 we focused on the supposition that a GP equivalent of the GA
Building Block Hypothesis could be assumed to operate in GP because of GP is a
specialized GA. Because it is a GA, GP uses genetic exchange within the population
(crossover) and fitness-based selection but its operators and representation choice
make it worthwhile to formulate a specific GP theory along the lines of existing GA

theory.

193

We formulated a precise schema definition in GP that would be useful in for-
malizing a description of GP search. We staved close to the spirit of a GA schema
definition for fixed length bit strings to permit a description of the crossover opera-
tor's behaviour to he incorporated into the recurrence relation that counts the schema
instances each generation.

A general definition that does not restrict schema to subtrees of GP programs (it
includes incompletely specified S-expressions with wildcards) was chosen. Informally.
a GP-schema is an unordered collection of both completely defined S-expressions and
incompletely defined S-expressions (i.e., fragments). A fragment is the hierarchical
structure (which is not strictly a tree) corresponding to what is left intact by repeated
crossovers removing subtrees of a program. The schema definition does not specify
exactly how the fragments or S-expressions are linked within an instance but it re-
quires that they must all be matched. We are ultimately interested in counting the
expected occurrences of a program pattern. Our GP-Schema definition captures the
notion of a program pattern and, due to GP’s representation, a program pattern (i.c.,
GP-schema) can occur more than once in a program.

We defined measures of GP-schema specificity or order and of GP-schema defin-
ing length. The notion of order makes it possible to compare the relative sample sizes
of schemas, and can be transferred directly from GA theory.

Disruption of a GP-schema instantiation inst(h, H) occurs when a node in & is
selected as a crossover point and the swapping of the subtree rooted at the crossover
point with a subtree from another program changes I sufficiently so that it no longer
instantiates H. We used the upper bound on the probability of disruption under
crossover of a GP-schema instantiation to define an estimate of the probability of
disruption of a schema.

With these definitions in hand. we derived a lower bound on the growth of
the expected number of instances of a GP-schema from one generation to the next.
Following GA precedent, we referred to this as the GP Schema Theorem (GPST).
The GP Schema Theorem expresses the lower hound on growth in expected instances
of a schema in the population from time t to t + 1. It has three factors:

1. the expected instances of the schema at time ¢ in a population of n strings,

2. the reproductive factor of the expected instances of a schema contsibuted hy

fitness proportional selection, and

3. the lower bound estimnate of whether a schema instance will survive crossover

and mutation.

We next proposed a definition of GP building blocks and a GP Building Block Hy-
pothesis (BBH). The definition and hypothesis are interpretations of the GPST and
are intended to be fully analogous to the definition of GA building blocks and to the
GA BBH.

GP building blocks: GP building blocks are low order, consistently compact
GP schemas with consistently above average observed performance that are expected
to be sampled at increasing or exponential rates in future generations.

GP Building Block Hypothesis (BBH): The GP BBH states that GP com-
bines building blocks, the low order, compact highly fit partial solutions of past
samplings, to compose individuals which. over generations, improve in fitness.

Thus, the source of GP’s power, (i.e., when it works), lies in the fact that selection
and crossover guide GP towards the evolution of improved solutions by discovering,
promoting and combining building blocks.

We proceeded to review the assumptions presupposed by the GP BBH. We sum-
marize them here and refer the reader to Chapter 4 for complete consideration.

1. The GP BBH refers to the combining of schemas yet the GPST, by referring to
the expected instances of only one schema. fails to describe the interactions of
schemas. In this respect, the GP BBH is not supported by any interpretation
of the GPST.

o

The GPST also fails to lend support to the GP BBH because hyperplane com-
petition in GP is not well defined. The lack of a feature-expression orientation
in the GP representation (i.e.. GP's non-homologous nature) results in an un-
clear notion of which hyperplanes compete for trial allocation. This inherent
lack of clarity concerning hyperplane competition seems to indicate that schema
processing may not be the best abstraction with which to analyze GP behaviour.

3. The true dynamics of GP is not estimated by the static fitness of schemas
because:

¢ once the population begins to converge even a little, it becomes impuossi-
ble to estimate static fitness using the information present in the current
population.

¢ high fitness variance within schemas, even in the initial generation. can
cause the estimate and static fitness to beconie uncorrelated. It intuitivelv
seems that rearranging code or simply inserting a new statement into a
program can lead to drastic changes in its fitness. This argues that the
fitness variance of a GP-schema'’s instances may be high.

4. The assumption of expected increasing or exponential trials for building blocks
requires certain behaviour to be constant over more than one time step. The
GPST does not describe behaviour for more than one time step and it is not
the case that the required behaviour is constant.

o

. As a schema starts dominating, the margin by which it is fitter than the average
fitness of the population decreases. The only thing that enables it to continue
growing in fitness is a decrease in its probability of disruption. The problem is
that there is no guarantee that this decreases at a rate ensuring positive growth
of expected allocation of trials over the same interval.

6. Building blocks may only exist for a time interval of the GP run because the
estimated fitness relative to the population fitness and upper hound probability
of disruption of a schema vary with time.

b |

The BBH assumes that solutions can be arrived at through linear combination
of highly fit partial solutions. This is a statement about the problem of program
induction rather than GP. There is no basis for assuming that a solution's sub-
components are independent. The BBH is a statement about how GP works
only if there is linearitv in the solution.

Basically, the GPST (and any similar schema theorem) omits important depen-
dencies from the recurrence and is, thus, bound to oversimplify GP dynamics. In
particular, the dynamics of crossover and selection that are of interest last longer
than one time step. The BBH also assumes the existence of the same bhuilding blocks
throughout a run and is not specific about the dynamics of building block discovery,

196

promotion and combination in the course of a run. Therefore, as with GAs. hypoth-
esizing building block combination requires greater liberty with the interpretation of
the Schema Theorem than is justifiable.

After Chapters 3 and 4, we turned our focus to comparing alternative algorithms
for program discovery to GP and to improving upon GP.

In Chapter 5, by way of comparing GP, we modified Simulated Annealing (SA)
and Stochastic Iterated Hill Climbing (SIHC) by introducing a novel mutation oper-
ator called HVL-Mutate. HVL-Mutate meets three criteria:

1. it creates a new program from current that is a “small distortion” of it. Some
of the structure and character of current must be retained and novelty must
be introduced through randomly influenced decisions.

2. it produces a directly evaluable program (i.e. syntactically correct) without any
ad-hoc repair functions being required.

3. it is capable of generating a mutant that differs in number of primitives (size)
and/or hierarchical structure from current.

It does so by conveniently exploiting a hierarchical representation for programs as
does GP crossover. HVL-Mutate first randomly selects a node in a copy of current’s
parse tree. This node is called chosen-node. HVL-Mutate then flips a fairlv biased
three-sided coin to decide upon one of three sub-operations to perform: insertion,
deletion, or substitution.

o If the sub-operation is substitution, chosen-node is directly replaced with an-
other primitive of the primitive set which has an equal number of parameters.

o If the sub-operation is deletion. the largest subtree of the tree rooted at chosen-node
is promoted to replace it. When more than one subtree of the tree rooted at
chosen- node is largest, one of the largest is chosen randomly. When a leaf is
chosen for deletion, it is replaced by a different randomly chosen leaf.

o If the sub-operation is insertion, a primitive is chosen from the primitive set at
random. It will replace chosen-node but if it requires primitives the subtree
rooted at chosen-node will act as its first parameter. All remaining children of
the newly inserted node will be randomly drawn from the subset of primitives
that require no parameters (i.e. are leaves).

