Skip to main content

Advertisement

Log in

Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

The fields of machine meta-learning and hyper-heuristic optimisation have developed mostly independently of each other, although evolutionary algorithms (particularly genetic programming) have recently played an important role in the development of both fields. Recent work in both fields shares a common goal, that of automating as much of the algorithm design process as possible. In this paper we first provide a historical perspective on automated algorithm design, and then we discuss similarities and differences between meta-learning in the field of supervised machine learning (classification) and hyper-heuristics in the field of optimisation. This discussion focuses on the dimensions of the problem space, the algorithm space and the performance measure, as well as clarifying important issues related to different levels of automation and generality in both fields. We also discuss important research directions, challenges and foundational issues in meta-learning and hyper-heuristic research. It is important to emphasize that this paper is not a survey, as several surveys on the areas of meta-learning and hyper-heuristics (separately) have been previously published. The main contribution of the paper is to contrast meta-learning and hyper-heuristics methods and concepts, in order to promote awareness and cross-fertilisation of ideas across the (by and large, non-overlapping) different communities of meta-learning and hyper-heuristic researchers. We hope that this cross-fertilisation of ideas can inspire interesting new research in both fields and in the new emerging research area which consists of integrating those fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that when we talk about algorithms, we mean any sequence of steps that is followed to solve a particular problem, regardless of whether these steps describe a heuristic, a neural network or a genetic algorithm.

References

  1. C. Adami, T.C. Brown, Evolutionary learning in the 2d artificial life system avida. in Artificial Life IV, ed. by R.A. Brooks, P. Maes (MIT Press, Cambridge, 1994), pp. 377–381

    Google Scholar 

  2. D.W. Aha, Generalizing from case studies: A case study. in Proceedings of the Ninth International Conference on Machine Learning. (Morgan Kaufmann, Burlington, 1992), pp. 1–10

  3. R. Aler, D. Borrajo, P. Isasi, Evolving heuristics for planning. in Lecture Notes in Computer Science. (1998)

  4. R. Aler, D. Borrajo, P. Isasi, Learning to solve planning problems efficiently by means of genetic programming. Evol. Comput. 9(4), 387–420 (2001)

    Article  Google Scholar 

  5. R. Aler, D. Borrajo, P. Isasi, Using genetic programming to learn and improve control knowledge. Artif. Intell. 141(1-2), 2956 (2002)

    Article  Google Scholar 

  6. P.J. Angeline, Adaptive and self-adaptive evolutionary computations. in Computational Intelligence: A Dynamic Systems Perspective. (IEEE Press, New York, 1995), pp. 152–163

  7. T. Bäck, An overview of parameter control methods by self-adaption in evolutionary algorithms. Fundam. Inf. 35(1-4), 51–66 (1998)

    MATH  Google Scholar 

  8. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction; On the Automatic Evolution of Computer Programs and its Applications. (Morgan Kaufmann, San Francisco, 1998)

    Book  MATH  Google Scholar 

  9. R.C. Barros, M.P. Basgalupp, A.C. de Carvalho, A.A. Freitas, A hyper-heuristic evolutionary algorithm for automatically designing decision-tree algorithms. in Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, GECCO ’12. (2012), pp. 1237–1244

  10. D. Borrajo, M. Veloso, Lazy incremental learning of control knowledge for efficiently obtaining quality plans. AI Rev. J. Spec. Issue Lazy Learn. 11, 371–405 (1996)

    Google Scholar 

  11. P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning: Applications to Data Mining. (Springer, Berlin, 2008)

    Google Scholar 

  12. P.B. Brazdil, C. Soares, J.P. Da Costa, Ranking learning algorithms: using ibl and meta-learning on accuracy and time results. Mach. Learn. 50(3), 251–277 (2003)

    Article  MATH  Google Scholar 

  13. L. Breiman, Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  14. E.K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: an emerging direction in modern search technology. in Handbook of Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer, Dordrecht, 2003), pp. 457–474

    Google Scholar 

  15. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. Woodward, Exploring hyper-heuristic methodologies with genetic programming. in Computational Intelligence: Collaboration, Fusion and Emergence, Intelligent Systems Reference Library. ed. by C. Mumford, L. Jain (Springer, Berlin, 2009), pp. 177–201

    Chapter  Google Scholar 

  16. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. Woodward, Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 146, chap. A Classification of Hyper-heuristic Approaches. (Springer 2010), Chapter 15, pp. 449–468

