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Abstract

Multiobjective heterogeneous flexible neural tree (HFNT) and multiobjective hierarchical
fuzzy inference tree (HFIT) are two novel adaptive algorithms, which were proposed for
the feature selection and function approximation after comprehensive literature reviews
of the neural network and fuzzy inference system paradigms, respectively. The proposed
algorithms were designed as a tree-like model, and the best tree-structure was selected from
a topological space by applying a multiobjective evolutionary algorithm that simultaneously
minimized both approximation error and tree complexity. Further, the parameter vector
of the selected tree, from the Pareto front, was tuned by using a metaheuristic algorithm.
For HFNT, the dynamics of natural selection was exploited to introduce functional
heterogeneity in the HFN'T nodes, and a diversity index was introduced for creating diverse
HFNTs during its tree optimization phase. Subsequently, an evolutionary ensemble of
HFNTSs was proposed for making use of the final population. On the other hand, the HFIT
nodes were low-dimensional type-1 or type-2 fuzzy inference systems, and the tree-like
model was a hierarchical arrangement of such nodes. The performance of both HFNT and
HFIT on benchmark datasets was better than the performance of the algorithms in the
literature. Additionally, both HFNT and HFIT was used for the predictive modeling of
the industrial problems, in which the feature selection was a crucial challenge in addition
to the prediction. High approximation ability with the simple model generation is the

vital contribution of the proposed algorithms for predictive modeling of complex problems.

Keywords: feedforward neural network; fuzzy inference system; multiobjective; meta-

heuristics; ensemble learning; feature selection.
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Chapter 1
Introduction

Developing algorithms for understanding data and discovering meaningful knowledge from
them has been a several decades quest, and to do so, two tasks usually performed are feature
selection and function approximation. Feature selection plays a crucial role in analyzing
the most significant variables in a dataset, and the function approximation is involved in
finding the meaningful relationship among the variables of a dataset. Therefore, the goal

is to develop the algorithms that perform these two tasks efficiently and simultaneously.

1.1 Problem statement

Feature selection and function approximation are usually viewed within the supervised learn-
ing paradigm. Two computational intelligence models, feedforward neural network (FNN)
and fuzzy inference system (FIS), perform these tasks efficiently when trained/optimized
by supplying the training data (X,Y’) of N input—output pairs, i.e., X = (x1,X2,...,Xy)
and Y = (y1,¥s,-...¥Yn). Each input x; = (21, T, ..., ;) is a p-dimensional vector,
and it has a corresponding g¢-dimensional desired output vector y, = (yi1,¥i2, - - -, Yiq)-
For the training data (X,Y’), a model f(x,w) produces output vV = (Y1, Y2, - YN),
where f: X XY — f/, w = (wq, Ws, ..., w,) is the n-dimensional solution vector, and
Vi = (i1, Gi2s - - -, Uig) 1s & g-dimensional model’s output, which is then compared with
desired output y;, for all i = 1 to N, by using some error/distance/cost function c¢y. For
the problems whose desired outputs are continuous variables, mean squared error is one of

the commonly used cost function, which is expressed as:

1 N ¢
ywy@ ZZ Yij — yz] ) (1-1)

1:1 j=1

where y;; are the desired outputs and ¢;; are the model’s outputs, and their differences are

summed over N data pairs.
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Thus, a model y = f(x,w), parameterized by p-dimensional input vector x and an
n-dimensional real-valued vector w, under a supervised learning training tries to find
a casual relationship between input X and output Y by searching optimum parameter
vector w* and by minimizing the cost function ¢; : Y x y — R>¢. Such process is called

function approximation, which may be defined as:

Definition 1.1 (Function approximation) Given the dataset (X,Y), the goal in func-
tion approzimation is to find a function f(x, w*) such that cs(y, f(x, w*)) < cs(y, f(x, w))
holds for any w € R".

Let an input vector x have p input feature. Then, for a set of input features Z, the feature

selection may be defined as:

Definition 1.2 (Feature selection) Given an input feature set Z = {z,2s,...,%,} and
the power set Z. = P(Z) — 0, a feature selection method finds an optimal set Z*, for which

a model gives the lowest approzimation error, where Z* € Z and |Z*| < |Z].

The following section describes some preliminary concepts of computational intelligence
methods and tools for the understanding of the proposed algorithms: multiobjective
heterogeneous flexible neural tree (HFNT) and multiobjective hierarchical fuzzy inference
tree (FHIT). Both of the proposed algorithms were developed after a comprehensive
literature review of FNN and FIS paradigms.

1.2 Preliminaries

1.2.1 Feedforward neural network

Feedforward neural networks (FNNs) are the computational models that consist of many
neurons (node), which are connected using synaptic links (weights) and are arranged in
layer-by-layer basis. Thus, FNNs have a specific structural configuration (architecture), in
which the nodes at a layer have forward connections from the nodes of its previous layer
(Fig. 1.1(a)). A node of a FNN is capable of processing information coming through the
connection weights (Fig. 1.1(b)). Mathematically, the output y; (excitation) of a node

(node indicated as 7) is computed as:

Yi = pi (Z whz) + b") : (1.2)
j=1

where n’ is the total incoming connections, 2* is the input, w® is the weight, b’ is the bias,
and @;(-) is the activation function at the i-th node. An activation function limits the

amplitude of the output at a node into a certain range.
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input layer hidden layer output layer

(a) Three-layer feedforward neural network (b) Node of the network

Fig. 1.1 Three-layer feedforward neural network (a), where input layer has p input nodes, hidden layer
has h activation functions, and output layer has ¢ nodes.

: Rule-base :
Fuzzifier ‘»]  Type -2 FIS takes : Defuzzifier

type-2 fuzzy set

Crisp input l
Crisp output l

Type-reducer

Inference engine

. Only for type -2 FIS

Fig. 1.2 Typical fuzzy inference system.

1.2.2 Fuzzy inference system

Fuzzy inference system (FIS) has a vast range of application domain since it perform
human-like reasoning by modeling ambiguous, uncertain, incomplete, inaccurate, and
noisy information. Therefore, it is preferred for prediction modeling in several industrial
applications, where often noisy data are available for the modeling. A FIS is composed
of a fuzzifier that fuzzifies input information, an inference engine that infers information
from a rule-base, and a defuzzifier that returns crisp outcome (Fig. 1.2). In simple words,
a FIS infer the information from a rule-base. Hence, a FIS can be described as a set of
rules, where the rules are in IF-THEN form, i.e., in the antecedent and the consequent
form. Takagi-Sugeno—Kang (TSK) model is a widely used FIS model that embraced
[F-THEN form in which the antecedent part consists of membership functions (MFs), and
the consequent part consists of a linear polynomial function [1]. A detail discussion of FIS

is available in Chapter 4.

1.2.3 Metaheuristic algorithms

Metaheuristics are nature-inspired algorithms that optimizes a function f(x, w) by search-

ing an optimum parameter vector w* € R" for the function through a vast search space.
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For this purpose, the metaheuristic algorithms efficiently combines two technique: ex-
ploitation and exploration. By exploitation, it creates a new solution from the already
discovered solutions, and by exploration, it creates a new solution by searching through
the new areas of the search space [2]. The concept of the exploration and the exploitation
are contradictory to each other, and a good search algorithm must find trade-offs between
these two concepts. Hence, an effective algorithm should, intelligently, combine these two
strategies.

A general procedure of the metaheuristics is illustrated in Algorithm 1.1, where index
t indicates the iteration and MHgperator indicates a metaheuristic operator applied over
the solution vector w of the population W), = (wy,wa,..., w,,). The definition of the
metaheuristic operator (MHoperator) is varied from algorithm to algorithm.

There are several types of metaheuristic algorithms. Each metaheuristic algorithm is
inspired by a form of natural heuristics. For example, artificial bee colony [3], bacteria
foraging optimization [4], and particle swarm optimization [5] are inspired from the foraging
behavior of swarm. On the other hand, differential evolution [6] and genetic algorithm [7]
are inspired by evolutionary process of natural selection. However, the metaheuristic
algorithms follows a common procedure as laid down in Algorithm 1.1, but they differ in

their respective design of metaheuristic operators, that is, the heuristics.

Algorithm 1.1 Basic metaheuristic framework for optimization.
1: procedure METAHEURISTICS(W},, €)
2 Initialize T}
3 Fittest solution w* = min(W})
4 repeat

5: W}TH = MHOperator(Wis)

6

7

8

9

W = min(W; )
if w < w* then
W' =w
end if
10: until Stopping criteria € satisfied
11: return w*
12: end procedure

1.2.4 Multiobjective optimization

Multiobjective optimization procedure involved in optimizing two or more objective
functions, simultaneously. It is an efficient method for evaluating Pareto-optimal solutions
for the multiobjective problems. To generalize, the function/model (e.g., FNN or FIS)

optimization need to be addressed from the multiobjective point of view because merely
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optimizing the training error can not provide generalization. Hence, a multiobjective

optimization problem was studied in this research, which was of the following form:

minimize {c;(w), ca(W),...,cn(w)}

subject to w € S,

where m > 2 is the number of the objective functions ¢; : R" — R>q. The vector of
objective functions is denoted by ¢ = (¢1(W), c2(W), ..., ¢n(w)). The decision (variable)
vectors w = (wy, we, . .., w,) belong to the set S C R™, which is a subset of the decision
variable space R". The word “minimize” indicates the minimization all the objective
functions simultaneously, that is, no solution can dominate any other solution. In other
words, a nondominated solution is the one, in which, no one objective function can be
improved without a simultaneous detriment to at least one of the other objectives of the

solution. The nondominated solution is also known as a Pareto-optimal solution.

Definition 1.3 Pareto-dominance - A solution w1 is said to dominate a solution wo if
Vi=1,2,...,m, ¢;(wy1) < c;(wa), and there exists j € {1,2,...,m} such that c;(w;) <

cj(wa).

Definition 1.4 Pareto-optimal - A solution w1 is called Pareto-optimal if there does not
exist any other solution that dominates it. A set Pareto-optimal solution is referred to as

a Pareto-front.

A multiobjective algorithm must provide a homogeneous distribution of a population
along Pareto-front and improve solutions along successive generations [8]. Hence, three basic
operators can be used [8]. 1) Fitness assignment—to guide a population in the direction
of Pareto-front using robust and efficient multiobjective selection method. 2) Density
estimation—to maintain solutions distributed over entire Pareto-front using operators
that take account of the solution’s proximity. 3) Archiving—to prevent degradation in
fitness during successive generations by maintaining an external population to preserve
the best solutions and for periodic input to the main population. A detailed survey of
multiobjective algorithms is available in [9]. It should be noted that W, is the population,
c is the set/vector of objective functions, W, C W is the archive. So, a basic framework

of multiobjective can be drawn as per Algorithm 1.2.

1.2.5 Ensemble learning

The generalized solution to a problem may be obtained by using ensemble, which allows
us to combine or fuse two or more model’s outputs into a single output (decision), i.e.,

a collective decision is given importance over the individual decision. To construct an
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Algorithm 1.2 General multiobjective metaheuristics framework.

1: procedure MULTIOBJECTIVE MH (W, W4, c,€)
2 Initialize W)

3 Evaluate W over objectives c.

4: Initialize archive Wy.

5: repeat

6 W;“ = MO-MHperator (W)

7 Evaluate W}*! over objectives c.
8 Update archive W 4.

9: until Stopping criteria esatisfied
10: W; = Wy

11: return V.

12: end procedure

ensemble system, one must create M many diverse candidates, which may be created as one-
by-one basis or may be taken from the final population of a metaheuristic optimization. Let
the collection of M be a bag of ensemble candidates and size of bag be denoted as |M| [10].
Then, the decisions for the classification problems may be combined by using weighted
majority voting, and for the regression problems may be combined by using weighted
arithmetic mean [11]. To compute the combined vote of the candidates my,mo, ..., mu
of the bag M, where each candidate m; has the decision/class w; or wy or ... or we, an

2

indicator function I(-) can be used that returns 1 if “(-)” is true or returns 0 if “(-)” is

false. Thus, the ensemble decision ¢ using weighted majority voting is computed as:

| M|
J = arg m%;cZwi]I (m; = wj), (1.3)
==t

where w; is the weight associated with the i-th candidate in the bag M. Equation (1.3)
says that the ensemble decision ¢ is set to the class w; if the total weighted vote received
by w; is higher than the total vote received by the other classes. Similarly, the ensemble

decision for the regression problem is computed using weighted arithmetic mean as:

|M|
9= sz‘ my, (1.4)
i=1

where w; and m; are the weight and the output of the i-th candidate bag M. The weights
w; in (1.3) and in (1.4) may be computed according to the fitness of the models, or may

be computed by using metaheuristic algorithms.
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1.3 Objectives

The following objectives were framed in this research for the purpose of feature selection

and the function approximation:
1) To investigate available metaheuristics based design of FNN and FIS algorithms.

2) To investigate multiobjective optimization methods to adapt the topology and learning

parameters, which could lead to a low approximation error and a less complex model.

3) To develop effective data mining algorithms based on the adaptive data structures for

the feature selection and the function approximation.

4) To validate the developed algorithms on benchmark datasets and real-world problems.

1.4 Steps towards objectives

1.4.1 Study of FNN and FIS based learning methods

Development of novel algorithm for feature selection and function approximation was
primary objective of this research. Hence, the available machine learning tools and
techniques were investigated, first. For example, feature selection methods such as backward
feature elimination, correlation-based feature selection, classifier-based feature selection,
and wrapper feature selection were studied [12]. Similarly, function approximation methods
such as linear regression, Gaussian process regression, multilayer perceptron, reduced error
pruning tree, and sequential minimal optimization regression were studied. Additionally,
ensemble methods such as evolutionary weighted ensemble, quality weighted output
regression, mean output regression, random subspace, bagging, etc., were investigated [13,
14]. Moreover, neuro-fuzzy system and metaheuristic based type-1 and type-2 FIS design
were explored [15-18]. Also, the comprehensive literature reviews, focused specifically on
metaheuristic-based design and structure optimization for both FNN and FIS paradigms,
were explored. The purpose of the literature review was to look for FNN and FIS based

models to identify scope for the novel design of algorithms.

1.4.2 Proposal of heterogeneous flexible neural tree

The flexible neural tree (FNT) is an algorithm for the feature selection and function
approximation proposed by Chen et al. [19, 20]. FNT perform feature selection and
function approximation simultaneously. FNT has neural nodes (FNN-like nodes) and

has feedforward connection. Since FNT design is a tree-like structure and evolves using
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evolutionary algorithms, its size (complexity) can be very large if the tree is created by
minimizing only approximation error. Hence, a multiobjective optimization framework
for FN'Ts tree structure optimization was proposed in this research. For this purpose,
nondominated sorting genetic programming was applied for optimizing approximation
error, model complexity, and models diversity, simultaneously. Additionally, adaptation
in node was introduced to offer heterogeneity. Thus, the proposed algorithm was named
heterogeneous FNT (HENT). Finally, HFNT was evaluated on the benchmark problems

and an industrial problem (a predictive modeling of pharmaceutical granules).

1.4.3 Proposal of hierarchical fuzzy inference tree

FIS is an efficient way to model inaccurate, imprecise, incomplete, and noisy data [21, 22].
Therefore, FIS was studied and the role of metaheuristic-based optimization of type-1 and
type-2 FIS for solving data mining task was investigated. The basic need of FIS design is
its optimization of rule base (which can be represented as a structure, i.e., a connection
based model), and the optimization of the rule base parameters. In the past, neural
network and hierarchical based FIS design were proposed by researchers. In this research,
a tree-like structure was proposed for FIS design that was a hierarchical arrangement of
low-dimensional FISs and resembled FNN-like connection. For this purpose, the node of
the tree was designed as type-1 and type-2 FIS. Subsequently, multiobjective evolution
algorithm was applied to create a hierarchical fuzzy inference tree (HFIT). The performance
of the proposed HFIT was evaluated over six examples including a real-wolrd application

(drug dissolution rate prediction).

1.5 Organization of the thesis

In this thesis, two novel algorithms HFIT and HFIT were proposed after the literature
review of metaheuristic based design of FNN and FIS. Hence, first, in Chapter 2, state-of-
the-art review of FNN optimization is discussed, which provides the ground for identifying
the current challenges and future research direction. Subsequently, the proposed multiob-
jective HFNT is explained in Chapter 3. Chapter 4 provides a detailed state-of-the-art
review of metaheuristic-based design of FIS, which is followed by a detail description of the
proposed multiobjective HFIT algorithm in Chapter 5. Finally, Chapter 6 offers concise

conclusions and future research directions derived from this research.



Chapter 2

Metaheuristic design of feedforward

neural network

Feedforward neural network (FNN) is a widely used computational model for solving
function approximation and pattern recognition problems, where optimization is the key
to its success. FNN optimization is not limited to minimizing only its cost function; rather,
improving FNNs generalization ability is its true optimization. To achieve generalization,
researchers have significantly contributed to FNNs optimization that includes optimization
of its weights, network architecture, activation nodes, learning parameters, learning
environment, etc. Limitations of gradient-based FNN optimization approach, which is
local minima problem, is to some extent solved by metaheuristics that are good at delivering
solutions closer to a global optimum solution (if one exists). Metaheuristics facilitates to
formulate all the FNN components for the optimization. Thus, it enhanced the chances of
achieving generality. Metaheuristics addressed FNN optimization in several innovative ways
such as EPNet, neuroevolution of augmenting topologies, flexible neural tree, cooperative
coevolution neural network, multiobjective optimization to FNN, ensemble, etc. This

chapter provides a comprehensive state-of-the-art study of FNN.

2.1 Introduction

History of artificial neural network (ANN) goes back to 1943 when McCulloch and Pitts [23]
proposed a computational model that imitates the human brain. Feedforward neural
networks (FNNs) are the special type of ANN models that are capable of learning and
recognizing, and can solve a large range of complex problems: pattern recognition [24],
clustering and classification [25], function approximation [26], prediction [27], forecast-
ing [28], control [29], signal processing [30], speech processing [31], etc. In addition, the

structural representation of FNN makes it appealing because it allows us to perceive
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a computational model (a function) in a structural/network form. Moreover, it is the
structure of the FNN that makes it a universal function approximator. Thus, it has the
capabilities of approximating any continuous function [32].

The structure of a FNN consists of several neurons (processing units) arranged in
layer-by-layer basis, and the neurons in a layer have forward connections (weights) from
the neurons at its previous layer. Fundamentally, FNN optimization/learning/training
is met by searching an appropriate network structure (a function) and the weights (the
parameters of the function) for solving a given problem [33]. Finding a suitable network
structure consists of searching the appropriate neurons, the number of neurons, and
arrangements of the neurons, etc. Finding the weights indicates the optimization a real
vector that represents the weights of the network. Therefore, learning is an essential and
distinguished aspect of FNN. The literature contains numerous algorithms, techniques,
and procedure for a FNN optimization. Earlier in FNN research only gradient-based
optimization techniques were popular choices; however, gradually due to the limitations of
gradient-based algorithms, the necessity of metaheuristic based optimization techniques
were recognized.

Metaheuristics formulates FNN components, such as weights, structure, nodes, etc.,
into an optimization problem. Metaheuristics uses various heuristics for finding a near-
optimum solution. Additionally, multiobjective metaheuristic framework deal with multiple
objectives simultaneously, and the existence of multiple objectives in FNN optimization is
evident since the minimization of FNNs approximation error is desirable at one hand, and
the generalization and model’s simplification is at the other.

In a metaheuristic or multiobjective metaheuristic treatment to FNN, an initial popula-
tion of FNNs is guided towards a final population, where usually the best FNN is selected.
However, selecting only the best FNN from a population may not always produce a
general solution. Therefore, to achieve a general solution without any significant additional
cost, an ensemble of many candidates chosen from a metaheuristic final population is
recommended.

This chapter provides a comprehensive literature review to address various aspects of

FNN optimization. Hence, the chapter is arranged into the following main parts.

1) Discussion on the importance of FNN as a function approximator and its preliminary

concepts (Section 2.2):

a) Introduction to the factors that influences the FNN optimization (Section 2.2.2).

b) Introduction to the conventional FNN optimization algorithms (Section 2.2.3).

2) Discussion on the metaheuristic framework for optimizing FNN (Section 2.3):
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a) Significance of the metaheuristics methods for FNN optimization (Section 2.3.1).

b) Role of hybrid metaheuristics in the FNN optimization (Section 2.3.2).

3) Discussion on the role of multiobjective metaheuristics in FNN optimization to achieve

generalization (Section 2.4).
4) Discussion on the ensemble techniques (Section 2.5).

5) Discussion on the challenges and future research directions (Section 2.6).

2.2 Feedforward neural network

The intelligence of human brain is due to its massively parallel network system, in other
words, the architecture of the brain. Similarly, a proper design of ANN offers a significant
improvement to a learning system. The components such as nodes, weights, and layers are
responsible for the developments of various ANN models.

Single layer perceptron (SLP), consists of an input and an output layer, is the simplest
form of ANN model [34]. However, SLPs are incapable of solving nonlinearly separable
patterns [35]. Hence, a multilayer perceptron (MLP) was proposed in [36], which addressed
the limitations of SLPs by including one or more hidden layers in between an input layer
and an output layer. A trained MLP is then capable of solving nonlinearly separable
patterns [37]. In-fact, MLPs (in general FNNs) are capable of addressing a large class of
problem in the domain of pattern recognition and prediction. Moreover, MLP is considered
as a universal approzimator [32]. Cybenko [38] referring to Kolmogorov’s theorem!
showed that a FNN with only a single internal hidden layer containing a finite number of
neurons with any continuous sigmoidal nonlinear activation function can approximate any
continuous function. Also, the FNN structure (architecture) is itself capable enough to be
a universal approximator [32]. Hence, several researchers praised FNN for its universal
approximation ability [40-43].

Other ANN models such as radial basis function [44] and support vector machine [45] are
a special class of three-layer FNNs. They are capable of solving regression and classification
problems using supervised learning methods. In contrast, adaptive resonance theory [46],
Kohenen’s self-organizing map [47], and learning-vector-quantization [47] are two-layer FNN
architectures that are capable of solving pattern recognition and data compression problems
using unsupervised learning methods. Additionally, the ANN architecture with feedback
connections, in other words, a network, in which connections between nodes may form cycle,

is known as a recurrent neural network (RNN) or a feedback network model. RNNs are

'Kolmogorov’s theorem: “All continuous functions of n variables have an exact representation in terms
of finite superposition and compositions of a small number of functions of one variable [39].”
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good at performing sequence recognition/reproduction or temporal association/prediction
tasks. RNNs such as Hopfield network [48] and Boltzmann machine [49] are good at
the application for memory storage and remembering input—output relations. Moreover,
Hopfield network was designed for solving nonlinear dynamic systems, where stability of
dynamic system are studied under the neurodynamic paradigm. A collection of RNN
models such as temporal RNN [50], echo state RNN [51], liquid state machine [52] and
backpropagation de-correlation [53] forms a paradigm called reservoir computing, which
addresses several engineering applications including nonlinear signal processing and control.

Although some other ANN models that are capable of doing a similar task that of

FNNs were pointed-out, the discussion in this chapter is, however, limited to only FNNs.

2.2.1 Components of FNNs

Essentially, the FNN in Fig. 1.1(a) is a phenotype/structural representation of a function
f(x,w), which is parameterized by p-dimensional input vector x = (z1,29,...,2,) and
n-dimensional real-valued weight vector w = (wq, ws, ..., w,). The function f(x,w) is a
solution to a given problem. Therefore, two tasks involved in solving a problem using FNN
are to discover appropriate function f(x,w) (i.e., architecture optimization) and to discover
appropriate weight vector w (i.e., weight optimization) using some learning algorithm.
Network architecture optimization includes the searching of appropriate activation functions
©(-) at the nodes, the number of nodes, number of layers, arrangements of the nodes,
etc. Therefore, several components of FNN optimization are the connection weights; the
architecture (number of layers in a network, the number of nodes at the hidden layers,
the arrangement of the connections between nodes); the nodes (activation functions at
the nodes); the learning algorithms (algorithms training parameters); and the learning
environment. However, traditionally, the only component that was optimized used to be

the connection weights.

2.2.2 Factors influencing FNN optimization
Learning environment

A FNN is trained by supplying a training data (X,Y") as described in Section 1.1. Hence,
the supervised learning of a FNN is met by the minimization /reduction of the error/distance
function value, in an iterative manner. One very commonly known supervised learning
algorithm is Delta rule or Widrow-Hoff rule [54], in which the n-dimensional weight vector
w of a FNN is optimized as:

with = w! + Aw', (2.1)
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where Aw' is weight-change (an additive term) at ¢-th iteration. The weight-change Aw*
is computed as:
Aw! = nlelxt, (2.2)

where 7' is a learning rate, which controls the magnitude of weight-change at ¢-th iteration,
and e! is the error at t-th learning iteration for i-th training input x! presented to a

FNN at the ¢-th iteration. The error e} at the t-th iteration may be computed as:

q
J=1

el = (y5; — 95;)7, where y}; and §}; are the desired output and the FNNs output at
t-th iteration.

Contrary to the mentioned supervised learning paradigm, there are two other learning
forms for the spacial cases of FNNs: 1) the unsupervised learning—for the unlabeled training
data [55]; and 2) the reinforcement learning—for the training data with insufficient input—
output relations [56]. Focus of this chapter is, however, on supervised learning paradigms

only.

Error function

Supervised learning, essentially, is the minimization the difference between the desired
output y, and the model’s output ¥, = f(x;, w) by comparing the difference using a cost
function ¢ : Y x Y — Rxg as described in Section 1.1.

Usually, in regression problems, the mean squared error (1.1) is used, or some other
similar function such as sum of squared error, root of mean square error, mean absolute
error, correlation coefficient, etc. [57] are used. However, the cost function mean squared
error (1.1) or any similar squared error-based cost function is inconsistent for solving classi-
fication problems [58]. In-stead, the percentage of good classification, which has consistent
behavior can be used [58], but, the percentage of good classification is satisfactory until no
preference was given to a particular class. Therefore, accuracy and miss-classification rate
are used as cost functions. A detailed list of the cost function for classification problems is
available in [59]. In this chapter, FNN optimization is discussed only in the context of the

cost function (1.1).

Local minima problem

Let cf : S — Rxg, where S C R™ is nonempty and compact [60]. Therefore, the following
may be defined.

Definition 2.1 (Global minima) A point w* € S is called global minima if cp(w*) <
cg(w) for any w € S holds.
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Definition 2.2 (Local minima) A point w* € S is called local minima if there exists
e > 0, and an e-neighborhood B.(w*,€) around w* such that cg(w*) < cf(w) for any
w € SN B(w*, €) holds.

Learning algorithms when use the cost function (1.1) or any similar function for FNN
optimization has the tendency to fall in local minima [61]. Moreover, the geometrical
structure (parameter space) of a three-layer perceptron may fall to local minima and
plateaus during its optimization. It indicates that the critical point corresponding to
global minima of a smaller FNN model (models with A — 1 hidden units) can be a local or
saddle point of a larger FNN model (models with ~ hidden units) [62].

However, there are some ways to avoid or eliminate local minima in FNN optimiza-
tion [63, 64]. 1) If the weights and the training patterns are assigned randomly to a
three-layer FNN that contains & many neurons at the hidden layer, then a gradient decent
algorithm can avoid trapping into local minima [65]. 2) If linearly-separable training data
and pyramidal network structure are taken, then the error surface will be local minima
free [66]. 3) If there are N many noncoincident input patterns to learn, and three-layered
FNN with N — 1 sigmoid hidden neurons and one dummy hidden neuron is used, then the
corresponding error surface will be local minima free.

However, these methods depend on the number of hidden neurons, the number of
training samples, the number of output neurons, and a condition that says the number of
hidden neurons should not be less than the number of training samples. Moreover, these
methods do not necessarily guarantee to converge to global minima, and the conditions
such as a large number of hidden neurons and linearly separable training patterns are

unlikely conditions for the real-world problems [67].

Generalization

The generalization is a crucial aspect of FNN optimization, which indicates the ability
of a FNN to offer general solutions rather than performing best for a particular case.
To achieve generalization, FNNs need to avoid both underfitting and overfitting during
training, which is associated with high statistical bias and high statistical variance [68].
Therefore, one has to address trade-offs between bias and variance. In addition, for a good
generalization, the number of training pattern should be sufficiently larger than the total
number of connections in FNN [69].

The standard methods for achieving generalization are determining an optimum number
of free parameters (i.e., equivalent to find an optimum network architecture), early stopping
of training algorithms, adding regularization term with the cost function [70, 71], and
adding noise to the training data. In early stopping, a dataset is divided into three sets: a

training set, cross-validation set, and test set. Early stopping scheme suggests stopping
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of training at the point (epoch) from that onward the cost function value computed on
cross-validation set starts to rise [61, 72-74]. Similarly, adding noise (jitters) into the
training pattern improves FNNs generalization ability, and removing insignificant weights
from a trained FNN improves its fault tolerance ability [75].

Now, if the approximation error of two FNN models trained on the same training
data is close/similar. Then, the model with simple network structure (lower number
of free parameters) should be selected as the best model because the model with lower
network complexity possesses higher generalization ability than the models with higher
network complexity [76]. Moreover, network with lower weight magnitude possesses better

generalization ability [76].

2.2.3 Conventional optimization approaches

Finding suitable algorithms for FNNs optimization has always been a difficult task. FNN
optimization using conventional gradient-based algorithms is viewed as an unconstrained
optimization problem [33]. The cost function ¢y has to be optimized to satisfy Definition 2.1.

Therefore, the gradient of error ¢g' at the ¢-th iteration is computed as:

t_ dcy

g 8Wt ) (23)

where ¢ is a first-order partial derivative of cost function ¢; with respect to weight vector
w. Hence, a gradient descent approach starts with an initial guess wy and generates a
sequence of weight vector wi, wa, ... such that ¢y reduces in each iteration. The connection

weights at an iteration ¢ are updated as:
wit = wl + Aw', (2.4)

where weight-change Aw' is equal to — n'g" and 7' is the learning rate. Weights updated
using (2.3) and (2.4) is known as the steepest decent approach.
Now, instead of using first-order partial derivative, second-order partial derivative (V?)

of the cost function ¢; can be used as:

aQCf

Ht: 2 —
Ve ow’

(2.5)

where H' is Hessian matrix at the ¢-th iteration. Hence, weight-change Aw' using

second—order Taylor’s series expansion of cost function ¢; around point w' is computed as:

Aw' = —H' "¢, (2.6)
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where H'~! is the inverse of Hessian matrix H* and the weight-change Aw’ is known as
the Newton’s method or Newton update [33]. In the past, several algorithms were proposed
using (2.3) and (2.6). Some of them are summarized in this chapter as follows.