197

HVL-Mutate's suboperations are demonstrated in Figure 52 on page 147.

The pseudocode for the SIHC algorithm is shown in Figure 50 on page 141. At
the start STHC generates a program called current at random and then applies ti.
mutation operator HVL-Mutate to it. HVL-Mutate creates a variant (or “mutant™)
of current named candidate. The acceptance criterion of SIHC is: if candidate
is superior or equal in fitness to current, it replaces current and the search moves
onwards from it. Otherwise another mutation on the original point., current. is tried.
The maximum number of mutations to generate from the program current hefore
abandoning it and choosing a new one at random is a parameter of the algorithm
called max-mutations. The mutation counter for current is reset to zero each time
current is replaced by candidate. The algorithm alwavs keeps track of the fittest
program. When a maximum number of programs (candidates-processed = limit)
have been generated and each tested for fitness or a perfect solution has been found,
the algorithm terminates.

The pseudocode for the SA algorithm is shown in Figure 51 on page 144. The SA
algorithm must be supplied a priori with its initial temperature Ty, final temperature
T, and the fraction of maximum candidates that should be sampled at each temper-
ature. The temperature schedule is then calculated to decrease the temperature after
each fraction of candidates is sampled according to a rate specified by ,,,I,(IJ_;_."_”‘:)
where n is the number of temperature changes. The decision criterion for acceptance
of a candidate solution is to always accept the candidate if it has better (lower) or
equal fitness. Or, if the candidate has worse (higher) fitness, it is accepted with
probability exp(‘—"-‘?ﬂ) where Afitness is the positive fitness difference hetween
current and candidate and T is the current temperature.

We tested the new versions of SA and SIHC with the thesis suite (6-Mult,
11-Mult, Sort-A, Sort-B, and Block Stacking (BS)). The three algorithms were
compared by run when each execution of a run was allowed to process a maximum
of 25500 candidate solutions or individuals. The bases of comparison were:

e rate of success (successful executions per run)
e average number of individuals processed in an execution
e average number of individuals processed in a successful execution

e average size and height of parse trees of successful programs

All problems could be solved by SA. All problems, except 11-Mult could be
solved by SIHC. Tables 39 to 43 show complete data of all comparisons. Overall. the
experimental results of our comparison indicated that adaptive mutation or varving
length programs and a degree of localized search are useful for program discovery.

| Rate of Fittest Inds Inds Proc'd
6-Mult ! Success | Individual Proc'd in Succ Exec

| (%) (%) (%) (%)

GF |5 03] 80@s) [T i8] 484

SIHC, max-mu = 00 [40.0 (49 0) 96.6 (2. 3) 818 61 3
SIHC, max-mu = 10K | 76.7 (50.4) | 98.8 (2.8) 61.5 | 615 57 7
XO - xotreslimit= 100 | 100.0 100.0 20 20 56 (14 9)
NO — STHC, xo-tries-limit = 1000 , 96.7 (17.8) 99.5 23.2 23.2

36.7 (48.2)

XOSA - Each

XOSA - One 16.7 (37.3)

64.6

94.8

70.0

XOSA - Ave 3.3 (17.9)

GP 4+ XOHC, f=5¢=500.g=2

GP+MU-HC. f=5 {

e=500,g=5 | 93.3 (25.0) 99.5 45.2 43.3 (22.5)
e=0500,g=2 190.0 (300) | 99.5 325 306 (5.1)
e=100,g=3 | 80.0 (40.0) 99.8 37.0 47.7 (21.3)
GP"’.YOHCJ:s.cle.gsZi E

Best | 50.0 (50.0) | 96.8 (3.7) | 74.0 (20.8) | 50.0 (24.9)
Random 160.0 (14.7) | 96.9 (4.2) | 72.1 (20.6) | 32.4 (17.9)
Pop 1 63.3 (14.5) | 95.7 (4.2) | 65.3 (32.5) | 44.9 (20.8)

Best 86.7 (10.2)

99.4 (1.7)

44.7

32.4 (17.9)

93.3 (7.5)

Random

99.7 (1.2)

45.9

44.9 (17.7)

Pop 100.0

100.0

Table 39. Comparison of all algorithms on 6-Mult

31.3 (17.4)

The first goal of Chapter 6 was to investigate the basic nature of the GP crossover
operator and observe its performance when it replaced HVL-Mutate in SA and SIHC.
Relyving upon the concept of a fitness landscape and a measure we introduced called

199

Inds Procd
in Succe

Exees ()

ép 0 | 86 | 792] 100]

!

STHC {

max-iru = 500 | 0 84.4 81.6 | 100.0

max-mu = 5000 i 0 95.31 | 88.9 | 100.0
54 [67 [1000 930] 03

XO — STHC, xotsies-limit=100 |l 16.7 1000 | 936 | 954 24

XO — STHC. xowestimiv=5000 | 16.7 | 1000 | 944 | 933 | 60.0
] o 750 | 66.5 | 100.0

XOSA— One [0 789 | 685 | 100.0

XOSA— Ave i o 813 | 71.7 | 100.0

GP+MU-HC, =5 |

e=500,g=35 | 0 91.9 89.6 | 100.0
e=3500,9g=2 | 3.3 100.0 | 91.0 | 99.5 48.6
GP + XOHC, [=5.e=500,g=2 |

Dest i 0 01.9 89.6 | 100.0

Random | 3.3 100.0 | 90.2 | 99.8 97.9

Population | 0 914 | 85.0 | 100.0

Table 40. Comparison of all algorithms on 11-mult

“syntax correlation”, we reviewed GP crossover. Syntax correlation is a measure of
similarity in structure, size and primitives between one parent and one offspring. The
greater the similarity between a parent and offspring in these respects, the greater the
syntax correlation. The syntax correlation of a landscape is the estimated average
of all individual syntax correlations. We estimated that the parent-offspring syntax
cotrelation of GP crossover is lower than that of HVL-Mutate. Consequently, among
the class of fitness landscapes created by GP crossover, there are plausibly some
landscapes that are amenable to search by SA or SIHC. Therefore, we designed two
novel versions of STHC and SA - Crossover Hill Climbing (XO-SIHC) and Crossover
Simulated Anuealing (XOSA) which took advantage of GP crossover by substituting
it for HVL-Mutate.