  17. E.K. Burke, M. Hyde, G. Kendall, J. Woodward, Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). (London, UK 2007), pp. 1559–1565

  18. E.K. Burke, M.R. Hyde, G. Kendall, Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation 16(3), 406–417 (2012)

    Article  Google Scholar 

  19. E.K. Burke, M.R. Hyde, G. Kendall, J. Woodward, A genetic programming hyper-heuristic approach for evolving two dimensional strip packing heuristics. IEEE Transactions on Evolutionary Computation 14(6), 942–958 (2010)

    Article  Google Scholar 

  20. E.K. Burke, M.R. Hyde, G. Kendall, J. Woodward, Automating the packing heuristic design process with genetic programming. Evol. Comput. 20(1), 63–89 (2012)

    Article  Google Scholar 

  21. E.K. Burke, G. Kendall, J.D. Landa-Silva, R. O’Brien, E. Soubeiga, An ant algorithm hyperheuristic for the project presentation scheduling problem. in Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 3. (2005), pp. 2263–2270

  22. E.K. Burke, G. Kendall, E. Soubeiga, A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 9(6), 451–470 (2003)

    Article  Google Scholar 

  23. E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based hyper-heuristic for educational timetabling problems. Eur. J. Oper. Res. 176, 177–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. E.K. Burke, S. Petrovic, R. Qu, Case based heuristic selection for timetabling problems. J. Sched. 9(2), 115–132 (2006)

    Article  MATH  Google Scholar 

  25. J. Cano-Belmán, R. Ríos-Mercado, J. Bautista, A scatter search based hyper-heuristic for sequencing a mixed-model assembly line. J. Heuristics 16, 749–770 (2010)

    Article  MATH  Google Scholar 

  26. E. Cantu-Paz, C. Kamath, An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 35(5), 915–927 (2005)

    Article  Google Scholar 

  27. K. Chakhlevitch, P.I. Cowling, Hyperheuristics: Recent developments. in Adaptive and Multilevel Metaheuristics Studies in Computational Intelligence, vol. 136, ed. by C. Cotta, M. Sevaux, K. Sörensen (Springer, Berlin, 2008), pp. 3–29

    Chapter  Google Scholar 

  28. A. Chandra, X. Yao, Ensemble learning using multi-objective evolutionary algorithms. J Math. Model. Algorithms 5, 417–445 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. P.C. Chen, G. Kendall, G. Vanden Berghe, An ant based hyper-heuristic for the travelling tournament problem. in Proceedings of IEEE Symposium of Computational Intelligence in Scheduling (CISched 2007), (2007), pp. 19–26

  30. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach for scheduling a sales summit. in Selected Papers of the Third International Conference on the Practice And Theory of Automated Timetabling, PATAT 2000, LNCS (Springer, Konstanz, Germany, 2000), pp. 176–190

  31. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach for scheduling a sales summit. in Selected Papers of the Third International Conference on the Practice And Theory of Automated Timetabling, PATAT 2000 (Springer, Berlin, 2001), pp. 176–190

  32. L. Cruz-Reyes, C. Gómez-Santillán, J. Pérez-Ortega, V. Landero, M. Quiroz, A. Ochoa, Intelligent Systems, chap. Algorithm Selection: From Meta-Learning to Hyper-Heuristics. (InTech, 2012), pp. 77–102

  33. A. Cuesta-Cañada, L. Garrido, H. Terashima-Marin, Building hyper-heuristics through ant colony optimization for the 2d bin packing problem. in Knowledge-Based Intelligent Information and Engineering Systems. ed. by R. Khosla, R. Howlett, L. Jain (Springer, Berlin, 2005), p. 907

    Google Scholar 

  34. R. Curry, P. Lichodzijewski, M. Heywood, Scaling genetic programming to large datasets using hierarchical dynamic subset selection. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(4), 1065–1073 (2007)

    Article  Google Scholar 

  35. C. Dimopoulos, A.M.S. Zalzala, Investigating the use of genetic programming for a classic one-machine scheduling problem. Adv. Eng. Softw. 32(6), 489–498 (2001)

    Article  MATH  Google Scholar 

  36. L.S. Diosan, M. Oltean, Evolving evolutionary algorithms using evolutionary algorithms. in Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, GECCO ’07. (New York, NY, USA, 2007), pp. 2442–2449