The backpropagation (BP) algorithm is a first-order gradient descent technique used
for optimizing FNN [37]. In BP training, error computed at the output layer is propagated
backward to hidden layers. BP algorithm has two phases of computation: forward
computation and backward computation, where at t-th iteration, the [-th layer weight-

change Aw?’ is computed as:
Aw) = a'w; ! +n'g'z ., (2.7)

where z is inputs/excitation from previous layer [ — 1, ' is learning rate, and o' is
momentum factor. The choice of learning rate 7 and momentum factor of are critical to
a gradient descent technique. The momentum factor o let BP training to be biased with
previous iteration weights that help convergence rate to be faster. BP is sensitive to these
parameters [37]. If learning rate is too small, learning will become slow, and if learning
rate is too large, learning will be zigzag and algorithm may not converge to required degree
of satisfaction. Additionally, a high momentum factor leads to a high risk of overshooting
of minima, and a low momentum factor may avoid local minima, but learning will be slow.
The classical BP algorithms are slow and have a tendency to fall in local minima [66].

Since the basic version of BP is sensitivity towards learning rate and momentum
factor [37], several improvements suggested by researchers: 1) a fast BP algorithm called
Quickpro was proposed in [77]; 2) a delta-bar technique and an acceleration technique was
suggested for tuning BP learning rate n in [78] and in [79], respectively; and 3) a variant
of BP, called resilient propagator (Rprop) was proposed in [80].

In Rprop, if the gradient direction in iteration ¢ remains unchanged from its previous
iteration t — 1, then weight-change will occur in larger magnitude, else in smaller. In simple
words, if gradient sign remains unchanged from previous iterations, the magnitude of
learning rate n will be large, otherwise small. The proposed Rprop improves determinism
of convergence to global minima [80]. However, it is not faster than Quickpro, but still
faster than BP [81].

Contrary to BP, a second-order minimization method called conjugate gradient (CG)
can be used for weights optimization [82]. CG does not proceed down with a gradient;
instead, it moves in the direction that is conjugate to the direction of the previous step.
In other words, the gradient corresponding to the current step stays perpendicular to the
direction of all the previous steps, and each step is at least as good as its previous step.
Such series of steps are non-interfering. Hence, minimization performed in one step will

not be undone by any further steps. Similar to CG, many other variants of derivative-
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based conventional methods are used for weights optimization: Quasi Newtons [83],
Gauss-Newton, or Levenberg-Marquardt [84] are among them. Quasi Newtons uses a
second-order partial derivative of error (2.5), and it computes its weight search direction
by using Broyden-Fletcher-Goldfarb-Shanno method [85]. In Gauss-Newton method, FNN
optimization is framed as a nonlinear least square optimization problem, which suggests to
use sum of squared error (1.1) [84]. Many researchers suggested that Levenberg-Marquardt
method outperform BP, CG, and Quasi-Newton method [86]. Several other methods
were proposed for FNN are based on Kalman-filter [87, 88] and recursive least squares
method [89)].

However, these algorithms have the tendency to fall in local minima, and they are only
used for optimizing weights. Hence, generalization may not be achieved by using only

these methods. Therefore, metaheuristics have a role to play in FNN optimization.

2.3 Metaheuristic approach

So far, gradient-based optimization algorithms were discussed, which are local search
algorithms. They are good at exploiting the obtained solutions to find new solutions, but
to find a global optimum solution, any optimization algorithm must use two techniques: 1)
exploration—to search new and unknown areas in a search space; and 2) ezploitation—to
take advantage of already discovered solution [2]. Exploitation and exploration are two
contradictory strategies, and a good search algorithm must find a trade-off between these
two. Metaheuristic is the procedure that uses nature-inspired heuristics to combine these
two strategies [90]. Hence, metaheuristics are alternative to the conventional approaches
for optimizing FNNs.

Unlike traditional methods, which require the objective function to be continuous
and differential, metaheuristics have the ability to address complex, nonlinear, and non-
differentiable problems. However, optimization algorithms are often biased towards a
specific class of problems, that is, “there is no such universal optimizer which may solve
all class of problem,” which is evident from no free lunch theorem [91].

Wolpert and Macready [91] introduced no free lunch theorem (NFL) to answer the ques-
tion, “whether a general purpose optimization algorithm exists.” Moreover, Wolpert [92]
introduced NFL for optimization algorithm to answer the question, “How does the set of
problems F; C F for which algorithm a; performs better than algorithm a, compares to
the set Fy C F for which the reverse is true” (here, F is space of all possible problems).
To answer this question, they compared the sum over all cost function ¢ of P (¢f | ¢f,t, a1)
to the sum over all cost function ¢; of P (¢ | ¢f,t,as), and found that the performance

P (cf | ¢f,t,a;) is independent of algorithm a; when averaged over all cost functions, where
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P(cy | ¢f,t,a;) was the probability of getting a sequence of cost value ¢ of an algorithm

a; for t iterations over a cost function cy.

Theorem 2.1 For any pair of algorithms a, and as

NP (et | ep,tiar) =Y P(ct | cp.t,a)
cf cf
Theorem 2.1 says that “the average performance of any pair of algorithms across all
possible problems is identical” [91]. Therefore, a straightforward interpretation of NFL
is as follows. “A general purpose universal optimization strategy is impossible, and the
only way one strategy can outperform another is if it is specialized to the structure of the
specific problem under consideration” [93]. This is the reason why in the past researchers

were inclined to create and improvise algorithms for optimizing FNN.

2.3.1 Metaheuristic formulation of FNN components

Metaheuristics are stochastic/non-deterministic algorithms. Hence, they do not guarantee
a global optimal solution. However, metaheuristics can offer a near-optimal solution.
Moreover, metaheuristics efficiently solve a wide range of complex continuous optimization
problems. Especially, when problems have incomplete and imprecise information.

The basic form of FNN optimization is the act of searching its weights (free parameters
of FNN) such that the cost function (1.1) can be minimized. However, the goodness
(performance) of FNN cost function depends not only on finding optimum weights, but
finding optimum architecture, activation function, parameter setting of learning algorithm,
and training environment are equally important. To apply metaheuristic algorithms
for optimizing FNN, using some strategy, the FNN components (phenotype) need to be
formulated into a vector (genotype) form.

Usually, the values of FNN components such as weights, architecture, activation
function, learning rule, etc., are considered arbitrarily. Then, a learning algorithm is
applied to search weights, but the values of other components are kept fixed to their initial
setting. However, metaheuristics allow us sto optimize each component simultaneously
or by a combination strategy (Fig. 2.1). Using a Venn diagram, Fig. 2.1 illustrates
the spectrum metaheuristics optimization of FNN components: weights, architecture,
activation function, and learning rule’s parameters. In Fig. 2.1, area “al” indicates
optimization of weights; area “a2” indicates optimization of weights and architecture; area
“a3” indicates optimization of weights, architecture, and activation function; and the areas
“ad” to “a8” indicate all other possible combinations. Examining Fig. 2.1, one can say
that the strength and complexity of optimization increases from area denoted “al” to “aS8,”

where “al” is the simplest approach and “a8” is the most sophisticated approach.
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Architecture
Optimization

Fig. 2.1 Spectrum of metaheuristic design for FNN.

Each FNN component can be separately optimized as one-by-one basis. Therefore,
first, weights can be optimized; second, architecture; third, activation function; and so
on. Another way is to optimize all or a combination of FNN components, simultaneously.
Therefore, weights and architecture; or weights and activation-functions; or weights,
architecture, and activation functions; and so on, can be optimized, simultaneously. In the
simultaneous optimization of all or a combination of components, a vectored representation
of all components, or a combination of components can be optimized, respectively. Once a
vectored representation (genotype) is designed, then one of the available metaheuristic in
the literature can be applied on the designed vector to obtained an optimum FNN.

Now, two types of metaheuristics are available for FNN optimization [94]: single-
solution-based and population-based metaheuristics. In single-solution-based metaheuris-
tics, a genotype w = (wy,wy, ..., wy,) is used. Whereas, in a population-based meta-
heuristic, a collection of many genotypes are used; in other words, a population matrix
W = (wy, wa, ..., wW,,) of m weight vectors are used.

Yao and Liu [95] identified evolution at various components of FNN that fall into the
spectrum of metaheuristic design of FNN shown in Fig. 2.1. This section will describe how
researchers applied metaheuristics for evolving FNN. The evolution (terms optimization,
adaptation, and evolution are used in similar context) in FNN components is described

here one-by-one, as follows.

Weight optimization

FNN weights optimization is the most common and widely studied approach, in which
FNN weights are mapped onto an n-dimensional weight vector w, where n is the total
number of weights in a network. The vector w € R" is a genotype representation of a

phenotype (FNN structure). The individual weights w; € w may be encoded using real
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(i) w={(10,5.0,2.0,4.0,3.0,6.0)

(i) w = (0001,0101,0010,0100,0011,0110)

(iii) w = (0001, 0111,0011,0110,0010,0101)

(b) ()

Fig. 2.2 Mapping of phenotype to genotype. (a) Phenotype of a three-layer FNN. (b) Adjacency matrix.
(c) Weights encoding: i) real value; ii) 4-bits binary; iii) 4-bits Gray encoding.

value, [-bits binary coding, [-bits Gray coding, 32-bit IEEE floating point coding, etc.
Fig. 2.2 is an example of phenotype to genotype mapping, where a phenotype (Fig. 2.2(a))
that has the connectivity matrix ¢ (Fig. 2.2(b)) is encoded into three different weight
vectors (Fig. 2.2(c)).

FNN weights optimization using metaheuristic is practiced from early 80s, which is
evident from Engle [96] work on FNN weight vector optimization using simulated annealing
(SA) algorithm. SA simulates annealing process of metallurgy industry and uses Monte
Carlo method [97] to generate states that led to an optimal solution [98]. To optimize
weight vector using SA, first the phenotype was mapped onto a real-valued weight vector
(Fig. 2.2(c)) and to compute fitness of FNN, a reverse mapping form genotype (weight
vector w) to phenotype (FNN) was used. Such process was continued until a satisfactory
solution was found. SA-based FNN weight optimization was found to be performing better
in comparison to conventional approaches [99-101].

Similar to Engle [96] approach of phenotype to genotype mapping and vice versa,
in [102], FNN weight optimization was performed using tabu search (TS), which is a
metaheuristic inspired by the human behavior of tabooing objects [103]. In [104], an
improvised TS called reactive tabu search was used for optimizing weights. Several
studies show that TS when used for optimizing FNN weights, outperformed BP and
SA algorithm [105, 106]. However, SA and TS are single solution based algorithms,
which has a limited scope of exploring search space to obtain global optimal solution. In
contrast, evolutionary algorithms (EA) and bio-inspired or swarm-based metaheuristics
are population-based algorithms that use multiple agents to explore a search space. Hence,
they have better exploration ability than SA, TS, BP, CG, and other single solution based
algorithms [7, 5].

EA framework offers an exploration of a vast search space and guarantees to find a
near-optimal solution. Since EAs does not depend on gradient information, it solves a large
range of complex, nonlinear, nondifferentiable, multimodal optimization problems. EAs
are inspired by the “natural selection” and use metaheuristic operators such as selection,

crossover, and mutation to find a near-optimal solution [7]. For optimizing weights, EA
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uses two categories of vector representation: binary-valued vector, and real-valued vector.
In Fig. 2.2(c), three types of weight vector representation is illustrated: 1) real-valued
coded chromosome; 2) binary coded chromosome; and 3) binary Gray coded chromosome.

EAs paradigm covers several algorithms: genetic algorithm (GA) [7]; genetic program-
ming (GP) [107], evolutionary programming (EP) [108], evolutionary strategies (ES) [109],
etc. GA uses genetic operators such as selection, crossover, and mutation to search
optimum genetic vector from a search space; whereas, only mutation operator are used in
ES to evolve a real vector solution. On the other hand, GP searches an optimum program
structure from a topological search space of computer programs, and EP are used for
evolving parameters of a computer program whose structure is kept fixed.

Goldberg and Holland [7] gave the idea of FNN training using GA. However, Whitley and
Hanson [110] were the first to propose “GENITOR,” a GA based FNN training procedure
that used binary-coded chromosome (Fig. 2.2(c)) for optimizing weights. Many others
followed the idea of GENITOR with some additional improvements such as connectivity
optimization and reduced search space introduction [111, 112]. On the other hand, in [113],
binary Gray coding (Fig. 2.2(c)) was used for optimizing weights, where at first, GA was
used for finding initial weights that were further optimized by using BP and vice versa.

Binary bit-string representation of weights leads to a precision problem, that is, how
many bits would be sufficient for representing weights and what would be the total length of
a chromosome. Moreover, the binary representation is computationally expensive because,
in each training iteration, a binary to real-valued mapping and vice versa is required.
Hence, it is advantageous to use real-coded chromosome Fig. 2.2(c) directly [114-118].

Traditional evolutionary algorithms operators are applied on the binary chromosome.
Thus, operators such as bias-mutation, unbias-mutation, node-mutation, weight-crossover,
and gradient-operator, etc., were defined for operating on real-valued chromosome [114].
On the other hand, a matrix-based representation of weights, where a column-wise and a
row-wise crossover operators can also be defined [119]. Moreover, an evolutionary inspired
algorithm called differential evolution (DE) [6] that imitates mutation and crossover
operator to solve complex continuous optimization problems was found to be performing
efficiently for real-valued weight vector optimization [120, 121]

Similar to DE, swarm-based or bio-inspired based metaheuristics directly apply heuris-
tics inspired by nature on a real-valued vector. Hence, they are advantageous in comparison
to an EA-based algorithm that needs to simulate mutation and crossover operators for
real-valued weight vector [5]. Swarm-based paradigm includes several algorithms that are
inspired by the various forms of natural heuristics such as the foraging behavior of a swarm
of animals, birds, insects, etc. Like EAs, swarm-based metaheuristics are population-based

metaheuristics, which works on a collection of several potential solutions.
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The particle swarm optimization (PSO) algorithm, which is inspired by the foraging
behavior of swarm, is a population-based algorithm that explores a search space to optimize
the objective function of given problems [5]. A swarm, as a whole, is like a flock of birds
(particles, which are the weight vectors) that collectively foraging (explore search space)
for food (best weight vector) and is likely to move close to an optimum food-source [5].
Moreover, each particle bears two properties: location and velocity. Location of a particle
is a solution vector (weight vector w), and velocity n is a vector equal to the size of
the location vector. Each particle determines its movement using knowledge of its best
locations, global best location, and random perturbations [5].

It was found that PSO guides a population of FNN weight vectors towards an optimum
population [122, 123]. Hence, many researchers resorted to working on swarm based
metaheuristics for FNN optimization. A cooperative PSO, which suggests to split solution
vector into n parts, where each part are optimized by a swarm with m particles [124].
Thus, n x m combinations for constructing n-dimensional composite vector is allowed,
in which, each swarm contributed to the fitness of a solution. Such cooperation between
swarms led to a better performance than that of the basic version of PSO for optimizing
FNNs. Similarly, a multiphase PSO was proposed, in which particle position was updated
only when improvement in location was found; otherwise, location was copied as-it-is into
the next generation [125]. A cultural cooperative particle swarm optimization (CCPSO)
approach, in which a collection of multiple swarms that interact by exchanging information
was proposed [126]. CCPSO performed better than BP and GA when it was applied for
optimizing a fuzzy neural network. Similarly, a hierarchical particle swarm optimization
was used to design a beta-basis function neural network [127]. Apart from PSO, there
are numerous metaheuristic algorithms, among which some significant metaheuristics are
discussed here that were applied for FNN optimization.

Ant colony optimization (ACO) is inspired by the foraging behavior of ants that is
their (ant’s) ability to explore the area around their nest (colony) for searching food source
and their ability to choose the shortest path to food-source by communicating among each
other’s using pheromone secretion [128]. This behavior of ants led to the development
of ACO algorithm [129]. The continuous version of ACO [130] was efficiently applied
to optimize FNN weight vector [131, 132]. Artificial bee colony (ABC) is, on the other
hand, a metaheuristic inspired by foraging behavior of honeybees, where three kinds of
honeybees such as employed-bee, onlooker-bee and scout-bee are responsible for searching
food-source [3].

Considering the efficiency of harmony search (HS) algorithm—that has a slow conver-
gence rate, but guarantees a near-optimum solution [133]—many researchers applied HS

for optimizing weight vector of FNN [134, 135]. Moreover, efficiency of HS comes from
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Fig. 2.3 Mapping of phenotype (Fig. 2.2 to genotype (for architecture). (a) Indirect encoding schemes
for architecture (Fig. 2.2(a)), where S is start symbol, A, B,C, and D are variables, and a, ¢, 7, and u

are terminals. (b) Complete connectivity derived from rules operation shown in Fig. 2.3(a). (c) Direct
encoding to a vector of connectivity matrix (Fig. 2.2(b)): i) upper right triangle; ii) complete connectivity.

using m many harmonies (weight vectors) and iteratively improvising each harmony by
computing new harmony (new solution-vectors) using heuristic inspired by music pitch
modification [133, 136].

In the past, many other swarm-based metaheuristics were used to optimize weight vector
of FNN. In [137] a study elaborately explains the use of the following metaheuristics for
optimizing FNN: SA, TS, GA, ACO, scatter search, greedy randomized search procedure,
memetic algorithm, variable neighborhood search, and estimations of distribution algorithm.
Many researchers studied the performance of metaheuristic algorithms for the training
of FNN and reported that the metaheuristic approaches outperform all the conventional
methods by a huge margin [138-140).

Architecture optimization

The basic architecture optimization approach is a cascade correlation learning, which
iteratively add nodes to hidden layer to construct optimum architecture [77]. In other
words, a constructive (add node iteratively) and destructive (prune nodes iteratively)
method [141]. However, the constructive and the destructive methods for optimizing
architecture are no different from manual trial-and-error method. Therefore, genetic
representation of FNN architecture as mentioned in Figs. 2.3(a), 2.3(b), 2.3(c) can be
used for architecture optimization, which is equivalent to searching optimum architecture
from a compact space of FNN topology [142, 143].

Let us discuss the genetic representation of architecture in detail. A direct encoding
scheme (Fig. 2.3(c)) was proposed in [144, 145], where authors used an adjacency matrix

(Fig. 2.2(b)) to represent connections between nodes, where between any two node ¢ and
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j, a presence of connection is indicated by “1”, and absence of connection is indicated by
“0”. Hence, they were able to encode complete structural information into a chromosome.
However, it is disadvantageous because chromosome length increases with network size.
Therefore, if only network’s structural information can be encoded into genotype, then it will
avoid chromosome length problem [146], and the encoded network structural information
can be accessed using rule-based recursive equation [147]. Moreover, the represented
parametric/structural information into the chromosome can indirectly provide access to
the rest of the structural details from a predefined archive (parametric information) [148].

Indirect scheme reduces chromosome length, where parametric information such as the
number of hidden layers, the number of nodes at hidden layers, the number of connection,
etc., makes an archive S. The production rule (Fig. 2.3(a)) allow us to get access to
complete structural information (Fig. 2.3(b)). Hence, a rule based encoding scheme allows
a better FNN architecture optimization than a direct encoding scheme [149].

Unlike weight optimization that has only limited ways of genetic representation,
FNN architecture optimization is an interesting area of research because of various ways
to represent architecture into genotype. It is evident from a fractal configured FNN
representation in [150], where authors define each node using parameters, namely, edge
code, input coefficient, and output coefficient. Similarly, in [151], GA was applied to evolve
each layer separately, and in [152], a grammar encoding and colonial competitive algorithm
were proposed.

Another approach to the genetic representation of architecture is to encode weights
w (real vector: Fig. 2.2(c)) and architecture vector a = (ay,...a,,) (binary vector as
Fig. 2.3(c)) into a combined genotype. Hence, a single solution vector of the form:
(Wi, ..., Wy, ay,...,a,) is obtained [153], which can be optimized by using metaheuristics.

Many researchers improvised the algorithms itself to optimize architecture. Such
examples are as follows: in [154], a PSO-PSO method was proposed, in which a PSO (inner
PSO block) was applied for optimizing weights that were nested under another PSO (outer
PSO block) that was applied for optimizing the architecture of FNN by adding or deleting
hidden node. Similarly, in [155], a hybrid Taguchi-genetic algorithm was proposed for
optimizing FNN architecture and weights, where authors used a genetic representation of
the weights, but they selected structure using constructive method (by adding hidden nodes
one-by-one). A multidimensional PSO approach was proposed in [156] for constructing
FNN automatically by using an architectural (topological) space. Moreover, the individuals
in the swarm population were designed in such a way that it optimized both position
(weights) and dimension (architecture) of an individual in each iteration. Thus optimized

FNN weights and architecture simultaneously.
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So far, only genetic representation was discussed for evolving architecture. Whereas,
GP can optimize a phenotype itself, where genetic representation is not required [157].
Therefore, EP and GP can be directly applied to a population FNN architecture to evolve
an optimum FNN architecture [115, 158, 159].

The design of FNN architecture is responsible for processing high-dimensional data.
Hence, deep network paradigm offers a study of massive and deep structure of the neural
network that can process complex problems related to speech processing, natural language
processing, signal processing, etc. [160, 161]. Such a variant of FNN is convolutional neural
networks (ConvNets), which is designed to process data that has multiple arrays such as
a color image composed of three 2D arrays [160, 161]. ConvNets has three-dimensional
arrangements of neural nodes. Hence, it efficiently receives 3D inputs and process them to

produce 3D outputs.

Input layer optimization

Input layer optimization resembles feature reduction, which is traditional performed
separately by dimensionality reduction methods [162]. However, reducing input dimension
by optimizing input layer, i.e., by feeding a subset of input features at the input layer
than by feeding the whole set of input-features enhances FNNs performance [163, 164].
Therefore, FNN has a functional dependency on the problem at hand.

EAs select a subset of input features for which FNN perform better than that of the
complete feature set [163]. For this purpose, a genetic representation of input features is
required, in which the available features are placed on a genetic strip, and the presence of
a feature is marked as “1” and the absence of a feature is marked as “0.” Such mechanism
of input layer optimization was found advantageous in improving FNN performance [165].

Binary PSO [166], which optimizes a discrete optimization problem was employed for
selecting the input features which were binary coded [167, 168]. In [167], a modified version
of binary PSO was proposed, where EA-like mutation operator was applied to mutated
binary vectors. Similarly, ACO, which traditional solves discrete optimization problem
was applied to select input features and training of a FNN in a hybrid manner [169].

Input layer optimization, which is related to input feature reduction can also be thought
as training data optimization. Training data optimization is helpful particularly when data
is insufficient or noisy. In [170], an adaptive selection of input examples was performed by
employing genetic selection, where two point and one points crossover operations created
new example patterns. For the crossover operations, the parents examples were drawn from
the original input set. In addition, mutation operators were also applied for generating
new child example. Hence, the efficiency of FNN was improved when trained over the

modified new examples. Additionally, in [171], an input example generation methods was
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proposed, in which the input space was divided into many regions, and k-nearest neighbor
method was applied to determine/generate a new virtual example, mainly for the sparse
region of the input space. Hence, both the above methods of input example generation

sought to enrich knowledge space for the FNN learning [170, 171].

Node optimization

Primarily, node optimization can be addressed in three ways: 1) by choosing activation
functions at the FNN active nodes from a set of activation functions [172, 173|; 2) by
optimizing the arguments of activation function [174]; and 3) by placing a complete model
at the nodes of a network [175, 176].

It was found that FNN performed better when it has non-homogeneous nodes (different
activation function at different nodes) than that of the homogeneous nodes [177]. In [172],
evolution in FNN node were offered by selecting sigmoid and Gaussian function adaptively
at the nodes [172]. In [178], an input dependent FNN that had a combined chromo-
some representation (Fig. 2.4) was proposed, where a real-coded GA for simultaneous
optimization of weights, activation-functions and architecture was used.

On the other hand, to optimize nodes, a family competitive EA was proposed in [179],
where three operators such as decrease-Gaussian-mutation, Cauchy-mutation, and self-
adaptive-mutation were defined. Moreover, family-competition is a process that generates
a pool of L FNNs by recombination and mutation operations and selects a FNN from
that pool. The family-competition with different mutation operator is repeated until the
best FNN is found. Many others found that the adaptation in FNN nodes by one of the
above-mentioned methods can improve FNN performance to some extent [180-182].

The third aspect of node optimization is to design a node as a model itself. Such
modification lead to a variety of neural network paradigms such as polynomial neural
network [175, 183, 184], where the nodes are designed as a polynomial function based on
inputs to the nodes. Similarly, the nodes of a GMDH neural network is designed as an
Ivakhnenko polynomial [185]; the nodes of a complex value neural network or multivalued
neural network is designed with a complex value activation functions [176]; the node of
spiking meural networks has specific behavior, in which a node signal is propagated to
another node only if the intrinsic quality of neural activation value is above a defined
threshold [186]; the nodes of fuzzy neural network paradigm is designed using the concepts
of fuzzy theory [187]; etc. In all such methods, metaheuristics have a significant role in

the optimization, especially, the underlying parameters of the models.
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Fig. 2.4 Meta-learning scheme (a), where LR is learning parameter, ND is activation function, AR is
architecture, and WT is weights [191]. Combined chromosome structure (b).

Learning algorithm optimization

Initial thought of learning algorithm optimization is the optimization of its parameters.
For example, the optimization the learning rate and the mutation factor parameters of the
BP by applying some metaheuristics [113]. To optimize the parameters of a FNN learning
algorithm, its parameters (e.g., BP parameters) and learning rules are encoded onto a
genotype [146, 188]. However, formulating BP parameter such as learning rule, which is
a dynamic concept, into a static chromosome is disadvantageous [189]. Hence, a genetic
coding of learning rule for optimizing FNNs was used [189]. Moreover, assuming that
each node in a network uses same learning rule, evolution in learning rule was proposed
in [190], where weights optimization related to a particular node depended only on the

input/output at that node.

Combination of FNN components optimization

Fig. 2.1 is an impressive representation of the most of FNN optimization combinations,
where the genetic representation of the combination of FNN components can be represented
as Fig. 2.4, which refers to a hierarchy of combination called meta-learning scheme. In meta-
learning scheme, top down or bottom up optimization approach, which means, weights to
learning rule and learning rules to weight optimization, can be used [191]. However, meta-
learning resembles one-by-one learning mechanism. Hence, the advantageous approach is
to represent each component of FNN side-by-side onto a genetic vector for optimization,
which indicate, the confluence of all components of FNN as indicated by area “a8” in
Fig. 2.1. Yao [192, 193] summarized all such form of adaptation in “evolutionary artificial
neural network” (EANN), which is a special class of artificial neural network, where in

addition to learning; evolution is another fundamental form of adaptation. Moreover,
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several paradigms and methods proposed in the past for the simultaneous optimization of
FNN components are described as follows.

A structured genetic algorithm was proposed in [194], which simultaneously optimized
both architectures and weights. It was found that the simultaneous optimization of both
weight and architecture lead to a better generalization [70, 142, 195|. Considering permu-
tation? problem in a GA, EP-based mutation mechanism for evolving FNN architecture
was proposed in [196] is known as EPNet.

A neuroevolution of augmenting topologies (NEAT) introduced in [197] was a GA-based
evolution of a FNN phenotype as a whole, in which a special mutation and crossover
operator were defined for manipulating nodes and connections of FNN. Specifically, the
linear network information FNN weights, nodes, and connection information were encoded
using genetic encoding. The proposed NEAT was evaluated over several applications, and
its performance was found outperforming static FNN topology.

A wirtual sub population approach was proposed in [198] for the optimization of
FNN using EAs. Later, while indicating a permutation problem, crossover operator as
a combinatorial optimization problem was proposed, in which each hidden node was
considered as a subnetwork, and a complete network was evolved using the evolution of
several subnetworks [199]. Additionally, GA-based and SA-based crossover operators were
applied to generate an offspring (new individual subnetwork), and to maintain diversity
in population, two mutation operators such as BP-mutation and random-mutation were
proposed. In BP-mutation, few iterations of BP algorithm were applied to update weights
of the subnetwork, and in random mutation, weights of subnetwork were randomly replaced
with new weights. Hence, a coevolution of FNN weights and architecture was proposed
that evolved FNN with the cooperation of the individuals of a subnetwork population.

A cooperative coevolution neural network process—inspired by virtual subpopulation
approach [198]— was proposed in [200], which was a symbiotic, adaptive neuroevolution
(SANE) algorithm for constructing FNN in a dynamic environment. Unlike conventional
evolutionary approach, which uses a population of FNNs, SANE uses a population of
nodes, where each node establishes connections with the other nodes to form a complete
network. Two reasons of better performance of SANE over conventional and stand-
alone metaheuristics were suggested. First, since SANE consider the nodes as functional
components of the FNN, it accurately searches and evaluates nodes as genetic building
blocks. Second, since a node alone cannot perform well and evolutionary process evolves
different types of nodes, SANE was able maintains diversity in the population. Later,

the concept of SANE was extended, in which the selection of several individuals from

2Permutation problem occurs when using traditional crossover operator, where a population has
traditional genetic representation of FNN architecture.
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a population of hidden nodes was combined in a various permutation to form several
complete networks, i.e., evolution in hidden nodes led to an evolution of the complete
network [201].

A concept of sparse neural trees, in which GP for evolving network structure and GA
for parameter optimization was proposed in [202]. Similarly, a flexible neural tree (FNT)
concept, where GP was used for the adaptation in network structure and SA for the
optimization of the parameters (including parameters of activation function) was proposed
in [19, 203]. FNT is a tree-like model where adaptation in all components of is equally
important. Moreover, its components adaptation may take many forms (Fig. 2.1). Hence,
a beta-basis function—which has several controlling parameters such as shape, size, and
center—was used at non-leaf nodes of an FNT [204]. It was observed that embedding
beta-basis function at FN'T nodes has advantages over other two parametric activation
function. A parallel evolution of FNT using MPI programming and GPU programming
respectively were proposed in [205] and in [206].

2.3.2 Hybrid metaheuristics for FNN optimization

An effective combination of various metaheuristic algorithms and conventional algorithms
may offer a better solution than that of a single algorithm. A paradigm of hybrid
algorithms, called memetic algorithm gave a methodological concept for combining two or
more metaheuristics (global and local) to explore a search space efficiently, and to find a
global optimal solution [207].

