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Abstract

Motivation: Selecting the optimal machine learning (ML) model for a given dataset is often challenging. Automated
ML (AutoML) has emerged as a powerful tool for enabling the automatic selection of ML methods and parameter
settings for the prediction of biomedical endpoints. Here, we apply the tree-based pipeline optimization tool (TPOT)
to predict angiographic diagnoses of coronary artery disease (CAD). With TPOT, ML models are represented as
expression trees and optimal pipelines discovered using a stochastic search method called genetic programing.
We provide some guidelines for TPOT-based ML pipeline selection and optimization-based on various clinical phe-
notypes and high-throughput metabolic profiles in the Angiography and Genes Study (ANGES).

Results: We analyzed nuclear magnetic resonance-derived lipoprotein and metabolite profiles in the ANGES cohort with a
goal to identify the role of non-obstructive CAD patients in CAD diagnostics. We performed a comparative analysis of
TPOT-generated ML pipelines with selected ML classifiers, optimized with a grid search approach, applied to two pheno-
typic CAD profiles. As a result, TPOT-generated ML pipelines that outperformed grid search optimized models across mul-
tiple performance metrics including balanced accuracy and area under the precision-recall curve. With the selected mod-
els, we demonstrated that the phenotypic profile that distinguishes non-obstructive CAD patients from no CAD patients is
associated with higher precision, suggesting a discrepancy in the underlying processes between these phenotypes.

Availability and implementation: TPOT is freely available via http://epistasislab.github.io/tpot/.

Contact: jhmoore@upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Although predictive analysis in biomedical research is typically based
on deriving quantitative measures of confidence through the creation
and fitting of a hypothesis-specific probability model, machine learning

(ML)-based algorithms offers a wide range of different techniques that
focus on prediction, through pattern recognition learning, with min-
imal underlying assumptions about the features. ML is especially ef-
fective when features are involved in nonlinear interactions or when no
strong scientific hypothesis about feature interactions is established. In
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clinical research, ML-derived predictive models could facilitate prelim-
inary hypothesis generation as well as be used for biomarker discovery
through the selection of informative features. The choice of the most
appropriate ML algorithm is a challenging process. Indeed, dozens of
ML algorithms have been implemented in various languages: e.g.
Scikit-learn library for Python (Pedregosa et al., 2011), Weka software
for Java (Witten et al., 2016) and the caret package for R (Kuhn et al.,
2008). Each classification or regression ML algorithm contains numer-
ous parameters that need to be selected and optimized. A common ap-
proach is to perform an exhaustive search over the selected algorithm
parameter set (Bzdok et al., 2018). Additionally, uncertainty in ML
model selection comes from the number of various pre-processing algo-
rithms such as, feature selectors (group of computational algorithms
providing a reduction in the feature list according to a select statistical
scoring metrics e.g. variance, f-value, v2 etc.) and feature transformers
[group of computational algorithms which provides transformation of
the dataset with feature pre-processing (such as standardization and
normalization), reduction of dimensionality of the feature set, or gener-
ation of new feature(s) from existing ones] that might be needed to en-
rich the data for signal. Together with ML model hyperparameter
tuning, this creates numerous possible combinations to be validated on
one particular dataset of interest. Automated ML (AutoML) seeks to
take the guesswork out of this process by treating ML algorithms and
pre-processing methods as building blocks for pipelines that are con-
structed and evaluated using a search algorithm.

AutoML methods to date have employed multiple optimization
techniques: ML algorithm hyperparameter tuning implemented in
the mlr R package (Bischl et al., 2016), full pipeline Bayesian hyper-
parameter optimization used in Auto-WEKA (Thornton et al.,
2013) and auto-sklearn (Feurer et al., 2015), Bayesian optimization
of pipeline operators including the choice of imputer (group of
algorithms providing a replacement of missing data with substituted
values), selected feature transformers, ML model and calibrator is
available via AutoPrognosis (Alaa and van der Schaar, 2018). Our
specific AutoML method of interest is the tree-based pipeline opti-
mization tool (TPOT) that takes a higher-level approach to the opti-
mization process by using genetic programing to find optimal ML
pipelines. TPOT has been observed to automatically generate ML
pipelines that match or exceed the performance of traditionally
tuned supervised ML algorithms (Olson and Moore, 2016). In clin-
ical applications (Orlenko et al., 2018), TPOT has delivered promis-
ing predictive performance while remaining robust to mixed
datatypes and large feature spaces, containing clinical, demographic
and biomarker data. Here we use TPOT to predict angiographic
diagnosis of coronary artery disease (CAD) in the Angiography and
Genes Study (ANGES) using metabolomics data. In addition, we
provide a guideline for TPOT-based ML pipeline selection based on
various clinical phenotypes and high-throughput metabolic profiles.