  37. K.A. Dowsland, E. Soubeiga, E.K. Burke, A simulated annealing hyper-heuristic for determining shipper sizes. Eur. J. Oper. Res. 179(3), 759–774 (2007)

    Article  MATH  Google Scholar 

  38. B. Edmonds, Meta-genetic programming: Co-evolving the operators of variation. Tech. rep., Centre for Policy Modelling, Manchester Metropolitan University (1998)

  39. B. Edmonds, Meta-genetic programming: Co-evolving the operators of variation. Turk. J. Elec. Engin. 9(1), 13–29 (2001)

    Google Scholar 

  40. A.E. Eiben, Z. Michalewicz, M. Schoenauer, J.E. Smith, Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 2(3), 124–141 (1999)

    Article  Google Scholar 

  41. A. Elyasaf, A. Hauptman, M. Sipper, Ga-freecell: evolving solvers for the game of freecell. in Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO ’11. (ACM, New York, NY, USA, 2011), pp. 1931–1938

  42. A. Elyasaf, A. Hauptman, M. Sipper, Evolutionary design of freecell solvers. IEEE Trans. Comput. Intell. AI Games 4(4), 270–281 (2012)

    Article  Google Scholar 

  43. H.L. Fang, P. Ross, D. Corne, A promising genetic algorithm approach to job shop scheduling, rescheduling, and open-shop scheduling problems. in 5th International Conference on Genetic Algorithms ed. by S. Forrest (Morgan Kaufmann, San Mateo, 1993), pp. 375–382

  44. R. Fikes, N.J. Nilsson, Strips: a new approach to the application of theorem proving to problem solving. in IJCAI. (1971), pp. 608–620

  45. H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling rules. in Industrial Scheduling, ed. by J.F. Muth, G.L. Thompson (Prentice-Hall, Inc, New Jersey, 1963), pp. 225–251

    Google Scholar 

  46. D. Floreano, P. Durr, C. Mattiussi, Neuroevolution: from architectures to learning. Evol. Intel. 1, 47–62 (2008)

    Article  Google Scholar 

  47. A. Frank, A. Asuncion, UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  48. P.W. Frey, D.J. Slate, Letter recognition using holland-style adaptive classifiers. Mach. Learn. 6, 161–182 (1991)

    Google Scholar 

  49. A.S. Fukunaga, Automated discovery of local search heuristics for satisfiability testing. Evol. Comput. 16(1), 31–61 (2008)

    Article  Google Scholar 

  50. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the theory of NP-Completeness. (W.H. Freeman and Company, San Fransisco, 1979)

    MATH  Google Scholar 

  51. P. Garrido, M. Riff, Dvrp: A hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. J. Heuristics 16, 795–834 (2010)

    Article  MATH  Google Scholar 

  52. C.D. Geiger, R. Uzsoy, H. Aytug, Rapid modeling and discovery of priority dispatching rules: An autonomous learning approach. J. Sched. 9(1), 7–34 (2006)

    Article  MATH  Google Scholar 

  53. L. Georgiou, W.J. Teahan, jGE: a java implementation of grammatical evolution. in Proceedings of the 10th WSEAS International Conference on Systems. (World Scientific and Engineering Academy and Society (WSEAS), 2006), pp. 410–415

  54. M. Ghallab, C.K. Isi, S. Penberthy, D.E. Smith, Y. Sun, D. Weld, PDDL - The Planning Domain Definition Language. Tech. Rep. CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)

  55. F. Glover, Future paths for integer programming and links to artificial intelligence. Comput. Opert. Res. 13(5), 533–549 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  56. H.J. Goldsby, B.H. Cheng, Avida-mde: a digital evolution approach to generating models of adaptive software behavior. in Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08 (2008), pp. 1751–1758

  57. J. Gratch, S. Chien, Adaptive problem-solving for large-scale scheduling problems: a case study. J. Artif. Intel. Res. 4, 365–396 (1996)

    Google Scholar 

  58. J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986)

    Article  Google Scholar 

  59. J.J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. SMC-16(1), 122–128 (1986)

    Article  Google Scholar 

  60. A. Hauptman, A. Elyasaf, M. Sipper, A. Karmon, Gp-rush: using genetic programming to evolve solversforthe rushhour puzzle. in Genetic and evolutionary computation (GECCO 2009). (ACM, 2009), pp. 955–962