The conventional algorithms have local minima problem because they lack global search
ability, but they are fast and good in local search. On the other hand, the metaheuristics
are good in global search, but they suffer premature convergence [208, 209]. Therefore, a
combination of these two may offer a better solution in FNN optimization than that of
using any one of them alone (Fig. 2.5). To reach a global optimum, a hybrid strategy may
be used. Fig. 2.5 shows an impact of hybridization of metaheuristics on FNN optimization,

which can be categorized in two paradigms:

1) The combination of conventional and metaheuristic algorithms—to take advantage of

local search and global search algorithms.

2) The combination of two or more metaheuristic algorithms—to make use of different

heuristics used by global search algorithms.

Under the definition of memetic algorithms, researchers combine metaheuristics with
conventional algorithms [210]. For example, the effectiveness of global (GA) and local
search (BP) combination is explained in [211, 212]. Similarly, a hybrid PSO and BP
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Fig. 2.5 Metaheuristic may be used for finding initial weights WIs and conventional algorithms may be
for finding global optima Py and vice versa [192].

algorithms for optimizing FNN were found useful in obtaining better approximation than
using one of the alone [123]. A convergence scenario similar to Fig. 2.5 was illustrated
in [213], where ABC was applied for searching initial weights and the Levenberg-Marquardt
algorithm was applied for optimizing the already discovered weights.

Hybridization of two or more global metaheuristics for FNN optimization are evident
from the following examples. A hybrid GA and PSO approach for optimizing FNN
was proposed in [214], where both GA and PSO were suggested to run over the same
population—randomly generated population W of m individuals (the same individual was
considered as a chromosome in GA, and a particle in PSO). In each generation of GA and
PSO, the fitness of each individual was computed. Then, the best performing individuals
(top-half) were marked as elites. Elite individuals were copied to next generation. Half
of the copied elites were optimized using PSO and the remaining half using crossover
operation and tournament selection as per GA. Similarly, a PSO and SA based hybrid
algorithm for optimizing FNN were proposed in [215], where in each iteration, each PSO
particle was governed by SA metropolis criteria [97] that determined global best particle
for the PSO algorithm. There are Several other hybrid algorithm examples available in
the literature: a hybrid PSO and GA [216]; hybrid GA and DE [217]; hybrid PSO and
gravitational search algorithm [218]; and hybrid PSO and optimal foraging theory [219].

2.4 Multiobjective metaheuristic approaches

Multiobjective optimization procedure involves in optimizing two or more objectives
functions, simultaneously. Multiobjective algorithms are efficient methods for evaluating
Pareto-optimal solutions for multiobjective problems. Since optimizing training error
cannot provide generalization alone, FNN optimization is viewed from the multiobjective

perspective.
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Let us first investigate: why the multiobjective framework is needed for FNN optimiza-
tion, what are the objective functions required for framing FNN as a multiobjective problem,
and how the objective functions can be framed into multiobjective optimization. Answers
to these question lie in the following discussion.

First, a cost function (1.1) or any equivalent function is the foremost necessity for the
supervised training of FNN.

Second, the generalization of FNN is an essential aspect of its optimization. One
approach is to use validation error on cross-validation data because a FNN with low training
error may not perform well on unseen (test) data, unless FNN is generalized. Moreover,
minimization of generalization error is essential than the minimization of training error.
Another approach is to add a regularization term to the training error to avoid overfitting.
Additionally, minimizing network complexity leads to a better generalization [220]. Hence,
generalization can be achieved by adding a complexity indicator term to training error,
i.e., the generalization by minimizing training error and simplifying network complexity.

Third, reducing input-feature—when a problem is available with a huge input dimension
(feature)—can lead to a better generalization. However, input dimension reduction and
training error reduction are two contradictory objectives.

Finally, the conclusion is, the training error (1.1) or equivalent cost function ¢, is need
to be optimized with one or more additional objectives to achieve generalization, which
is why multiobjective framework for optimizing FNN are used. Let training error (1.1)
be denoted by ¢, and an additional objective is denoted by c,q4. Then, the generalized

eITor cg4enp may be computed by adding an objective to training error as:
Cgen = ACtrn + (1 - )\)Cadd7 (28)

where 0 > A < 1 is a hyperparameter that controls the strength of additional objective
Cadd- The validation error term c.,, regularization term c,¢4, or network complexity cye
or a combination of all can be considered as an additional objective cqqq in (2.8). The

regularization term c,¢, is the weight decay or norm of weight vector w as:
1 5, 1 9
g = 5 2wt = w7 (2.9
i

Similarly, a validation error ¢, is usually computed using (1.1) on a cross-validation data.

On the other hand, the network complexity c,.; is computed as:

Cret = Z Z Cig» (210)
(2



32 Metaheuristic design of feedforward neural network

where z is the number of nodes in the network ¢ (Fig. 2.3(c)), or any user-defined function
can be also be used for evaluating network complexity, e.g., the number of nodes, the
number of connections, etc.

However, the generalization objective of the form (2.8) is a scalarized objective that has
two disadvantages [221]. First, determining an appropriate hyperparameter A that controls
the contradicting objectives. Hence, the generalization ability of the produced model by
using (2.8) will be a mystery. Second, the objective (2.8) leads to a single best model that
tells nothing about how contradicting objectives were handled. In other words, no single
solution exists that may satisfy both objectives. Therefore, generalization error (2.8) need
to be formulated into a multiobjective form: min{c;n, Creg, Cev, - - -}, i.€., a multiobjective
optimization need to be performed as described in Section 1.2.4.

Now, based on the above discussion on the cost functions and the generalization
conditions, the multiobjective for FNN optimization can be categorized as non Pareto-

based multiobjective approach and Pareto-based multiobjective approach.

2.4.1 Non-Pareto-based multiobjective approach

In nonPareto-based multiobjective approach, the objective functions are aggregated as
mentioned in (2.8) or by some other similar means. For example, in [222], authors proposed
to add a regularization term (co — ¢,¢4) to training error (co — ¢4, Where c¢g is the origin
of the two objectives. To obtain an efficient solution, they designed a vector vc of scalar
objectives by varying the hyperparameter A from 0 to 1. Hence, training FNN for each
scalar objective in vector vc, a Pareto set was obtained, and then, it was possible to select
the best solution from the Pareto-front. However, this was an expensive approach, which
does not use any Pareto-based multiobjective algorithm to compute Pareto set; rather,
an ellipsoid method [223] was applied to train FNN for each scalar objective ve; € ve
sequentially. Similarly, in [224], to achieve generalization, authors proposed a sliding mode
control BP algorithm for the multiobjective treatment to FNN objectives ¢, and cyeq.
The optimization trajectory of the 2D space of the objectives ¢, and c,¢, was controlled
by modifying the BP weight update rules using two sliding surface control indicators, each
belongs to the mentioned objectives, respectively

Multiobjective treatment to FNN was also offered by using improvising metaheuristics
itself such as a predator-prey algorithm was proposed in [225]. To get a generalized network,
the predator-prey algorithm used a family of the randomly generated population of sparse
neural networks, called pray population, and an externally induced family of predators
population whose job was to prune preys populations based on the objectives ¢, and
Cnet- Similarly, a hybrid multiobjective approach, where a geometrical measure based on

singular-value-decomposition for estimating a necessary number of nodes in a network
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was proposed in [226]. Additionally, a micro-hybrid genetic algorithm was introduced to
fine-tuning the network performance. A hybrid algorithm, which uses GA for evolving
FNN and uses PSO, BP, and LM for fine-tuning the evolved FNN was proposed in [227].
In the proposed hybrid algorithm, several objectives function such as training error c¢;;.,,
validation error c¢.,, number of hidden layers c;q, number of nodes ¢,,q4., and activation

function cy,,, were aggregated as:
Cpet = QCtrp + Bccv + YChid + 5Cnode + ecfunv (211)

where, a, (3, v, 0, and 6 were controlling parameters. Hence, multiple objectives were
optimized simultaneously.

As mentioned above in Section 2.4, the aggregating objective function has disadvantages
in obtaining the best generalized solution. It is evident from (2.11) that determining
hyperparameters for controlling objective function is a challenging task. Therefore, Pareto-

based multiobjective is an efficient choice for the multiobjective treatment of FNNs.

2.4.2 Pareto-based multiobjective approach

The advantages of applying Pareto-based learning is thoroughly explained and compared
with single and scalerized objective in [228]. For example, a nondominated sorting genetic
algorithm version IT (NSGA-II) [229] when used for optimizing objectives ¢y, and ¢,
offers a Pareto set by optimizing both objectives simultaneously using a nondominated
sorting method as defined in Definition 1.3. Also, NSGA-II can be applied to obtained
a regularized network by optimizing the objectives ¢y, and ¢, [230]. Similarly, Pareto
differential evolution (PDE) algorithm and its variant self-adaptive PDE algorithm was
applied to optimize objectives ¢, and ¢, simultaneously that offered a Pareto-set, from
which the best solution was picked-up according to network complexity and approximation
error examination [231, 232]. Simultaneous optimization of the objectives ¢, and ¢,
were also addressed using multiobjective PSO to generalize FNN performance [233].

For an image classification problem, authors in [234], pointed out two crucial points:
the classification speed and the classification accuracy c,... The classification speed was
then related to the network complexity (number of hidden neuron) c,.;. The proposed
trade-offs between classification speed and classification accuracy were addressed using
NSGA-II. Similarly, in [235], authors studied three methods for image classification
problem: linear aggregating (LA), NSGA-II with deterministic selection (DM), and NSGA-
IT with tournament selection (LM). They proposed to optimize network complexity ¢,
and accuracy cqe.. Moreover, they combined regularization term c,., with accuracy cgec

and proposed an adaptive strategic for designing network topology using reproduction
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operators for both hidden layer and input layer. The hidden layer operators were add
connection, delete connection, add node, and delete node. The receptive (input) layer had
the following operators: add connection, delete connection , add node, and delete node.
Interestingly, they observed that DM and LM performed better than LA, i.e., Pareto-based
multiobjective algorithms performed better than that of the scalerized objectives.

Further, the coevolution FNN concept [201, 236] was extended in [237] under the
multiobjective framework, by using subnetwork and network concepts. A subnetwork
was a collection of nodes, i.e., a subnetwork was considered as a hidden node for a
network. Therefore, a network was a collection of subnetworks. Therefore, a population
P, of subnetwork, which was evolved separately using NSGA-II was used to construct
a population P, of networks. Then, NSGA-II was again applied to evolve population
P,. Interestingly, authors defined separate objectives for population P; (subnetworks
objectives) and P, (networks objectives) so that the functional diversity in both network
and subnetwork can be maintained. Additionally, some metrics (objectives) for measuring
network and subnetwork functional diversities were defined. The objective of subnetworks
were differences (for maintaining the functional diversity of subnetwork), substitution (to
replace poor candidates by better candidates), and complexity (for counting the number
of connection, nodes, and sum of all weights). Therefore, they coevolved overall network
with the cooperation of subnetwork that evolves together with the whole network to get a
general solution to a problem.

Apart from the discussed objective in this section, some interesting dimensions in
multiobjective treatment to FNN can be noted in [238], in which authors proposed to
apply NSGA-II for the simultaneous optimization of three objectives: input-dimension,
training error, and network complexity. Hence, an optimized a network that performs well
on the minimal set of input dimension was obtained.

As a result of metaheuristic or multiobjective metaheuristic treatment, a set of FNN
network is obtained and selecting the best FNN from that set is a difficult task. Since
selecting a single best FNN from may not offer generalized solution and the residual error
can still be remaining in solving many problems [239], then an ensemble of a set of FNNs

is recommended.

2.5 Ensemble of feedforward neural networks

Metaheuristics optimization of FNN leads to a final population that contains many
solutions close to the best solution. Moreover, the solution in the final population are
diverse in the following sense: 1) parametric (each FNNs have different sets of weights);

2) structural (each FNNs have different network configurations); and 3) training set
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(each FNNs are trained on different parts of a training set). Hence, a collective decision
(ensemble) of [ many diverse candidates selected from a final population may offer desired
generalization [240]. The literature that explains how to construct diverse FNNs and how
to combine decisions of diverse FNNs are summarized as follows.

The very basic idea is to apply single-solution based algorithms on [ FNNs to get [
diverse solutions [61]. The decision of [ candidates which were created either by single
solution-based metaheuristics, or by population-based metaheuristics, or by any other
means are combined using the following methods [11, 241]. 1) Majority voting method (for
classification problems). 2) Arithmetic mean (for regression problem). 3) Rank-based linear
combination. 4) Recursive least square based linear combination [242] (to minimize weighted
least squares error so that redundant individuals are eliminated). 5) Evolutionary weighted
mean or majority voting (metaheuristic to determine impact of a FNN in ensemble). 6)
Entropy-based method for combining FNNs in ensemble (assigning entropy to FNNs during
the learning process) [243].

Since population-based metaheuristics lead to an optimized final population, it is
advantageous to use the final population for making ensemble [240]. However, there
are two fundamental problems with it [244]: 1) determining ensemble size; and 2) how
to maintain diversity in the population. Hence, a negative correlation learning (NCL)
algorithm that optimized and combined individual FNNs in an ensemble during learning
process was proposed in [244]. NCL optimized all individual FNNs simultaneously and
interactively by adding a correlation penalty terms to the cost functions. Moreover, NCL
produced negatively correlated and specialized FNNs by using cooperation among each
FNNs of a population [245]. To determine the size of ensemble automatically, EA-based
ensemble procedure was laid down, in which NCL was applied during networks training.
Moreover, different FNNs were allowed learn different parts of training data and the
best (according to fitness) were selected for ensemble [246]. Additionally, a constructive-
cooperative-neural-network-ensemble was proposed in [247] that determined ensemble size
by focusing on accuracy and diversity during a constructive, cooperative procedure [248].

However, mere training fitness based selection of the candidates for the ensemble is
insufficient because it does not tell much about candidates role/influence in the ensemble.
This problem was addressed in a GA-based selective ensemble method [249], which selects
a subset of population, and determine the strength of selected candidates using GA. It
was also shown that the ensemble of a subset of the population performed better than
that of the whole population [249]. The effectiveness such GA-based selection was found
efficient than the traditional ensemble methods: bagging [250] and boosting [251].

It is beneficial to partition/fracture training data and to allow different FNNs in the

population to learn various parts of training data [250, 251]. An evidence of such was
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method was examined in [252, 253], where it was found that the ensemble of a small
number of FNNs that was trained using bootstrapping performs better than that of an
ensemble of a larger number of FNNs. Similarly, the efficiency of using distinct training
sets for optimizing different FNNs was proved when a class-switching ensembles approach
proposed in [254] and were compared with bagging and boosting methods.

At one hand bootstrapping method allows FNN to learn different training samples.
On the contrary, a clustering-and-coevolution approach for constructing neural network
ensembles proposed in [255] partition the input space using a clustering method to reduced
number of input nodes of FNNs. Hence, in the ensemble, diverse FNNs (different FNNs
were specialized in different regions of input space) were created. Moreover, it reduced
run time of learning process by coevolving (divide-and-conquer method) different FNNs
using cooperation between FNNs. Such method improves diversity and accuracy of an
ensemble system [255].

Both diversity and accuracy is a crucial aspect in construing ensemble of FNNs [11].
However, accuracy and diversity are contradictory to each other, so, a multiobjective
approach may be applied to evolve FNN population by maintaining accuracy and diversity
simultaneously [256]. For this purpose, multiobjective regularized negative correlation
learning that maximized performance and maximized the negative correlation between

individuals in population was found efficient [257].

2.6 Challenges and future scope

The effectiveness of FNN training primarily depends on data quality, which is governed by
the following data quality assurance parameters: accuracy, reliability, timeliness, relevance,
completeness, currency, consistency, flexibility, and precision [258, 259]. Usually, data
cleaning is a major step before modeling [260]. Therefore, training of the FNN remains
always sensitive to the data-cleaning process and it posses significant challenge to adapt
some mechanism in training process such that the sensitivity towards data-clean may
be reduced. Additionally, one problem related to data-driven modeling (FNN learning)
is the data itself which can be insufficient, imbalance, incomplete, high-dimensional, or
abundant.

For insufficient data, usually the input hyperspace is exploited to generate virtual
samples to fill the sparse area of the hyperspace, and by monitoring FNN performance
on the virtually generated samples [261]. Second approach is exploit the dynamics of
EAs in conjunction with FNNs to obtain new samples [170]. However, this area is still
much to explore, where some open questions such as how efficiently FNNs can be trained

with virtually generate data to mitigate the insufficiency is still with research community.
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On the other hand, research in the area of imbalance dataset is continued to interest
researcher [262].

The present era of data analysis is what we call big data, i.e., we need to deal not
only with high-dimensional data, but also with the variety data and stream data [263].
High-dimensional data such as gene expression data, speech processing, natural language
processing, social-network-data, etc., poses significant challenges. Such challenge is to
some extent addressed by deep learning paradigms that allow the arrangement several
units/layers of FNNs (or any other model) in a hierarchical manner to process and
understand insights of such high dimensional data [264, 265]. High-dimensional data can
also be managed /reduced by encoding or decoding methods and using FNNs training [266].
Therefore, FNNs has a greater role in feature reduction.

In a non-stationary environment such as stock-price market, weather forecasting, etc.,
data comes in the stream, i.e., data comes in sequential order, and traditionally, re-training
based mechanics for dynamic learning (on-line learning) of FNN is the basic option [267].
However, it is still an open problem to design strategies for the dynamic training of FNN.

Moreover, present era, the fourth industrial revolution, is of Internet of Things
(IoT) [268]. In IoT sophisticated technologies such as smartphone and smartwear provide
several forms of data, e.g., human activity recognition [269]. Additionally, it demands appli-
cation to be simple. Hence, FNN models which when aims to such technologies needs to be
less complex. Therefore, FNN architecture simplification or model’s complexity reduction
is a challenging task. Such problem can be addressed through the integration of FNN with
statistical methods like the one usually done with hidden Markov model [270]. Therefore,
such kind of modification to network architecture and specialized node design may lead to

different paradigms of FNN that may solve various real-world complex problems.

2.7 Summary

Feedforward neural network (FNN) is used for solving a wide range of real-world application
problems, which is why researcher investigated many techniques/methods for optimizing
and generalizing FNN. Specifically, metaheuristics allow to innovate and improvise methods
for optimizing FNN that in turn address its local minima and generalization problems.
Initially, only gradient-based linear approximation and quadratic approximation meth-
ods for optimizing FNNs were employed to train FNN. These conventional algorithms
(backpropagation, Quickpro, Rprop, conjugate gradient, etc.) are local search algorithms
that exploit current solution to generate a new solution; however, they lack in exploration

ability, therefore, usually, finds local minima of an optimization problem.
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Unlike conventional approaches, metaheuristics (e.g., genetic algorithm, particle swarm
optimization, ant colony optimization, etc.) are good at both exploitation and explo-
ration and can address simultaneous adaptation in each component of FNN. However,
no single method can solve all kinds of problem. So, we need to improvise, adapt, and
construct hybrid methods for optimizing FNN. Therefore, several dynamic designs of
FNN are reported in the literature: EPNet (an adaptive method of FNN architecture
optimization), neuro-evolution of augmenting topologies, flexible neural tree, cooperative
coevolution neural network, etc., are among them. Hence, there is a wide spectrum of
FNN optimization/adaptation is possible with metaheuristic treatment to FNNs (Fig. 2.1),
in which the fundamental aspect is the formulation of FNN (phenotype) to vectored form
(genotype) or any other form of mechanism for manipulation of FNN components.

Since there are many components to be manipulated by the means of metaheuristic
strategies and the availability of the fact that FNN generalization ability depends on the
optimization its all the components, multiobjective treatment to FNN were used. The
multiobjective-based training allows a FNN to evolve by simultaneously optimizing two or
more FNN-related objectives: approximation error, network complexity, input dimension,
etc.

Moreover, the generalization ability of system can be easily improved by combining
decision of many candidates of the system. Hence, an ensemble of FNNs by making use of
the metaheuristic final population was proposed and the two crucial aspects: accuracy
and diversity of an ensemble were taken care during the FNNs training process.

It is evident from such aspects of FNN optimization that the future research will be
able to bring the new paradigms of FNNs by applying or by the inspiration from the
discussed methods in this chapter. Hence, that will overcome the data quality problem
and will be handling new challenges of big data to cope-up with the new era of information

processing.



Chapter 3

Multiobjective heterogeneous

flexible neural trees

Machine learning algorithms are inherently multiobjective in nature, where approximation
error minimization and model’s complexity simplification are two conflicting objectives. A
multiobjective genetic programming (MOGP) based framework was proposed for creating
a heterogeneous flexible neural tree (HFNTM), which is a tree-like flexible FNN model.
MOGP guided an initial HFNTM population towards Pareto-optimal solutions, where the
final population was used for making an ensemble system. A diversity index measure along
with approximation error and complexity was introduced to maintain diversity among the
candidates in the population. Hence, the ensemble was created by using accurate, struc-
turally simple, and diverse candidates from MOGP final population. Differential evolution
algorithm was applied to fine-tune the underlying parameters of selected candidates. A
comprehensive test on benchmark and real-world (an industrial problem, where the data
represented a dynamic environment of die filing process) datasets proved the efficiency
of the proposed HENTM approach over other available prediction models. Moreover,
heterogeneous creation of HENTM proved to be efficient in making ensemble system from

the final population.

3.1 Introduction

Structure optimization of a FNN and its impact on FNNs generalization ability inspired
the flexible neural tree (FNT) [19]. FNN components such as weights, structure, and
activation function are the potential candidates for the optimization, which improves FNNs
generalization ability to a high extent [196]. Moreover, the structure optimization held the
responsible for generalization ability of a model. The significance of structure optimization

is evident from the discussion provided in Chapter 2. FNT was an additional step into this
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series of efforts for the structure optimization [19]. Initially, FNT was evolved as a tree-like
FNN model by using the probabilistic incremental program evolution (PIPE) [271]. The
underlying parameter vector of the developed FNT (weights associated with the edges
and arguments of the activation functions) was optimized by metaheuristic algorithms,
which are nature-inspired parameter optimization algorithms [5]. Evolutionary process
allowed FNT to select significant input features from an input feature set.

In the design of FNT, the non-leaf nodes are the computational node, which takes
an activation function. Hence, rather than relying on a fixed activation function, if the
selection of activation function at the computational nodes is allowed by evolutionary
process itself. Then, it produces heterogeneous FNTs (HFNTs) with the heterogeneity
in its structure, computational nodes, and input set, i.e., evolutionary process provides
adaptation in structure, weights, activation functions, and input features. Therefore, an
optimum HFNT is the one that offers the lowest approximation error with the simplest tree
structure and the smallest input feature set. However, approximation error minimization
and structure simplification are two conflicting objectives [228]. Hence, an evolutionary
multiobjective approach may offer an optimal solution(s) by maintaining a balance between
these objectives [272].

Moreover, in the proposed work, an evolutionary process guides a population of
HFNTs towards Pareto-optimum solutions. Hence, the final population may contain
several solutions that are close to the best solution. Therefore, an ensemble system
was constructed by exploiting many candidates of the population (candidate, solution,
and model are synonymous in this chapter). Such ensemble system takes advantage of
many solutions including the best solution [240]. Diversity among the chosen candidates
holds the key in making a good ensemble system [11]. Therefore, the solutions in a final
population should fulfill the following objectives: low approximation error, structural
simplicity, and high diversity. However, these objectives are conflicting to each others.
A fast elitist nondominated sorting genetic algorithm (NSGA-II)-based multiobjective
genetic programming (MOGP) was employed to guide a population of HFNTs [229]. The
underlying parameters of selected models were further optimized by using differential

evaluation (DE) algorithm [6]. Therefore, the key contributions of this chapter is as follows:

1) A heterogeneous flexible neural tree (HFNT) for function approximation and feature

selection was proposed.

2) HFNT was studied under an NSGA-II-based multiobjective genetic programming

framework. Hence, notation HFNTM was used in this chapter.

3) Alongside approximation error and tree complexity, a diversity index was introduced

to maintain diversity among the candidates in the population.
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4) HENT was found competitive with other algorithms when compared and cross-validated

over classification, regression, and time-series datasets.

5) The proposed evolutionary weighted ensemble of HFNTs final population further

improved its performance.

A detailed literature review provides an overview of FNT usage over the past few years
(in Section 3.2). Conclusions derived from literature survey supports the HENTM approach,
where a Pareto-based multiobjective genetic programming was used for HFN'T optimization
(Section 3.3.1). Section 3.3.2 provides a detailed discussion on the basics of HFNT, MOGP
for HENT structure optimization and DE for HFN'T parameter optimization. Efficiency
of the above-mentioned hybrid and complex multiobjective HFNT algorithm (HFNTM)
was tested over various prediction problems using a comprehensive experimental set-up
(Section 3.5). The experimental results (Section 3.6) supports the merits of proposed
approach. Finally, a discussion of experimental outcomes and summary is provided in
Section 3.8.

3.2 Background study and motivation

The literature survey describes the following points: basics of FNT, approaches to improve
FNT, and its successful application to various real-life problems. Subsequently, the
shortcomings of FNT are concluded.

FNT was first proposed by Chen et al. [19, 273], where a tree-like-structure was
optimized by using PIPE. Then, its approximation ability was tested for time-series
forecasting [20] and intrusion detection [274], where a variant of SA (called degraded
ceiling) [275], and PSO [5], respectively, were used for FNT parameter optimization.
Since FNT is capable of input feature selection, in [203], FNT was applied for selecting
input features in several classification tasks, in which FNT structure was optimized by
using GP [276], and the parameter optimization was accomplished by using memetic
algorithm [277]. Additionally, they defined five different mutation operators, namely,
changing one terminal node, all terminal nodes, growing a randomly selected sub-tree,
pruning a randomly selected sub-tree, and pruning redundant terminals. Li et al. [278]
proposed FNT-based construction of a decision trees whose nodes were conditionally
replaced by neural node (activation node) to deal with continuous attributes when solving
classification tasks. In other FNT based hybrid approaches, like in [279], GP was applied
to evolve hierarchical radial-basis-function network model, and in [280] a multi-input-
multi-output FNT model was evolved. Wu et al. [281] proposed to use grammar guided
GP [282] for FNT structure optimization. Similarly, in [283], authors proposed to apply
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multi-expression programming (MEP) [284] for FNT tree-structure optimization and
immune programming algorithm [285] for the parameter vector optimization. To improve
classification accuracy of FNT, Yang et al. [286] proposed a hybridization of FNT with
a further-division-of-partition-space method. In [287], authors illustrated crossover and
mutation operators for evolving FNT using GP and optimized the tree parameters using
PSO algorithm.

A model is considered efficient if it has generalization ability. It is known that a
consensus decision is better than an individual decision. Hence, an ensemble of FNTs
may lead to a better-generalized performance than a single FNT. To address this, in [288]
author authors proposed to make an ensemble of FNTs to predict the chaotic behavior of
stock market indices. Similarly, in [289, 290], the proposed FNTs ensemble predicted the
breast cancer and network traffic better than individual FNT. In [291], protein dissolution
prediction was easier using ensemble than the individual FNT.

In [292], authors proposed to use multi-agent system [293] based FNT (MAS-FNT)
algorithm, which used GEP and PSO for the structure and parameter optimization,
respectively. The MAS-FNT algorithm relied on the division of the main population
into sub-population, where each sub-population offered local solutions and the best local
solution was picked-up by analyzing tree complexity and accuracy.

Chen et al. [20, 203] referred the arbitrary choice of activation function at non-leaf
nodes. However, they were restricted to use only Gaussian functions. A performance
analysis of various activation function is available in [294]. Bouaziz et al. [295, 296]
proposed to use beta-basis function at non-leaf nodes of an FNT. Since beta-basis function
has several controlling parameters such as shape, size, and center, they claimed that
the beta-basis function has advantages over other two parametric activation functions.
Similarly, many other forms of neural tree formation such as balanced neural tree [297],
generalized neural tree [298], and convex objective function neural tree [299], were focused
on the improvement of neural nodes.

FNT was chosen over the conventional neural network based models for various real-
world applications related to prediction modeling, pattern recognition, feature selection, etc.
Some examples of such application are cement-decomposing-furnace production-process
modeling [300], gene regulatory network reconstruction and time-series prediction from
gene expression profiling [301], stock-index modeling [302], anomaly detection in peer-to-
peer traffic [303], intrusion detection [304], gesture recognition [305], risk prediction in
grid computing [306], etc.

The following conclusions can be drawn from the literature survey. First, FNT was
successfully used in various real-world applications with better performance than other

existing function approximation algorithms. However, it was mostly used in time-series
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analysis. Second, the lowest approximation error obtained by an individual FNT during an
evolutionary phase was considered as the best structure that propagated to the parameter
optimization phase. Hence, there was no consideration as far as structural simplicity and
generalization ability are concerned. Third, the computational nodes of the FNT were
fixed initially, and little efforts were made to allow for its automatic adaptation. Fourth,
little attention was paid to the statistical validation of FNT model, e.g., mostly the single
best model was presented as the experimental outcome. However, the evolutionary process
and the meta-heuristics being stochastic in nature, statistical validation is inevitably
crucial for performance comparisons. Finally, to create a generalized model, an ensemble
of FNTs were used, but, FNTs were created separately for making the ensemble. Due
to stochastic nature of the evolutionary process, FNT can be structurally distinct when
created at different instances. Therefore, no explicit attention was paid to create diverse
FNTs within population itself for making ensemble. In this chapter, a heterogeneous FNT,
called HFNT was proposed to improve FNT model and its performance by addressing

above mentioned shortcomings.

3.3 Multiobjective for flexible neural tree

In this section, first, the Pareto-based multiobjective is discussed. Second, a detailed discus-
sion on FNT and its structure and parameter optimization using NSGA-II-based MOGP
and DE, respectively is described. Followed by a discussion on making an evolutionary

weighted ensemble of the candidates from the final population.

3.3.1 Pareto-based multiobjective

Usually, learning algorithms owns a single objective, i.e., the approximation error mini-
mization, which is often achieved by minimizing mean squared error (MSE) on the learning
data. Let denote MSE as E, which is computed on learning data as per (1.1). Additionally,
a statistical goodness measure, called, correlation coefficient r that tells the relationship
between two variables (i.e., between the desired output y and the model’s output y) may
be also used as an objective. Correlation coefficient r is computed as:
N —\ [~ =
L T (i —¥) (5 - 3) | (3.1)
Vo - 9P (5 5)

where y and ¥ are means of the desired output y and model’s output y, respectively.
However, single objective comes at the expense of model’s complexity or generalization

ability on unseen data, where generalization ability broadly depends on the model’s
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complexity [220]. A common model complexity indicator is the number of free parameters in
the model. The approximation error (1.1) and the number of free parameters minimization

are two conflicting objectives. One approach is to combine these two objectives as:
Cgen = AE + (1 — N k(w), (3.2)

where 0 < A < 1 is a hyperparameter, E is the MSE (1.1) and k(w) is the total free
parameter in a model. The scalarized objective cge,, in (3.2), however, has two disadvantages
(see Section 2.4). Therefore, both objectives need to be optimized simultaneously. In
this chapter, FNT optimization was formulated using the multiobjective optimization
framework described in Section 1.2.4.