Inds Proc'd
in Succ Exec

(%)

GP 80.0 (40.0) | 49.7 (18.1) | 51.3 (35.0) | 39.1 (26.6)
SITHC. max-mu = 100 46.7 (49.9) | 72.6 (40.7) | 722 37.5 (27.6)
SA 83.3 (37.9) | 87.4 (28.3) | 62.2 (31.0) | 54.6 (28.5)
XO — STHC, xotriestimit=50 || 10.0 (30.0) | 57.8 92.3 22.7 (22.3)
XOSA = Each 700 (458) | 80.0 56.8 55.3 (25.3)
XOSA - One 93.3 (25.0) | 98.0 25.1 22.5 (22.5)
NOSA - Ave 66.7 (47.1) | 852 67.8 52.0 (31.5)
GP+MU-HC,f=5

e=500,g=2 933 (25.0) | 949 |32.5(29.8) | 11.3(20.0)
e=100,g=3 100.0 100.0 42.0 42.0 (26.9)
GP + XOHC.Pop, f =5

e=500,g=2 70.0 (45.8) [88.5(20.3) [58.4 (31.2) | 43.4 (18.2)
e=100,g=3 80.0 (40.0) | 89.4 (21.0) | 50.6 (34.3) | 39.6 (26.6)

583(96) |425 (29.8)

Table 41. Comparison of all algorithms on Sort-A

Crossover hill climbing was first described to us by Terry Jones [50. 49]. The
basic design of crossover hill climbing still uses better or equal fitness as the move
acceptance criterion of the search but substitutes GP crossover as the move operator.
The candidate solution is. therefore. generated from one current solution and a
random mate using a version of GP crossover that is a simple two-parent to one-
child function. The algorithm always maintains the fittest-overall-solution
(i.e. the fittest point of all points examined) and a current-solution. At the
outset, a mate fcr current-solution is randomly generated. For some number of
attempts. mate-xo-tries-limit, offspring are generated via crossover from the pair
of current-solution and mate. If an attempt yields an offspring that is accepted,
the offspring replaces current-solution and the process repeats with the number
of crossover attempts reset to zero and the same mate. If the number of crossover

201

attempts reaches mate-xo-tries-limit without an offspring being accepted, a new
mate is chosen for current-solution. The number of times the current-sclution
is used. xo-tries-limit. is also a parameter of the algorithm. After xo-tries-limit
crossovers, current-solution is discarded and a new one randomly generated. After
a fixed number of fitness evaluations or when a perfect solution is found the algorithm:
terminates and returns the fitness of fittest-overall-solution.

Rate of Fittest Inds Inds Proc’d
Sort-B Success Ind Proc'd in Suce Exee
(%) (%) (%) (%)
GP 67.7 (47.1) [85.3 (22.6) | 60.4 (37.5) | 40.6 (28.2)

SIHC.maxmu=50___| 600 _[701@L3)
| 88.3 (37.3) | 91.2 (19.7) 640(30.;
XO SIHC, xo-tries-limit= 50 400 (49 0 82.0 (17 2) 81.4 33.6 (31.])

XOSA — Each 80.0 48.75 (25.1) |
XOSA - One 83.3 91.2 48 .4 38.3 (30.9)
XOSA - Ave 90.0 (30.0) 61.5 (17.9)

GP+MU-HC, f=

e=500,g=2 93.3 (25.0) 96.. 323 (36.0) | 30.9 (30.0)
e=100,g=3 100.0 100.0 40.3 40.3 (27.2)
GP + XOHC,Pop, f =5

e=3500,g=2 66.7 (47.1) | 88.5(20.3) | 58.8 {31.0) | 44.3 (18.4)
e=100,g=3 80.0 (40.0) | 89.4 (21.0) | 50.8 (34.0) | 40.0 (26.2))_

GP 4+ XOHC Random, f =5
e=100,g=3

90.0 (30.0) | 97.1 (10.5) | 43.2(29.3) | 36.8 (25.1)

Table 42. Comparison of all algorithins on Sort-B

The XOSA algorithm uses GP crossover to generate candidate points from two
current solutions and the SA acceptance criterion. It has one new param-ter:
xo-tries-limit. Every xo-tries-limit crossovers, the weakest current solution
is replaced with a random program. The acceptance criterion is revised to use 2 pa-
rameters instead of global variables. The formal parameters are: current-fitness
and candidate-fitness. The predicate uses the current temperature, a calculated

fitness differential and a random number generator to indicate whether the candidate

state of the system should be accepted.

There are three different versions of XOSA: XOSA-Average. XOSA-One. and
XOSA-Each, which differ in terms of what values are passed as arguments to the
acceptance criterion predicate and in terms of which current solution is replaced if

acceptance is indicated.

XOSA-Average: the actual parameter for current-fitness is the average fitness
of the two current solutions. The actual parameter for candidate-fitness is
the average fitness of two candidate solutions derived from twice crossing over
the current solutions. If acceptance is indicated, both the candidate solutions
replace the current solutions. Since XOSA-Average uses the SA component for
each pair of fitness evaluations, the SA component is adjusted to use half as

many steps in the cooling schedule.

XOSA-One: only one child is generated, via crossover, from the current solutions.
The fitness of the weaker parent is the value for current-fitness and the
fitness of the child is the value fcr candidate-fitness. The weakest parent is
replaced by the child, if acceptance is indicated.

XOSA-Each: a 2-parent to 2-children crossover function is used with the option of
accepting one child or both. If the weakest current solution can be replaced
by the fittest child, this is done and then an attempt is made to exchange the
fitter current solution for the weakest child. Otherwise, an attempt is made to
exchange the weakest parent for the weakest child.

We rssessed the performance of these algorithms on the thesis problem suite.
The results are included in the data of Tables 39 to 43.

XOHC is definitely a search algorithm worth considering for program discovery
problems. even given the small number of problems in our test suite. It outperforms
or equals the best of the other algorithms on 6-Mult, 11-Mult and Block Stacking.
Its performance on Sorting was. however, poor relative to the other algorithms.

The XOSA results were not as uniformly good. This concurred with our earlier
conjecture that XOSA may not work because, at low temperatures, the GP crossover
operator still generates offspring that are quite syntactically different from their par-

ents.

203

Prob of Fittest Evals Evals Used
Block Stacking Success | Individual Used in Suce Run
(%) [R
GP [76.7 (16.3) [87.7 (31.9) [43.7 (32.1) | 35.1 (2€.6) |
SIHC. max-mu=100 | 94.3 (23.2) 94.9 34.5 30.5 (24.0)
54 | 100.0 100.0 |28.5(22.2) | 28.5 (2.2)
[X0 _ STHC, sotrieslimit=250 | _1000_| 1000 | 26 | 26(23) |
XOSA - Each | 70.0 (45.8) 87.7 75.1 64.7 (26.5)
XOSA - One | 96.7 (17.8) 98.4 28.3 25.8 (27.1)
X0S4 - Ave | 60.0 (49.0) 84.5 88.4 80.8 (18.96)

GP+MU-HC, f=35

e=500,g=2 100.0 100.0 2.3 2.3 (3.3)

e=100,g=3
GP + XOHC,Pop, f =35

12.5 (10.9)

e=500,9=2 100.0 100.0 5.3 5.3 (3.3)

e=100,g=3
GP + XOHC, Random, f =5

13.1 (11.8)

e=100,g = 3

10.6 10.6 (6.3)

Table 43. Comparison of all algorithms on Block Stacking

On this problem suite it was impossible to claim that one version of XO)SA was
superior overall to the others. On each problem, except Sort-B, there was significant
difference among the three versions (Average, Each, One). While Average was never
solely best, Best and Each exchanged rankings on different problems.

Overall, among these XO-SIHC and SA algorithms on any given problem, neither
both algorithms with the same operator, nor. both operators with the same algorithm
had correlated performance. We observed that there was a consistent relationship
between XOSA and XO-SIHC in one respect: whenever XO-SIHC performed well,
XOSA did not, and, whenever XOSA performed well. XO-SIHC did not.

A second goal of Chapter 6 was to improve GP. To do so, we integrated a local
search component into GP to complement its global search power. We implemented
two major types of hybridized algorithm: one uses mutation-based stochastic iterated
hill climbing, “GP+MU-HC" and the other uses GP crossover stochastic iterated hill

204

climbing.
Every g generations, the f fittest individuals in the population are used as the

starting points of a hill climbing search. Each hill climb processes e candidate solu-
tions. The best individual from each hill climb is placed in the next generation and
then the remaining individuals of the population for that generation are generated
standardly (i.e. with crossover or direct reproduction). For an execution the move
operator of the hill climb is either entirelv GP crossover or entirelv HVL-Mutate.