2 Materials and methods

2.1 TPOT overview
Here we used TPOT as our AutoML method to generate optimized
ML pipelines for the ANGES dataset. Briefly, TPOT employs genet-
ic programing (Koza, 1992) from the Python package DEAP (Fortin
et al., 2012) to select series of data pre-processing functions and ML
classification or regression algorithms that aim to maximize the per-
formance of the model for a dataset of interest. In addition to ML al-
gorithm, TPOT model pipeline (Fig. 1) may contain a diverse
combinations of data transformers implemented in Scikit-learn
Python library such as various types of pre-processors [Standard
Scaler (SS), Min Max Scaler, Max Abs Scaler, Binarizer,
Normalizer, polynomial features expansion] as well as various fea-
ture selectors [Variance Threshold, Select Percentile (SP), recursive
feature elimination (RFE) etc.]. In certain cases, constructing a new
feature set can be useful for extracting important information (e.g.
when a selected method analyzes one feature at a time while com-
plex feature interactions are present in the dataset). TPOT also con-
tains several custom feature constructor implementations: zero
counts (count of zero/non-zeros per sample), stacking estimator (SE)

(generates predictions and class probabilities with a classifier of
choice as new features), one hot encoder (transforms categorical fea-
ture into binary features) and a selection of sklearn transformer
implementations: PCA, independent component analysis, non-linear
transformations through kernel approximation (Nystroem, RBF
Sampler). The TPOT full configuration consists of 11 classification
algorithms, 14 feature transformers and 5 feature selectors (for the
full list please refer to the TPOT website). To combine all of these
operators, TPOT employs a tree-based structure (Fig. 1 and
SupplementaryFig. S1): every pipeline starts with one or more copies
of the entire dataset at the beginning of the tree structure and pro-
ceeds with feature transformation/selection operators described
above or ML algorithm. Operators then modify the original dataset
and it is further passed along the tree to the next operator or in the
case if there are multiple copies of the dataset it may be combined
into a single set via a combination operator.

The automatic optimization process via genetic programing
begins with the initialization of a population of pipelines by ran-
domly generating a fixed number of tree-based pipelines that is fur-
ther subjected to the evolutionary algorithm through rounds
(generations) of mutation, recombination of pipeline components
and selection. The fitness of the pipeline is calculated via Pareto
multi-objective function that aims to maximize ML algorithm’s per-
formance metrics of choice (accuracy, precision, recall, f1 score, r2,
mean squared error etc.) while minimizing the pipeline’s complexity
(i.e. the number of data transformers/selectors in the pipeline).
There are several sources of variation that changes the structure of a
TPOT pipeline and facilitates the selection of the most fit for a given
dataset: crossover and mutation. First, one-point crossover applied
to a user-specified percentage of pipelines where two randomly
selected pipelines split at random point in the tree and their contents
exchanged. Subsequently, mutation is applied at a fixed user-defined
frequency with changes in the form of addition, removal or substitu-
tion of the pipeline operators. Once the changes have been intro-
duced, and their fitness effect calculated, the TPOT pipeline with
the highest fitness from the current generation is selected to replace
10% of the population in the next generation. The remaining 90%
of the population is selected via three-way tournament with two-
way parsimony: three pipelines selected for the tournament where at
first the lowest fitness one is removed and then the least complexed
of the remaining two is selected to be reproduced in the next gener-
ation. Population size, generation number and mutation rate param-
eters could be defined by the user. Here we will be comparing
TPOT-based model optimization to the more traditional exhaustive
tuning of the selected ML algorithms parameters.