Algorithm 3.3 is a basic framework of NSGA-II based MOGP, which was used for
computing Pareto-optimal solutions from an initial HFNT population. The individuals in
MOGP were sorted according to their dominance in population. Moreover, individuals
were sorted according to the rank/Pareto-front. MOGP is an elitist algorithm that allowed
the best individuals to propagate into next generation. Diversity in the population was

maintained by measuring crowding distance among the individuals [229].

Algorithm 3.3 MOGP: Multiobjective genetic programming.
1: procedure MULTIOBJECTIVE GP(W,, Wy, c,¢)
2 Initialize W
3 Evaluation nondominated sorting of W,
4 repeat
5: Selection: binary tournament selection
6
7
8
9

Generation: W¢ := GPoperator (W)
Recombination: W¢ = W} + Wy
Evaluation: nondominated sorting of W¢
: Elitism: W} = [W/| best individuals from W¢
10: until Stopping criteria € satisfied
11: return a set of Pareto-optimal solutions
12: end procedure

3.3.2 Heterogeneous flexible neural tree

HFNT is analogous to a multilayer feedforward neural network that has over-layer connec-
tions and activation function at the nodes. HFNT construction has two phases [20]: 1) the
tree construction phase, in which evolutionary algorithms are applied to construct tree-like
structure; and 2) the parameter-tuning phase, in which genotype of HFNT (underlying

parameters of tree-structure) is optimized by using parameter optimization algorithms.
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To create a near-optimum model, phase one starts with random tree-like structures
(population of initial solutions), where parameters of each tree are fixed by a random guess.
Once a near-optimum tree structure is obtained, parameter-tuning phase optimizes its
parameter. The phases are repeated until a satisfactory solution is obtained. Fig. 3.1 is a
lucid illustration of these two phases. Moreover, evolutionary algorithm allowed HFNT to
select activation functions and input feature at the nodes from sets of activation functions

and input features, respectively. Thus, HFNT possesses automatic feature selection ability.

Encoding: basic terminology

An HFNT ( is a collection of function set Fz and instruction set Tq:
G=F;UT; = {+l§,+§, e ,+fn} U{z1,x2,..., 2} (3.3)

where +%(j =2,3,...,tn) denotes a non-leaf instruction (a computational node). It
receives 2 < j < tn arguments and takes an activation function k from a set of activation
functions. Maximum arguments tn to a computational node are predefined. A set of seven
activation functions is shown in Table 3.1. Leaf node’s instruction 1, xo, ..., x, denotes
input variables. Fig. 3.2 is an illustration of a typical HFNT. Similarly, Fig. 3.3 is an
illustration of a typical node in an HFNT.

The i-th computational node (Fig. 3.3) of a tree (say i-th node in Fig. 3.2) receives
n' inputs (denoted as z}) through n’ connection-weights (denoted as w}) and takes two
adjustable parameters a' and 4" that represents the arguments of the activation function
©¥(.) at that node. The purpose of using an activation function at a computational node
is to limit the output of the computational node within a certain range. For example,
if the i-th node contains a Gaussian function & = 1 (Table 3.1). Then, its output y; is

computed as:

Y = @f(ai, bi,0;) = exp (— (Oi b_ ai)) (3.4)

where o; is the weighted summation of the inputs 2} and weights w? (j = 1 to n’) at
the i-th computational node (Fig. 3.3), also known as excitation of the node. The net

excitation o’ of the i-th node is computed as:
0=y wz (3.5)
j=1

where 2! € {x1,%,...,2p} or, 20 € {y1,¥2,...,Ym}, L.e., 2} can be either an input feature

(leaf node value) or the output of another node (a computational node output) in the tree.
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Input: Training data and
parameter settings

MOGP/SOGP: Initialization of FNT
Population and objective function setting

A
NSGA-II-based

nondominated sorting

A

| Fitness based sorting

New population using selection,
crossover, and mutation

Fitness Evaluation

No max
iteration?

Yes

DE: Initialization of the population for parameter
tuning for a selected fixed FNT structure

A J
New population using selection,

crossover, and mutation

No

iteration?

No

STOP

Fig. 3.1 Coevolutionary construction of the heterogeneous flexible neural tree.
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Table 3.1 Set of activation function used in neural tree construction

Activation-function k  Expression for ¢¥(a,b, )

Gaussian Function 1 ¢(z,a,b) = exp (—((x —a)?)/(b?))
Tangent-Hyperbolic 2 p(z)=(e"—e")/(e"+e ™)

Fermi Function 3 plz)=1/1+e7)

Linear Fermi 4 p(r,a,b)=ax1/(1+e ™) +b

Linear Tangent-hyperbolic 5 ¢(z,a,b) =a x (e* —e™%)/(e” +e %) +b
Bipolar Sigmoid 6 (x,a)=(1—e22)/(a(l + e 2%%))
Unipolar Sigmoid 7 o(z,a) = (2]a])/(1 + e 2lalz)

»
>

Depth-first search computation

Leaf nodes | *2 1 T3

Fig. 3.2 Typical representation of a neural tree G = Fg U T whose function instruction set Fg =
{+3,+3,+5} and terminal instruction set T = {z1, 22, x5, 24}

Weight w? is the connection weight of real value in the range [w;, w,]. Similarly, the output
of a tree y is computed from the root node of the tree, which is recursively computed by
computing each node’s output using (3.4) from right to left in a depth-first method.

The fitness of a tree depends on the problem. Usually, learning algorithm uses
approzimation error, i.e., MSE (1.1). Other fitness measures associated with the tree are
size and diversity indez. Tree size is the number of nodes (excluding root node) in a tree,
e.g., the number of computational nodes and leaf nodes in the tree in Fig. 3.2 is 11 (three
computational nodes and eight leaf-nodes). Hence, in this work, instead the number of
free parameter count k(w), the tree size was used as complexity indicator.

The number of distinct activation functions (including root node function) randomly
selected from a set of activation functions gives the diversity index of a tree. Total activation
functions (denoted as k in +%) selected by the tree in Fig. 3.2 is three (45, +3, and 43).

Hence, its diversity index is three.
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Fig. 3.3 Illustration of a computational node. The variable n indicates the number of inputs z]’ and
weights w; received at the i-th node and the variable 3° is the output of the i-th node.

3.3.3 Near optimal tree: structure and parameter learning

A tree that offers the lowest approximation error and the simplest structure is a near
optimal tree, which can be obtained by using an evolutionary algorithm such as GP [276],
PIPE [271], GEP [307], MEP [284], and so on. To optimize tree parameters, algorithms
such as genetic algorithm [109], evolution strategy [109], artificial bee colony [308], PSO [5],

DE [6], and so on can be used.

Structure Optimization

Initial Population Two fitness measure was considered: approximation error E mini-
mization and number of free parameter count k£(w) minimization or tree size minimization
(in this chapter tree size minimization, instead k(w), was considered). These two objectives
cannot be achieved simultaneously. Hence, during the structure-tuning phase using Algo-
rithm 3.3, an initial population W; of random tree was constructed and sorted according

to non-dominance described in [229]. Various components of Algorithm 3.3 is as follows:

Selection In selection operation, a mating pool W¥ of size size(WgO) /2 was obtained
using binary tournament selection that selects two candidates randomly at a time from
a population W} and the best solution (according to its rank and crowding distance) is
copied into the mating pool WP. This process is continued until the mating pool becomes
full.

Generation An offspring population W is generated by using the individuals of the
mating pool WP. Two distinct individuals (parents) are randomly selected from the mating
pool to create new individuals using genetic operators crossover and mutation for offspring

population W¢.
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Crossover In crossover operation, randomly selected sub-trees of two parent trees are
swapped. The swapping includes the exchange of nodes. A detailed description of the
crossover operation in genetic programming is available in [287, 109]. The crossover

operation is selected with a crossover probability pc.

Mutation The mutation operators used in tree are as follows [287, 109]:

a) Replacing a randomly selected terminal z; € T with a newly generated terminal

xzj €T for j #i.

b) Replacing all terminal nodes of a tree with a new set of terminal nodes derived from
T.

c¢) Replacing a randomly selected node N; € F' with a newly generated node N; € F
for j # 1.

d) Replacing a randomly selected terminal node z; € T with a newly generated node
N; e F.

e) Deleting a randomly selected terminal node x; € T or deleting a randomly selected
node N; € F.

The mutation operation is selected with a probability pm and the type of mutation operator

(a, or b, or ¢, or d, or e) is selected randomly during the mutation operation.

Recombination The offspring population W7 and the main population W; are combined

together making a combined population W}.

Elitism In this step, size(W;) worst individuals are weeded out from the combined
population W¢. In other words, size(Wgt ) best individuals are propagated to new generation

t + 1 as the main population Wg”l.

Parameter-tuning

In parameter-tuning phase, a single objective, i.e., approximation error was used in
optimization of HEN'T parameter by DE. The tree parameters such as weights of tree edges
and arguments of activation functions were encoded into a vector w = (wy, ws, ..., wy,)
for the optimization. In addition, a cross-validation (CV) phase was used for statistical
validation of HFNTs.

For parameter tuning, DE version “DE/rand-to-best/1/bin” was used [6]. The basic

principle of the DE is as follows. First, an initial population matrix W} = (wy, wa, ..., w,,)
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at the iteration ¢ = 0 is randomly initialized. The population W} contains m solution
vectors. A solution vector w in the population is an n-dimensional vector representing
the free parameters of a model. Secondly, the population W/t is created using binomial
trials. Hence, to create a new solution vector for the population W/t three distinct
solution vectors w®, w’, and w® and the best solution vector w? are selected from the
population W{. Then, for a random index k € [1,n] and for the selected trail vector

wo = (w§,ws,...,w’), the j-th variable of the modified trial vector w® is created as:

, wd + 6w —wh) +o(w) —w§) ifry<er|j=k
wj if rj > cr
where r; € [0, 1] is a uniform random sample, ¢r € [0, 1] is the crossover rate, and ¢ € [0, 2]
is the differential weight factor. Similarly, all the variables 7 = 1 to n of the trail vector

w? is created using (3.6). After creation of the modified trail vector w?, it is recombined

as:

(3.7)

a’ if a’ a
Wa:{ w it ep(w) < f(w?)

weif cp (W) > cp(w9)

where ¢y is the function that returns the fitness of a solution vector using (1.1). The
basic framework of the iterative learning of the DE follows Algorithm 1.1. As described in
Algorithm 1.1, the application of the DE operators selection, crossover, and recombination

are repeated until an optimal solution vector w* is found.

3.3.4 Ensemble: making use of MOGP final population

In tree construction phase, MOGP provides a population from which tree-models for
making ensemble can be selected. Three conflicting objectives such as approximation error,
size, and diversity index allows the creation of Pareto-optimal solutions, where solutions
are distributed on various Pareto-optimal fronts according to their rank in population.
Ensemble candidates can be selected from the first line of solutions (Front 1), or they can
be chosen by examining the three objectives depending on the user’s need and preference.
Accuracy and diversity among the ensemble candidate are important [11]. Hence, in this
chapter, approximation error, and diversity among the candidates were given preference
over size. Not to confuse “diversity index” with “diversity.” The diversity index is an
objective in MOGP, and the diversity is the number of distinct candidates in an ensemble.

A collection M of the diverse candidate is called a bag of candidates [10]. In this
chapter, any two trees were considered diverse (distinct) if the followings hold: 1) two
trees were of different size; 2) if number of function nodes/or leaf nodes in two trees were

dissimilar; 3) if two models used different set of input features; and 4) if two models
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used different set of activation functions. Hence, diversity div of ensemble M (a bag of

solutions) was computed as:
distinct(M)
M|

div =

(3.8)

where distinct(M) is a function that returns total distinct models in an ensemble M and
|M]| is a total number of models in the bag.

Now, the decision of the candidates for a classification problem is combined using (1.3)
and for a regression problem is combined using (1.4). A detailed discussion on ensemble
learning is provided in Section 1.2.5. The weights (the significance of the candidates
in the ensemble) associated with the candidates may be computed according to fitness
of the models, or by using a metaheuristic algorithm. In this chapter, DE was applied
to compute the ensemble weights, where population size was set to 100 and number of

function evaluation was set to 300,000.

3.3.5 Multiobjective: a general optimization strategy

A summary of general HENT learning algorithm is as follows:
Step 1. Initializing HFNT training parameters.

Step 2. Apply tree construction phase to guide initial HFNT population towards Pareto-

optimal solutions.

Step 3. Select tree-model(s) from MOGP final population according to their approxima-

tion error, size, and diversity index from the Pareto-front.
Step 4. Apply parameter-tuning phase to optimize the selected tree-model(s).
Step 5. If no satisfactory solution found, then go to Step 2, else go to Step 6.
Step 6. Using a cross-validation (CV) method to validate the chosen model(s).
Step 7. Use the chosen tree-model(s) for making ensemble (Recommended).

Step 8. Compute ensemble results of the ensemble model (Recommended).

3.4 Input feature analysis

Feature analysis was conducted to understand the significance of the input features. For
this purpose, at first, M many HFNT models were created. Second, two performance

dimensions were used: feature selection rate R and predictability score P. Feature selection
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rate R describes the total number of times a particular input feature set was appeared in

the list that was prepared out all M models. The feature selection rate is defined as:

1 M

R; = i ;H(Zj) (3.9)
where R; is the selection rate of j-th input feature set Z; € Z, which is a power set
Z=7P(Z)—0and Z = {z,22,...,2,} is an input feature set; M is the total number of
models in the list; and function I(Z;) is an identity function that returned “1” if j-th
input-feature set Z; is selected by the i-th model, otherwise, returned “0.” Feature selection
rate R equal to one is the highest (100% selection rate) and R equal to zero is the lowest
(0% selection rate). In other words, the value of selection rate R equal to one means an
input feature set was selected by all the models in the prepared list, and the value of
R equal to zero means an input feature set was selected by none of the models in the
prepared list.

Since the models in the list may not be equal in their performances, the predictability
score P based on the MSEs/RMSEs of the models was computed. The predictability score
P describes the predictability of an input feature set. To compute predictability score P
of j-th input-feature set Z;, at first, the fitness Fj of the corresponding input-feature set

Z; was computed as:

(3.10)

P iy B - 1(Z;), if |Z;] =1
’ Eij\il E; - H(Zj>/zi‘i1 H(Zj>> if ’Zj| >1

where E; is the MSEs/RMSEs of i-th model. For |Z;| equal to one, fitness Fj is the sum
of MSEs/RMSEs, and for |Z;| greater than one, fitness F; is the average of MSEs/RMSEs
of all models that selects subset Z;. Then, the predictability score P; corresponding to an
input-feature set Z; was computed by normalizing the fitness as:
F
b= ' maX] (F}) (3.11)
j=1 to |Z°|

where function max(-) determines the maximum fitness value from all F; and Z* is the set
of selected feature sets. Similar to the selection rate R, the predictability score P equal
to one indicates that the feature set has the highest impact on the predictability of the

model and predictability score P equal to zero has the lowest.
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Table 3.2 Multiobjective HFNT parameter set-up for the experiments

Parameter Definition Default rang Value
Scaling Input-features scaling range. [dl,du], dl e R, du e R [0,1]
Tree height ~ Maximum depth (layers) of a tree model. {td € Z*|td > 1} 4
Tree arity Maximum arguments of a node +¥, . {tn € Z*|n > 2} 5
Node range  Search space of functions arguments. [nl,nu], nl € R, nu e R [0,1]
Edge range  Search space for edges (weights) of tree.  [w;, w,], w; € R, w, € R [-1,1]
W, MOGP population. size(Wy) > 20 30
Mutation Mutation probability pm 0.3
Crossover Crossover probability pc=1—pm 0.7
Mating pool  Size of the pool of selected candidates. size(Wy)r, 0 <r <1 0.5
Tournament  Tournament selection size. 2 < bt < size(Wy) 2
%743 DE population. size(Wp,) > 50 50
General i, Maximum number of trails. {ig e Z|ig > 1} 3
Structure is  MOGP iterations {is € ZT|is > 50} 30
Parameter i, DE iterations {i, € Z*|i, > 100} 1000

3.5 Experimental set-up

Several experiments were designed for evaluating the proposed HFNTM. A careful
parameter-setting was used for testing its efficiency. A detailed description of the parameter-
setting is given in Table 3.2, which includes: definitions, default range, and selected value.
The phases of the algorithm were repeated until the stopping criteria met, i.e., either the
lowest predefined approximation error was achieved, or the maximum function evaluations
were reached. The repetition holds the key in obtaining a good solution. A carefully
designed repetition of these two phases may offer a good solution in fewer of function
evaluations.

In this experiment, three general repetitions i, were used with 30 tree construction
iterations i, and 1000 parameter-tuning iterations i, (Fig. 3.1). Hence, the maximum
function evaluation® [size(W,) + i {is(size(W,) + size(W,)r) + ipsize(Wy)}] was 154, 080.
The DE version DE/rand — to — best/1/bin [6] with ¢r equal to 0.9 and 0 equal to 0.7
was used in the parameter-tuning phase.

The experiments were conducted over benchmark (problems of type classification,
regression, and time-series) and real-world (a pharmaceutical problem) datasets. A detailed
description of the chosen dataset from the UCI machine-learning [309] and KEEL [310]
repository is available in Table 3.3. The parameter-setting mentioned in Table 3.2 was used
for the experiments over each dataset. Since the stochastic algorithms depend on random

initialization, a pseudorandom number generator called, Mersenne Twister algorithm that

nitial GP population + three repetition ((GP population + mating pool size) x MOGP iterations +
MH population x MH iterations) = 30 + 3 x ((30 + 15) x 30 4+ 50 x 1000) = 154, 080.
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Table 3.3 Collected datasets for testing HFNTM

Index Name Features Samples Output Type

AUS  Australia 14 691 2

HRT Heart 13 270 2

ION  Ionshpere 33 351 2 Classification

PIM Pima 8 768 2

WDB Wdbce 30 569 2

ABL  Abalone 8 4177 1

BAS Baseball 16 337 1

DEE DEE 6 365 1 Regression

EVL  Elevators 18 16599 1

FRD  Fridman 5 1200 1

MGS  Mackey-Glass 4 1000 1 . .
Time-series

WWR Waste Water 4 475 1

draws random values using probability distribution in a pseudo-random manner was used
for initialization of HFNTs [311]. Hence, each run of the experiment was conducted
with a random seed drawn from the system. HFNTM performance with various other
approximation models from collected literature were compared. A list of such models is
provided in Table 3.4. A developed software tool based on the proposed HFNTM algorithm
for predictive modeling is available at [http://dap.vsb.cz/aat/].

To construct good ensemble systems, highly diverse and accurate candidates were
selected in the ensemble bag M. To increase diversity (3.8) among the candidates, the
Pareto-optimal solutions were examined by giving preference to the candidates with low
approximation error, small size and distinct from others selected candidates. Hence, |M|
candidates were selected from a population W,. An illustration of such selection method
is shown in Fig. 3.4, which represents an MOGP final population of 50 candidate solutions
computed over dataset MGS.

MOGP simultaneously optimized three objectives. Hence, the solutions were arranged
on the three-dimensional map (Fig. 3.4(a)), in which along x-axis, error was plotted; along
y-axis, size was plotted; and along z-axis, diversity index (diversity) was plotted. However,
for the simplicity, solutions were also arranged in 2-D plots (Fig. 3.4(b)), in which along
x-axis computed error was plotted and along y-axis size (indicated by blue dots) and
diversity index (indicated by red squares) were plotted. From Fig. 3.4(b), it is evident that
a clear choice is difficult since decreasing approximation error increases models size (blue
dots in Fig. 3.4(b)). Similarly, decreasing approximation error increases models size and
diversity (red squares in Fig. 3.4(b)). Hence, solutions along the Pareto-front (rank-1), i.e.,

Pareto surface indicated in the 3-D map of the solutions in Fig. 3.4(a) were chosen for the
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Table 3.4 Algorithms from literature for the comparative study with HFNTM

Ref. Algorithms Definition
[33] MLP Multi-layer Perceptron
[312) HDT Hybrid Decision Tree
[289] FNT Flexible Neural Tree
[313] ANFIS-SUB Adaptive Neuro-FIS using Subtractive Clustering
[314] TSK-IRL Genetic Learning of TSK-Iterative Rule Learning
[315] LINEAR-LMS Least Mean Squares Linear Regression
[316) LEL-TSK Local Evolutionary Learning of TSK-rules
[317) RBF Classical Radial Basis Function
[124] CPSO Cooperative Particle Swarm Optimization (PSO)
[318] PSO-BBFN PSO-based Beta Basis Function Neural Network
[319] G-BBFNN GA-based BBFNN
[320] HCMSPSO Hierarchical Cluster-Based Multispecies PSO
[321] FWNN-M Fuzzy Wavelet Neural Network Models
[322] HMDDE-BBFNN Hierarchical Multidimensional DE-Based BBFNN
[323] LNF Local Least-Squares SVM-Based Neuro-Fuzzy Mode
[324] BPNN Back-propagation Neural Network
[325] EFuNNs Evolving Fuzzy Neural Networks
[326) FBBFNT-EGP&PSO Flexible BBENN-trained by Immune Programming and PSO
[327) METSK-HD* Multiobjective Evolutionary Learning of TSK-rules for High-
Dimensional Problems
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(a) Error versus size versus diversity index

(b) Error versus size and diversity index

Fig. 3.4 Pareto-front of a final population of 50 individuals generated on the training dataset of time-series
problem MGS. (a) 3-D plot of solutions and a Pareto-front is a surface. (b) 2-D plot of Error versus
complexity (in blue dots) and Error versus diversity (in red squares)
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g —1 —2 —3 —4 10 —1 —2 3 —4
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Single objective optimization course Multiobjective optimization course

(a) Single objective optimization (b) Multiobjective objective optimization

Fig. 3.5 Comparison of single and multiobjective optimization course.

ensemble. For all datasets, ensemble candidates were selected by examining Pareto-fronts
in a similar fashion as described for the dataset MGS in Fig. 3.4.

The purpose of the experiment was to obtain sufficiently good prediction models by
enhancing predictability and lowering complexity. MOGP for optimization of HFNTs was
used. Hence, fitness was compromised by lowering models complexity. In single objective
optimization, models fitness is the only objective to be optimized. Therefore, one does not
have control over model’s complexity. Fig. 3.5 illustrates eight runs of both single and
multiobjective optimization course of HFNT, where models size (complexity) is indicated
along y-axis and x-axis indicates fitness value of the HFN'T models. The results shown in
Fig. 3.5 was conducted over MGS dataset. For each single objective GP and multiobjective
GP, optimization course was noted, i.e., successive fitness reduction and tree size were
noted for 1000 iterations.

It is evident from Fig. 3.5 that the HFNTM approach leads HFNT optimization by
lowering model’s complexity. Whereas, in the single objective, model’s complexity was
unbounded, and was abruptly increased. The average tree size of eight runs of single and
eight runs of multiobjective were 39.265 and 10.25, respectively; whereas, the average
fitness were 0.1423 and 0.1393, respectively. However, in single objective optimization,
given the fact that the tree size is unbounded, the fitness of a model may improve at the
expense of model’s complexity. Hence, the experiments were set-up for multiobjective

optimization that provides a balance between both objectives as described in Fig. 3.4.

3.6 Performance HFNT on benchmark datasets

Experimental results for benchmark datastes were classified into three categories: classifi-
cation, regression, and time-series. Each category has two parts: 1) First part describes
the best and average results obtained from the experiments; and 2) Second part describes

ensemble results using tabular and graphical form.
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3.6.1 Classification datasets

Five classification datasets were chosen for evaluating HFNTM, and subsequently, the
classification accuracy was computed as:
tp +1in

Cacc = 5 3.12
tp+ fn+ fp+itn (3.12)

where tp is the total positive samples correctly classified as positive samples, tn is the
total negative samples correctly classified as negative samples, fp is the total negative
samples incorrectly classified as positive samples, and fn is the total positive samples
incorrectly classified as negative samples. Here, for a binary class classification problem,
the positive sample indicates the class labeled with ‘1" and negative sample indicates class
labeled with ‘0’ Similarly, for a classification problem of three classes: wi,ws, and ws, the
samples which are labeled as a class w; are set to 1, 0, 0, i.e., set to positive for class w;
and negative for ws, and ws, the samples which are labeled as a class ws are set to 0, 1, 0,

and the samples which are labeled as a class w3 are set to 0, 0, 1.

10-FCV

The experiments on classification dataset were conducted in three batches that produced
30 models, and each model was cross validated using 10-FCV, in which a dataset is equally
divided into 10 sets and the training of a model was repeated 10 times. Each time a
distinct set was picked for the testing the models and the rest nine set was picked for
the training of the model. Accordingly, the obtained results are summarized in Table 3.5.
Each batch of the experiment produced an ensemble system of 10 models whose results
are shown in Table 3.7.

The obtained results presented in Table 3.5 describes the best and mean results of 30
models. In Table 3.6, a comparative study of the best 10-FCV models of HEFNTM and
the results of the literature models are presented. In Table 3.6, the results of HDT and
EFNT [278] were of 10-FCV results on the test dataset. Whereas, the results of FNT [289]
was the best test accuracy and not the CV results. The results summarized in Table 3.6
suggests a comparatively better performance of the proposed HFNTM over the previous
approaches. For the illustration of a model created by HFNTM approach, the best model
of dataset WDB that has a test accuracy of 97.02% (shown in Table 3.5) was chosen. A
pictorial representation of the WDB model is shown in Fig. 3.6, where the models size is
7, total input features are 5, (3, x4, 12, 217, and x99) and the selected activation function

is tangent hyperbolic (k = 2) at both the non-leaf nodes.



Multiobjective heterogeneous flexible neural trees

Table 3.5 Best and mean results of 30 10-FCV models (300 runs) of HFNTM.

Best of 30 models Mean of 30 models
Data  train cge. test cqee  size Features train ceee  test cqee  avg. size  diversity
AUS 87.41% 87.39% 4 3 86.59% 85.73% 5.07 0.73
HRT 87.41% 87.04% 8 5 82.40% 80.28% 7.50 0.70
ION 90.92% 90.29% 5 3 87.54% 86.14% 6.70 0.83
PIM 78.67% 78.03% 10 5 71.12% 70.30% 6.33 8.67
WDB  97.02% 96.96% 6 5 94.51% 93.67% 7.97 0.73

Table 3.6 Comparative results: 10-FCV test accuracy cq.. and variance o of algorithms.

AUS HRT ION PIM WDB

Algorithms test coee o test cgee O test cgee O test Coee O test Cpee O

HDT [278] 86.96% 2.058 76.86% 2.086 89.65% 1.624 73.95% 2.374
FNT [278] 83.88% 4.083 83.82% 3.934 88.03% 0.953 77.05% 2.747

FNT [289] 93.66% n/a
HFNTM  87.39% 0.029 87.04% 0.053 90.29% 0.044 78.03% 0.013 96.96% 0.005

8 |

17 To9

T2

Fig. 3.6 HENT model of classification dataset WDB (test cgec = 97.02%).
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Table 3.7 Ensemble results (10-FCV) of each classification dataset.

Data Batch test ¢, avg. size div (3.8) TSF MSF MIF
AUS 1 86.96% 5 0.7 4
8551% 6 0.7 5 Tey T8y L10, Ty, 2, I3,
x12 11, T14
3 86.81% 4.2 0.8 5
HRT 1 77.41% 6.8 0.5 6
70.37% 7.6 0.6 9 i; T 120 g
3 87.04% 8.1 1 10
ION 1 82.86% 7.2 0.9 15 15, T16, T1s,
T2, T4, T5,
90.29% 7.3 1 16 o T19, T21, T23,
3 86.57% 5.6 0.6 6 25, T30, T32
PIM 1 76.32% 6.9 1
64.74% 5.6 07 7 i; iz z‘; o
3 64.21% 7.4 0.9 Y
WDB 1 94.29% 8.2 0.7 15 21, 75, 26,
93.75% 5 1 15 221’ 122, W20 ps 214, 00,
25
3 94.29% 10.7 0.5 15 T30

Ensembles

The best accuracy and the average accuracy of 30 models presented in Table 3.5 are
the evidence of HENTM efficiency. However, as mentioned earlier, a generalized solution
may be obtained by using an ensemble. All 30 models were created in three batches.
Hence, three ensemble systems were obtained. The results of those ensemble systems are
presented in Table 3.7, where ensemble results are the accuracies c,.. obtained by weighted
majority voting (1.3). In Table 3.7, the classification accuracies c¢,.. were computed over
CV test dataset. From Table 3.7, it may be observed that high diversity among the
ensemble candidates offered comparatively higher accuracy. Hence, an ensemble model
may be adopted by examining the performance of an ensemble system, i.e., average size
(complexity) of the candidates within the ensemble and the selected input features.

An ensemble system created from a genetic evolution and adaptation is crucial for
feature selection and analysis. Summarized ensemble results in Table 3.7 gives the following
useful information about the HENTM feature selection ability: 1) TSF—total selected
features; 2) MSF—most significant (frequently selected) features; and 3) MIF—most

infrequently selected features. Table 3.7 illustrates feature selection results.
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3.6.2 Regression datasets
5-FCV

For regression dataset, the performance of HFNTM was examined by using 5-FCV method,
in which the dataset was divided into 5 sets, each was 20% in size, and the process was
repeated five times. Fach time, four set was used to training and one set for testing. Hence,
a total 5 runs were used for each model. As described in [327], MSE E = 0.5 x E was
used for evaluating HFNTM | where E was computed as per (1.1). The training MSE is
represented as F, and test MSE is represented as FE;. Such setting of MSE computation
and cross-validation was taken for comparing the results collected from [327]. Table 3.8
presents results of 5-FCV of each dataset for 30 models. Hence, each presented result
is averaged over a total 150 runs of experiments. Similarly, in Table 3.9, a comparison
between HFNTM and other collected algorithms from literature is shown. It is evident
from comparative results that HENTM perform very competitive to other algorithms. The
literature results were averaged over 30 runs of experiments; whereas, HFNTM results were
averaged of 150 runs of experiments. Hence, a competitive result of HENTM is evidence of
its efficiency.