The obvious qualitative difference between mutation based hill climbing and
crossover hill climbing is that mutation introduces totally unselected genetic mate-
rial while the crossover operator (if it draws a mate from the population at large
or from the pool of fittest individuals) replaces swapped out genetic material with
material that has undergone selection by surviving through GP’s simulated process
of evolution. We experimented with 3 versions of GP + XOHC:

Random: Mates are not drawn from the population at all. but are randomly created.
This is similar to using the implemented version of XOHC. It allows non-seleted
material to be combined with selected material but seems to run contrarv to
exploiting the fact that a population of GP programs has undergone selection.

Best: Mates are drawn from the group of individuals with the highest fitness. This
group will vary in size from one to population size (early in an execution). Best
potentially increases the chances that a crossover recombination will generate
a very fit offspring under the assumption that genetic material from the best
members is a source of building blocks because it has undergone selection.

Population: Mates are randomly drawn from the population at large. This version
is “middle of the road” between best and random. The population is a more
diverse source of genetic material compared to the best pool, but, unlike the
random option. it has undergone selection.

The hybrid algorithms were tested for viability and their results are summa-
rized in the data of Tables 39 to 43. They indeed result in better performance than
GP. At least one version of a hybrid of GP plus Hill Climbing was better than the
GP algorithm we compared them to on all problems, in both forms - GP+XOHC,
GP+MU-HC, with at least one setting of the parameters. We observed no consistent

200

significant ordering between the mutation hill climbing option or crossover hill climb-
ing option across the test suite. Prior to using this search strategv. GP had not been
superior nor sometimes even on par with either crossover-based or mutation-based
versions of SA and SIHC. With hyvbridization the evolution inspired search model is,
at the least, comparable.

Regarding the relative merits of the Random, Best. and Population versions of
GP+XOHC, current data is not decisive. Qualitatively, Best may not be explorative
enough because it is limited to a mate pool that may be very small. Preliminarily,
Best was outperformed on 6-Mult but comparable on 11-Mult. Population worked
better than Random on 6-Mult but the results were reversed on 11-Mult. Ou Block
Stacking and both sorting problems Random and Population were equal. Additional
experimentation, bevond the present scope, seems called for.

The final goal of Chapter 6 was to reflect upon the general qualitative similarities
in the entire group of algorithms this thesis described. This is important because no
algorithm is always superior to the rest.

We analysed the common approach of all algorithms: GP, SA, XOSA, SIHC,
XO-SIHC. GP+XOHC, and GP+MU-HC. A general reason for any adaptive search
algorithm's success at program discoverv is its representation rather than its umque
implementation of a search strategy. A successful program discovery algorithm must
consider a large space of candidate solutions where program length and structure can
vary. Both search operators: GP crossover and HVL-Mutate generate programs that
differ in size and structure from their parent(s). Thev both also, conveniently, gen-
erate programs that, while capturing some inherited features and introducing other
random ones, are always syntactically correct. A variable length hierarchical repre-
sentation appears more fundamental to program discovery than any particular search
technique. Any adaptive search algorithm that is sufficiently powerful to efficiently
search this space is likely to succeed at program discovery.

Furthermore, the algorithms are united by a framework of evoluticn: based con-
cepts: selection, inheritance and blind variation. This framework supports their
success. Each algorithm is a unique design and implementation of the three concepts.
While it is obvious how GP fulfills this framework, with XOSA, SA, XO-SIHC and
SIHC some discussion is useful:

e Selection “Survival of the fittest” in biology is an evolutionary selection process

in which superior individuals survive long enough to reproduce and propagate
in greater numbers than inferior ones. In SA or XOSA the search always moves
when a candidate program (generated from the current point) is equal or supe-
rior in fitness to the current point. In this respect, deterministically the fittest
survive. Because SA accepts a candidate program of infenor fitness with a prob-
ability dependent upon the system temperature and the difference in the two
programs’ fitnesses, it has a similarity to GP’s roulette-wheel selection which
always accords each individual in the population, regardless of fitness, a non-
zero chance of being selected as a parent. SIHC is the simplest implementation
of selection: the search only moves to candidate programs of equal or superior

fitness.

e Inheritance In the sexual reproduction of biology, an offspring inherits its ge-
netic material from its parents. The GP crossover operator implements sexually
derived inheritance. Whether the crossover creates two “child™ programs from
a pair of parents or simply one. an offspring inherits from its parent(s) in so
far as before any crossover, it is a copy of one parent and, after crossover, it is
a combination of both. The HVL-Mutate operator implements asexual inher-
itance in the respect that it generates a candidate program that retains some
of its parent program contents. Therefore, any algorithm making use of either
GP crossover or HVL-Mutate, implements inheritance.

¢ Blind Variation In biologv. mutations play the role of blindlv changing a
genome and allowing an offspring to express a genetic feature that is not com-
mon to its parents. The GP crossover operator does not have a direct corre-
spondence for mutation in this context. However. it has a “blind™ aspect which
is the manner in which a crossover point is chosen. Blind crossover point se-
lection provides blind variation in the sense that the place of combination of
~genetic information” from the parent programs is not deterministically chosen.
HVL-Mutate obviously expresses blind variation.

An evolution-based framework for interpretation is also appropriate for GP alter-
natives despite the lack of a formalized population concept. The candidate programs
at corresponding time points in the different ancestry sequences, represent a popula-
tion. The members of each ancestrv line evolve independently and asynchronously.

207

This common framework is useful because it indicates:

e the importance of investigating a variety of selection techniques, population sizes
and search operators. Such investigation generates useful comparison. prevents
general properties from being overlooked and eliminates the risk of prematurely
abandoning plausibly superior techniques. It forestalls any premature claims
that one program discovery algorithm will always be superior to others.

e that future effort should be devoted to studving the “real” process of evolu-
tion and using it as a model for extensions to all adaptive search algorithms.
For example, when SA is viewed as an annealing process it appears to have
limited extension. However, parallelizations of it and the substitution of new
search operators, Lased on ideas borrowed from evolution, provide it with new
potential.

e that it is important to ask how a sub-process or characteristic of any model can
be incorporated into each of the algorithms rather than just one of them. Any
proposed extensions to one algorithm in the form of an operator or selection
strategy should be generalizable to the rest.

7.2. Future Work

Throughout the thesis, we have mentioned potential avenues of future research. We
provide a concise summary here:

¢ Improving hierarchy in GP could payv off in terms of yielding more efficient
search that will be sufficiently powerful to use more general level primitive
sets. It would also improve the principled organization of solutions. Investigat-
ing a GP extended with module encapsulation for longer time scales and with
larger populations is possible if parallel computation is exploited. Longer times
scales and larger populations need to be supplemented with general controls

or selection pressures towards program parsimony but they potentially may
assist hierarchy in arising. Or, a new extended GP model which would have
co-evolving but distinct levels of selection and crossover for different levels of
program hierarchy might improve hierarchy. As well, one could pursue a decen-

208

tralized memory based mechanism that tracks fitness of small subprograms so
that fitter ones can he encapsulated and promoted as building blocks.

One could approach the problem of choosing an efficient search algorithm by
pursuing statistical measures on search operator and fitness function induced
fitness landscapes with a focus on program discovery problems. The goal would
he to derive a measure that vields an indication of amenability to algorithms
while factoring in its own computational expense.