2.2 TPOT model selection for CAD phenotype in ANGES
2.2.1 Study population

This study is based on data from the ANGES, which enrolled 1000
patients referred to coronary angiography at Tampere University
Hospital (Finland) between September 2002 and July 2005 (for
details see Mennander et al., 2008). This study included 925 patients
from whom coronary angiography results and serum samples for
metabolic profiling were available. Patients were categorized into
three groups according to the angiographic findings. Obstructive or
functionally relevant CAD was defined as stenosis of �50% stenosis

Fig. 1. Example of the TPOT pipeline
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of any major coronary artery (left anterior descending, left circum-
flex or right coronary artery). Less than 50% coronary artery sten-
osis was categorized as a non-obstructive CAD. Patients were
considered to have no CAD if no major coronary artery showed any
sign of stenosis. ANGES approved by the Ethics Committee of
Tampere University Hospital. All patients gave written informed
consent, and the study conforms to the Declaration of Helsinki.

2.2.2 Metabolic profiling

Fasting EDTA serum samples were stored at �80�C prior to ana-
lysis. A high-throughput 1H NMR metabolomics platform (Soininen
et al., 2015) was used to quantify 73 lipid and metabolic measures:
56 lipid-related measures (including concentrations of 14 lipopro-
tein subclasses), 8 amino acids, 4 glycolysis-related metabolites and
5 other metabolites.

2.2.3 Study design

In addition to 73 metabolic features, we included 27 demographic and
clinical features. Baseline characteristics of the study population are
listed in Supplementary Table S1. We processed the missing values
with KNN imputation strategy using fancyimpute python package
(Rubinsteyn et al., 2016). We used TPOT in classification mode as our
datasets of interest have binary phenotypes. In clinics, non-obstructive
is distinguished from obstructive CAD based on the extent of the cor-
onary stenosis to identify patients requiring revascularization, even
though both CAD phenotypes represent the same pathophysiological
pathway. We, therefore, performed comparisons for two different pro-
files: no CAD versus non-obstructive and obstructive CAD (P1) and no
CAD and non-obstructive CAD versus obstructive CAD (P2). We split
the datasets into training (75%) and validation (25%) sets and run all
optimization approaches on the training set. We reported both training
and validation sets scores in the result section.

TPOT was set to run for 1000 generations or 24 h (whichever
happens first) with the population size of 1000 pipelines. For each
phenotypic profile TPOT-based model selection was performed with
different configuration: full configuration with complete list of data
operators and ML classification models (Model 1), reduced configur-
ation with logistic regression (LR) classifier and complete list of data
transformers and selectors (Model 2), reduced configuration with de-
cision tree (DT) classifier and complete list of data transformers and
selectors (Model 3), reduced configuration with random forest (RF)
classifier and complete list of data transformers and selectors (Model
4). The performance of each pipeline was estimated with 10-fold
cross-validation and balanced accuracy. Balanced accuracy is a metric
used in imbalanced datasets in order to avoid inflated performance
estimates. It evaluates the accuracy of each class and then computes
an unweighted average of each class accuracy. In the case of the bal-
anced dataset it will be equal to the accuracy score (Mosley, 2010).
Since evolutionary computation is a stochastic process, each configur-
ation was run 50 times with different random seeds and the pipeline
with the highest balanced accuracy score was selected as the represen-
tative model. This optimization strategy has been chosen empirically.
We usually recommend running TPOT for 1000 generations which
can take significant amount of time in cases of a large datasets. We
propose using multiple random seeds in order to compensate for any
potential effects from the initialization step.

We further compared TPOT-based model selection to the ex-
haustive grid search parameter tuning of LR classifier (Model 5),
DT classifier (Model 6) and RF Classifier (Model 7). The choice of
tree-based classifiers for evaluation, in addition to LR, is justified by
the results of the previous benchmarking studies where tree-based
methods reported superior performance in comparison to the other
ML classifiers (Fernández-Delgado et al., 2014; Olson et al., 2018)
Additionally, the grid search optimization method was applied to
the ML classifiers from the TPOT-generated pipelines that reported
the highest performance that were combined into a pipeline with a
subset of data pre-processors. Since the penalty parameter depends
on the scale of each feature, we standard-scaled (z-transformed) all
features before training linear regression models with and without
feature selection. We also applied standard scaling before training
naı̈ve Bayes classifiers for multivariate Bernoulli models. The naı̈ve

Bayes classifier for Bernoulli models implemented in sklearn per-
forms binarization of the continuous features with a default thresh-
old of 0.0. Prior standard scaling thus results in mean binarization
of continuous features. We have reported different performance
metrics (balanced accuracy, area under the curve (AUC), Precision-
Recall curve (PRC), Precision, Recall) for all ML pipelines along
with model complexity (the number of data transformation steps).