Moreover, HFNTM is distinct from the other algorithm mentioned in Table 3.9 because
it performs feature selection and models complexity minimization, simultaneously. On
the other hand, the other algorithms used entire available features. Therefore, the result’s
comparisons were limited to assessing average MSE, where HFNTM, which gives simple
models in comparison to others, stands firmly competitive with the others. An illustration
of the best model of regression dataset DEE is provided in Fig. 3.7, where the model
offered a test MSE E; of 0.077, size equal to 10, and four selected input features (zy, xs,
x4, and x5). The selected activation functions were unipolar sigmoid (+1), bipolar sigmoid
(+9), tangent hyperbolic (+3), and Gaussian (+3). Note that while creating HFNT models,
the datasets were normalized as described in Table 3.2 and the output of models were
denormalized accordingly. Therefore, normalized inputs should be presented to the tree
(Fig. 3.7), and the output y of the tree (Fig. 3.7) should be denormalized.

Ensembles

For each dataset, five ensemble systems were constructed by using 10 models in each
batch. In each batch, 10 models were created and cross-validated using five cross two fold
cross-validation (5x2-FCV), in which dataset is randomly divided into two equal sets: A
and B. Such partition of the dataset was repeated five times and each time when the set
A was presented for training, the set B was presented for testing, and vice versa. Hence,

total 10 runs of experiments for each model was performed. The collected ensemble results
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Table 3.8 Best and mean results of 30 5-FCV models (150 runs) of HFNTM,

Best of 30 models

Mean of 30 models

Data train E,, test E; Size Features train F, test E} size  diversity
ABL 2.228 2.256 14 5 2.578 2.511 11.23 0.7
BAS 198250 209582 11 5 261811 288688.6  7.69 0.6
DEE 0.076 0.077 10 4 0.0807 0.086 11.7 0.7
ELV! 8.33 8.36 11 7 1.35 1.35 7.63 0.5
FRD 2.342 2.425 6 5 3.218 3.293  6.98 0.34

Note: Results of ELV should be multiplied with 10-®, E,, and E,, are MSEs

Table 3.9 Comparative results: 5-FCV training MSE E,, and test MSE F; of algorithms.

ABL BAS DEE ELV! FRD
Algorithms E, F E, E, E, E, E, FE E, E,
MLP - 2.694 - 540302 - 0.101 - 2,04 3.194
ANFIS-SUB  2.008 2.733 119561 1089824 3087 2083 61.417 61.35 0.085  3.158
TSK-IRL 2.581 2.642 0.545 882.016 0.433  1.419
LINEAR-LMS 2.413 2.472 224684 269123 0.081 0.085 4.254 4.288 3.612  3.653
LEL-TSK 2.04 2412 9607 461402 0.662  0.682 0.322  1.07
METSK-HD® 2.205 2.392 47900 368820  0.03 0.103  6.75 7.02 1.075  1.887
HFNTM?2 2578 2511 261811 2.88688.6 0.0807 0.086  1.35 1.35 3.218  3.293

Note: 'ELV results should be multiplied with 105, 2HFNTM results were averaged over 150 runs compared to
MLP, ANFIS-SUB, TSK-IRL, LINEAR-LMS, LEL-TSK, and METSK-HD€, which were averaged over 30 runs.
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Fig. 3.7 HFNT model of regression dataset DEE (test MSE E; = 0.077).

are presented in Table 3.10, where ensemble outputs were obtained by using weighted
arithmetic mean as mentioned in (1.4).

The weights of models were computed by using DE algorithm, where the parameter
setting was similar to the one mentioned in classification dataset. Ensemble results shown
in Table 3.10 are MSE, and correlation coefficient computed on CV test dataset. From
ensemble results, it can be said that the ensemble with higher diversity offered better
results than the ensemble with lower diversity. The models of the ensemble were examined
to evaluate MSF and MIF presented in Table 3.10. A graphical illustration of ensemble
results is shown in Fig. 3.8 using scattered (regression) plots, where a scatter plots show
how much one variable is affected by another (here, it is the desired output and the
model’s output). Moreover, it tells the relationship between two variables, i.e., their
correlation. Plots shown in Fig. 3.8 represents the best ensemble batch (numbers indicated
bold in Table 3.10) four, five, three, four and five where MSEs are 2.2938, 270706, 0.1085,
1.10E—05 and 2.3956, respectively. The values of R? in the plots tell about the regression
curve fitting over CV test datasets. In other words, it can be said that the ensemble

models were obtained with generalization ability.

3.6.3 Time-series datasets
2-FCV

In literature survey, it was found that efficiency of most of the FNT-based models was
evaluated over time-series dataset. Mostly, Macky-Glass (MGS) dataset was used for
this purpose. However, only the best-obtained results were reported. For time-series

prediction problems, the performances were computed using the root of mean squared error
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Table 3.10 Ensemble test MSE F; computed for 5x2-FCV of 10 model in each batch.

Data batch MSE E; ry avg. size div (3.8) TSF MSF MIF
ABL 1  3.004 0.65 5 0.1 3
2 2537 0.72 8.3 1 7
3 3.042 0.65 8.5 05 5 ‘2T g
Ts5, Te
4 2204  0.75 10.7 1 7
5 2412 0.73 11.2 07 7
BAS! 1 2.932 0.79 5.6 0.3 5
2 3.275 0.76 8.2 1
3 3.178 0.77 5 02 7 s, x9,  T5, Tp,
4 3.051 0.78 5.7 03 5 Tu,%13 T
5 2707  0.81 7.3 07 9
DEE 1  0.112 0.88 4.3 02 4
2 0115 0.88 8.9 06 6
3 0108  0.88 5.4 05 3 Z ;2 o P2
4 0123 0.87 10.8 09 5
5 0111 0.88 5.2 06 4
EVL2 1 1126 0.71 9.3 01 12
2 1.265 0.67 9.6 0.1 12 g 4,
3 1124 0.71 10.4 01 15 4, e, i;“
4 1097 072 9.2 02 10 17
5 2.047 0.31 3.8 04 3
FRD 1  3.987 0.86 6.2 02 4
2 4154 0.83 8 02 4
3 4.306 0.83 5.2 04 5 ii ii 2
4 3.809 0.86 7.8 05 4
5 2395 091 7.7 04 5

Note: BAS results should be multiplied with 10%, 2ELV results should be multiplied with 1075,
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Fig. 3.8 Regression plots of the best ensemble batches on datasets R1, R2, R3, R4, and R5.
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Table 3.11 Best and mean results 2-FCV training RMSE E,, and test RMSE E;.

Best of 70 models Mean of 70 models
Data E, FE; size Features E, E; size
MGS 0.00859 0.00798 21 4 0.10385 0.10568 8.15
WWR 0.06437 0.06349 17 4 0.10246 0.09778 8.05

(RMSE) indecated by F, and E was computed by taking square root of (1.1). Additionally,
correlation coefficient (3.1) was also used for evaluating algorithms performance. For the
experiments, first 50% of the dataset was taken for training and the rest of 50% was used
for testing. Table 3.11 describes the results obtained by HFNTM, where E,, is RMSE for
training set and £, is RMSE for test-set. The best test RMSE obtained by HFNTM was
E; = 0.00859 and E; = 0.06349 on datasets MGS and WWR, respectively.

HENTM results are competitive with most of the algorithms listed in Table 3.12. Only
a few algorithms such as LNF and FWNN-M reported better results than the one obtained
by HFNTM. FNT based algorithms such as FNT [20] and FBBFENT-EGP&PSO reported
RMSEs close to the results obtained by HFNTM. The average RMSEs and its variance
over test-set of 70 models were 0.10568 and 0.00283, and 0.097783 and 0.00015 on dataset
MGS and WWR, respectively. The low variance indicates that most models were able to
produce results around the average RMSE value. The results reported by other function
approximation algorithms (Table 3.11) were merely the best RMSEs. Hence, the robustness
of other reported algorithm cannot be compared with the HFNTM. However, the advantage
of using HFNTM over other algorithms is evident from the fact that the average complexity
of the predictive models were 8.15 and 8.05 for datasets MGS and WWR, respectively.
The best model obtained for dataset WWR is shown in Fig. 3.9, where the size of the
tree is equal to 17 and following are the selected activation functions: tangent hyperbolic,
Gaussian, unipolar sigmoid, bipolar sigmoid and linear tangent hyperbolic. The selected

input features in the tree (Fig. 3.9) are zy, x9, x3 and z4.

Ensembles

The ensemble results of time-series datasets are presented in Table 3.13, where the best
ensemble system of dataset MGS (marked bold in Table 3.13) offered a test RMSE
E; = 0.018151 with a test correlation coefficient r, = 0.99. Similarly, the best ensemble
system of dataset WWR (marked bold in Table 3.13) offered a test RMSE E; = 0.063286
with a test correlation coefficient r, = 0.953. However, apart from the best results, most of
the ensemble produced low RMSEs, i.e., high correlation coefficients. The best ensemble
batches (marked bold in Table 3.13) of dataset MGS and WWR were used for graphical

plots in Fig. 3.10. A one-to-one fitting of target and prediction values is the evidence
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Table 3.12 Comparative results: training RMSE E,, and test RMSE FE; for 2-FCV.

MGS WWR
Algorithms E, E, E, E,
CPSO 0.0199  0.0322
PSO-BBFN - 0.027
HCMSPSO 0.0095  0.0208
HMDDE-BBFNN 0.0094 0.017
G-BBFNN - 0.013
Classical RBF 0.0096  0.0114
FNT [20] 0.0071  0.0069
FBBFNT-EGP&PSO  0.0053  0.0054
FWNN-M 0.0013 0.00114
LNF 0.0007 0.00079
BPNN - - - 0.200
EFuNNs - - 0.1063 0.0824
HFNTM 0.00859 0.00798 0.064377 0.063489

Fig. 3.9 HENT model of time-series dataset WWR (RMSE = 0.063489).
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Table 3.13 Ensemble results computed for 50% test samples of time-series datasets.

Data  batch E, ri avg. size div (3.8) TSF MSF MIF
MGS 1 0.018 0.99 9.4 0.6 4 =z, x3, T4 -
2 0.045 0.98 5.8 0.2 3
3 0.026  0.99 15.2 0.5 3
4 0.109 0.92 5.1 0.4 3
5 0.156  0.89 7 0.2 3
6 0.059 0.97 8.2 0.5 3
7 0.054 0.98 6.4 0.4 4
WWR 1 0.073 0.94 5 0.1 3 T1, To -
2 0.112 0.85 6 0.2 2
3 0.097 0.91 10.6 0.3 4
4 0.113 0.84 5 0.1 2
5 0.063 0.96 14.4 0.9 4
6 0.099 0.89 8.5 0.7 3
7 0.101 0.88 6.9 0.4 3

Note: FEt, r+, and div indicate test RMSE, test correlation coefficient, and diversity, respectively

Target
12 e Prediction

Target

e o Prediction

NNNNNNNNNNNN

(a) Dataset MGS E, = 01815 (b) Dataset WWR E; = 0.06328

Fig. 3.10 Target versus prediction plot obtained for time-series datasets MGS and WWR.

of a high correlation between model’s output and desired output, which is a significant

indicator of model’s efficient performance.

3.7 Performance of HFNT on real-world application

In pharmaceutical industries, it is well recognized that the variation in composition and
the quality of tablets (drugs) are determined by material properties and process conditions.
One of the greatest challenges in pharmaceutical development is to identify the causal
relationship between material properties, intermediate properties, final product properties,
and process variables, which is crucial to obtain high-quality products. However, it is a

challenging multifactorial problem [328].
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Tablets are manufactured by compressing dry powders or granules in a die, i.e., the
so-called die compaction. The die compaction process consists of three primary stages:
die filling, compaction, and ejection [329]. Simple gravity effect can play a role during die
filling of powders into the die. However, flow behavior during die filling process controls
the tablet composition, the tablet properties as well as its segregation tendency [330].
Therefore, the study of die filling process parameters has a significant role in controlling

tablet properties in manufacturing industry.

3.7.1 Predictive modeling of pharmaceutical granules

In this chapter, HFNT was also applied to predict die filling performance of pharmaceutical
granules and to identify significant die filling process variables. The performance of the
HFNT was compared with other CI techniques: multilayered perceptron (MLP), Gaussian
process regression (GPR), and reduced error pruning tree (REP-Tree). The accuracy
of the CI model was evaluated experimentally using die filling as a case study. The die
filling experiments were performed using a model shoe system and three different grades of
microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG).
The feed powders were roll-compacted and milled into granules. The granules were then
sieved into samples of various size classes. The mass of granules deposited into the die at
different shoe speeds was measured. From these experiments, a dataset consisting true
density, d50, granule size, and shoe speed as the inputs and the deposited mass as the
output was generated. Cross-validation (CV) methods such as 10-FCV and 5x2-FCV were
applied to develop and to validate the predictive models.

This section, first, briefly introduce CI methods. Then, it describes the material and
methods, and the data collection process. The concise definitions of these CI techniques

are as follows:

e The MLP is a mathematical form of human-like learning, where a network of

computational nodes arranged in a layered architecture is trained using a dataset [33].

o In REP-Tree, based on the dataset, a tree-like structure is created, where the tree’s

internal nodes are binary decision nodes and the leaf nodes are the output nodes [331].

e The GPR is a Gaussian distribution based extension of linear regression tech-
nique [332].

These CI techniques are available as an open source library, i.e., as a software tool named
WEKA [333]. A detailed description of these models is available in [333].
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Materials and methods

Microcrystalline cellulose (MCC) of three different grades was chosen as the raw materials,
including Avicel PH-101, Avicel PH 102, and DG. A custom-made gravity-fed roll compactor
with two counter rotating smooth rolls of 200 mm in diameter and 46 mm in width was
used for ribbon production [334]. The roll gap was set at 1.2 mm and the roll speed was se
at 1 rpm. Ribbons were milled using a milling system (SM100, Retsch, Germany) equipped
with a mesh size of 4 mm at a constant speed of 1,500 rpm. The granules were sieved into
different size classes (0-90, 90-250, 250-500, 500-1000, 1000-1400, 1400-2360 nm) that were
used for the die filling experiments. The corresponding upper size limit was used as the
granule size in the current study (i.e., granules in the size range 0-90 pm were regarded as

granules with a size of 90 pm), as commonly adopted in particle technology.

Data collection

True densities of the three MCC powders were determined using a Helium Pycnometer
(AccuPyc IT 1340, Micromeritics, UK). Particle size analysis was performed using a size
analyzer (Camsizer XT, Retsch, UK). The experiments were run for 2-3 minutes and the
data were collected. The mean diameter, d50, defined as the size value below which 50%
of the particles lies, was then determined. Die filling experiments were performed using
a model die filling system that consists of a shoe driven by a pneumatic driving unit, a
positioning controller, and a displacement transducer [335]. For each granule size class,
experiments were performed using seven different shoe speeds in the range of 10 mms~!
to 400 mms~!. For each die filling experiment, the powder mass deposited into the die
was weighted, and the value was recorded. Each experiment was repeated three times. In
total, 389 experiments (3 powders, 6 granule sizes, 7 speeds, 3 repeats) were performed,
and 389 data samples were generated.

From the collected experimental data, four parameters were chosen as inputs for the
modeling: true density and mean diameter (d50) of raw powders, granule size (pm), and
shoe speed (mms™!), and the deposited mass was the only output. Table 3.14 shows a

selection of few samples (taken from 389 samples) of the generated dataset.

3.7.2 Predictive modeling results

Predictive modeling with the CI techniques discussed in Section 3.7.1 was performed in
the following manner. Two different cases, i.e., 10-FCV and 5x2-FCV methods, were
considered. Each of the four CI techniques discussed above (i.e., HFNT, MLP, GPR, and
REP-Tree) were used to develop the models, and their performance was evaluated. The

collected dataset was pre-processed by normalizing the features of dataset between zero
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Table 3.14 Example of few data samples generated for modeling.

Samples Input Output

#  Name True density d50 (mms~!) Granules size Shoe speed Mass (g)
Feature #1  Feature #2 Feature #3 Feature #4

MCC PH 101 1581 59.83 90 10 12.81
2 MCC PH 101 1581 59.83 90 10 12.78
5 MCC PH 101 1581 59.83 90 20 12.3
6 MCC PH 101 1581 59.83 90 30 9.55
135 MCC PH 102 1570.3 94.7 250 50 13.45
136 MCC PH 102 1570.3 94.7 250 60 13.5
388 MCC DG 1785.6 52.33 2360 400 9.51
389 MCC DG 1785.6 52.33 2360 400 9.3

Table 3.15 Parameters settings and the values are chosen during MLP, GPR, and REP-Tree training. The
settings mentioned are those used in the software tool [333].

# CI Technique Parameter Name Definition/Purpose Values

1 MLP Learning rate Convergence speed. 0.3

2 Momentum rate Magnitude of past iteration influence. 0.2

3 Hidden Layer Maximum nodes at hidden layer. 350

4 Iterations Maximum number of evaluations of parameter 500
optimization

5 GPR Kernel The function used for implementing covariance RBF Kernel
function.

6 REP-Tree No. Leaf Instances Minimum No. of children per node. 2

8 Depth Maximum limit of tree depth/level. No limit

9 Pruning Pruning of tree nodes. Allowed

and one using a min-max normalization method. Table 3.2 lists the underlying parameters
for the HFNT; whereas, Table 3.15 describes the basic parameter set-up for other three CI
techniques: MLP, GPR, and REP-Tree. The model accuracy was assessed using RMSE F

and correlation coefficient 7.

Predictions using the 10-FCV method

Table 3.16 describes the performance of the best models created by using HFNT, MLP,
GPR, and REP-Tree. In Table 3.16, the generated models are arranged in descending
order ( the highest accuracy to the lowest accuracy) of their test correlation values. It may

be observed that the performance of the models created using HFNT (when compared the
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Table 3.16 Performance of the prediction models and validation over 10-FCV.

Model Model Mean of RMSEs  Mean of r Std over r Model Selected

No. Type Train Test Train Test Train  Test Complexity! Features?
1 HENT 2.0206 2.0571 0.93 0.95 0.0087 0.0383 43 1,2,3,4
2 2.3891  2.3934 0.91 0.91 0.0083 0.0617 34 2,34

3 2.5491 2.2618  0.88 0.91 0.0078 0.0563 32 3,4

4 REP-Tree 2.5751  3.1637 0.88 0.82 - - 99 1,2,3,4
5 GPR 2.9632  3.4023 0.86 0.79 - - - 1,2, 3,4
6 MLP 3.3687  3.4427 0.81 0.79 - - - 1,2, 3,4

Note: 'Complexity is the sum of total nodes in the created tree-model. 2Features Nos are assigned in Table 3.14

test accuracies, i.e., correlation values) was better than the other CI techniques. Hence,
the detail observation of the model Nos. 1, 2, and 3, which were created using HFNT are
provided.

The model No. 1 (see: row 1 of Table 3.16) produces a high correlation coefficient (on
test set), i.e., 0.95, which indicates high predictability of this model over 10% of unknown
samples. However, the model complexity was also high since the total function nodes
and leaf nodes in the created model amounted to 43. In addition, there was no feature
selection performed by this model. In comparison to model No. 1, the model Nos 2 and 3
had lower test correlation coefficient (performance was slightly poor); but their model’s
complexity was simpler, and they did offer feature selection, which was advantageous than
the model No. 1.

Fig. 3.11 illustrates the performance of the model using regression (scatter) plot and
target against predicted value plot. In Fig. 3.11, each model Nos 1, 2, and 3 respectively
were tested over 10% of test samples, i.e., 38 randomly chosen test samples, and the
scattered plot and the target against predicted values plot were analyzed. It may be
observed that the prediction curve follows the target curve. However, the lower values and

outliers were slightly out of the reach in the prediction curve.

Predictions using the 5x2-FCV method

In Table 3.17, a comparison of the best models created using HFNT, MLP, GPR, and
REP-Tree are provided. The models in Table 3.17 are arranged in descending order (the
highest accuracy to the lowest accuracy) of their test correlation values. Similar to the
modeling in 10-FCV, the modeling in 5x2-FCV and the performance of the models created
using HFN'T outperformed the models created using MLP, GP, and REP-Tree. Hence,
a detail observation on the model Nos. 7, and 8 are provided. Accordingly, Fig. 3.12
illustrates the performance of the model using regression (scatter) plot and target against

predicted value plot.
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Table 3.17 Performance of the prediction models and validation over 5x2-FCV.

Model Model Mean of RMSEs  Mean of r Std over r Model Selected
No. Type Train Test Train Test Train Test Complexity Features
7 HENT 2.5075  2.6481 0.88 0.88 0.0415 0.0403 16 1,2,3,4
8 2.6030 2.6792 0.88 0.87 0.0213 0.0217 17 2,3,4

9 REP-Tree 2.4460 3.6691 0.89 0.77 - - 51 1,2, 3,4
10 MLP 2.7698 3.8730 0.86 0.76 - - - 1,23, 4
11 GP Reg. 2.7978 3.7869 0.87 0.75 - - - 1,2,3,4

Note: Model Nos. are continued from Table 3.16
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Fig. 3.11 Models evaluation on unknown test samples. The regression plots (a), (c), and (e) indicates a
high correlation between actual and predicted values. The plots (b), (d), and (f) shows the one-to-one
mapping of target and prediction of the best models Nos. 1, 2, and 3 (see Table 3.16). The R? is the
squared value of correlation coefficient r, where R? equal to one is the best performance and R? equal to
zero is the worst performance.
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Models evaluation on unknown test samples. The regression plots (a), (c), and (e) in
Fig. 3.11 indicates a high correlation between actual and predicted values. The plots (b),
(d), and (f) in Fig. 3.11 shows the one-to-one mapping of target and prediction of the
best models Nos. 1, 2, and 3 (see Table 3.16). The R? is the squared value of correlation
coefficient 7, where R? equal to one is the best performance and R2 equal to zero is the
worst performance.

In Fig. 6, each model Nos. 7, and 8, respectively was tested over 50% of test samples,
i.e., 194 randomly chosen test samples, and the scattered plot and the target versus
prediction plot were analyzed. Similar to the trend as observed in Fig. 3.11, the trend
observed in Fig. 3.12 says that the prediction curve follows the target curve. However, the
lower values and the outliers were out of the reach of the prediction curve. The outlier is
clearly visible in Fig. 6d. The outlier in the dataset was because of the noise or bad value
observed during die filling process.

Fig. 3.13 and Fig. 3.14 are the illustrations of the created models, where the root
node of the tree indicates the output of the models and the leaf nodes (Square boxes
with numbers) indicates the input features. In Fig. 3.13 and Fig. 3.14, the input feature
x1, T9, T3, and x4 indicate the features true density, d50, granule size, and shoe speed,

respectively.

Comparison between 10-FCV and 5x2-FCV methods

Each 10-FCV and 5x2-FCV methods have their advantages. This is the reason both
methods were used for creation and validation for the predictive modeling. In 10-FCV, a
model uses a large sample for training. Thus, 10-FCV has higher representativeness of
real world (data samples) during learning, i.e., the model is trained efficiently. Whereas,
in 5x2-FCV a model used an equal proportion of data samples for training and testing
(smaller training samples than 10-FCV, but larger test samples than 10-FCV). Thus,
5x2-FCV has higher generalization ability. Hence, at one hand, if a high test correlation
coefficient obtained using 10-FCV, it indicates that an effective predictive model can be
created from the given dataset. Whereas, if a high test correlation coefficient obtained
using 5x2-FCV, it indicates that a general predictive model can be created from the given
dataset.

The models 7 and 8 were created using 5x2-FCV, and their test correlation values were
found competitive to the model No. 1 using 10-FCV method. From 5x2-FCV results, it
was found that the model Nos. 7 and 8 were simple in comparison to model Nos. 1, 2,
and 3, but their accuracies (correlation coefficient) were slightly poorer in comparison.
However, the model Nos. 7 and 8 were tested over 50% test samples. Hence, it describes

that the deposited mass can be efficiently predicted by using die filling process variables
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Fig. 3.12 Models evaluation on unknown test samples. The regression plots (a) and (c) indicates a high
correlation between actual and predicted values and plots (b) and (d) shows the one-to-one mapping
of target and prediction of the best model Nos. 7 and 8 (Table 3.17). The R? is the squared value of
correlation coefficient r, where R? equal to one is the best performance and R2 equal to zero is the worst
performance.
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Fig. 3.13 Tree-like structure of predictive model No. 7 created using 5x2-FCV method: Complexity equal
to 16 is the sum of the computational nodes (node in circles) and the leaf nodes (node in square).
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Fig. 3.14 Tree-like structure of predictive model No. 8 created using 5x2-FCV method: Complexity equal
to 17 is the sum of the computational nodes(node in circles) and the leaf nodes (node in square).

knowledge. Moreover, choice of model is subjective. Since simple models have higher
generalization ability, the competitive accuracies of the model Nos. 7 and 8 to the model
Nos. 1, 2, and 3 tells that one had to choose between the accuracies and the generalization
ability of the models.

Fig. 3.11 and Fig. 3.12 present the graphical visualization of the 10-FCV and 5x2-FCV
models, respectively, where, the test performance of the models over each test samples
were examined. The 5x2-FCV models produced similar trend when the models were tested
over 50% of samples. However, the 5x2-FCV models (see Fig. 3.12(d)) did not predict the
outlier as close as 10-FCV models (see Fig. 3.11(d)) predicted it.

3.7.3 Feature analysis results

A total 30 models were created using HFNT for feature analysis. Since the evolutionary
process was used during model creation, the created models selected the input features set
that had the highest predictability. Therefore, the RMSEs and selected input feature set
by the models were placed into a list. Subsequently, a comprehensive feature analysis was
performed. For this purpose, two performance measure dimensions were adopted: feature
selection rate R as defined in (3.9) and feature predictability score P as defined in (3.11).

The feature analysis was categorized into two phases.

1) The identification of individual input features. Here, for (3.9) and (3.10) the feature set

|Z;| was set to one, which indicates that at a time only one input feature was analyzed.
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Table 3.18 Significance of individual input features.

# Input Features set Selection Rate (R) Predictability Score (P)
1 Z;= True density 0.55173 0.541356
2 Zy=d50 0.62069 0.586262
3  Z3= Granule size 1 1
4 Z4= Shoe speed 0.86207 0.92563

Since there were four input features in the dataset, in this phase, Z° C Z, i.e., Z°
was equal to {7y, Zs, Z3, Z4} (see Table 3.18 for the definition of 7y, ..., Zy), i.e., |Z°|

in (3.11) was equal to four.

2) The identification of feature subset, i.e., identification of the best combination of input
feature. Here, for (3.9) and (3.10) the feature set |Z;| can be one or two or three or
four. After examining the selected feature by the models in the list, there was six
different input feature subsets was found. Hence, in this phase, Z° C Z, i.e., Z° was
equal to {Zy, Zs, Zs, Z4, Z5, Zs} (see Table 3.19 for the definition of Z3,..., Zs), i.e.,

|Z*] in (3.11) was equal to six.

Identification of the significance of individual input features

Table 3.18 describes the feature analysis results performed for the individual input features.
The significance of individual features true density, d50, granule size, and shoe speed was
examined. The features true density and d50 represents the powder properties. Whereas,
the granule size and shoe speed represents the die filling process variables. It can be
observed that the selection rate and predictability score of d50 (0.62069 and 0.58626) were
higher than that of the selection rate and predictability score of true density (0.55173
and 0.54136). Therefore, d50 possess comparatively higher importance as a powder
property than that of the true density. Similarly, the process variable granule size was
more influential than that of shoe speed. However, the difference of significance level was
marginal, but when the entire four input variables were compared, the process variables
were having significantly higher selection rate and predictability score than that of the

properties of the powder. This fact was also evident from feature subset analysis.

Identification of the best set input features.

Table 3.19 shows interesting findings, where it can also be observe that the predictability
score of subset Z; (process variable granule size and shoe speed) and the subsets Z7, Z5

and Z3 (with both process variables combined with one or two powder properties) were
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Table 3.19 Optimal subset of input features.

# Input Feature set Selection Rate (R) Predictability Score (P)
1 Z;= True density, d50, Granule size, Shoe speed 0.31035 0.969497
2 Zy= d50, Granule size, Shoe Speed 0.17242 0.941601
3 Zsz= True density, Granule size, Shoe speed 0.13793 1
4  Z,= Granule size, Shoe speed 0.24138 0.979663
5  Zs= True density, d50, Granule size 0.10345 0.493741
6 Zg= d50, Granule size 0.03448 0.470451

higher compared to the subsets Z5 and Zg (subsets where one of the process variables was
not used for prediction).

The subset analysis produced a clear picture. It says that although the predictability
score of subset Z3 was highest, the selection rate of subset Z; was highest. This indicates
that the evolutionary process often preferred to use the combination of entire features,
i.e., the set Z;. However, among the subsets Z;, Z5, and Z3, the selection rate of subset
Z5 was higher, which indicates d50 had the higher ability to represent powder properties
than that of true density, but again the difference was marginal (say approximately higher

by only four percent).

Accuracy evaluations of the models

Fig. 3.15 and Fig. 3.16 shows the comparison between die filling experimental results and
predicted results from the model No 1 of the 10-FCV method using HFNT. This model
was chosen because it has the highest value of R?, which leads to a better fitting between
experimental and predicted data. More specifically, Fig. 3.15 and Fig. 3.16 presents the
mass collected after each experiment as a function of the shoe speed of the three different
MCCs powders for six different granule size ranges. It shows that there is a decrease of
mass deposited into the die with increasing shoe speed for all the materials and granules
size ranges investigated. Moreover, a general increase of deposited mass at a consistent
shoe speed was found with the increasing granule size. MCC DG tends to have higher
mass deposited values compare to MCC PH 102 and MCC PH 101 at all the shoe speeds
considered and for all the different size ranges analyzed, exception for the granule size
range 250-500 pm (Fig. 3.15(c)). MCC PH 101 and MCC PH 102 show an identical trend
in all the experiments performed.

Interestingly, results for finest granules (Fig. 3.15(a) and Fig. 3.15(b)) appears to have
larger variations (due to the lower experimental reproducibility) compare to those for
coarser granules (Fig. 3.16(b) and Fig. 3.16(c)). It is clear that the models give better
predictions for coarser granules (Fig. 3.16(b) and Fig. 3.16(c)) than for finer granules
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(Fig. 3.15(a) and Fig. 3.15(b)) for all the materials under investigation. In particular,
the model gives almost identical values to the measured ones for coarser granules, which
proves that the HFNT method can predict die filling behavior for such materials with high
accuracy. The accuracy of the model appears to rely on the consistency (or scattering) of

the experimental data.