The ability of any of the alternative program discovery algorithms to scale is as
vet uninvestigated. Because HVL-Mutate can easily be extended to work with
an ADF representation, SA (and XOSA) can be tested with ADF benchmark
problems. One could assess whether, with ADFs, the computational efficiency
, and rate of success, as compared to GP or non-ADF SA and non-ADF XOSA
are better than that of GP as the problems scale up.

More extensive investigation of hyvbridization is in order. It clearly improved
upon GP and. perhaps, on larger problems, it mav prove better than SA alone.
A superior algorithm would adaptively choose the interval, number and length
of the local search component by exploiting knowledge about the progress of
the search. Furthermore, it would be nice to further resolve the relative value
among the three crossover hill climbing GP hybrids we designed.

In terms of theory, many difficult questions remain open. A schema-based ap-
proach did not prove very useful in formalizing GP search. Perhaps approaches
based upon Statistical Mechanics or Markov models that account for population
distribution will be fruitful.

As we stated previously, many new extensions for these algorithms should be
tried using the process of evolution as an inspirational model. The extensions
should be assessed as representational or search oriented in nature and this will
serve as a useful guide in figuring out how they can be generalized across the

algorithms.

200

7.3. Final Remarks

In closing, it is appropriate to consider program discovery from a broader perspective
where it becomes one specific means of investigating rich behaviour expressed in terms
of computation.

Our ultimate goal is to design a computer-based software system that generates
sophisticated behaviour while it operates in an environment that defies « priori formal
acquisition and formulation of task and environment knowledge. As such. the system
can only be initially provided with simple fundamental operators and operands that it
must creatively combine to make it capable of interacting with its task environment.
It is required to learn and to be flexible enough to react robustly and correctly. It must
rely upon a robust. knowledge-starved mechanism that promotes complex structures
composed of primitive elements without preordained, centralized guidance.

Using computer programs as the testbed for such behaviour is ideal hecause
programming languages have simple fundamental elements (e.g. in the form of state-
ments, built-in functions and data structures) that can be combined to exhibit so-
phisticated behaviour. The amount of knowledge of the environment that is provided
to the system can be controlled and issues of representing that knowledge can be
examined. Using compntation as a behavioural medium makes it possible to examine
the artifacts of a system, evaluate them and even compare them to aspects of human
reasoning.

Evolution is clearly an ideal process to model given the long range goal we have
stated. It is the most successful example of a process in which sophistication arises
from simple elements with decentralized guidance. Evolution provides an abundant
source of proliferating ideas for how to extend the power of adaptive algorithms.
These ideas are supported by biological justification. For example, junk genes, com-
plex genes, gene duplication, coevolving populations, coevolving environment and
population, etc. are biological phenomena which may be fruitful to model in compu-
tation.

To us, this indicates that future research should continue to explore evolution-
based learning models that work with computation as a medium. However, it may
prove more insightful to diverge from the strict framework of program discovery. It
is necessary to remember that program discovery is simply one example of a compu-

tation problem that could be pursued. In fact, it has limited suitability for pursuing
longer range goals because it sets up an optimization problem framework. It defines
success as reaching an end-point as efficiently as possible with a strict, stationary set
of test cases for a fitness criterion. Alternative goals are as worthy. For example.
it would be valuable to study a system where the fitness criteria of programs were
incrementally made more demanding as the system behaviour improved. This might
push the system to greater levels of performance. The goal of the hehaviour would
focus upon the progress of successive generations rather than whether an ultimate
capability is achieved. As another example, the goal of a system might be to discover
programs that complement other programs in the population so that collectively the
population can always supply one useful program even when the environment is non-
stationary.

The point is that the broader goal of computational discovery will become more
important than program discovery. Future research into computational discovery
based upon evolution inspired algorithms promises profitable insights that will assist
us in achieving our grand goal.

REFERENCES

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines.. Wiley.
New York, NY, 1989.

[2) L. Altenberg. The evolution of evolvability in genetic programming. In K. E.
Kinnear Jr., editor, Advances in Genetic Programming. MIT Press. 1994.

(3] L. Altenberg. The schema theorem and Price’s theorem. In L. D. Whitlev and
M. D. Vose, editors, Foundations of Genetic Algorithms, volume 3, San Mateo,
CA. 1995. Morgan Kaufmann.

[4] D. Andre. Learning and upgrading rules for an OCR system using genetic pro-
gramming. In Proceedings of the 1994 IEEE World Congress on Computational
Intelligence. IEEE Press, 1994.

[3] P.J. Angeline. Evolutionary Algorithms and Emergent Intelligence. PhD thesis,
Ohio State University, 1993.

(6] P.J. Angeline. Genetic programming and emergent intelligence. In Kenneth E.
Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4. MIT Press,
1994.

[7] P.J. Angeline and J. B. Pollack. Coevolving high-level representations. In C. G.
Langton, editor, Artificial Life IIl, SFI Studies in the Sciences of Complerity,
volume XVII. Addison-Wesley, 1991.

[8] G. Guiho A.W. Biermaan and Y. Kodratoff. An overview of automatic program
construction techniques. In G. Guiho A.W. Biermann and Y. Kodratoff, editors,
Advances in Automatic Programming. chapter 1, pages 3-30. Macmillan, New
York, NY, 1988.

[9] T. Béck, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies. In
R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 2-9, San Mateo, CA, 1991. Morgan
Kaufmann.

(5]
Paat
[&

[10] T. Biick and H.-P. Schwefel. An overview of evolutionary algorithms for param-
eter optimization. Evolutionary Computation, 1(1):1-24. 1993.

[11] A. Barr and E. Feigenbaum. Handbook of Artificial Intelligence. Ch. 10: Auto-
matic Programming. William Kauffman. Los Altos, 1982.

[12] R. K. Belew and L. B. Booker, editors. Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufmann. San Mateo. CA. 1991.

[13] R. K. Belew, J. McInery. and N. Schraudolph. Evolving networks: Using the ge-
netic algorithm with connectionist learning. In C. G. Langton, editor, Artificial
Life 11, SFI Studies in the Sciences of Complexity, volume X. Addison-Wesley,

1991.

[14] D. T. Campbell. On the evolutionary theory of knowledge. In Paul Levinson.
editor, In Pursuit of Truth: essays on the philosophy of Karl Popper on the
occasion of his 80th birthday, chapter 23. Humanities Press, 1982.

{15] H. Chen and N. Flann. Parallel simulated annealing and genetic algorithms: A
space of hybrid methods. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors,
Parailel Problem Solving From Nature - PPSN III, volume 866 of Lecture Notes
in Computer Science, Berlin. 1994. Springer-Verlag.

{16] N. L. Cramer. A representation for the adaptive generation of simple sequential
programs. In J. J. Grefenstette, editor. Proceedings of an International Con-
Jerence on Genetic Algorithms and their Applications, pages 183-187, Hillsdale,
NJ. 24-26 July 1985. Carnegie Mellon University, Lawrence Erlbaum.

{17] Y. Davidor. H.-P. Schwefel. and R. Minner. editors. Parallel Problem Solving
from Nature — Proceedings 3rd Workshop PPSN II. Springer Verlag, Berlin.
Germany, 1994.