The predictive power of the clinical and metabolic features was
reported for the best pipelines for both phenotypic profiles. To cal-
culate the coefficients of the predictive ability of the specific feature
we used permutation feature importance (PFI) approach. Within
this approach we first calculated a pipeline performance (balanced
accuracy) on the unchanged dataset, and then permuted the values
within a feature and calculate the performance of the pipeline on the
modified dataset. The resulting difference in performances is the PFI
score. This procedure was repeated 100 times for each feature and
the mean taken as a final PFI score.

3 Results

3.1 Model selection with TPOT
Table 1(A) outlines the summary of the comparative analysis of
model selection from the TPOT optimization process and grid
search parameter tuning for P1 phenotype. As a result of TPOT opti-
mization with full configuration pipeline Model A1 has been
selected with the validation set balanced accuracy 0.77. It contains
four pre-processing operators (RFE, SE with LR Classifier, SE with
Multinomial Naı̈ve Bayes Classifier, SS and Bernoulli Naı̈ve Bayes
(BNB) as ML classifier). TPOT optimization with reduced configur-
ation of LR-only classifier (Model A2) has produced a pipeline with
eight pre-processors (SE with LR Classifier, Zero Counts, Select
From Model with Extra Trees Classifier, Binarizer, Normalizer and
SS) and validation set balanced accuracy 0.76. Model A3 is the re-
sult of TPOT reduced configuration with DT Classifier only had a
pipeline with six pre-processors [Binarizer, Select Few, SE with DT
Classifier1, Normalizer1, SE with DT Classifier2 and Normalizer2

(here and further abbreviation1 and 2identify that operator was used
twice within the pipeline but with a different hyperparameters
setup)] with the validation set balanced accuracy 0.70. Model A4
has been selected during TPOT RF Classifier only optimization and
had three pre-processors (SE with RF Classifier and Normalizer)
along with grid search parameter tuning for LR, DT and RF classi-
fiers (Models A5–A7 correspondingly) reported noticeably lower
validation set balanced accuracy performance (balanced accuracy
0.61–0.69). Overall, the first two models have reported very similar
performances in comparison to the remaining models for the P1;
however, ultimately the best model appears to be Model A1 selected
by the TPOT optimization with full configuration.

Similarly, we have summarized models selected for P2 pheno-
types via Table 1(B). TPOT with the full configuration produced
pipeline with four pre-processors (Variance Threshold, RFE, SE
with LR, Max Abs Scaler) and BNB (Model B1) with the validation
set balanced accuracy 0.78. TPOT with the reduced configurations
have produced slightly less accurate models with validation set bal-
anced accuracy 0.77 for Model B2 or LR Classifier also with four
pre-processors (RFE1, SE with LR Classifier, SS and RFE2), balanced
accuracy 0.75 for Model B3 or DT Classifier with five pre-process-
ors (Binarizer, SE with DT Classifier, Select Fwe, Nystroem and
PCA), balanced accuracy 0.76 for Model B4 or RF Classifier with
three pre-processors (Binarizer, Normalizer and SP). Grid search
tuning of LR, DT and RF classifiers produced balanced accuracy in
the range 0.70–0.74. Overall, the best predictive performance came
from the TPOT full configuration selection (Model B1).

In ML binary classification analysis, current research has shifted
away from simply presenting the accuracy of the model when reporting
clinically relevant findings. Therefore, in this study, predictive power of
the selected models was additionally evaluated via precision, recall, and
threshold-based performance metrics. One of the most common metrics
employed in clinical settings is precision or positive predictive values
that characterizes the model’s ability to not to label negative samples as
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positive samples. It is often complemented by recall metrics—the ability
of the model to detect all the positive samples. These metrics are single-
threshold, meaning that they are defined for a single choice of decision
threshold for an ML classifier and therefore are not able to describe its
behavior within a range of decision criterions. This problem, however,
could be resolved by reporting various receiver operator characteristic
(ROC) curves (Provost et al., 1998). The most commonly used one,
ROC area AUC, illustrates the results of binary classification problem
as classifier threshold is varied. It reports how the true positive rate
(number of correctly classified positive samples) varies with the false
positive rate (number of incorrectly classified negative samples; Fig. 2).
Models with BNB classifier optimized by TPOT reported the top ROC
score for both P1 and P2. Similar to ROC AUC, PRC plots provides
classifier-wide estimation; however, when dealing with imbalanced
dataset PRC provides a more informative description of the classifier
performance (Davis and Goadrich, 2006; Saito and Rehmsmeier,
2015). According to the PRC curves (Fig. 3), TPOT models with BNB
classifier (Models A1 and B1) have reported the top performance for
both P1 and P2 similar to the other metrics. Overall, BNB classifier
models optimized by TPOT have been ultimately first among four out
five performance metrics reported here for both P1 and P2.

