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Abstract

As data science becomes more mainstream, there will be an ever-growing demand for data
science tools that are more accessible, flexible, and scalable. In response to this demand,
automated machine learning (AutoML) researchers have begun building systems that auto-
mate the process of designing and optimizing machine learning pipelines. In this paper we
present TPOT, an open source genetic programming-based AutoML system that optimizes
a series of feature preprocessors and machine learning models with the goal of maximiz-
ing classification accuracy on a supervised classification task. We benchmark TPOT on
a series of 150 supervised classification tasks and find that it significantly outperforms a
basic machine learning analysis in 22 of them, while experiencing minimal degradation in
accuracy on 5 of the benchmarks—all without any domain knowledge nor human input.
As such, GP-based AutoML systems show considerable promise in the AutoML domain.

Keywords: automated machine learning, hyperparameter optimization, pipeline optimiza-
tion, genetic programming, Pareto optimization, data science, Python

1. Introduction

Machine learning is commonly described as a “field of study that gives computers the ability
to learn without being explicitly programmed” (Simon, 2013). Despite this common claim,
machine learning practitioners know that designing effective machine learning pipelines
is often a tedious endeavor, and typically requires considerable experience with machine
learning algorithms, expert knowledge of the problem domain, and brute force search to
accomplish (Olson et al., 2016a). Thus, contrary to what machine learning enthusiasts
would have us believe, machine learning still requires considerable explicit programming.

In response to this challenge, several automated machine learning methods have been
developed over the years (Hutter et al., 2015). Over the past year, we have been developing
a Tree-based Pipeline Optimization Tool (TPOT) that automatically designs and optimizes
machine learning pipelines for a given problem domain (Olson et al., 2016b), without any
need for human intervention. In short, TPOT optimizes machine learning pipelines using
a version of genetic programming (GP), a well-known evolutionary computation technique
for automatically constructing computer programs (Banzhaf et al., 1998). Previously, we
demonstrated that combining GP with Pareto optimization enables TPOT to automatically
construct high-accuracy and compact pipelines that consistently outperform basic machine
learning analyses (Olson et al., 2016a). In this paper, we extend that benchmark to include
150 supervised classification tasks and evaluate TPOT in a wide variety of application
domains ranging from genetic analyses to image classification and more.
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2. Methods

In the following sections, we provide an overview of the Tree-based Pipeline Optimization
Tool (TPOT), including the machine learning operators used as genetic programming (GP)
primitives, the tree-based pipelines used to combine the primitives into working machine
learning pipelines, and the GP algorithm used to evolve said tree-based pipelines. We follow
with a description of the data sets used to evaluate the latest version of TPOT in this paper.
TPOT is an open source project on GitHub, and the underlying Python code can be found
at https://github.com/rhiever/tpot.

2.1. Machine Learning Pipeline Operators

At its core, TPOT is a wrapper for the Python machine learning package, scikit-learn (Pe-
dregosa et al., 2011). Thus, each machine learning pipeline operator (i.e., GP primitive)
in TPOT corresponds to a machine learning algorithm, such as a supervised classification
model or standard feature scaler. All implementations of the machine learning algorithms
listed below are from scikit-learn (except XGBoost), and we refer to the scikit-learn docu-
mentation (Pedregosa et al., 2011) and Hastie et al. (2009) for detailed explanations of the
machine learning algorithms used in TPOT.

Supervised Classification Operators. DecisionTree, RandomForest, eXtreme Gra-
dient Boosting Classifier (from XGBoost, Chen and Guestrin (2016)), LogisticRegression,
and KNearestNeighborClassifier. Classification operators store the classifier’s predictions
as a new feature as well as the classification for the pipeline.

Feature Preprocessing Operators. StandardScaler, RobustScaler, MinMaxScaler,
MaxAbsScaler, RandomizedPCA (Martinsson et al., 2011), Binarizer, and PolynomialFea-
tures. Preprocessing operators modify the data set in some way and return the modified
data set.

Feature Selection Operators. VarianceThreshold, SelectKBest, SelectPercentile, Se-
lectFwe, and Recursive Feature Elimination (RFE). Feature selection operators reduce the
number of features in the data set using some criteria and return the modified data set.

We also include an operator that combines disparate data sets, as demonstrated in
Figure 1, which allows multiple modified copies of the data set to be combined into a
single data set. Lastly, we provide integer and float terminals to parameterize the various
operators, such as the number of neighbors k in the k-Nearest Neighbors Classifier.