3.7.4 Discussion on die filing results

Heterogeneous flexible neural tree (HFNT) was used to predict die filling behavior of
MCCs granules of different size ranges. Two main methods were investigated, 10-FCV
and 5x2-FCV. Computational intelligence models were developed using HFNT, MLP,
REP-Tree, and GPR. It was observed that the flexible neural tree models performed better
than other CI techniques. Additionally, by examining HFNT models of each method, it
was found that 10-FCV was an efficient method with a higher correlation coefficient than
the 5x2-FCV. The experimental results were used as inputs and outputs of the HFNT
models. The constructed model efficiently predicted the deposited mass based on the
knowledge gathered from the experimental data. Similarly, the feature analysis discovered
that the shoe speed and the granule size are more significant in terms of governing the
deposited mass than the raw powder properties (true density and d50). Interestingly,
die filling behavior of coarser granules are easier to predict than fine granules for all the
materials considered. This is due to the higher reproducibility of the experimental data

for larger granules.

3.8 Summary

HFNTM was examined over three categories of datasets: classification, regression, and
time-series. The results presented in Sections 3.6 and 3.7, clearly suggests a superior
performance of HFNTM approach. In HENTM approach, MOGP guided an initial HFNT
population towards Pareto-optimal solutions, where HFNT final population was a mixture
of heterogeneous FN'Ts. Alongside, accuracy and simplicity, a Pareto-based multiobjective
approach ensured diversity among the candidates in final population. Hence, FNTs in the
final population were fairly accurate, simple, and diverse. Moreover, FNTs in the final
population were diverse according to structure, parameters, activation function, and input
feature. Hence, the model’s selection from Pareto-fronts, as indicated in Section 3.5, led
to a good ensemble system.

HFNTM was applied to solve classification, regression, and time-series problems. Since
HFNTM is stochastic in nature, its performance was affected by several factors: random

generator algorithm, random seed, the efficiency of the meta-heuristic algorithm used in
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Fig. 3.15 Comparison of experimental results and model predictions for 3 MCC granules of different size
ranges: a) 1-90 pm, b) 90-250 pm, ¢) 250-500 pm.
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Fig. 3.16 Comparison of experimental results and model predictions for 3 MCC granules of different size
ranges: a) 500-1000 pm, b) 1000-1400 pm, and ¢) 1400-2360 pm.
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Table 3.20 Performance of the activation functions noted for the best-performing ensembles.

activation function (k)
Data 1 2 3 4 5 6 7

AUS oo - - 2 - - -
HRT 10 - 9 4 - 5 3
ION 6 5 - - 2 4 4
PIM 3 8 2 5 2 1 -
wbB - 3 - 7 8 10 8
ABL 2 10 - - - 10 -
BAS 5 - - 2 10 -
DEE - 6 6 4 4 10 -
EVL o5 - 3 - - 6
FRD 10 10 - - - - -
MGS 4 1 - 2 1 10 10
WWR 10 - 4 - 4 7 -

Total 67 53 21 27 23 67 31

Note: 67 is the best and 21 is the worst

parameter-tuning phase, the activation function selected at the nodes, etc. Therefore, to
examine the performance of HENTM, several HFNT-models were created using different
random seeds and the best and average approximation error of all created models were
examined. In Section 3.6, as far as the best model is concerned, the performance of HFNTM
surpass other approximation model mentioned from literature. Additionally, for each
dataset, a very low average value (high accuracy for classification and low approximation
errors for regression and time-series) were obtained, which significantly suggests that
HENTM often led to good solutions. Similarly, for the ensembles, it is clear from the result
that combined output of diverse and accurate candidates offered high quality (in terms of
generalization ability and accuracy) approximation/prediction model. From the results, it
is clear that the final population of HFNTM offered the best ensemble when the models
were carefully examined based on approximation error, average complexity (size), and
selected features.

Moreover, the performances of the best performing activation functions were examined.
For this purpose, the best ensemble system obtained for each dataset were considered.
Accordingly, the performance of activation functions was evaluated as follows. The best
ensemble system of each dataset had 10 models; therefore, in how many models (among
10) an activation function k appeared, was counted. Hence, for a dataset, if an activation
function appeared in all models of an ensemble system, then the total count was 10.
Subsequently, counting was performed for all the activation functions for the best ensemble

systems of all the datasets. Table 3.20, shows the performance of the activation functions.
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It can be observed that the activation function Gaussian (k = 1) and Bipolar Sigmoid
(k = 6) performed the best among all the other activation functions followed by Tangent-
hyperbolic (k = 2) function. Hence, no one activation function performed exceptionally
well. Therefore, the efforts of selecting activation function, adaptively, by MOGP was
essential in HFNTs performance.

In the presences of no free lunch theorem [91] and the algorithm’s dependencies on
random number generator, which are platforms, programming language, and implementa-
tion sensitive [336], it is clear that performance of the mentioned approach is subjected
to careful choice of training condition and parameter-setting when it comes to deal with
other real-world problems.

However, the effective use of the final population of the HFNTs evolved using Pareto-
based MOGP and the subsequent parameter tuning by DE led to the formation of
high-quality ensemble systems. The simultaneous optimization of accuracy, complexity,
and diversity solved the problem of structural complexity that was inevitably imposed
when a single objective was used. MOGP used in the tree construction phase often guided
an initial HFN'T population towards a population in which the candidates were highly
accurate, structurally simple, and diverse. Therefore, the selected candidates helped in the
formation of a good ensemble system. The result obtained by HFNTM approach supports
its superior performance over the algorithms collected for the comparison. In addition,
HFNTM provides adaptation in structure, computational nodes, and input feature space.
Hence, HFNTM is an effective algorithm for automatic feature selection, data analysis, and
modeling. Particularity, HFNT was found efficient than other CI algorithms in modeling
the real-world problem that had data which represented a dynamic environment of die

filling process.



Chapter 4

Metaheuristic design of fuzzy

inference system

Fuzzy inference system (FIS) has the ability to model uncertain, incomplete, and noisy
data more efficiently than the neural network. In the past decades, it has been used for
modeling complex real-world problems. Metaheuristic design of fuzzy, particularly the
use of evolutionary algorithms, has given a significant contribution in the tuning of FISs:
Mamdani-type and Takagi-Sugano-Kang (TSK)-type. Moreover, neuro-fuzzy paradigm,
which combines both FNN and FIS allowed us to improve the approximation ability. One
basic issue with FIS is in handling input dimensionality, where hierarchical design has
played a crucial role in addressing these problems to a great extent. Additionally, the
multiobjective optimization of FIS has addressed the interpretation and accuracy trade-offs.

This chapter summarizes various FIS paradigms.

4.1 Introduction

The ability of the FIS-based model to explain how the model offer solution to a problem
has drawn FIS to a broad range of application domain. Moreover, there are two basic types
of linguistic fuzzy rule base system (FRBS): Mamdani-type [337], and 2) TSK-type [1].
Both these models have IF-THEN rule structure, i.e., their rules are in the antecedent and
consequent form. However, they differ in their consequent part, where the Mamdani has
an output action or class, and the TSK has a polynomial function. Thus, they differ in
their approximation ability. The former type has a better interpretation ability, and the
latter has a better approximation accuracy. However, the hybrid design of FRBSs such as
neuro-fuzzy design, multiobjective optimization of FRBSs (multiobjective optimization
optimizes both accuracy and interpretation simultaneously) has reduced such difference

between these two.
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The focus of this chapter is to discuss the basics of FIS (Section 4.2), the FIS design
paradigms (Section 4.3), and the challenges and future research directions in FIS design
(Section 4.4).

4.2 Fuzzy inference system

4.2.1 Components of FIS

FRBSs are composed of the following components: 1) A knowledge base (KB), which
contains fuzzy rules of the form IF-THEN;, i.e.,

IF  a set of conditions is satisfied

THEN a set of consequent can be inferred

2) An inference engine, which includes fuzzification module that fuzzify crisp input data
into fuzzy sets, and the inference engine also does the reasoning to infer knowledge from
KB. 3) A defuzzification part that translate inferred knowledge from KB by inference
engine into a rule action (crisp output). An illustration of such discussion is shown in
Fig. 1.2.

Further, the KB is composed of a data base (DB) and a rule base (RB). The DB
assigns fuzzy memberships to the linguistic variables, i.e., it transforms linguistic input
variables to a fuzzy membership value using membership functions (or a fuzzy sets). On
the other hand, in an RB, a set of rules are constructed using DB. Thus, the design of RB
governs the type of FRBS that can be designed (Mamdani-type or TSK-type).

The DB contains fuzzy sets that can be either of type-1 or of type-2. The basic form of
membership functions (MFs) are coined as type-1 fuzzy set (T1FS); whereas, type-2 fuzzy
set (T2FS) allow a membership function to be fuzzy itself by extending membership value
into an additional dimension of membership value (the following section explains T2FS, in
detail). Hence, type of fuzzy set implies type-1 FIS (T1FIS) and type-2 FIS (T2FIS). The
following section describes T1FIS and T2FIS in detail. The detail explanation of FIS is
limited to TSK-type FIS only because the other type, Mamadai-type FIS, only differs in

its consequent part.

4.2.2 Type-1 and type-2 FISs
Type-1 TSK-fuzzy inference system

A TSK-type FIS is governed by IF-THEN rule of the form [1]:

R':IF 21 is A} and ... and x,is A}, THEN ¢ is B’ (4.1)
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where R! is the i-th rule in a FIS, A’ is a T1FS, B? is a function of an input vector
X = (@1, X9, ..., T, ) that returns a crisp output y*, and p’ is the total number of inputs
presented at the i-th rule. Note that the number of inputs may vary from rule-to-rule.
Hence, the dimension of inputs at a rule is denoted as p’. In TSK, function B is usually

expressed as:

. . pi .
B'=c\+ Y dj, (4.2)
j=1

where c§- for 7 = 0 to p’ is the free parameters at the consequent part of a rule. The basic
building blocks of a FIS is shown in Fig. 1.2 whose defuzzified crisp output is computed as
follows. First, the inference engine fires the rules from rule-base. The firing strength f* of

the i-th rule is computed as:
£ = TL s () (43)
j=1

where 1 4: is the value of j-th T1FS MF at the ¢-th rule. Then, the defuzzified output g of
FIS is co;nputed as:
i B'f!
S f
where M is the number of rules in the rule-base.
An example of T1FS A is illustrated in Fig. 4.1(a), which has the following form:

§= (4.4)

B 1
(=)

where m and o are the center and the width respectively of MF p4(z).

pa() (4.5)

Type-2 TSK-fuzzy inference system

A T2FS A is characterized by a 3-dimensional membership function [338]. The three axes
of T2FS are defined as follows. The x-axis is called primary variable, the y-axis is called
secondary variable (or primary MF, which is denoted by u), and the z-axis is called the
MF value (or secondary MF value, which is denoted by ). Hence, in a universal set X, a
T2FS A has the form:

A={((x,u),pz (z,u)) |V e X,Vu € |[0,1]}. (4.6)

The MF value x has a 2-dimensional support called the footprint of uncertainty of A,
which is bounded a lower membership function (LMF) p;(z) and an upper membership
function (UMF) i 4(x). Such form of T2FS that is bounded by lower and upper MFs is
called interval type-2 F'S (IT2FS). The footprint of uncertainty is the area enclosed within
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Fig. 4.1 Fuzzy membership functions. (a) Type-1 MF (4.5) with mean m = 5.0 and o = 2.0. (b)Type-2
Fuzzy MF with fixed ¢ = 2.0 and means m; = 4.5 and my = 5.5. UMF [ ;(x) as per (4.9) is in solid line
and LMF p ;(x) as per (4.8) is in dotted line.

the LMF and the UMF (Fig. 4.1(b)). A Gaussian function with uncertain mean within
[m1, msy] and standard deviation o is called an interval type-2 MF (Fig. 4.1(b)), which is

expressed as:

1 /o —
pilz,m,o) = exp (—2 (x am>) . m € [my,my. (4.7)
The LMF of a IT2FS can be defined as [339]:
wile,me,o), x < (my+me)/2
14(7) = Al ma,0) (i +ma)/ (4.8)
pilr,my, o), x> (my+ms)/2

and the UMF can be defined as [339):

pile,my, o), x<my
pa(z) =9 1, my <z < my (4.9)

NA($7m2a0)7 xr > Mo

In Fig. 4.1(b), a point z” along the x-axis of 3-dimensional T2FS MFs cuts the UMF and
LMF along the y-axis, and the value of the type-2 MF is considered to be along the z-axis
(not shown in Fig. 4.1(b)) are jiz(2?) and p ;(2). Considering T2FS MFs, i-th IF-THEN

rule of type-2 TSK-FIS for an input vector x = (1, 22, ..., x,:) takes the following form:

R':IF 21 is A} and ... and 2 is [1;)1 THEN ' is B’ (4.10)
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where A’ is a T2FS, B’ is a function of x that returns a pair [b°,b'] called left and right

weights of the consequent part of a rule. In TSK, B is usually written as:

pi

B' = [cf — sb, ¢+ so] + Y _[¢; — 85, ¢ + s3]y, (4.11)
j=1

where c§- for j = 0 to p’ is the free parameter at the consequent part of a rule and 3;'. for

j = 0 to p' is the deviation factor of the free parameter. The firing strength of IT2FS
Fi=[f', f1] is computed as:

[ =1lpy and  f'=]lnx (4.12)
i i

At this stage, inference engine fires the rule and the type-reducer reduces the T2FS to
T1FS. Here, center of set type-reducer prescribed by Karnik [339] can be used for type

reduction purpose. The center of set y..s is computed as:

Yeos = U 1=1 f

~ir = el (4.13)

where y; and v, are left and right end of the interval. For the ascending order of b° and b’ |

y; and ¥, are computed as:

i U+ S [

Y= = — (4.14)
i fit Zij\iL—Hi
B 2VL S P s
i g
where L and R are the switch point, determined by
bF <y < B and b <y, < DR
respectively. The defuzzified crisp output 3 is computed as:
g:w;%. (4.16)

4.3 Fuzzy inference system paradigms

Neural network and metaheuristics plays a significant role in the design of FIS paradigms.

Fig. 4.2 is a popular and common way to represent the confluence of metaheuristics, NN,
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Fig. 4.2 Spectrum of fuzzy inference system paradigms.

and FIS that leads to the indication of several possible designs. Examining Fig. 4.2,
the following option can be perceived: 1) neuro-fuzzy system, indicated by letter A; 2)
genetic/metaheuristic based fuzzy system, indicated by letter C; 3) metaheuristic based
tuning of the neuro-fuzzy system, indicated by letter D; and 4) the metaheuristic-based
neural network design, indicated by letter B. Chapter 2 and 3 discussed the option No. 4,
in detail. This chapter has a detailed description of the options Nos. 1, 2, and 3.

4.3.1 Metaheuristic based FIS optimization

FRBS can be classified into two major categories: metaheuristic-based tuning and
metaheuristic-based learning. Metaheuristic based tuning includes the optimization of
the KB components such as MFs parameters and a rule’s consequent part. However, it is
necessary to a have a KB a priori for the metaheuristic-based tuning. The metaheuristic
learning includes the optimization the KB by tuning/evolving the whole KB itself by using
either evolutionary algorithm or some other metaheuristic. Learning of KB has a high
influence of FRBSs efficiency because it designs the RB by adaptive partitioning/selection
of linguistic terms for linguistic variables in DB, by selection of rules, or by the simultaneous
optimization of both KB components (DB and RB).

Metaheuristic based optimization (as described in Chapter 2) depends on genotype
representation of the problem. Therefore, the approach where a set of rules are encoded into
a single chromosome (vectored representation) is known as a Pittsburgh approach [15, 340].
In Pittsburgh approach, the first step in the learning of RB is to generate the sets of rules,
where each set contains M randomly created rules from DB. From the randomly generated
rules, the subset of rules that offered the best fitness computed as per (1.1) is selected. For
the selection of the best subset of rules, usually each rule in a FIS are randomly assigned a

status “0” (inactive) or “1” (active) that tells whether to select the i-th rule or not. Hence,
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a population @ = (Ry,Rg,...,Ry) of a total £ RBs are generated. The i-th RB R,; is
defined as:
Ri:{Rﬂ,RZ‘Q,...,RiM}ViI1,2,...,]{7, (4].7)

where the status of a rule R;; € R; is randomly set to either “0” or “1.” Such population
is a genetic population, where the individuals (say i-th rule-base) are coded into a binary
vector that can be optimized by using genetic algorithm [7]. In-steed of the preceding
example (the usage of a binary vector for rule base optimization), some other means
of manipulation of RB population ) can be adopted to obtain an optimal set of RB.
Designing various methods for the manipulation of the population () is an interesting
research problem among the research community.

On the other hand, in Michigan approach [15, 341], a single rule or rule parameters
are encoded into a genotype. Therefore, for a rule R’ that has a total p’ fuzzy set, the
parameter vector w’ for the i-th rule may be designed as follows:

i

((m,o)i, (m, o),y (M, o), ch, ¢y Cl) for T1FS

i - .

w' = , . . , (4.18)
(M, A, 0)1s s (my A o), (os 80)', (15 81)'5 - -5 (i 8p)") - for T2FS

where (m, o)} is the parameters (center and width) of the j-th T1FS, and (m, A, 0)’ is
the parameters (center, center deviation factor, and width) of the j-th T2FS. Similarly,
for type-1 rule, cé, j = 0 to p' are the parameters of the consequent part, and for type-2
rule, the pairs (¢;, s;)%, 7 =0 to p' are the consequent part parameters and their deviation
factors. Hence, a metaheuristics algorithm can be employed to optimize the parameter
vector w'. Such kind of learning results in tuning the fuzzy sets MFs shapes.

Similar to Michigan approach, also in iterative rule learning scheme and cooperative-
competitive rule leaning, each rule of an RB are encoded into separate genotypes, and the
population of such genotype leads to the formation of RB iteratively. Iterative learning
scheme starts with an empty set and adds rules one-by-one to the set by finding an
optimum rule from a genetic selection process. For this purpose, the genetic operators such
as mutation and crossover operators are applied over one or two rule(s) to make offspring
rule(s), and the quality of the generated rule(s) is(are) evaluated using a predefined rule
quality measure. Therefore, iteratively selecting rules according to rule quality measure
criteria for forms an optimum RB in an iterative rule learning scheme [342]. The cooperative-
competitive rule learning is also an RB learning method that determines an optimum RB
from competition and cooperation of rules from a genetic/metaheuristic population [343].
A detailed review of metaheuristic-based tuning of FRBS and evolutionary learning of

FRBS is available in [344].
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4.3.2 Evolving fuzzy systems

Evolving fuzzy system (EFS) concept accommodate the provisions of dynamically (on-line)
updating/training of a fuzzy system for streaming (real-time) data [345]. EFS paradigm
allowed the dynamic learning of fuzzy rules for every incoming real-time data. Such
dynamic learning is offered by adding or removing rules in an RB (vertical direction
manipulation), or by adding or removing antecedent part of the rules in an RB (horizontal
direction manipulation). Fig. 4.3 is a clear representation of such dynamic training process.
In Fig. 4.3, each rule may acquire p’ variables using the evolving clustering methods,
i.e., the number of variables are determined automatically [346]; whereas, in traditional
clustering methods, the number of clusters has to be predetermined. Moreover, the
antecedent part of the rules may expand and contract based on incoming data. Similarly,
the number of rules may also be reduced or increased by adding or deleting rules from the
RB. Hence, the number of total rules M* in the RB are time dependent.

Similarly, EFS concept was extended to neuro-fuzzy paradigms, in which the neuro-fuzzy
systems are evolved dynamically. Such systems are also called self-evolving neuro-fuzzy
system or adaptive neuro-fuzzy system [347]. In self-evolving neuro-fuzzy system, the
network design has two main parts: antecedent section and the consequent section. For
every incoming data, the antecedent part learn new information by using unsupervised
means of learning through cluster evolving method, and accordingly, the consequent part

weights are updated to accommodate the new information contained in the incoming data.

horizontal operations

contraction (removing antecedent parts, i.e., variable selection)

» <
Ll <%

expansion (adding antecedent parts, i.e., variable selection)

< »
- |

R':TF 2y is Aj and ... and xp,is Ay THEN g, is B} and ... and y, is B}

R':IF zyis AY and ... and Tpils A;i THEN vy, is B! and ... and Yq 18 Bé

vertical operations
expansion (adding rules)

RM":IF z; is AY and ... and T tlS Azj‘)ﬂt THEN g, is BM and ... and Yq is Bé”"

contraction (removing rules)

Fig. 4.3 Evolving fuzzy system: typical dynamic rule-base learning. The symbols in the figure are as
follows: p® and ¢* indicates number of inputs 2 and outputs y variable to a rule %, respectively; M* is total
number of rule in the RB at time t; A’ is the fuzzy set at the antecedent part of a rule; and B? is the
function of the consequent part of a rule.
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4.3.3 Neuro-fuzzy systems

The neural network is a data-driven learning model, which does not require a priori
knowledge of the problem, but needs sufficient training pattern to learn, and the training
model does not explain how to interpret its computational behavior. Hence, it has black-
box computational behavior, which does not explain how the output was obtained for a
given input data. On the other hand, a fuzzy logic system requires a priori knowledge of
the problem and do not have learning ability, but it tells how to interpret its computational
behavior, i.e., it explains how the output was obtained for a given input data. Therefore, the
shortcomings of both neural network and the fuzzy system can be eliminated by combining
them in some manner. Usually, two types of combination are practiced: cooperative
neuro-fuzzy system, and hybrid neuro-fuzzy system.

The cooperative neuro-fuzzy system is the simplest approach, where neural network
and the fuzzy system work independently, and the neural network determines parameters
of a fuzzy system from training data [348]. Subsequently, fuzzy system performs the
required interpretation of the given data.

On the other hand, in hybrid neuro-fuzzy system, both neural network, and fuzzy system
are fused together. Moreover, the hybrid neuro-fuzzy system has FNN-like architecture.
Some of the hybrid neuro-fuzzy systems are as follows: fuzzy adaptive learning control
network (FALCON) [349], adaptive-network-based fuzzy inference system (ANFIS) [313],
generalized approximate reasoning based intelligence control (GARIC) [350], neuronal
fuzzy controller (NEFCON) [351], fuzzy inference and neural network in fuzzy inference
software (FINEST) [352], self-constructing neural fuzzy inference network (SONFIN) [353],
dynamic/evolving fuzzy neural network (EFuNN) [354].

A typical illustration of a neuro-fuzzy system is illustrated in Fig. 4.4. In Fig. 4.4, the
network architecture is has two parts the antecedent part and the consequent parts. The
input layer in the antecedent part is mapped onto the MF layer that transform /assign input
variables to fuzzy sets (nodes in this layer are represented as p). MF layer is then mapped
onto a rule layer (product layer) that create rules from the combination of the previous
layer connection, i.e., using fuzzy sets. Thus, nodes in the rule layer are represented as
[1. Finally, the output of the model is computed from the output layer (consequent layer)
that receives fired fuzzy rules from the rule layer.

In [313], authors, proposed an adaptive-network-based FIS that implements a network-
like structure of the TSK-type FIS model whose parameters were tuned by a gradient-decent
method. Similarly, in [355], a TSK-based hierarchical self-organizing learning dynamics was
proposed. Moreover, several research works are focused towards FIS and neural network

integration and its parameter optimization using various learning methods including
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Fig. 4.4 Typical hybrid neuro-fuzzy systems.

gradient-decent and the metaheuristic algorithms [356, 357]. Such neuro-fuzzy system has
been found solving several real life application efficiently [16-18].

Self-organizing fuzzy neural network paradigm brought an additional strength to
FIS structure optimization. Self-constructing neural fuzzy inference network (SONFIN),
proposed by Juang et al. [353], is a six layered network structure and its optimization
begins with no rule and the rules are incrementally added during the learning process.
SONFIN uses a clustering method to partition the input space that governs the number of
rules extracted from the data. Then, the consequent parts of the SONFIN are determined,
and the backpropagation algorithm is applied to tune the free parameters. Here, the use
of clustering method is crucial since it eliminates the curse of dimensionality. Similarly,
in [358], a dynamic evolving neural-fuzzy inference system (DENFIS) based on TSK-type
FIS model was proposed, which was evolved incrementally by choosing active rules from
a set of rules and further the parameters of the rules were optimized by least-square
estimator. An evolving clustering method was used in DENFIS for partitioning the input
space. In [359], the concept of SONFIN was extended for the construction of T2FIS, where
a self-evolving IT2FIS (SEIT2FNN) that implements TSK-type FIS models was proposed.
The Kalman-filtering algorithm was applied to tune the parameters of the evolved structure.
Similarly, in [360], SEIT2FNN was extended with a simplified type-reduction process.

Self-adaptive fuzzy inference network (SaFIN) was proposed by Tung et al. [361] to
overcome the limitations of the self-organizing fuzzy neural network paradigm. SaFIN
applied a categorical-learning-induced-partitioning algorithm to eliminate two limitations:

1) the need of predefined numbers of fuzzy clusters during the input space partitioning;
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Fig. 4.5 Typical hierarchical fuzzy systems of n low-dimensional fuzzy systems. For a given problem, the
inputs x4, Tp, T, ... to the subsystems are traditionally selected by applying an expert’s knowledge [367].

and 2) the stability—plasticity trade-off problem that addresses the difficulty of finding a
balance between past knowledge and current knowledge during the learning process. It
also addressed drawbacks of inconsistent rule-base creation by employing a rule consistency
check mechanism. SaFIN used Levenberg-Marquardt method for its parameter tuning.
In [362], a mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS) was
proposed which uses weighted feedback loops at the antecedent part of the formed rules
to improve the efficiency of IT2FIS. A gradient-decent learning was applied to update
recurrent weights, and the Kalman-filter algorithm was applied to tune rule parameters.
In [363], a self-evolving T2FIS model was proposed that employed compensatory operator
in the type-2 inference mechanism and a variable-expansive Kalman-filter algorithm for
the parameter tuning.

Further, in [364], a simplified interval type-2 fuzzy neural networks (SIT2FIS) that
simplified type-reduction was proposed. In [365], a growing on-line self-learning IT2FIS
was proposed, which used dynamics of growing Gaussian mixture model for its self-
learning dynamics. Recently, a meta-cognitive interval type-2 neuro-fuzzy inference system
(McIT2FIS) was proposed in [366], which employs a self-regulatory meta-cognitive system
that learns sample-by-sample data patterns and accepts or discards data patterns for
extracting the knowledge contained in minimal samples. For the tuning of parameters,

McIT2FIS uses Kalman-filtering-based learning algorithm.

4.3.4 Hierarchical fuzzy systems

Self-organizing fuzzy neural network paradigm has to employ clustering method to reduce
the dimensionality of the input space for designing the FIS structure, which is network-like.
Contrary to that, an approach presented in [367, 368] initiated the design of hierarchi-
cal FIS (HFIS) that was composed of low-dimensional fuzzy subsystems. However, the
selection of the input variables was left to the expert’s knowledge. Thus, the level of
hierarchy and number of parameters was fully up to the expert to determine (Fig. 4.5).
Universal approximation ability of the HFIS is thoroughly studied in [369, 370]. Torra et
al. [371] summarized several contributions related to the design of HFIS. A realization

of a feedforward network like HFIS, in which the output of the previous layer subsys-
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tem was only fed to the consequent part of next layer was proposed in [372]. In [373],
authors developed a two layered HFIS, where for each layer, the knowledge-bases were
generated by linguistics rule generation method and the rules at the knowledge-base were
selected by GA. In [374], an adaptive fuzzy hierarchical sliding-mode control method was
proposed. It was an arrangement of many subsystems and the top layer accommodated
all the subsystems outputs. However, structure optimization of the HFIS was explained
in [375], which optimizes the hierarchical arrangements of low-dimensional TSK-type FIS
using probabilistic incremental program evolution [271]. Similarly, some research work
focus on the significance of hierarchical arrangement of the low-dimensional type-2 fuzzy
subsystems [22, 376].

4.3.5 Multiobjective farmworker of FIS tuning

The structure optimization of a FIS is inherently a multiobjective problem since accuracy
maximization and complexity minimization are two desirable objectives for an optimum
FIS [377]. Hence, to make trade-offs between interpretability and accuracy, or in other
words, to make trade-offs between approximation error minimization and model complexity
minimization, a multiobjective orientation of the FIS optimization can be used [378-380].
Interpretability can be defined in many ways such as reduced number of rules, reduced
number of parameters, etc., [381, 380]. Since a single solution may not satisfy both
objectives, simultaneously, Pareto-based multiobjective optimization algorithms were used
in many FIS optimization that includes rule selection, rule mining, rule learning, etc. [382-
385]. Similarly, in [386-390], simultaneous learning of knowledge-base was proposed, which
included feature selection, rule complexity minimization together with approximation
error minimization, etc. In [391], a co-evolutionary approach that aims towards combining
multiobjective approach with single objective approach was presented. In co-evolutionary
approach, first, a multiobjective GA determined a Pareto optimal solution by finding a
trade-off between accuracy and rule complexity. Then, a single objective GA was applied
to reduce training instances. Such process was then repeated until a satisfactory solution
was obtained. A summary of many research works focused on multiobjective optimization

of FIS is provided in [392].

4.4 Challenges and future scope

Unlike other approximation models, the FIS has interpretation ability. Thus, determining
a good interpretability measure is one of the open issues in FRBS design. Additionally,

how efficiently an FRBS can handle a high-dimensional data is another big challenge in the
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research community. In addition, a FRBS also has to address the data related challenges

that usually an approximation algorithms has to address.

4.5 Summary

A metaheuristic based design and neuro-fuzzy based design of FIS was discussed in
this chapter. At one hand, metaheuristic provides tuning and learning-ability to the
FIS components. On the other hand, neuro-fuzzy paradigm eliminates disadvantages
of both neural network and fuzzy system by offering a hybrid method to fuse the both
into a single entity. Additionally, multiobjective optimization of the FIS address typical
interpretability versus accuracy problem. However, design a FRBS that can efficiently
address interpretability issues and can effectively manage a high-dimensional data is a big

challenge.