{18] L. D. Davis, editor. Genetic Algorithms and Simulated Annealing. Research
Notes in Artificial Intelligence. Pitman Publishing and Morgan Kauffmann, Los
Altos. CA. 1987,

(19} L. D. Davis, editor. The Handbook of Genetic Algorithms. Van Nostrand Rein-
hold. 1991.

to
]
[

{20] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptsve
Systems. PhD thesis, University of Michigan. 1975. Dissertation Abstracts
International 36(10), 3410B. (University Microfilms No. 76-9381).

[21] P. de Souza and S. Talukdar. Genetic algorithms in asynchronous teams. In
R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, San Mateo, CA, 1991. Morgan Kaufimann.

[22] K. DeJong. Genetic algorithms are not function optimizers. In L. D. Whit-
ley, editor, Foundations of Genetic Algorithms. San Mateo, CA. 1993. Morgan
Kaufmann.

[23] P. D'haeseleer. Context preserving crossover in genetic programming. In Pro-
ceedings of the 1994 IEEE World Congress on Computational Inteliigence, vol-
ume 1. pages 256-261. IEEE Press, 1994.

[24] B. D. Dunay, F. E. Petry, and \W. P Buckles. Regular language induction with
genetic programming. In Proceedings of the 199§ IEEE World Congress on
Computational Intelligence. IEEE Press, 1994.

[25) R.E. Fikes and N. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3):189-208, 1971.

[26] L. J. Fogel, A. J. Owens. and M. J. Walsh. Artificial Intclligence: Through
Simulated Evolution. John Wiley. New York. 1966.

[27] S. Forrest, editor. Proceedings of the Fifth International Conference on Genetic
Algorithms. Morgzu Kaufmann. San Mateo, CA. 1993.

[28]) S. Forrest and M. M tchell. The performance of genetic algorithms on Walsh
polynomials: Some anomalous results and their explanation. In K. K. Belew
and L. B. Booker. editors. Proceedings of the Fourth International Conference
on Genetic Algorithms, San Mateo, CA, 1991. Morgan Kaufmann.

[29] G. J. Friedman. Digital simulation of an evolutionary process. General Systems
Yearbook, 4:171-184. 1959.

[30} C. Fujiki and J. Dickinson. Using the genetic algorithm to generate Lisp source
code to solve the Prisoner’s dilemma. In J. J. Grefenstette, editor, Genetic

214

Algorithms and Their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, Hillsdale. NJ. 1987. Lawrence Erlbaum As-

sociates.

[31] M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W. H. Freeman. New York, 1979.

{32] D. E. Goldberg. Genetic Algorithms in Search. Optimization. and Machine
Learning. Addison-Wesley, Reading. MA. 1989.

[33] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used
in genetic algorithms. In G. J. E. Rawlins. editor, Foundations of Genetic
Algorithms, volume 1. pages 69-93. San Mateo. CA. 1991. Morgan Kaufmann.

[34] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation.
analysis and first results. Compler Systems, 4:415-444, 1989.

[35] D. E. Goldberg and R. Lingle. Alleles. loci. and the traveling salesman problem.
In 1. J. Grefenstette, editor. Proceedings of an International Conference on
Genetic Algorithms and their Applications, pages 134-159. Lawrence Erlbaum.
Hillsdale, NJ, 24-26 July 1985.

[36] J. J. Grefenstette. editor. Proceedings of an International Conference on Ge-
netic Algorithms and Their Applications. Carnegie-Mellon University, Pitts-
burgh, PA. 1985.

[37] 3. J. Grefenstette, editor. Genetic Algorithwms and Their Applications: Proceed-
ings of the Second International Conference on Genetic Algorithms. Lawrence
Erlbaum Associates. Hillsdale. NJ, 1987,

[38] J. J. Grefenstette. Deception considered harmful. In L. D. Wihitlev. editor,
Foundations of Genetic Algorithms 2, San Mateo. CA. 1993. Morgan Kauffman.

[39] J. J. Grefenstette and J. E. Baker. How genetic algorithms work: A critical
look at implicit parallelism. In J. D. Schaffer, editor. Proceedings of the Third
International Canference on Genetic Algorithms, San Mateo. CA. 1989, Morgan
Kaufmann.

[40]

[41]

(42]

(43]

[+4]

[43]

[46)

[47)

[48]

J.J. Grefenstette. A svstem for learning control strategies with genetic algo-
rithms. In J. David Schaffer. editor. Proceedings of the Thind International
Conference on Genetic Algorithms. pages 183-190. San Mateo, CA, June 4 7
1989. Morgan Kaufmann.

S. Handlev. Automatic learning of a detector for alpha-helices in protein se-
quences via genetic programming. In Proceedings of the Sth International Con-
ference on Genetic Algorithms, ICGA-93. pages 271 278. Morgan Kanfmann,
1993.

S. Handlev. Automated learning of a detector for the cores of a-helices in protein
sequences via genetic programming. In Proceedings of the 1994 IEEE World
Congress on Computational Intelligence, volume 1, pages 474-479. IEEE Press,
1994.

S. A. Harp and T. Samad. Genetic synthesis of neural network architecture.
In L. D. Davis, editor. Handbook of Genetic Algorithms, pages 202 221. \Van
Nostrand Reinhold. 1991.

I. Harvev. The puzzle of the persistent question marks: A case study of genetie
drift. In S. Forrest, editor. Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 15-22, San Mateo. CA. 1993. Morgan Kaufusann.

W. D. Hillis. Co-evulving parasites improve simnulated evolution as an optimiza-
tion procedure. Physica D, 42:228-234. 1990.

J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Can-
bridge. MA. 1992, Second edition (First edition. 1975).

H. Iba. H. de Garis. and T. Sato. Genetic programming using a minimutn
description length principle. In Kenneth E. Kinnear, Jr., editor. Advances
Genetic Programming. chapter 12, pages 263- 284. MIT Press. 1994.

H. [ba. T. Karita. H. de Garis. and T. Sato. System identification using strue-
tured genetic algorithms. In Proceedings of the 5th International Conference om
Genetic Algorithms. ICGA-93, pages 279-286. Morgan Kaufmann. 1993.

[49] T. C. Jones. Crossover, macromutation. and population-based search. In L. J.
Eshelman. editor, Proceedings of the Sixth International Conference on Genetic
Algorithms, 1995. (to appear).

[30} T. C. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD
thesis. University of New Mexico, Albuquerque. NM, March 1995.

[51] K A. De Jong. Generation gaps revisited. In L. D. Whitley. editor. Foundations
of Genetic Algorithms, San Mateo. CA. 1993. Morgan Kaufmann.

[52] A. Juels and M. Wattenberg. Stochastic hill climbing as baseline methods
for evaluating genetic algorithms. Technical report. University of California,
Berkely. September 1994.

[33] M. J. Keith and M. C. Martin. Genetic programming in C++: Implementation
issues. In Kenneth E. Kinnear. Jr.. editor, Advances in Genetic Programming.
chapter 13. MIT Press, 1994.

[54) T. Kido. H. Kitano, and M. Nakashani. A hybrid search for genetic algo-
rithms: Combining genetic algorithms. tabu search. and simulated annealing.
In S. Forrest. editor. Proceedings of the Fifth International Conference on Ge-
netic Algorithms. San Mateo, CA, 1993. Morgan Kaufmann.

[33] K. E. Kinnear. Jr. Evolving a sort: Lessons in genetic programming. In Pro-
ceedings of the 1993 International Conference on Neural Networks. volume 2.
IEEE Press. 1993.