2.2. Constructing Tree-based Pipelines

To combine these operators into a machine learning pipeline, we treat them as GP primitives
and construct GP trees from them. Figure 1 shows an example tree-based pipeline, where
two copies of the data set are provided to the pipeline, modified in a successive manner
by each operator, combined into a single data set, and finally used to make classifications.
Because all operators receive a data set as input and return the modified data set as output,
it is possible to construct arbitrarily shaped machine learning pipelines that can act on
multiple copies of the data set. Thus, GP trees provide an inherently flexible representation
of machine learning pipelines.
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Figure 1: An example tree-based pipeline from TPOT. Each circle corresponds to a machine
learning operator, and the arrows indicate the direction of the data flow.

In order for these tree-based pipelines to operate, we store three additional variables for
each record in the data set. The “class” variable indicates the true label for each record, and
is used when evaluating the accuracy of each pipeline. The “guess” variable indicates the
pipeline’s latest guess for each record, where the classifications from the last classification
operator in the pipeline are stored as the “guess”. Finally, the “group” variable indicates
whether the record is to be used as a part of the internal training or testing set, such that
the tree-based pipelines are only trained on the training data and evaluated on the testing
data. We note that the data set provided to TPOT as training data is further split into an
internal stratified 75%/25% training/testing set.

2.3. Optimizing Tree-based Pipelines

To automatically generate and optimize these tree-based pipelines, we use a GP algo-
rithm (Banzhaf et al., 1998) as implemented in the Python package DEAP (Fortin et al.,
2012). The TPOT GP algorithm follows a standard GP process: To begin, the GP algorithm
generates 100 random tree-based pipelines and evaluates their balanced cross-validation ac-
curacy on the data set. For every generation of the GP algorithm, the algorithm selects the
top 20 pipelines in the population according to the NSGA-II selection scheme (Deb et al.,
2002), where pipelines are selected to simultaneously maximize classification accuracy on
the data set while minimizing the number of operators in the pipeline. Each of the top 20
selected pipelines produce five copies (i.e., offspring) into the next generation’s population,
5% of those offspring cross over with another offspring using one-point crossover, then 90%
of the remaining unaffected offspring are randomly changed by a point, insert, or shrink mu-
tation (1/3 chance of each). Every generation, the algorithm updates a Pareto front of the
non-dominated solutions (Deb et al., 2002) discovered at any point in the GP run. The algo-
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rithm repeats this evaluate-select-crossover-mutate process for 100 generations—adding and
tuning pipeline operators that improve classification accuracy and pruning operators that
degrade classification accuracy—at which point the algorithm selects the highest-accuracy
pipeline from the Pareto front as the representative “best” pipeline from the run.

2.4. Benchmark Data

We compiled 150 supervised classification benchmarks1 from a wide variety of sources,
including the UCI machine learning repository (Lichman, 2013), a large preexisting bench-
mark repository from Reif (2012), and simulated genetic analysis data sets from Urbanowicz
et al. (2012). These benchmark data sets range from 60 to 60,000 records, few to hundreds
of features, and include binary as well as multi-class supervised classification problems. We
selected data sets from a wide range of application domains, including genetic analysis,
image classification, time series analysis, and many more. Thus, this benchmark represents
a comprehensive suite of tests with which to evaluate automated machine learning systems.

3. Results

To evaluate TPOT, we ran 30 replicates of it on each of the 150 benchmarks, where each
replicate had 8 hours to complete 100 generations of optimization (i.e., 100× 100 = 10, 000
pipeline evaluations). In each replicate, we divided the data set into a stratified 75%/25%
training/testing split and used a distinct random number generator seed for each split and
subsequent TPOT run.

To provide a reasonable control as a baseline comparison, we similarly evaluated 30
replicates of a Random Forest with 500 trees on the 150 benchmarks, which is meant to
represent a basic machine learning analysis that a novice practitioner would perform. In all
cases, we measured accuracy of the resulting pipelines or models as balanced accuracy (Velez
et al., 2007), which corrects for class frequency imbalances in data sets by computing the
accuracy on a per-class basis then averaging the per-class accuracies. In the remainder of
this paper, we refer to “balanced accuracy” as simply “accuracy.”