3.2 Complexity and performance tradeoff in model

selection
We further raised the question about the relationship between a
model’s complexity and its performance with our assumption that a
more complex model generally performs better than a less complex
model. Indeed, for both P1 and P2 the best performing models
(Models A1 and B1) had a complexity of five, where, in addition to
optimized ML algorithm, four data transforming operators had
been selected. To test the robustness of this model, we performed a
sensitivity analysis where we consecutively removed pre-processing

operators from the model pipeline to track the changes in its per-
formance. As it can be seen from the Table 2(A), the balanced accur-
acy and ROC AUC performance dramatically decrease after
removal of the first two pre-processors (RFE and SE with LR
Classifier). This suggests that this particular dataset may contain in-
tricate non-linear relationships among features so high complexity
combination of data transformers is needed to describe these rela-
tionships. Similar situations were observed for the model selected
for P2: removal of the first three pre-processors (Variance
Threshold, RFE, SE with LR) led to 10% decrease in both balanced
accuracy and ROC AUC metrics [Table 2(B)]. In summary, we
observed a consistent decrease across all performance metrics over
the decrease in complexity confirming the general trend for
increased complexity—increased performance relationship.

Given the results of the model selection process for P1, we con-
cluded that a proper choice and optimization of data pre-processing
operators and ML algorithms could be equally important if the goal
is to obtain a maximum performance score. Therefore, to make a
fair comparison of the TPOT optimization with competitive grid
search-based model selection approach we have evaluated the per-
formance of LR and BNB ML algorithms in various combinations
with SS, SP and RFE pre-processors (Table 3). For P1 addition of SS
operator in combination with RFE selector to the LR algorithm
resulted into noticeable increase in balanced accuracy (from 0.68 to
0.73). Further addition of feature selectors, however, only added
1% increase in balanced accuracy score for both profiles.

Addition of SS to BNB algorithm, on the contrary, reduced the
model performance according to all reported performance metrics
for both profiles. However, the further addition of SP feature select-
or to the pipeline resulted into an improvement of BNB pipeline per-
formance according to balanced accuracy for P2 profile. This
comparative analysis provides a brief insight into the importance of

Table 1. Comparative analysis of the TPOT optimization of selected model with various performance metrics for P1(A) and P2(B).

Model Balanced accuracy V/T Precision V/T Recall V/T ROC AUC V/T PRC V/T Pipeline complexity

A. P1

A1. TPOT (BNB) 0.77/0.79 0.91/0.93 0.77/0.79 0.77/0.86 0.88/0.95 5

A2. LR TPOT 0.76/0.79 0.90/0.93 0.79/0.80 0.76/0.86 0.87/0.95 9

A3. DT TPOT 0.70/0.74 0.88/0.89 0.71/0.80 0.70/0.74 0.85/0.87 7

A4. RF TPOT 0.69 /0.69 0.85/0.86 0.85/0.88 0.61/0.81 0.81/0.94 4

A5. LR GS 0.68/0.72 0.85/0.87 0.85/0.90 0.68/0.87 0.83/0.95 1

A6. DT GS 0.61/0.67 0.81/0.83 0.86/0.84 0.61/0.72 0.81/0.87 1

A7. RF GS 0.61/0.66 0.81/0.84 0.87/0.88 0.64/0.81 0.82/0.93 1

B. P2

B1. TPOT (BNB) 0.78/0.78 0.82/0.84 0.79/0.79 0.78/0.82 0.78/0.86 5

B2. LR TPOT 0.77/0.75 0.80/0.80 0.84/0.80 0.77/0.84 0.76/0.90 5

B3. DT TPOT 0.75/0.76 0.78/0.81 0.84/0.81 0.72/0.80 0.73/0.84 6

B4. RF TPOT 0.76/0.76 0.78/0.81 0.86/0.83 0.75/0.83 0.74/0.88 4

B5. LR GS 0.73/0.74 0.76/0.78 0.84/0.84 0.73/0.85 0.73/0.89 1

B6. DT GS 0.74/0.73 0.78/0.80 0.81/0.76 0.74/0.78 0.74/0.83 1

B7. RF GS 0.72/0.72 0.77/0.78 0.76/0.81 0.69/0.83 0.70/0.88 1

Note: Metrics’ score are shown for validation (V) and training (T) set. The highest score in each metrics category is marked via bold font. The best model for