[36] K. E. Kinnear Jr. Generalitv and difficulty in genetic programming: Evolving a
sort. In Proceedings of the 5th International Conference on Genetic Algorithms,
ICGA-93. pages 287-294. Morgan Kaufinann, 1993.

[57) K. E. Kiunear. Jr. Alternatives in automatic function definition: A compari-
son of performance. In Kenneth E. Kinnear. Jr., editor, Advances in Genetic
Programming, chapter 6. MIT Press, 1994.

{98] S. Kirkpatrick. Optimization by simulated annealing: quantitative studies.
Journal of Statistical Physics, 234:975-986. 1984.

[59]

[60]

[61]

[62)

[63]

[64]

[63]

(66]

S. Kirkpatrick. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680. Mayv 1983.

J. R. Koza. Hierarchical genetic algorithms operating on populations of com-
puter programs. In N. S. Sridharan, editor. Proceedings of the Elcventh In-
ternational Joint Conference on Artificial Intelligence 1JCAI-89.Detroit, M.
volume 1. pages 768-774. Palo Alto. CA, 20-25 August 1989. Morgan Kauf-
mann.

J. R. Koza. A genetic approach to econometric modeling. In Sirth World
Congress of the Econometric Society, Barcelona. Spain, 1990. 27 August.

J. R. Koza. Genetic programming: A paradigm for genetically breeding popu-
lations of computer programs to solve problems. Technical Report STAN-CS-
90-1314, Department of Computer Science, Stanford University, Stanford. CA,
1990.

J. R. Koza. Genetically breeding populations of computer programs to solve
problems in artificial intelligence. In Proceedings of the Second International
Conference on Tools for Al. Herndon. Virginia. USA, volume 1. pages 819
827. IEEE Computer Society Press, Los Alamitos, CA, _SA, 6-9 November
1990.

J. R. Koza. Hierarchical genetic algorithms operating on populations of com-
puter programs. In Proceedings of the Conference on Machine Learning, pages
768-774. Cambridge. MA. 1990.

J. R. Koza. Evolution and co-evolution of computer programs to contro}
independent-acting agents. In Jean-Arcady Meyer and Stewart W. Wilson, ed-
itors, From Animals to Animats: Proceedings of the First Intcrnational Confer-
ence on Simulation of Adaptive Behavior, Paris. 24-28, Septemnber 1990, pages
366-375. Cambridge, MA, 1991. The MIT Press.

J. R. Koza. Evolving a computer program to generate random numbers us-
ing the genetic programming paradigm. In Rik Belew and Lashon Booker,
editors, Proceedings of the Fourth International Conference on Genetic Alyo-

rithms, pages 37-44, San Mateo, CA. USA, 1991. Morgan Kaufmann Publishers

Inc.

[67) J. R. Koza. Genetic evolution and co-evolution of computer programs. In
Christopher, Taylor, Charles, Langton, J. Dovne Farmer, and Steen Rasmussen.
editors, Artificial Life 11, volume X of SFI Studies in the Sciences of Complerity,
pages 603-629. Addiso: -Wesley, Redwood City, CA, USA, 1991.

[68] J. R. Koza. Genetic evolution and co-evolution of computer programs. In C. G.
Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors. Artificial Life 1.
pages 603-629, Reading, MA. 1992. Addison-Wesley.

[69] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press. Cambridge, MA., 1992.

70] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge. MA, 1994.

[71] J. R. Koza. Recognizing patterns in protein sequences using iteration-
performing calculations in genetic programming. In 1994 IEEE World Congress
on Computational Intelligence. IEEE Press, 1994.

[72] J. R. Koza. Scalable learning in genetic programming using automatic function
definition. In Kenneth E. Kinnear, Jr., editor. Advances in Genetic Program-
ming. The MIT Press. Cambridge, MA., USA, 1994.

{73] J. R. Koza. Discussion of hill climbing and genetic search. Internet Machine
Learning Digest. vinl4, August 1995.

[74] D. H. Kraft. F. E. Petry. W. P. Buckles. and T. Sadasivan. The use of ge-
netic programming to build queries for information retrieval. In Proceedings of
the 1994 IEEE World Congress on Computational Intelligence, pages 468-473.
IEEE Press, 1994.

[75] K. J. Lang. Hill climbing beats genetic search on a boolean circuit synthe-
sis problem of koza’s. In A. Prieditis and S. Russell. editors, Proceedings of
the Twelth International Conference on Machine Learning, pages 340343, San
Mateo, CA. July 9-12 1995. Morgan Kaufmann.

219

[76] W.B. Langdon. Genetic programming bibliography. Technical report. Univer-
sity College London. 1995.

[77] G. Liepins and M. D. Vose. Deceptiveness and genetic algorithm dynamics. In
G. J. E. Rawlins, editor. Foundations of Genetic Algorithms, volume 1, pages
36-30, San Mateo. CA, 1991. Morgan Kaufmann.

[78] R. Minner and B. Manderick. editors. Parallel Problem Solving from Nature
— Proceedings 2nd Workshop PPSN II. Elsevier Science, Brussels, Belginm,
1992.

[79) K. Mathias and L. D. Whitley. Genetic operators, the fitness landscape and
the traveling salesman problem. In R. Manner and B. Manderick. editors,
Parallel Problem Solving From Nature. volume 2, pages 219- 228, Amsterdam,
The Netherlands, 1992. Elsevier Science Publishers B.V'.

[80] N. Metropolis, A. Rosenbluth, M. Rosenbluth. A. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemical
Physics, 21:1087-1092. 1953.

[81] M. Mezard. G. Parisi, and M. Virasoro. Spin Glass Theory and Beyond. World
Scientific, Singapore, 1987.

[82] M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic al-
gorithms: Fitness landscapes and GA performance. In F. J. Varela and
P. Bourgine, editors. Proceedings of the First European Conference on Artificial
Life. Toward a Practice of Autonomous Systems, pages 245 234, Cambridge,
MA. 11-13 Dec 1992. MIT Press.

[83] M. Mitchell. J. H. Holland. and S. Forrest. When will a genetic algorithm ont-
perform hill climbing? In J. D. Cowan, G. Tesauro, and J. Alspector (editors),
Advances in Neural Information Processing Systems 6. San Mateo, CA: Morgan
Kaufmann.

[84] S. Muggleton. Inductive Logic Programining. Academic Press, San Diego, CA,
1992.

[85]

[86]

[87]

[88]

[89]

[90]

[91])

[92]

[93]

220

N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co., Palo
Alto, CA, 1980.

H. Oakley. Two scientific applications of genetic programming: Stack filters
and non-linear equation fitting to chaotic data. In Kenneth E. Kinnear. Jr..
editor, Advances in Genetic Programming, chapter 17. MIT Press. 1994.

I. M. Oliver. D. J. Smith, and J. R. C. Holland. A study of permutation
crossover operators on the traveling salesman problem. In J. J. Grefenstette,
editor, Genetic Algorithms and their Applications: Proceedings of the Second
International Conference on Genetic Algorithms, pages 224-230, Hillsdale, NJ,
1987. Lawrence Erlbaum.

U.-M. O’Reilly and F. Oppacher. An experimental perspective on genetic pro-
gramming. In R Manner and B Manderick, editors. Parallel Problem Solving
from Nature 2, pages 331-340, Brussels, Belgium, 1992. Elsevier Science.