Chapter 5

Multiobjective hierarchical fuzzy

inference trees

Introduction of the fuzzy-set (type-1) enabled the modeling of uncertain and noisy informa-
tion and type-2 fuzzy set took this further ahead by allowing fuzzy membership function
to be fuzzy itself. Therefore, the design of a fuzzy inference system (FIS) that can offer a
viable trade-off between accuracy and complexity is the desirable design. To meet this
objective, in this chapter, a multiobjective genetic programming (MOGP) for designing a
hierarchical fuzzy inference tree (HFIT), which produces an optimum tree-like structure
that accommodates simplicity by combining several low-dimensional fuzzy subsystems
was proposed. Such design produces highly accurate FIS models. The constructions
of HFIT took place in a coevolutionary manner. First, a nondominated sorting based
MOGP was applied to find an optimum tree structure. Then, differential evolution (DE),
a metaheuristics algorithm, was applied for tuning the parameters of the tree structure,
which are the membership function parameters and the free parameters at the consequent
part of the rules. Such process of structure optimization using MOGP and parameter
tuning using DE are repeated until an optimal HFIT was obtained. The HFIT offered an
automatic feature selection because it uses MOGP for the self-organization of tree-like
structures whose nodes are low-dimensional FISs that uses subsets derived from given
input set. The HFIT was studied in the context of both type-1 and type-2 FIS, and its
performance was evaluated over six application problems. Moreover, the proposed multi-
objective HFIT was compared with recently proposed FIS algorithms in literature such as
McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR,
etc. From the obtained results, it is evident that the proposed HFIT offers an efficient and
competitive alternative to the other data mining algorithm for the function approximation

and the feature selection.
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5.1 Introduction

Initially, only type-1 fuzzy set (T1FS), introduced by Zadeh [21], was used. The develop-
ment of type-2 fuzzy set (T2FS), however, has drawn much attention towards handling
noisy and imprecise data [339]. Type-1 FIS (T1FIS) and type-2 FIS (T2FIS) differs when
it comes to the representation of the antecedent part and the consequent part of a rule.
The T1FIS uses T1FS MFs; whereas, the T2FIS uses T2FS MFs. Unlike the crisp outputs
of the T1FIS MFs, the output of the T2FIS MFs are fuzzy in nature [393]. Such nature of
T2FIS MFs is advantageous in processing uncertain information effectively than T1FIS
MFs [22]. Hence, T2FIS can overcome the certain limitations of the T1FIS [22]. However,
T2FIS is computationally expensive because of a large number of parameters in the
optimization and the requirement of type-reduction mechanism at the defuzzification part.
Interval T2FIS (IT2FIS) reduces the computational cost to some extent by simplifying
the T2FS MFs. The MF of an interval T2FS is bound by a lower MF (LMF) and an
upper MF (UMF), and the area between the LMF and the UMF is called the footprint of
uncertainty [339].

The MFs of a T1FIS or a T2FIS are designed by using optimization. Hence, it is called
the optimization of FIS. For both T1FIS and T2FIS, there are two aspects of FIS design:

1. Construction of an appropriate rule-base, which includes the genetic selection of

rules at the rule-base, structural /network representation of the rule-base, etc.

2. Optimization of the MF parameters and the free parameters of the designed rule-base

that governs the performance of FIS.

Literature contains several works related to structure optimization, which represent
the FIS structure in various forms and use of multiobjective orientation to address
interpretability and accuracy trade-offs. Therefore, in this chapter, a multiobjective
HFIS, called, hierarchical fuzzy inference tree (HFIT) was proposed, which addresses
interpretability and accuracy trade-offs indirectly by finding accurate and simple FIS
models. Unlike self-organizing paradigm, which has network-like structure and uses
clustering algorithm for partitioning of input space, the proposed HFIT constructs a
tree-like structure and used dynamics of the evolutionary algorithm for partitioning input
space [394]. HFIT is analogous to multilayered network and perform automatic partitioning
of input space during the training of structure. The parameter optimization of the HFIT
was performed by the DE algorithm, which is a metaheuristics algorithm inspired by the
dynamics of the evolutionary process [6]. In the past, researchers used various metaheuristic
for FIS optimization [395]. The advantages of using bio-inspired metaheuristic algorithms

for the optimization is evident from [396]. Moreover, multiobjective treatment to HFIT was
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provided by using multiobjective genetic programming (MOGP). In this work, HFIT was
developed for both T1FIS and T2FIS, and it implements TSK-type FIS. In the construction
of T2FIS, the type-reduction algorithm K-M method was used with an improvement into
its termination criteria. The comparison of the proposed algorithms with the algorithms
available in the literature suggests that the multiobjective based HFIT design offers a high
approximation ability with simple model complexity. Hence, this chapter aims to address

the followings:

1. Construction of a hierarchical tree-like arrangement of low-dimensional fuzzy systems
using a coevolutionary approach, which involves multiobjective genetic programming
for evolving a tree-like structure and metaheuristic for tuning parameters of the

evolved tree.

2. Feature selection and the simplification of the rule-base in fuzzy subsystems by

exploiting the dynamics of the genetic programming.

3. Implementation of the HFIT for both T1FIS and T2FIS and the comparative
evaluation of their single objective and multiobjective orientations with recently

proposed FIS algorithms from the literature.

Organization of this chapter is as follows. First, Section 5.2 describes the usage of
multiobjective strategy and its formulation for developing the proposed HFIT. A detailed
description of the proposed HFIT is provided in Section 5.2.2, which includes detail
discussion on structure optimization and parameter optimization of HFIT. In Section 5.3,
first, a detailed parameter-setting and performance measures are explained. Then, the four
versions HFIT algorithm were proposed: type-1 single objective HFIT (T1HFITS), type-1
multiobjective objective HFIT (T1HFITM), type-2 single objective HFIT (T2HFIT®), and
type-2 multiobjective objective HFIT (T2HFITM). These algorithms were compared with
the algorithms from literature over six example problems. Finally, the obtained results are

discussed in Section 5.6.

5.2 Multiobjective for fuzzy inference tree

5.2.1 Pareto-based multi-objectives

The FIS mentioned here was used for learning from data and usually a learning algorithm
own a single objective (approximation error minimization) that is often achieved by
minimizing root mean squared error (RMSE) on the learning data, which is computed by
taking square root of the cost function (1.1). Let us denote RMSE as E in the context

of this chapter. Similarly, let k(w) denote the number of free parameters in the model.
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Then, the minimization of the approximation error £ and the minimization of the number
of free parameters k(w) are necessary for achieving generalization ability.

However, reducing RMSE led to a larger parameter count k(w), and reducing free
parameter count k(w) led to a larger RMSE. Fig. 5.1 is a lucid representation of this fact.
An alternative is to use a combined objective of RMSE and model’s complexity, which can
be written as per (3.2). However, as mentioned in Section 2.4 the scalarized objective (3.2)
has disadvantages. Therefore, multiobjective optimization of RMSE E and parameter
count k(w) simultaneously, as described in Section 1.2.4, is a formidable option to get a
generalized solution.

Algorithm 3.3 is a basic framework of NSGA-II [229] based MOGP, which was used
for computing Pareto-optimal solutions from an initial population of fuzzy inference
trees. The individuals in MOGP were sorted according to their dominance in population.
Moreover, individuals were sorted according to the rank (Pareto-front/line). MOGP is
an elitist algorithm that allows the best individuals to propagate into next generation.
Diversity in population was maintained by measuring the crowding distance among the
individuals [229]. Thus, in the final population of MOGP, Pareto-optimal solution are

obtained, from which the best solution as per user’s preference can be selected.

5.2.2 Hierarchical fuzzy inference tree formation

Hierarchical fuzzy inference tree is a tree-based system. Its hierarchical structure is
analogous to multilayer feedforward neural network where nodes (the low-dimensional
FIS) are connected using weighted links. The concept of forming hierarchical fuzzy
inference tree is inherited from flexible neural tree proposed by Chen et al. [20], which

has two phases. First, tree-construction phase, where evolutionary algorithms are used



5.2 Multiobjective for fuzzy inference tree 101

w1 Ny
T ———
+ — ;
N .
T2 L We 3 ZZ wl NZ
7 1
— )
w w
Ty —— Y5 i 2 .
_—d
— 2 . ni — Yi
Wy N, wy
Ty — :
Ts 5 > an—.
(a) Two stage hierarchical tree (b) Structure of a node

Fig. 5.2 Hierarchical fuzzy inference tree. (a) Complete tree with three nodes Ny, No, and N3 and with
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j =1 to n® and output ;.

to construct/optimize a tree-like structure. Second, parameter-tuning phase, where a
genotype representing the underlying parameters of tree-structure are optimized by using
parameter optimization algorithms. To create an optimum tree-based model; first, a
population of randomly created trees is formed. Once a near-optimum tree structure is
obtained using evolutionary algorithm, parameter-tuning phase optimizes its parameter.
The phases are repeated until a satisfactory solution is obtained. Fig. 3.1 provided in
Section 3.3.2 is a lucid representation of the coevolutionary approach for an optimum tree
construction. The construction of HFIT follows the similar coevolutionary approach as
indicated in Fig. 3.1, but instead of a population of HFNT, a population of HFIT is used,
and accordingly the parameters of the HFIT are optimized.

A hierarchical fuzzy inference tree (HFIT), denoted as H, is a collection of FIS node

set F'ly and terminal node set Ty

H=FgUTyg = {42, +3,- -, T} U{Z1, T2, ..., Tp} (5.1)
where +; (j = 2,3, ..., tn) denotes non-leaf instruction and has 2 < j < tn arguments. Leaf
node’s instruction xq, x9, . . . , ¥, takes no argument and represents input variable/instruction.

A typical HFIT is shown in Fig. 5.2(a); whereas, Fig. 5.2(b) is an illustration of i-th node
N; in an HFIT that takes n’ inputs. The inputs z; € {x1,x9,...,2,} for j =1 ton' to
the node N; is either from the input layer or from another node in HFIT. Each node in
HFIT receives a weighted input z;w;, where w; is the weight. In this work, the weights in
HFIT were set to 1.0. Hence, the inputs were not influenced by the weights of the tree
edges. Thus, setting weights fixed to 1.0 led to the reduction in the total parameter count

during the parameter-tuning phase.
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5.2.3 Rule formation

Each node in HFIT is a FIS of either type-1 or type-2. Hence, the rules at a node were
created as follows. Considering a reference to the node N; from Fig. 5.2(a) that has two
arguments/inputs x; and z, and assuming that each input x; and 2, has two T1FSs

Al AL, and Al AL, respectively, the rules for TIFIS are generated as:

R - IF xy is Aj; and x5 is Aj; THEN

Y = ¢ + ey + g, for i =1,2 and j = 1,2.

The output y* of node N, is computed as:

2 2 1,1
1 > e Ej:l O:5Yi;

5.2
Z?:l E?:l Uilj ( )

where

0l = pay, (w1)fay, () for i = 1,2 and j = 1,2. (53)

Similarly, the output of the node N, is computed. The output y* of the HFIT shown in
Fig. 5.2(a) is computed from the node N3 that revives inputs y' and y? and x3, where y!
and y? are the outputs of the nodes N; and N,, respectively.

If the nodes of HFIT in Fig. 5.2(a) are type-2 nodes; then, assuming that the node N;
has two T2FSs A}, Al, and A}, AL,, respectively, the rules for T2FIS are generated as:

RL :1F x1 is A}, and x5 is A}, THEN
yilj = [C?j - ng} + [Czlj - S}j]xl + [ij - S?j]x27
fort=1,2and 7 =1,2

and the firing strength of the rule at the node Nj is computed as described in (4.12).
Moreover, the type-reduction of the node is performed by using (4.13), where left and
right intervals are computed as per (4.14) and (4.15). Finally, the output of the node NV is
computed as per (4.16). Subsequently, the output of the type-2 HFIT shown in Fig. 5.2(a)

is computed from the node Nj.

5.2.4 Near-optimal tree: structure and parameter tuning
Structure tuning

An HFIT that offers the lowest approximation error and simplest structure is the desirable
solution. To obtain such set of Pareto-optimal solution nondominated sorting algorithm

mentioned in Algorithm 3.3 was applied.
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Parameter tuning

In structure tuning phase, an optimum phenotype (HFIT) is derived with the parameters
being initially fixed by random guess. Hence, the obtained phenotype is further tuned in
the parameter tuning phase by using a parameter optimization algorithm. To tune the
parameters of the obtained phenotype, its parameters are mapped onto a genotype, i.e.,
onto a real vector, called solution vector.

The selection of the best phenotype in a single objective training is solely based on
the comparison of the RMSEs, but selecting a solution in a multiobjective training is a
difficult choice. In this work, after the multiobjective training of HFIT, the best solution
for parameter tuning was picked from the Pareto-front. Strictly, the solution that gave the
best RMSE among the solutions in the Pareto-optimal set of rank one was chosen. Fig. 5.3
is an illustration of the solutions that belong to Pareto-front of rank one. The genotype
mapping of the T1FIS and the T2FIS differ only with the respect to their number of
parameters.

The T1FIS uses the MF mentioned in (4.5), which has two arguments m and o, and
each rule in T1FIS has p’ + 1 variables at the consequent part as mentioned in (4.2), where
p’ is the number of inputs to the i-th rule. On the other hand, since interval type-2 MF is
bounded by a LMF and an UMF (Fig. 4.1(b)), it has two Gaussian means m; and my
and a variance o that need to be optimized. The Gaussian means m; and msy for type-2
Gaussian MF (4.7) were defined as:

mp =m+ o (5.4)

and

me = m — o, (5.5)

where v € [0, 1] was a random variable taken from uniform distribution and m was the
center of Gaussian means m; and my taken from [0, 1]. Similarly, o of type-2 Gaussian
MF (4.7) was taken from [0, 1]. The consequent part of T2FIS rule was computed as
mentioned in (4.11), which led to 2 X (p' + 1) variables.

Assume that an HFIT (a tree like Fig. 5.2(a)) has k nodes, and each node in the
phenotype takes 2 < p' < tn inputs, where each input is partitioned into two fuzzy
sets (membership functions). Then, the number of the fuzzy sets at a node is 2 x p'.
Since the number of inputs at a node is p’ and each input is partitioned into two fuzzy
sets, the number of rules at a node is 2?'. Hence, the number of parameters at a T1FIS
node is [2' x (2 x 2 x (p' + p' +1))] and the number of parameters at a T2FIS node is
(27" % (3 x 2 X p' +2 x (p' +1))]. Therefore, the total number of parameters in an HFIT

is the summation of the number of parameters at all nodes in the tree. Assuming n is the
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Fig. 5.3 FIS fitness versus FIS parameters mapping across the Pareto-front. This graph was garbed during
a multiobjective training of the example—2 mentioned in Section 5.4.2.

total number of parameters in tree, the genotype or the solution vector w is expressed as:
W = (Wi, Wa, ..., Wy). (5.6)

where elements of the vector are mapped from the phenotype, i.e., from the tree. Therefore,
to optimize parameter vector w, meta-heuristic algorithms such as genetic algorithms [109],
evolution strategy [109], artificial bee colony [308], PSO [5], DE [6], gradient-based
algorithms [397], backpropagation [37], Klaman-filter [87], and so on can be used. In
this work, differential evolution (DE) [6] was used, which is discussed elaborately in
Section 3.3.3.

5.3 Experimental set-up

This section describes the evaluated results of the proposed algorithms T1HFITS, TIHFITM,
T2HFITS, and T2HFITM on six example problems.

The performance of the algorithms were measured using the RMSE E and correlation
coefficient r. For the simplicity, the training and the test RMSEs were denoted by FE,, and
E;, respectively. Similarly, the training and the test correlation coefficients were denoted
by r, and r;, respectively. The parameter-setting mentioned in Table 5.1 was used for the
training of the proposed algorithms, which was developed as software tool and is available
at [http://dap.vsb.cz//sw/hfit/]. The experiments were conducted on Windows Server R2
that had 20 cores and 700 GB RAM. Each run of experiments was conducted with the
random seeds generated from the system. The proposed algorithm was compared with
the algorithms from the literature. Table 5.2 provides detail description of the algorithms

from the literature.
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Table 5.1 Parameter set-up for the experiments.

Algorithm training parameter Value
Maximum depth (layers) of a tree 4
Maximum inputs to a FIS node 4
Membership function search range [0,1]
GP population 50
CP mutation probability pm 0.2
GP crossover probability pc=1—pm 0.8
GP mating pool size 25
GP tournaments selection size 2
GP iterations 500
DE population 50
DE mutation factor ¢ 0.7
DE crossover factor cr 0.9
DE iterations 5000

Table 5.2 Descriptions of the existing FIS algorithms adopted for the performance comparisons.

FIS Algorithm Ref. Description Type Parameter tuning
DyEFuNN Dynamic evolving neural-fuzzy inference system TSK Least-square estimator
D-FNN Dynamic fuzzy neural networks TSK Backpropagation
EFuNN Evolving fuzzy neural networks Mamdani Widrow—Hoff least square
FALCON ART-based fuzzy adaptive learning control network  —— Backpropagation
GNN Granular neural networks —— Genetic algorithm

-  H-TS-FS Hierarchical Tukagi—Sugno fuzzy system TSK Evolutionary programming

é HyFIS Hybrid neural fuzzy inference system —— Gradient descent learning

& IFRS and AFRS Incremental and aggregated fuzzy relational systems Mamdani Backpropagation
RBF-AFA Radial basis function based adaptive fuzzy systems  TSK Gradient descent learning
SaFIN Self-adaptive fuzzy inference network Mamdani Levenberg-Marquardt
SONFIN Self-constructing neural fuzzy inference network TSK Backpropagation
SuPFuNIS Subsethood-product fuzzy neural inference system —— Gradient descent
SVR-FM Support-vector regression fuzzy model TSK Support vector regression
eT2F1IS Evolving type-2 neural fuzzy inference system Mamdani Gradient descent learning
IT2FNN-SVR-N/F IT2FNN-support-vector regression-fuzzy and numeric TSK Support vector regression
McIT2FIS-UM/US Metacognitive interval type-2 neuro-FIS TSK Gradient descent learning
NNT2FW Type-1 and type-2 fuzzy BP neural networks TSK Backpropagation

& RIT2FNS-WB Reduced IT2NFS-weighted bound-set TSK Gradient descent learning

é MRIT2NFS Reduced IT2NFS-weighted bound-set Mamdani Gradient descent learning

E  SEIT2FNN Self-evolving I'T2FIS TSK Kalman filter algorithm
SIT2FNN Simplified Interval Type-2 Fuzzy Neural Networks TSK gradient descent learning
T2FLS Interval type-2 fuzzy logic system (TSK and singleton) TSK ——

T2FLS-G Gradient-descent based IT2FIS tuning TSK Derivation-based learning
TSCIT2FNN Compensatory interval type-2 fuzzy neural network  TSK Kalman filter algorithm




106 Multiobjective hierarchical fuzzy inference trees

5.4 Performance of HFIT on benchmark examples

5.4.1 Example 1—system identification

Online identification of the nonlinear system is a widely studied problem. The significance
of this problem is evident from its usage in literature for the validation of the approximation
algorithms [359, 363, 366, 404]. An interesting paper describing several plant identification
is available in [407]. The nonlinear system identification of the plant is described by the

following nonlinear difference equation:

Yk +1) = % +ud(k), (5.7)
where [u(k), y,(k)] is the input-output pair of the single input and the single output plant
at the time k and y,(k + 1) is the one step ahead prediction. Hence, the objective is to
predict y,(k + 1) of the system based on the sinusoidal input u(k) = sin(27k/100) and the
current output y,(k). Let us assign the input z; = u(k) and the input zo = y(k).

The training patterns were generated with k£ = 1,...,200, and y,(1) = 0. Similarly,
the test patterns were generated for k = 201, ...,400 as mentioned in [360]. Therefore,
for the training, the inputs were u(k) and y,(k), and the desired output was y,(k + 1).
The proposed algorithms TIHFITS, TIHFITM, T2HFITS, and T2HFITM were trained
using the parameter-setting mentioned in Table 5.1. The training was repeated for 10
times, and the collected performance statistics of the proposed algorithms is shown in
Table 5.3(a). Since the experiments were repeated 10 times, 10 different models were
obtained for each algorithm. The results of the best models (in terms of their RMSE E
values) were compared with the results available in the literature (Table 5.3(b)).

The performance statistics shown in Table 5.3(a) is the evidence of the robustness of the
proposed algorithms. It shows that the mean correlation coefficients r,, and r, of training
and test sets are 1.00, which indicates that the algorithm consistently performed with a
high accuracy. Moreover, such consistency of high accuracy performance is evident from
the low standard deviations STDs of training and test RMSEs and correlation coefficients
(Table 5.3(a)).

Interestingly, the Pareto-based multiobjective offered less complex models (the mean
parameter count k(w) of TIHFITM was 34.4 compared to 57.2 of TIHFITS, and aver-
age k(w) of T2HFITM was 90.4 compared to 152.0 of TIHFIT® with high accuracies
(Table 5.3(a)). Hence, the Pareto-based multiobjective was advantageous to use, which
provided the option of choosing the best solution from a Pareto-front. An example of

Pareto-front is shown in Fig. 5.3.
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Table 5.3 Performance evaluation on system identification (Example-1).

(a) Performance statistics (10 repetitions) (b) Performance comparison
T1HFITS TI1HFITM T2HFITS T2HFITM Algorithm E, Er  k(w)
Training FALCON 0.0200 54

E, Best 0.0043 0.0041 0.0033 0.0028 7 SaFIN 0.0120
Mean 0.0181 0.0257 0.0123 0.0184 é SONFIN 0.0080 0.0085 36
STD 0.0167 0.0164 0.0074 0.0105 E T1HFITS 0.0043 0.0043 60
Tn Best 1.00 1.00 1.00 1.00 T1HFITM 0.0041 0.0041 40
Mean 1.000 0.999 1.000 1.000 T2FLS (singleton) 0.0306  — 120
STD 0.0006 0.0007 0.0001 0.0002 FT2FNN 0.0388 — 36
Test T2FLS (TSK) 0.0217 — 120
E: Best 0.0020 0.0041 0.0034 0.0028 TSCIT2FNN 0.0080 - 34
Mean 0.0169 0.0262 0.0125 0.0187 T2TSKFNS — 0.0324 24
STD 0.0173 0.0171 0.0076 0.0109 ¢ T2FNN — 0.0281 36
Tt Best 1.00 1.00 1.00 1.00 qé SIT2FNN — 0.0241 36
Mean 1.000 0.999 1.000 1.000 E RIT2NFS-WB 0.0073 0.0151 24
STD 0.0006 0.0007 0.0001 0.0002 MRI2NFS 0.0042 0.0051 36
Parameters T2FLS-G 0.0214 0.0379 36
k(w) Best 20 20 72 36 SEIT2FNN 0.0022 0.0022 84
Mean 57.2 34.4 152 90.4 T2HFITS 0.0033 0.0034 118
T2HFITM 0.0028 0.0028 72

For the performance comparisons, the result of SaFIN was collected from [361], FAL-
CON and SONFIN from [359], T2FLS (singleton) and T2FLS (TSK) from [359], FT2FNN,
TSCIT2FNN, T2TSKFNS, and T2FNN from [363], SEIT2FNN, MRI2NFS, RIT2NF'S-
WB, and T2FLS-G from [360], and SIT2FNN from [364]. Table 5.2 contains the detailed
description of these algorithms.

Two parameters may be used for comparing the algorithms: 1) the training and test
RMSESs; and 2) the number of parameter count k(w). From the performance comparisons
shown in Table 5.3(b), it is found that the proposed algorithms TIHFIT® and T1HFITM
were better than the T1FIS algorithms FALCON, SaFIN, and SONFIN. SONFIN offered
the test RMSE E; = 0.0085 with the smallest parameter count k(w) = 36; whereas, the
proposed algorithm T1HFITM offered a better test RMSE E, = 0.0041 with a slightly
larger parameter count k(w) = 40. Similarly, the proposed T2FIS algorithms T2HFIT®
and T2HFITM offered a better performance compared to the algorithms T2FLS (singleton),
T2FLS (TSK), TSCIT2FNN, T2TSKFNS, T2FNN, SIT2FNN, RIT2NFS-WB, MRI2NFS.
The algorithm SEIT2FNN reported test RMSE E, = 0.0022, and the parameter count
k(w) was 84; whereas, in comparison to SEIT2FNN, the algorithm T2HFITM offered a
slightly higher test RMSE E; = 0.0028, but had lower parameter count k(w), i.e., 72.
Hence, the worth of the proposed model was evident from the statistical performance
given in Table 5.3(a) and the performance comparison is given in Table 5.3(b). The target

and predicted value plot of 200 samples are shown in Fig. 5.4.
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Fig. 5.4 Example-1: target versus predicted test values. The test outputs belong to algorithm T2HFITM
that has the test RMSE E; = 0.0028.
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Fig. 5.5 Example-1: designed HFIT. The shaded nodes indicate T2FIS.

The best models obtained using the proposed algorithms are illustrated in Fig.5.5,
which shows the hierarchical structure of the obtained models and the selected inputs are
indicated by x; in the models. The rectangular blocks in Fig 5.5 indicate the nodes (a
T1FIS or T2FIS) of the tree (hierarchical structure).

5.4.2 Example 2—mnoisy chaotic time series prediction
Case—clean set

A chaotic time series dataset, the Mackey-Glass chaotic time series, was used in this

example, which was generated using the following delay differential equation:

de(k)  0.2x(k—17)

T w Ty S K (O} (5.8)
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where 7 > 17. In this example, the objective was to predict x(k) using the past outputs of

the time series as mentioned in [360, 404]. Hence, input—output pattern was of the form:
[x(k —24),x(k — 18),z(k — 12), x(k — 6); z(k)] .

Let us say the inputs are zy = x(k—24) , vo = 2(k—18), 3 = (k—12), and x4 = x(k—6).
For the training of the proposed algorithms, a total of 1000 patterns were generated from
k = 124 to 1123. This set of training patterns were clean (no noise were added). From
the generated clean patterns, first 500 patterns (clean training set) were used for training
purpose and second 500 patterns (clean test set) were used for test purpose. Ten repetitions
of training and test using clean-training and clean-test sets were performed, and the results
were collected accordingly (Table 5.4(a)). Table 5.4(b) shows the comparison of results
the proposed algorithms with the results reported by algorithms listed in Table 5.2.

For this example (clean set), the performance statistics is shown in Table 5.4(a). The
obtained statistics illustrate that the proposed algorithms T1IHFITS, TIHFITM, T2HFITS,
and T2HFITM performed with high accuracies. It shows that the mean correlation
coefficient r,, of training set is 1.00, and the mean correlation coefficient r, of test set of the
algorithms T1HFITS, TIHFITM, T2HFIT®, and T2HFITM are 0.9858, 0.9864, 0.9783, and
0.9912 respectively, i.e., the test correlation coefficients are closer to 1.00 (high positive
correlation between target and predicted outputs). Such performance indicates that the
algorithms consistently performed with a high accuracy, and the obtained low values of
standard deviations (STDs) are the evidence of this fact (Table 5.4(a)).

Moreover, the Pareto-based multiobjective offered less complex models (the mean
parameter counts k(w) of TIHFITM was 57.6 compared to 71.6 of TIHFIT® and k(w) of
T2HFITM was 129.5 compared to 203.4 of TIHFIT®) with high accuracies (Table 5.4(a)).
Hence, like example 1, in this example also, the Pareto-based multiobjective was advanta-
geous to use, which provided the option to choose the best solution from a Pareto-front.
Fig. 5.3 illustrate a Pareto-front garbed during the multiobjective training of HFIT.

Table 5.4(b) describe the comparison between several algorithm on clean training
and test set, where the result of IFRS, AFRS, H-TS-FS1, and H-TS-FS2 was collected
from [375], RBF-AFA, HyFIS, D-FNN, and SuPFuNIS from [359], NNT1FW and NNT2FW
from [346], and T2FLS (singleton), T2FLS (TSK), and SEIT2FN from [359].

The training and test RMSEs and the number of parameter count k(w) were used for
comparing the algorithms, which is shown in Table 5.4(b). In T1FIS comparisons, it was
found that the proposed algorithms T1HFIT® and T1HFITM performed better than the
algorithms NNT1FW, AFRS, IFRS, H-TS-FS, RBF-AFA, and HyFIS. The algorithms
D-FNN and SuPFuNIS had better test RMESs E, = 0.008 and F; = 0.005, but their

parameter counts were larger since the number of rules in each case was 10. Since each
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Table 5.4 Performance evaluation on clean set of noisy chaotic time series (Example-2)

(a) Performance statistics (10 repetitions) (b) Performance Comparison
T1HFITS TI1HFITM T2HFITS T2HFITM Algorithm E, E:  k(w)
Training NNT1FW — 0.0550 —
E, Best 0.0115 0.0115 0.0108 0.0032 AFRS 0.0267 0.0256 78
Mean 0.0345 0.0338 0.0413 0.0224 IFRS 0.0240 0.0253 58
STD 0.0163 0.0207 0.0221 0.0203 H-TS-FS! 0.0120 0.0129 148
Tt Best 1.00 1.00 1.00 1.00 7 H-TS-FS? 0.0145 0.0151 46
Mean 0.9858 0.9864 0.9783 0.9912 qé RBF-AFA — 0.0128 —
STD 0.0117 0.0107 0.0182 0.0154 & HyFIS — 0.0100 —
Test D-FNN - 0.0080 -
E Best 0.0122 0.0119 0.0086 0.0058 SuPFuNIS — 0.0057 —
Mean 0.0414 0.0356 0.0427 0.0275 T1HFITS 0.0115 0.0122 60
STD 0.0224 0.0173 0.0234 0.0207 T1HFITM 0.0115 0.0119 40
re Best 1.00 1.00 1.00 1.00 T2FLS (singleton) —  0.0426 —
Mean 0.9786 0.9850 0.9769 0.9888 T2FLS (TSK) - 0.0431 —
STD 0.0211 0.0120 0.0195 0.0158 ¢ NNT2FW — 0.0390 —
Parameters é SEIT2FNN! - 0.0034 .
k(w) Best 20 40 72 36 E SEIT2FNN2 — 0.0053 —
Mean 71.6 57.6 203.4 129.5 T2HFITS 0.0108 0.0086 108
T2HFITM 0.0032 0.0058 118
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Fig. 5.6 Example-2 clean set: designed HFIT. The shaded nodes are T2FIS.

T1FS MF has at least two parameters and each rule has three free parameters at the
consequent part, the number of parameter count k(w) for two input variables stands
to at least 70 (this is an approximate calculation since the algorithms may have other
parameters). Whereas, the algorithms TIHFIT® and TIHFITM had parameter count k(w)
equal to 60 and 40, respectively.