each phenotypic profile was selected according to the highest balanced accuracy. BNB, Bernoulli Naı̈ve Bayes classifier; LR, logistic regression classifier; DT, deci-

sion tree classifier; RF, random forest classifier; GS, grid search optimization.

Fig. 2. ROC AUC curves for selected models for P1 dataset (A) and P2 dataset (B) Fig. 3. Precision-recall curves for selected models for P1 dataset (A) and P2

dataset (B)
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the correct choice and optimization of the data pre-processing oper-
ators or their combination for clinical datasets with complex rela-
tionships. Although the addition of specific pre-processors enhanced
grid search optimization as compared with the ML algorithm tuning
itself, TPOT agnostic optimization still provides with the best over-
all ML solution for both phenotypic profiles.

3.3 Feature importances
The TPOT selection process generated ML model pipelines that out-
performed the traditional exhaustive parameter search approach for
both CAD phenotypic profiles. Within clinical settings, one of the
most important considerations for an ML model is interpretation via
importance coefficients for features. Some models provide built-in
functions such as coefficients in linear regression or feature import-
ance scores in tree-based models. However, it is often the case that
ML algorithms don’t have an implemented feature importance func-
tion or a model pipeline could be too complex to use this function. In
these cases, PFI can be a great alternative metric. Here we report 30
features with the top coefficients received from the PFI analysis per-
formed on the P1 dataset with Model A1 and P2 dataset with Model

B1 (Fig. 4A and B). The top coefficients correspond to clinical fea-
tures such as sex, age, information about medication previously taken
and several metabolic determinants like overall lipid content and
HDL for P1 (Fig. 4A) and various fatty acids for P2 (Fig. 4B).
Interestingly, both subsets report a rapid change in decline of the
mean decrease in balanced accuracy coefficients after the top ten fea-
tures, e.g. for P1 (Fig. 4A) coefficients for the top 10 features experi-
ence a decrease from 8.8 (Prev_susp_MI) to 0.88 (Arrhythmia) while
the remaining top features slowly approach coefficient of zero and
with that behavior create a threshold for selection of the most import-
ant features that could be used in CAD diagnosis predictions.

4 Discussion

In this study, we present a comprehensive analysis of AutoML meth-
ods implemented in TPOT to predict the angiographic diagnosis of
CAD, using metabolic and clinical features. We demonstrate that for
the ANGES dataset, the TPOT model selection approach produces
classification pipelines that outperform exhaustive grid search opti-
mization (Tables 1 and 3). As reported in the summary tables

Table 2. The complexity-performance relationship for models selected by the TPOT optimization for P1(A) and P2(B)

Model Balanced accuracy V/T Precision V/T Recall V/T ROC AUC V/T PRC V/T Pipeline complexity

A. P1

Model A1 0.77/0.79 0.91/0.93 0.77/0.79 0.77/0.86 0.88/0.95 5

Pr-1 0.74/0.77 0.90/0.92 0.77/0.79 0.74/0.84 0.86/0.94 4

Pr-2 0.67/0.73 0.86/0.90 0.73/0.72 0.67/0.80 0.83/0.92 3

Pr-3 0.64/0.69 0.84/0.89 0.7/0.68 0.64/0.76 0.82/0.91 2

Pr-4 0.62/0.61 0.81/0.81 0.95/0.96 0.62/0.85 0.81/0.95 1

B. P2

Model B1 0.78/0.78 0.82/0.84 0.79/0.79 0.78/0.82 0.78/0.86 5

Pr-1 0.78/0.76 0.82/0.82 0.81/0.79 0.78/0.81 0.78/0.86 4

Pr-2 0.74/0.76 0.79/0.82 0.77/0.78 0.74/0.81 0.74/0.86 3

Pr-3 0.68/0.75 0.75/0.82 0.7/0.75 0.68/0.8 0.7/0.85 2

Pr-4 0.68/0.75 0.75/0.82 0.7/0.75 0.68/0.8 0.7/0.85 1

Note: Model ‘Pr-1’, ‘Pr-2’ etc. indicate the number of pre-processors removed from the original model pipeline.