Overall, TPOT discovered pipelines that perform statistically significantly better than a
Random Forest with 500 trees on 22 benchmarks, significantly worse on 5 benchmarks, and
had no significant difference on 123 benchmarks. (We determined statistical significance
using a Wilcoxon rank-sum test, where we used a conservative Bonferroni-corrected p-value
threshold of < 0.000333 (0.05150 ) for significance.) In Figure 2, we show the distributions of
accuracies on the 27 benchmarks that had significant differences, where the benchmarks are
sorted by the difference in median accuracy between the two experiments.

Notably, the majority of TPOT’s improvements on the benchmarks are quite large,
with several ranging from 10%–60% median accuracy improvement over a Random For-
est analysis. In contrast, the 5 benchmarks where TPOT experienced a degradation in
median accuracy ranged from only 2–5% accuracy degradation. In some cases, TPOT’s
improvements were made by discovering useful feature preprocessors that allow the models
to better classify the data2, e.g., TPOT discovered that applying a RandomizedPCA fea-

1. Benchmark data available at http://www.randalolson.com/data/benchmarks/
2. Full list: https://gist.github.com/rhiever/578cc9c686ffd873f46bca29406dde1d
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Figure 2: Box plots showing the distribution of balanced accuracies for the 27 benchmarks
with a significant difference in median accuracy between TPOT and a Random
Forest with 500 trees. Each box plot represents 30 replicates, the inner line shows
the median, the notches represent the bootstrapped 95% confidence interval of
the median, the ends of the box represent the first and third quartiles, and the
dots represent outliers.
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ture preprocessor prior to modeling the “Hill valley” benchmarks allows Random Forests
to classify the data set with near-perfect accuracy. In other cases, TPOT’s improvements
were made by applying a different model to the benchmark, e.g., TPOT discovered that a
k-nearest-neighbor classifier with k = 10 neighbors can classify the “parity5” benchmark,
whereas a Random Forest consistently achieved 0% accuracy on the same benchmark.

4. Conclusions and Future Work

We benchmarked the Tree-based Pipeline Optimization Tool (TPOT) on 150 supervised
classification data sets and found that it discovers effective machine learning pipelines that
can outperform a basic machine learning analysis on several benchmarks. In particular,
we note that TPOT discovered these pipelines without any domain knowledge nor human
input. As such, TPOT shows considerable promise in the automated machine learning (Au-
toML) domain and we will continue to refine TPOT until it consistently discovers human-
competitive machine learning pipelines. We discuss some of these future refinements below.

First, we will explore methods to provide sensible initialization (Greene et al., 2007) for
genetic programming (GP)-based AutoML systems such as TPOT. For example, we can
use meta-learning techniques to intelligently match pipeline configurations that may work
well on the particular problem being solved (Feurer et al., 2015b). In brief, meta-learning
harnesses information from previous machine learning runs to predict how well each pipeline
configuration will work on a particular data set. To place data sets on a standard scale,
meta-learning algorithms compute meta-features from the data sets, such as data set size,
the number of features, and various aspects about the features, which are then used to
map data set meta-features to corresponding pipeline configurations that may work well on
data sets with those meta-features. Such an intelligent meta-learning algorithm is likely to
improve the TPOT sensible initialization process.

Furthermore, we will attempt to characterize the ideal “shape” of a machine learning
pipeline. In auto-sklearn, Feurer et al. (2015a) imposed a short and fixed pipeline structure
of a data preprocessor, a feature preprocessor, and a model. In another GP-based AutoML
system, Zutty et al. (2015) allowed the GP algorithm to design arbitrarily-shaped pipelines
and found that complex pipelines with several preprocessors and models were useful for
signal processing problems. Thus, it may be vital to allow AutoML systems to design
arbitrarily-shaped pipelines if they are to achieve human-level competitiveness.

Finally, genetic programming (GP) optimization methods are typically criticized for
optimizing a large population of solutions, which can sometimes be slow and wasteful for
certain optimization problems. Instead, it is possible to turn GP’s purported weakness
into a strength by creating an ensemble out of the GP populations. Bhowan et al. (2013)
explored one such population ensemble method previously with a standard GP algorithm
and showed that it significantly improved performance, and it is a natural extension to
create ensembles out of TPOT’s population of machine learning pipelines.

In conclusion, these experiments demonstrate that there is much to be gained from
taking a model-agnostic approach to machine learning and allowing the machine to auto-
matically discover what series of preprocessors and models work best for a given problem
domain. As such, AutoML stands to revolutionize data science by automating some of the
most tedious—yet most important—aspects of machine learning.
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