In T2FIS, the proposed algorithms clearly performed better than T2FLS (singleton),
T2FLS (TSK), and NNT2FW. Whereas, the performance of the proposed algorithms were
competitive with SEIT2FNN! (without fuzzy set reduction) and SEIT2FNN? (with fuzzy
set reduction) whose test RMSEs E; were 0.0034 and 0.0058, respectively. The algorithm
SEIT2FNN! had 28 fuzzy sets and SEIT2FNN? had 16 fuzzy sets (reduced), and each of
these had seven rules. Hence, the parameter count k(w) of these algorithms stands to
at least 126 and 90, respectively. On the other hand, the proposed algorithm T2HFITS
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Fig. 5.7 Example-2 Clean set: target versus predicted test values. The test outputs belong to algorithm
T2HFITM that has the test RMSE E; = 0.0058.

had test RMSE E; = 0.0086 (slightly larger than SEIT2FNN! and SEIT2FNN?), but the
parameter count k(w) was 108, which is smaller than SEIT2FNN!. Similarly, the proposed
algorithm T2HFITM had test RMSE E, = 0.0058, which is very close to SEIT2FNN?
and the number of parameter count k(w) was smaller than SEIT2FNN! and closer to
SEIT2FNN?2. Fig.5.6 illustrates the hierarchical structure of the obtained models using
the proposed algorithms. In Fig. 5.7, the target versus prediction plot of test data samples

are illustrated.

Case—noisy set

The performances of the proposed algorithms were further evaluated for the noisy patterns.
Therefore, three training sets and three test sets were generated by adding Gaussian noise
with a mean 0 and standard deviation (STDs) of 0.1, 0.2, and 0.3 to the original data z(k).
These noisy training sets (with STDs 0.1, 0.2, and 0.3) were presented for the training
of the proposed algorithms. With each training set of STDs 0.1, 0.2, and 0.3, three test
sets were presented for testing: clean, STD 0.1, and STD 0.3. The obtained results were
compared with the results reported in the literature (Table 5.5).

Table 5.5 describes the comparisons between the results of the algorithms, where
the results of SONFIN and SVR-FM were collected from [404], DyEFuNN and EFuNN
from [403], SEIT2FNN, T2FLS-G, IT2FNN-SVR(N), and IT2FNN-SVR(F) from [404],
and eT2FIS from [364]. It is clear from the comparison of the results that the proposed
algorithms performed efficiently for the noisy datasets, and the obtained models were
less complex (particularly when T1FISs were compared) than the other models listed in
Table 5.5. Moreover, in each case of noisy data (STD 0.1, STD 0.2, and STD 0.3), the
proposed algorithms had smaller parameter count k(w) and had smaller training RMSE E;
than the other listed algorithms. In T1FIS comparisons, the SONFIN had slightly better
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Table 5.5 Example 2-noisy set: performance comparison

Train Test Train Test Train Test
FIS Algorithm 0.1 clean 01 03 k(w) 02 clean 01 03 k(w) 03 clean 01 0.3 k(w)
SVR-FM 0.128 0.045 0.087 0.200 1127 0.229 0.089 0.109 0.189 1127 0.332 0.138 0.147 0.198 1127
_,  EFuNN 0.126 — - - — 0.252 — - - — 0.366 — - - -
J& DyEFuNN 0.116 — - — — 0214 — — — — 0.306 — — - —
? SONFIN 0.113 0.054 0.108 0.256 130 0.226 0.116 0.138 0.280 130 0.302 0.195 0.208 0.305 130
T1HFITS 0.127 0.050 0.140 0.363 60 0.234 0.111 0.153 0.349 104 0.305 0.100 0.159 0.356 64
T1HFITM 0.128 0.042 0.138 0.357 40 0.225 0.085 0.145 0.360 84 0.307 0.119 0.162 0.351 60
T2FLS-G 0.133 0.074 0.103 0.220 110 0.238 0.125 0.132 0.200 110 0.357 0.232 0.234 0.264 110
IT2FNN-SVR(N) 0.128 0.048 0.087 0.193 103 0.234 0.085 0.105 0.18 103 0.349 0.127 0.138 0.188 103
Q' IT2FNN-SVR(F) 0.127 0.046 0.088 0.215 103 0.233 0.083 0.103 0.180 103 0.347 0.121 0.131 0.184 103
é SEIT2FNN 0.123 0.049 0.097 0.212 110 0.225 0.083 0.113 0.228 110 0.319 0.196 0.197 0.254 110
B eT2FIS 0.120 0.059 0.107 0.214 — 0.225 0.083 0.132 0.247 — 0.327 0.102 0.152 0.278 -
T2HFITS 0.128 0.039 0.135 0.355 108 0.227 0.079 0.143 0.348 82 0.314 0.100 0.148 0.354 144
T2HFITM 0.123 0.042 0.135 0.365 72 0.233 0.087 0.144 0.348 72 0.311 0.097 0.148 0.356 108

RMSE, but the number of parameters counts k(w) was larger than the proposed algorithms
T1HFITS and T1HFITM. Similarly, in T2FIS comparison, the algorithm eT2FIS had
slightly better RMSE than the other listed algorithms, but the models obtained using the

proposed algorithms were of low complexity, i.e., had small parameter count k(w).

5.4.3 Example 3—miles-per-gallon prediction problem

To evaluate the performance of the proposed algorithms, a real-world MPG problem
was used. The objective of this example was to predict or estimate the city-cycle fuel
consumption in MPG. The MPG dataset was collected from the UCI machine learning
repository [309]. This dataset has 392 sample each of which has six input variables, but
in this example, as mentioned in [366], three variables (z; = weight, x5 = acceleration,
and xr3 = model year) were selected. In the training process of the algorithms, 50%
(196 patterns) samples were randomly selected for training and the rest of the 50% (196
patterns) samples were taken for testing. Such process of training-set and the test-set
selection was repeated 10 times. The performance statistics is shown in Table 5.6(a). The
performances of the proposed algorithms were compared with the literature (Table 5.6(a)).
However, the algorithms chosen from the literature were tested over fewer test samples.
Therefore, the comparison shown in Table 5.6(a) was limited to the comparison of the
training RMSEs.

To compare, the result of TIFLS was collected from [360] and the results of SEIT2FNN,
RIT2NFS-WB, McIT2FIS-UM, and McIT2FIS-US were collected from [366]. The compar-
isons of the models in this example were based on the mean training and test RMSE E,
and FE; obtained for 10 repetitions. However, the comparison on test RMSEs was limited

since only 120 sample were used for testing by the algorithms considered from literature.
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Table 5.6 Performance evaluation on miles-per-gallon prediction problem (Example-3).

(a) Performance Statistics (10 repetitions) (b) Performance Comparison (10 repetitions)
T1HFITS T1HFITM T2HFITS T2HFITM Algorithm Mean E, STD Mean E; STD Samples
Training — T1FLS - - 3.5960 - 120
En  Best 1.8931 22686 2.0881 1.9582 qé:TlHFITS 2.7115 0.5144 4.2333 0.5024 196
Mean 27115  2.6037 24699  2.4052 B TIHFITM 26037 04071 3.3349 0.5720 196
STD 0:5144  0.4071 04461 0.3774 McIT2FIS-US 2.7358 — 26770 — 120
T Best 0.97 0-96 0-96 0.96 SEIT2FNN 27161  — 27895  — 120
Mean 0921 0-941 0-946 0950 T MCIT2FISUM 2.6524  — 26486  — 120
STD 0.1035  0.0218  0.0244  0.0160 g, : ‘
Test & RIT2NFS-WB 23685  — 27807  — 120
E, Best 97550 27907  2.8383  2.6623 T2HFITS 2.4699 0.4461 3.4006 0.7423 196
Mean 4.2333 3.3349 3.4006 3.3172 T2HFITM 2.4052 0.3774 3.3172 0.6855 196
STD 0.5024  0.5720  0.7423  0.6855
re  Best 0.97 0.96 0.96 0.96
Mean 0.921 0.941 0.946 0.950
STD 0.1035  0.0218  0.0244  0.0160
Parameters
k(w) Best 20 20 108 118
Mean 132 78.8 224 207.4

Whereas, the algorithms proposed in this work used 196 samples for testing (Table 5.6(b)).
It was observed that the proposed algorithms T2HFIT® and T2HFITM outperformed all
the other algorithms except RIT2NFS-WB, which had slightly better training RMSE
E, = 2.3685 in comparison to the training RMSE F,, = 2.4699 and FE, = 2.4052 of
T2HFIT® and T2HFITM respectively. Since the performance comparisons were based on
the average of 10 repetitions, the models hierarchical structures are not presented for this

example.

5.4.4 Example 4—abalone age prediction

In this example, a prediction problem was taken, in which the age of a person was predicted
based on the physical measurements. The abalone dataset was collected from the UCI
machine learning repository [309]. It has 4177 data samples and each of which has seven
input variables (z; = length, x5 = diameter, x3 = height, x, = whole weight, x5 = shucked
weight, zg = viscera weight, and z7 = shell weight) and one output variable (rings). To
train the proposed algorithms, 80% (3342 patterns) samples were randomly taken for
training and the rest of 20% (835 patterns) samples were taken for testing. Such training
process was repeated 10 times, and the collected results are summarized in Table 5.7(a).

The obtained results are compared with the results reported in the literature (Ta-
ble 5.7(b)). For the comparisons, algorithms ‘General’;, HS, CCL, and ‘Chen&Cheng’
were collected from [360], and the results of SEIT2FNN, RIT2NFS-WB, McIT2FIS-UM,
and McIT2FIS-US were collected from [366]. The algorithms ’General’ [408], CCL [409],
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Table 5.7 Performance evaluation on abalone age prediction problem (Example-4).

(a) Performance Statistics (10 repetitions) (b) Performance Comparison
T1HFITS TI1HFITM T2HFITS T2HFITM Algorithm E, E:  k(w)
Training HS - 3.1600 -
En Best 2.1097 2.2857 2.1154 2.1275 General _ 3.1500 _
STD o1 00 0™ 0007 g oo Co -
: : ) ) ? Chen&Cheng —  2.5900 -
rn  Best 0.76 0.71 0.76 0.75 T1LHFITS 01097 91260 124
Mean 0.688 0.655 0.710 0.716 TIHFITM 29857 2480 &4
STD 0.0490 0.0347  0.0481 0.0204 . .
Test RIT2NFS-WB  2.4047 2.1346 131
E;  Best 2.1260 23480  2.1824 2.1428 o McIT2FIS-UM 2.3481 1.8740 115
Mean  2.3644 2.4843 2.3808 2.3533 g SEIT2FNN 2.3388 2.4330 140
STD 0.1448 0.1029  0.1676 0.1127 & McIT2FIS-US  2.3357 1.8387 115
r¢  Best 0.76 0.71 0.76 0.75 T2HFITS 2.1154 2.1824 226
Mean 0.688 0.655 0.710 0.716 T2HFITM 21275 2.1428 108
STD 0.0490 0.0347  0.0481 0.0204
Parameters
k(w) Best 20 20 144 72
Mean 77.6 46.4 188.4 152.9

T ——

L5 —— | L3 ——r 3
Ty — T3 —] 3 Z7 —
T3 — - €7 ]
L ] T3
T —] — L7 —
L3 et T2
3 5
T T7 —> Ty —] 5

(a) TIHFITS: E, =(b) TIHFITM: E, =(c) T2HFITS: E, =(d) T2HFITM: E, =
1097 2.2857 2.1154 2.1275

Fig. 5.8 Example—4: designed HFIT. The shaded nodes are T2FIS.

HS [410], and WFRI-GA [411] were fuzzy interpolate reasoning methods, where WFRI-GA
was based on genetic algorithm and the algorithm ‘General’” implemented Mamdani type
FIS. It is evident from the results in Table 5.7(b) that the proposed algorithms (both
T1FIS and T2FIS) had outperformed the algorithms considered for comparisons. The
best-performing models are illustrated in Fig. 5.8, where the selected input feature is

indicated by x;.

5.4.5 Example 5—box-Jenkins gas furnace problem

In this example, the Box and Jenkins gas furnace dataset that was taken from [412],
which has 296 data samples. The objective of this example was to predict the CO,
concentration from the gas-flow rate. The system for the gas furnace is modeled using a
series, which is of the form: y(k) = f(y(k — 1),u(k — 4). For the training of the proposed
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Table 5.8 Performance evaluation on box-Jenkins gas concentration problem (Example-5).

(a) Performance statistics (10 repetitions) (b) Performance comparison
T1HFITS T1HFITM T2HFITS T2HFITM Algorithm En  k(w)

Training T1-NFS 0.4074 -
En Best 0.246 0.280 0.256 0.275 7 GNN! 0.3114 -
Mean 0.303 0.344 0.291 0.301 cé: GNN? 0.2983 -

STD 0.036 0.043 0.023 0.033 & T1HFITS 0.2455 124

Tn Best 0.97 0.97 0.97 0.97 T1HFITM 0.2838 40
Mean 0.959 0.947 0.963 0.960 SEIT2FNN 0.2690 152

STD 0.010 0.013 0.006 0.010 «~ RIT2NFS-WB 0.3527 90
Parameters ¢ McIT2FIS-UM 03139 48
k(w) Best 40 40 72 72 H>> McIT2FIS-US 0.3181 48
Mean 132.8 58.4 286 167.4 T2HFITS 0.2767 154

T2HFITM 0.2840 72

| |
1
&

— L]  —p

) —I
T2 ——————
— —
o —»]— T o1 x]_ ——|
D —

T2 — 1 1 ——

(a) TIHFITS: E, =(b) TIHFITM: E, =(¢) T2HFITS: E, =(d) T2HFITM: E, =
0.2455 0.2838 0.2767 0.2840

Fig. 5.9 Example-5: designed HFIT. The shaded nodes are T2FIS.

models, 100% (296 patterns) samples were used. The training process was repeated for 10
times, and the collected results are summarized in Table 5.8(a). The performances of the
proposed algorithms were compared with the performances of the algorithms reported in
the literature (Table 5.8(b)).

To compare the performance of the algorithms, the results of T1-NFS and GNN
were collected from [360], and the results of SEIT2FNN, RIT2NFS-WB, McIT2FIS-
UM, and McIT2FIS-US were collected from [366]. As reported in Table 5.8(b), the
proposed algorithms clearly outperformed the algorithms T1-NFS, GNN!, and GNN?
for T1IFIS comparisons, and the algorithms SEIT2FNN, RIT2NFS-WB, McIT2FIS-UM,
and McIT2FIS-US for T2FIS comparisons. The best-performing models are illustrated in
Fig. 5.9.
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5.5 Performance of HFIT on real-world application

5.5.1 Poly (lactic-co-glycolic acid) (PLGA) micro- and nanopar-

ticle’s dissolution-rate prediction modeling

This example illustrates a pharmaceutical industrial problem related to PLGA dissolution
profile prediction, which is a complex problem since a huge number of factors governs its
dissolution-rate profile. As per the dataset provided in [413, 13, 12], this problem has a total
of 300 potential factors that influences the PLGA protein particle’s dissolution-rate [414],
The input features are categorized into four groups (protein descriptor, plasticizer, formu-
lation characteristics, and emulsifier), which has 85, 17, 98, 99, and 1 features, respectively.
This problem has a very high noise and redundancy because data were obtained from
various experimental measurements and instruments.

The significance of the PLGA dissolution profile prediction can be understood from the
following description. PLGA micro- and nanoparticles play a significant role in the medical
application and toxicity evaluation of PLGA-based multi-particulate dosages [415]. PLGA
micro-particles are important diluents used to produce drugs in their correct dosage form.
Apart from playing the role as a filler, PLGA as an excipient, and alongside pharmaceutical
APIs, plays other crucial roles in various ways. It helps in the dissolution of drugs, thus
increasing the absorbability and solubility of drugs [416, 417]. It helps in pharmaceutical
manufacturing processes by improving API powders’ flow and non-stickiness.

The dataset collected from various academic literature contains 300 input features
categorized into four groups, including protein descriptor, plasticizer, formulation charac-
teristics, and emulsifier (Table 5.9). For example, the formulation characteristics group
contains features such as PLGA-inherent viscosity, PLGA molecular weight, lactide-
to-glycolide ratio, inner and outer phase polyvinyl alcohol (PVA) concentration, PVA
molecular weight, inner phase volume, encapsulation rate, mean particle size, PLGA
concentration, and experimental conditions (dissolution pH, the number of dissolution
additives, dissolution additive concentration, and production method and dissolution time).
The protein descriptor, plasticizer, and emulsifier feature groups contain 85, 98, and 101
features, respectively. The regression model sought to predict the dissolution percentage
or solubility of PLGA, which is dependent on the features mentioned above. In order to
avoid over-fitting, collected data were preprocessed by adding noise to them. The dataset

was then normalized, in other words, scaled within the range —1.0 and 1.0.
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Table 5.9 PLGA dataset description

Sl No Group name Features Importance

1 Protein descriptors 85 Describes the type of molecules and proteins used

2 Formulation characteristics 17 Describe the molecular properties, e.g., molecular weight, particle size, etc.
3 Plasticizer 98 Describe the properties such as fluidity of the material used

4 Emulsifier 99 Describe the properties of stabilizing the pharmaceutical product life

5 Time in days 1 Time taken to dissolve

6 % of molecules dissolved 1 Output

5.5.2 PLGA predictive modeling results

Using the parameter-setting mentioned in Table 5.1 and using 10-fold cross-validation, the
proposed algorithm TTHFIT™ was able to select seven input features [PVA Mw (zg0), ASA
(122), pH 8 msdon (z192), aromatic bond count (x94), a(xx) (z218), pH 12 msacc (xas1),
time days (z299)] and was able to approximate a test RMSE of E; = 18.66. Similarly, the
proposed algorithm T2HFITM was able to approximate a test RMSE of E, = 15.259 with
only four input features [aromatic atom count (zgs), PVA conc inner phase (zsg), pH 1
msdon (zag5), time days (xa99)].

The feature reduction is a significant task since it reduces the drug manufacturing cost.
Table 5.10 shows a comparison of the results of the proposed TIHFITM and T2HFITM
with the results of the algorithms such as multilayer preceptron (MLP), reduced error
pruning tree (REP Tree), heterogeneous flexible neural tree (HFIT), and Gaussian process
regression (GPR). It is evident from the results that the proposed algorithm predicted the
PLGA dissolution profile with a lower number of features, and its approximation error
was very competitive with the performance of other algorithms. Fig. 5.10 illustrates the

obtained models for the prediction of PLGA dissolution profile.

Table 5.10 Performance comparison.

Algorithm  Ref. RMSE E; No. of Features
MLP [413] 14.3 17
HFIT [201] 13.2 15
REP Tree  [14] 13.3 15
GPR [14] 14.9 15
MLP [14] 15.2 15
MLP [413] 15.4 11
T1HFITM This Chapter 18.6 7

T2HFITM This Chapter 15.2




118 Multiobjective hierarchical fuzzy inference trees

T2 —¥|
Togy ——
T ~————
T199 ——

T204 —— Tss

Z9o

| 285

T218

Tago Tagg ——»

(a) TIHFITM: E, = 18.66 (b) T2HFITM: E, = 15.25

Fig. 5.10 Example—6: designed HFIT. The shaded nodes are T2FIS.

5.6 Summary

The proposed HFIT algorithms T1HFITS, TIHFITM, T2HFITS, and T2HFITM were
evaluated over six examples including a real-world from the pharmaceutical industry.
Performance of the proposed algorithms were compared with the algorithms that offer
structure optimization (e.g., SEIT2FNN, SONFIN, SaFIN, TSCIT2FNN, etc.), the al-
gorithms that offer hierarchical fuzzy system design (e.g., IFRS, H-TS-FS, etc.), the
algorithms that offer dynamic fuzzy system design (e.g., DyEFuNN, D-FNN; etc.), and
so forth. The obtained results illustrate the efficiency of the proposed algorithms in
comparison to the algorithms collected from the literature. Such performance was obtained
by using the parameter-setting mentioned in Table 5.1. Moreover, a comparison using a
noisy data [example 2, case 2 (Section 5.4.2)] has proved the approximation efficiency of
the proposed algorithms over other algorithms. The HFIT algorithms not only offer the
solutions with high accuracy (low approximation error), but they also offer the solutions
with low complexity.

The number of clusters needs to be predetermined in a clustering-based partitioning
of the input space. Hence, the proposed HFIT, which automatically partition the input
space by using the dynamics of the evolutionary process, is particularly significant for the
predictive modeling of the problems that have a large number of input features such as
example 6 (Section 5.5.1).

In Section 5.3, a comprehensive study of the comparative results (of the proposed
algorithms) was presented. It was observed that the proposed HFIT based algorithms gave
better performance than the other algorithms available in the literature. For example,
in the case of example-1 TIHFITM offered better RMSE with lower parameter count.
Additionally, T2HFITM offered a better RMSE (i.e., 0.0028) with a low complexity (i.e.,
72) in comparison to the model SEIT2FNN that gave an RMSE 0.0053. Similarly, for
example-2, T2HFITM offered a very competitive RMSE (i.e., 0.0058) in comparison to
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Table 5.11 Performance summary: single objective versus multiobjective and type-1 versus type-2.

Single Objective Multibjective
T1HFITS T2HFITS T1HFITM T2HFITM
Example E, k(w) E, k(w) E, k(w) E, k(w)

1 0.018 57.2 0.012 152.0 0.025 344 0.018 904
2 0.034 71.7 0.041 2034 0.033 57.6 0.022 129.5
3 2.711 132.0 2.469 224.0 2.603 78.8 2.405 204.4
4 2.326  77.6 2.259 1884 2.428 46.4 2.242 1529
5 0.303 138.8 0.291 286.0 0.344 58.4 0.301 167.4
Average 1.078 95.5 1.014 210.7 1.086 55.1 0.997 148.9

the model SEIT2FNN? that gave an RMSE 0.0053. Additionally, the comparison on the
noisy dataset, the proposed model offered T2HFITM offered better training RMSEs with
low model complexity in comparison to many of the recently proposed T2FIS algorithms
such as SEIT2FNN, IT2FNN-SVR, and T2FLS-G. Moreover, the models developed by
the proposed algorithm adapted its structure in each instance of experiments on the
noisy dataset; whereas, the other models had a fixed structure in each instance of their
experiments (Table 5.5). Therefore, the proposed algorithm was able to accommodate
the variance in noise more precisely than the other models. The cases of example—3,
example—4, and example-5, the proposed models surpassed the other algorithms such
as RIT2NFS-WB, McIT2FIS, and SEIT2FNN. Accordingly, TIHFITM had performed
better than its counterparts. In the case of example-6, the proposed T2HFITM was highly
efficient than the TIHFITM because T2HFITM was capable of accommodating the noisy
information more efficiently than TIHFITM, which is evident from the fact that the average
RMSE of T2HFITM was 16.64, and the average RMSE of TIHFITM was 22.36. Hence,
the use of interval type-2 MFs at was worth considering in such kind of high-dimensional
and noisy application/problems.

A comparison between single objective and multiobjective, summarized in Table 5.11,
suggest that the multiobjective approach has performance superiority over the single
objective because multiobjective gives a competitively better approximation error with
lower model complexity in both type-1 and type-2 cases. Additionally, it can be observed
that the type-2 offers better approximation error against type-1.

Since HFIT algorithms are developed using evolutionary process, the quality of its
performance is subjected to the careful setting of parameters (Table 5.1). Hence, results of
the algorithms mentioned in this chapter may be further improved with the choice of the
different sets of parameters; however, this is a trial-and-error process. For example, the
feature selection, i.e., the number of inputs to a node (a fuzzy subsystem) is proportional

to the setting of the maximum inputs to a FIS node. Similarly, the hierarchy (number of
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layers) in an HFIT is proportional to the setting of maximum depth of a tree. Therefore,
the complexity of the HFIT can be controlled using these parameters. Additionally, the
parameters of MOGP and DE such as their population size, crossover probability, mutation
probability, etc. influence the performance of HFIT.

Moreover, FIS for data mining inherently requires a multiobjective solution and the
proposed multiobjective design of HFIT stands as a viable option that constructs a tree-like
model whose nodes are low-dimensional FIS. The proposed HFIT was developed for both
type-1 and type-2 FIS and each node in HFIT implements a TSK model. Both type-1 and
type-2 FIS were studied in the scope of single objective and multiobjective optimization
using GP. Hence, four versions of HFIT were studied: TIHFITS, TIHFITM, T2HFITS,
and T2HFITM. The parameters of the MFs and the consequent parts of the rules were
tuned using DE algorithm. The optimization procedure of HFIT was a coevolutionary
approach, in which structure optimization and parameter optimization was applied one-by-
one until a formidable solution was obtained. A comprehensive performance comparison
was performed for evaluating the efficiency of the proposed HFIT. The performance of the
proposed HFIT algorithm was found to be very efficient and competitive in comparison to
the algorithm collected from the literature. Additionally, HFIT can do feature selection.

Hence, it is advantageous to use HFIT to solve high-dimensional application problems.



Chapter 6
Conclusions and future research

In this thesis, two novel algorithms for data-driven modeling, i.e., for the feature selection
and function approximation were proposed. The objective was to design the adaptive
algorithms that can provide an efficient alternative for the data-driven modeling to this

date. The conclusions and future research direction derived from the thesis are as follows.

6.1 Conclusions

For the development of the proposed algorithms, feedforward neural network (FNN) and
fuzzy inference system (FIS) paradigms were investigated. FNN and FIS faces challenges
in predictive modeling for data that are insufficient, imbalanced, high-dimensional, and
abundant. Thus, in the literature, several FNN, and FIS based approximation methods has
been proposed. Moreover, the components of FNN (weights, structure, activation function,
and learning algorithm) and FIS (rules base and membership function) are responsible
for design of various algorithms (Chapters 2 and 4). Hence, this thesis proposed to
optimize these components of FNN and FIS using an adaptive tree-like model and by
using a coevolutionary approach for optimizing the tree. The proposed algorithms were
the heterogeneous flexible neural tree (HFNT) and the hierarchical fuzzy inference tree
(HFIT). The proposed algorithms were adaptive the following sense: the tree structure
were determined automatically (by using the principle of natural selection), nodes of the
tree were adapted automatically, and tree parameters were tuned.

Moreover, structure optimization and generalization ability are strongly correlated with
each others. Therefore, FNN architecture optimization and for that matter various model
designs were of particular interest to the research community. Additionally, FNN node
optimization, learning parameter optimization, hybrid metaheuristic training to FNN, and

multiobjective treatment to FNN optimization were of particular focus in the past. The
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proposed HFNT algorithm is an adaptive algorithm that accommodates all these forms of
optimization strategies into a single entity (function approximation algorithm).

Similarly, for a connection-based FIS model (e.g., neuro-fuzzy and hierarchical fuzzy
systems), the design of the structure holds the key to its approximation ability. Moreover,
parameter tuning of FIS rules and the interpretability—accuracy trade-off is utmost impor-
tant issues in constructing a FIS model. The proposed HFIT algorithm is an adaptive
algorithm that addresses multiobjective optimization of FIS structure by evolving a tree
-like model, and parameter tuning by using metaheuristic in a coevolutionary manner.

HENT was a FNN based model, which was a tree-like model whose nodes were
neural nodes (Chapter 3). On the other hand, HFIT was a connection-based hierarchical
FIS model (tree-like model) whose nodes were low-dimensional FIS of type-1 or type-2
(Chapter 5). The multiobjective evolutionary algorithm minimized the approximation
error and the model’s complexity simultaneously. Thus, the obtained tree structure of
HFNT and HFIT were simple (small in the parameter count). Finally, the parameters
were tuned by using differential evolution algorithm that further improved the model’s
approximation ability.

Both the algorithms were compared with the algorithms from the literature. The
obtained results were the evidence of their (the proposed algorithms) superior performance
over other algorithms. Moreover, the HFNT was used for modeling a real-world problem
of pharmaceutical industry that had data that represented the dynamic environment of
the pharmaceutical die filling process. It was found the HFNT offered significantly better
result than other computational intelligence models such as multilayer perceptron and
reduced error pruning tree. Similarly, the performance of HFIT (its version type-1 HFIT
and type-2 HFIT) when tested over benchmark and real-world problems, it surpasses
its competitor algorithms in the literature. Additionally, HFIT was used for modeling a
real-world pharmaceutical problem that had a high-dimensional data that governed the
prediction of drug desolation rate. It was found that the HFIT had a high prediction
ability with a small set of features than other algorithms.

FNN and FIS are known as a universal approximator and it is known that for any
problem (X,Y), a FIS model can be designed, which can approximate (X,Y’) to equal
degree that of a FNN model can, and vice versa [418]. Such equivalence of their approxi-
mation ability is evident from the results obtained in the experiments conducted in this
thesis. The approximation ability of the HFNT and HFIT was fond very similar when
they were used for predicting two problems: Mackey-Glass chaotic time series prediction
and PLGA drug dissolution prediction. For the former, the approximation quality of the
HFIT was found slightly better than the HFNT. On the other hand, the approximation
quality of the HFNT was found slightly better than the HFIT for the latter. However, a
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significant improvement in feature selection was observed during HIT modeling because it
was able to predicate to an equal degree of HFN'T by using fewer number of features.
The proposed algorithms are capable of feature selection using the dynamics of the
natural section and are able to approximate to a very high degree. In addition to that,
they offer very simple models. These are the desirable significant attributes to an efficient,
effective, and robust algorithm. Therefore, the proposed algorithm stands as a viable

alternative to the research community to date.

6.2 Future research directions

The proposed algorithms are efficient tools, which can be used for solving several high-
dimensional and noisy real-world problems (Section 2.6 describes data related challenges,
which HFNT and HFIT can address to a larger extent).

In this thesis, the tree structure was tuning using multiobjective genetic programming
and the parameters were optimized by differential evolution. However, hybrid metaheuristic
approach may be advantageous to use (Section 2.3.2 describes advantages of hybrid
metaheuristics approach). Similarly, the model’s structure, in this thesis, was represented
as a tree-like. However, structure representation is an open research problem.

The proposed algorithms may be enhanced, modified to suit a particular class of
problem, i.e., the nodes of the HFNT and HFIT may be replaced or designed according to
the specification of the possible problems (Section 2.3.1 describes the various directions for
the node design and optimization). Moreover, the fuzzy rules at the nodes of HFIT can
be further optimized by using iterative learning methods or by using Pittsburgh approach
(Section 4.3.1 describes methods of rule learning).

Evolving fuzzy paradigm indicates an opportunity to extend HFNT and HFIT algo-
rithms towards dynamic learning system, in which a dynamic mechanism may be employed
to expand and contract a tree such that it can learn the knowledge contained in the
incoming (on-line stream) data. Therefore, it can efficiently solve a broad range of dynamic

problems (problems that has non-stationary/stream data).
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