U.-M. O’Reilly and F. Oppacher. Program search with a hierarchical vari-
able length representation: Genetic programming. simulated annealing and hill
climbing. In Y. Davidor, H.-P. Schwefel, and R. Minner, editors. Parallel Prob-
lem Solving From Nature - PPSN III, Vk olume 866 of Lecture Notes in Com-
puter Science, pages 397-406. Berlin. 1994, Springer-Verlag.

U.-M. O'Reilly and F. Oppacher. Building block functior s to confirm a building
block hypothesis for genetic programming. Technical Report 95-02-007, Santa
Fe Institute, Santa Fe, NM, Februarv 1995.

W. H. Press. Numerical Recipes in C. Cambridge Press, Cambridge, MA, 1992.

N.J. Radcliffe. Formal analysis and random respectful recombination. In R.K.
Belew and L.B. Booker. editors. Proceedings of the Fourth International Con-
ference on Genetic Algorithms, San Mateo, CA, 1991. Morgan Kaufmann.

L. De Raedt. Interactive Theory Revision: An Inductive Logic Programming
Approach. Academic Press, San Diego, CA, 1992,

o
o
Yanar

[94] L. De Raedt and M. Bruynooghe. Interactive theory revision. In R. Mihalski
and G. Tecuci, editors, Machine Learning. A Multistrategy Approach, chapter 9.
Morgan Kaufmann, San Mateo, CA, 1994.

[95] I. Rechenberg. Evolutionsstrategie: Optimierung Techniquer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzhoog Verlag. Stuttgart.
1973.

[96] Craig W. Reynolds. An evolved. vision-based behavioral model of coordinated
group motion. In Meyer and Wilson, editors, From Animals to Animats (the
proceedings of Simulation of Adaptive Behaviour. MIT Press, 1992.

[97] Craig W. Reynolds. The difficulty of roving eves. In Proceedings of the 1994
IEEE World Congress on Computational Intelligence, pages 262-267. IEEE
Press, June 1994.

[98] C. Rich and R. C. Waters. The programmer’s apprentice. In P.H. Winston,
editor, Artificial Intelligence at MIT, Ezpanding Frontiers, pages 16G- 195, Cam-
bridge, MA. 1990. MIT Press.

[99] J. P. Rosca and D. H. Ballard. Learning by adapting representations in genetic
programming. in Proceedings of the 1994 IEEE World Congress on Computa-
tional Intelligence. IEEE Press, 1994.

[100] J. P. Rosca and Dana H. Ballard. Hierarchical self-organization in genetic pro-
gramming. In Proceedings of the Eleventh International Conference on Machine
Learning. Morgan Kaufmann, 1994.

{101} E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intel-
ligence, 5(2):115-133, 1974.

[102] S. Sankoff and J. B. Kruskal. Time Warps, String Edits and Macromolecules:
the theory and practice of sequence comparison. Addison-Wesley, Reading, MA,
1983.

[103] J. D. Schaffer, editor. Proceedings of the Third International Conference on
Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 1989.

[
[
(V]

[104] H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis,
Technische Universitat Berlin, Berlin, 1975.

[103] H.-P. Schwefel and R. Manner. editors. Parallel Problem Solving from Naturc
— Proceedings 1st Workshop PPSN I, volume 496 of Lecture Notes in Computer
Science. Springer Berlin, Dortmund. Germany. 1990.

[106] C. G. Shaefer. The ARGOT strategv: Adaptive representation genetic opti-
mizer technique. In J. J. Grefenstette, editor, Proceedings of the Second Inter-
national Conference on Genetic Algorithms, pages 50-53. Hillsdale NJ. 1987.
Lawrence Erlbaum Associates.

[107] E. V. Siegel. Competitively evolving decision trees against fixed training cases
for natural language processing. In Kenneth E. Kinnear. Jr.. editor. Advences
in Genetic Programming, chapter 19. MIT Press, 1994.

[108] H. A. Simon. Sciences of the Artificial. MIT Press. Cambridge. NA. 1969.

[109] R. E. Smith. Special Issue on Classifier Systems in Journal of Evolutionary
Computation, volume 2. no. 2. MIT Press, Cambridge. MA, 1994.

[110]) S.J. Smith. Flexible learning of problem solving heuristics through adaptive
search. In Proceedings of 8th International Joint Conference on Artificical In-
telligence, San Mateo. CA, 1983. Morgan Kaufmann.

[111] P. Stadler. Landscapes and their correlation functions. Unpublished
manuscript.. July 1995.

{112] G. Steele. Common LISP: the language. Digital Press, Bedford, MA. 1990.

{113]) G.J. Sussman. A Computer Model of Skill Acquisition. MIT Press, Cambridge.,
MA, 1975.

[114] G. Syswerda. A study of reproduction in generational and steady state al-
gorithms. In G.E. Rawlins. editor. Foundations of Genetic Algorithms, San
Mateo, CA, 1991. Morgan Kaufmann.

[115] W. A. Tackett. Greedy recombination and genetic search on the space of com-
puter programs. In D. Whitley and M. Vose. editors. Foundutions of Genetic
Algorithms 3. Morgan Kaufmann. 1994.

223

f116] W. A. Tackett. Recombination. Selection. and the Genetic Construction of
Computer Programs. PhD thesis, University of Southern California. Depart-
ment of Electrical Engineering Svstems. 1994.

{117] W. A. Tackett and A. Carmi. The unique implications of browd sclection for
genetic programming. In Proceedings of the 1994 IEEE World Congress on
Computational Intelligence. IEEE Press, 1994.

[118] A. Teller. The evolution of mental models. In Kenneth E. Kinnear, Jr.. editor,
Advances in Genetic Programming, chapter 9. MIT Press, 1994.

{119] U. W. Thonemann. Finding improved simulated annealing schedules with ge-
netic programming. In Proceedings of the 1994 IEEE World Congress on Com-
putational Intelligence. IEEE Press, 1994.

[120] M. D. Vose. Modeliag simple genetic algorithms. In L. D. Whitley, editor,
Foundations of Genetic Algorithms, volume 2, pages 63-73. San Mateo, CA,
1993. Morgan Kaufmann.

f121] L. D. Whitley. The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In J. D. Schaffer, ¢ditor, Pro-
ceedings of the Third Internutional Conference on Genetic Algorithms, pages
116-121, San Mateo, CA. June 4-7 1989. Morgan Kaufmanu.

{122] L. D. Whitley. Fundamental principles of deception in genetic search. In G. J. E.
Rawlins, editor, Foundations of Genetic Algorithms. volume 1, pages 221 241,
San Mateo. CA, 1991. Morgan Kaufmann.

[123] S. W. Wilson. Classifier systems and the animat problem. Machine Learning,
2:199-228. 1987.

[124] M. Wineberg and F. Oppacher. A representation scheme to perform program

induction in a canonical genetic algorithm. In Y. Davidor, H.-P. Schwefe],
and R. Manner, editors, Parallel Problem Solving From Nature - PPSN Il
volume 866 of Lecture Notes in Computer Science, pages 292 301, Berlin, 1994.
Springer-Verlag.

224

[125]) S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in
evolution. In D.F. Jones, editor, Proceedings of the Sizth International Congress
on Genetics, Vol 1, pages 356-366. San Mateo. CA. June 4-7 1932. Morgan
Kaufmann.

[126] B. T. Zhang and H. Miihlenbein. Synthesis of sigma-pi neural networks by the
breeder genetic programming. In Proceedings of IEEE International Conference
on Evolutionary Computation (ICEC-94), World Congress on Computational
Intelligence, pages 318-323. IEEE Computer Society Press, New York. 1994.