Table 3. Comparative analysis of the grid search optimization of selected ML algorithms with SS, SP and RFE pre-processing operators for

P1(A) and P2(B)

Model Balanced accuracy V/T Precision V/T Recall V/T ROC AUC V/T PRC V/T Pipeline complexity

A. P1

LR pipelines

LR 0.68/0.72 0.85/0.87 0.85/0.90 0.68/0.87 0.84/0.95 1

LR þSS 0.68/0.77 0.86/0.92 0.76/0.80 0.68/0.84 0.84/0.94 2

LR þ SS þ SP 0.68/0.78 0.86/0.92 0.76/0.81 0.68/0.84 0.84/0.94 3

LR þ SS þ RFE 0.73/0.77 0.88/0.91 0.80/0.81 0.73/0.84 0.86/0.94 3

BNB pipelines

BNB 0.72/0.77 0.88/0.91 0.76/0.78 0.72/0.85 0.85/0.95 1

BNB þ SS 0.66/0.72 0.85/0.89 0.73/0.73 0.66/0.79 0.83/0.92 2

BNB þ SS þ SP 0.71/0.76 0.88/0.92 0.76/0.75 0.71/0.84 0.85/0.95 3

BNB þ SS þ RFE 0.70/0.73 0.88/0.90 0.75/0.76 0.70/0.82 0.85/0.94 3

B. P2

LR pipelines

LR 0.73/0.74 0.76/0.78 0.84/0.84 0.73/0.85 0.73/0.89 1

LR þSS 0.69/0.76 0.73/0.81 0.79/0.80 0.69/0.84 0.70/0.89 2

LR þ SS þ SP 0.72/0.76 0.76/0.81 0.80/0.79 0.72/0.83 0.73/0.89 3

LR þ SS þ RFE 0.74/0.74 0.78/0.80 0.81/0.80 0.74/0.84 0.74/0.89 3

BNB pipelines

BNB 0.70/0.74 0.75/0.80 0.77/0.79 0.70/0.80 0.71/0.85 1

BNB þ SS 0.63/0.66 0.69/0.75 0.69/0.67 0.63/0.74 0.66/0.81 2

BNB þ SS þ SP 0.74/0.75 0.80/0.83 0.74/0.75 0.74/0.82 0.74/0.87 3

BNB þ SS þ RFE 0.65/0.67 0.71/0.76 0.74/0.73 0.65/0.77 0.68/0.83 3

Note: SS, standard scaler; SP, select percentile; RFE, recursive feature eliminator; LR, logistic regression classifier; BNB, Bernoulli Naı̈ve Bayes classifier.
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(Table 1), the BNB classifier in combination with four pre-processors
showed the best performance for P1, with a validation set balanced
accuracy 0.77. In comparison, the grid search optimized LR yielded a
balanced accuracy 0.68 which generates a 9% difference. With a bal-
anced accuracy 0.78, BNB classifier combined with four pre-process-
ors was the best performing model for P2, which outperformed the
best grid search optimized model—DT classifier by 4%.

The agnostic approach that uses minimum assumption about
model selection employed by TPOT offers great potential for clinical
prediction, particularly if the underlying mechanistic relationship be-
tween the different features is unknown. Here we employed two
TPOT-based optimization approaches: full configuration with a com-
plete list of pre-processors and classifiers and reduced configuration
with a complete list of pre-processors and one selected classifier (LR,
DT or RF). We have observed that in both instances TPOT with full
set of classifiers and pre-processors had generated the model pipelines
that outperform all optimization strategies (including reduced config-
uration TPOT and grid search with/without pre-processors). This sug-
gests that the choice of pre-processors, and its combinations, could be
as important as the choice of ML algorithm and its parameters (e.g.
Table 2 shows that for P1 removing first 2 pre-processors decreases
balanced accuracy on 10%). That was also demonstrated via com-
parison of grid search optimization with selected data pre-processors
(Table 3). Alternatively, to perform the agnostic model selection via
the grid search approach one will need extensive computational
resources. For example, to optimize an ensemble tree-based ML algo-
rithm with five hyperparameters with 10 possible values for each,
grid search will need to sample 100 000 combinations to select the
best one and it would take over 2700 computing hours (with 32 GB
RAM Desktop, 10 s per combination). A list of pre-processors can
significantly increase the running time: adding 10 pre-processors to
the space search will increase the number of combinations beyond 9.8
trillion (or over 270 billion computing hours). This would be an esti-
mate for the pre-processors with no hyperparameters. However,
many contain at least one hyperparameter to tune which would great-
ly increase the total number of combinations. Therefore, an agnostic
approach to model selection with grid search may not be feasible
with modern computational resources and thus stochastic search
methods such as genetic programing may be the best option.

As we mentioned earlier, the best classification performance was
associated with full configuration TPOT optimization that resulted
in pipelines with the BNB classification algorithm for both P1 and

P2. This algorithm is rarely considered for classification task in bio-
medical predictive analytics and is most often used in spam detec-
tion procedures. The BNB classifier contains a binarization
threshold function that could be relevant to some datasets, especially
those with binary and/or discrete features. Indeed, the top features
detected via PFI analysis were binary in both profiles. However,
BNB classifier outperforms all the competitive algorithms only with
the select pre-processors, with the most impactful ones to be RFE se-
lector and SE with LR Classifier (Table 2). The first one uses Extra
Tree Classifier estimation to reduce feature set in half, the second
one generates class probabilities with the LR classifier as a synthetic
feature, and therefore in addition to BNB assumptions this pipeline
contains informational contribution from tree-based and linear
models. Overall, making minimum assumption when building a
model (and selecting feature transformers and selectors) could be
very useful strategy when little is known about relationships be-
tween features and phenotype (e.g. for early hypothesis generation
studies).

We applied selected models to compare phenotypic profiles with a
goal to clarify the role of non-obstructive CAD patients in CAD diagnos-
tics. As a result of this comparison, the TPOT optimization produced a
model pipeline with similar classification accuracy for both non-
obstructive CAD/no CAD versus no CAD profile and obstructive CAD
versus non-obstructive CAD/no CAD profile (BNB TPOT, 0.78)
(Table 1 and Fig. 5) but closer look across all metrics identified a sub-
stantially higher precision and precision-recall curve values associated
with the first profile (Table 1 and Fig. 2). Obstructive CAD is defined
using arbitrary thresholds (in our study 50% stenosis) to identify
patients requiring revascularization. However, non-obstructive and ob-
structive CAD represent the same pathophysiological pathways, compli-
cating the identification of discriminative features. Therefore, we
performed an examination of selected models with regard to the predict-
ive power of the features via PFI procedure. As a result, a subset of top
predictive clinical and metabolic features was outlined (Fig. 4) for both
phenotypic profiles. For the P1 profile a number of known risk factors
(Hajar, 2017) and phenotypic proxies were found among top features
including myocadiac infarction signs, age, sex, history of percutaneous
coronary intervention (PCI) procedure, administration of nitrate and sta-
tin medications, hyperlipidemia and HDL cholesterol. The top predictive
features differ between P1 and P2: in the P2 dataset metabolic features
and specifically fatty acids seems to be more relevant for the prediction
of CAD diagnosis (linoleic acid, total saturated fatty acid, omega-6 fatty

Fig. 4. PFI coefficients produced by Model A1 for P1 dataset with validation set balanced accuracy 0.77 (A) and by Model B1 for P2 dataset with validation set balanced accuracy 0.78 (B)

Model selection for metabolomics 1777

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/6/1772/5614811 by guest on 20 M
arch 2024



acid and polyunsaturated fatty acid cumulative coefficient >2%). These
deviations could be related to non-obstructive CAD effect and the differ-
ence in the model pipeline selected for each profile. Overall, clinical in-
formation in combination with selected metabolic features (HDL, fatty
acids) are potent predictors of CAD diagnosis.

5 Conclusion

We demonstrated the power of agnostic model selection with the
AutoML tool TPOT for CAD diagnosis prediction using clinical and
metabolic data from the ANGES cohort. As a result, TPOT opti-
mization automatically produced predictive models that outper-
formed grid search optimized models. We used selected models to
show that phenotypic profile that distinguishes non-obstructive
CAD patients from no CAD patients is associated with higher preci-
sion and subsequently have a different subset of predictive features
than phenotypic profile that treats no CAD patients and non-
obstructive CAD patients as the same outcome.
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