  61. M.R. Hyde, E.K. Burke, G. Kendall, Automated code generation by local search. J. Oper. Res. Soc. (2012). doi:10.1057/jors.2012.149

  62. A. Keleş, A. Yayimli, A.C. Uyar, Ant based hyper heuristic for physical impairment aware routing and wavelength assignment. in Proceedings of the 33rd IEEE conference on Sarnoff. (Piscataway, NJ, USA, 2010), pp. 90–94

  63. Y. Kodratoff, D. Sleeman, M. Uszynski, K. Causse, S. Craw, Building a machine learning toolbox. in Enhancing the Knowledge Engineering Process, ed. by Steels L., Lepape (1992), pp. 81–108

  64. J.R. Koza, Genetic Programming: On the Programming of Computers by the Means of Natural Selection. (The MIT Press, Massachusetts, 1992)

    MATH  Google Scholar 

  65. O. Kramer, Evolutionary self-adaptation: a survey of operators and strategy parameters. Evol. Intel. 3, 51–65 (2010)

    Article  MATH  Google Scholar 

  66. N. Krasnogor, S. Gustafson, A study on the use of “self-generation” in memetic algorithms. Nat. Comput. 3(1), 53–76 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  67. C.W.G. Lasarczyk, P. Dittrich, J.C.F. Bioinformatics, W. Banzhaf, Dynamic subset selection based on a fitness case topology. Evol. Comput. 12, 223–242 (2004)

    Article  Google Scholar 

  68. J. Levine, D. Humphreys (2003) Learning action strategies for planning domains using genetic programming. in EvoWorkshops. (2003), pp. 684–695

  69. J. Levine, H. Westerberg, M. Galea, D. Humphreys, Evolutionary-based learning of generalised policies for ai planning domains. in Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09. (ACM, New York, 2009), pp. 1195–1202

  70. K. Leyton-Brown, E. Nudelman, Y. Shoham, Learning the empirical hardness of optimization problems: The case of combinatorial auctions. in Principles and Practice of Constraint Programming - CP 2002, Lecture Notes in Computer Science, vol. 2470, ed. by P. Van Hentenryck (Springer, Berlin, 2002), pp. 91–100

    Google Scholar 

  71. J. Maturana, F. Lardeux, F. Saubion, Autonomous operator management for evolutionary algorithms. J. Heuristics 16, 881–909 (2010)

    Article  MATH  Google Scholar 

  72. D.V. McDermott, Pddl2.1 - the art of the possible? commentary on fox and long. J. Artif. Intell. Res. (JAIR) 20, 145–148 (2003)

    MATH  Google Scholar 

  73. D. Michie, D. Spiegelhalter, C. Taylor (eds), Machine Learning, Neural and Statistical Classification. (Ellis Horwood, Chichester, 1994)

    MATH  Google Scholar 

  74. S. Minton, Automatically configuring constraint satisfaction problems: a case study. Constraints 1(1), 7–43 (1996)

    Article  MathSciNet  Google Scholar 

  75. T. Mitchell, Machine Learning (Mcgraw-Hill International Edit), 1st edn. (McGraw-Hill Education, New York, (ISE Editions), 1997)

    Google Scholar 

  76. A.Y. Ng, Preventing overfitting of cross-validation data. in Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97. (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997), pp. 245–253

  77. M. Nicolau, libGE: Grammatical evolution library for c++. Available from: http://waldo.csisdmz.ul.ie/libGE (2006)

  78. G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J. Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic, E. Burke, HyFlex: A Benchmark Framework for Cross-domain Heuristic Search 7245, 136–147 (2012)

    Google Scholar 

  79. G. Ochoa, R. Qu, E.K. Burke, Analyzing the landscape of a graph based hyper-heuristic for timetabling problems. in Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2009). (Montreal, Canada, 2009)

  80. G. Ochoa, J.A. Váquez-Rodríguez, S. Petrovic, E.K. Burke, Dispatching rules for production scheduling: a hyper-heuristic landscape analysis. in Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009). (Montreal, Norway, 2009)

  81. G. Ochoa, J. Walker, M. Hyde, T. Curtois, Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework. in Parallel Problem Solving from Nature - PPSN 2012, vol. 7492. (Springer, Berlin, 2012), pp. 418–427

  82. C. Ofria, C.O. Wilke, Avida: A software platform for research in computational evolutionary biology. Artif. Life 10(2), 191–229 (2004)

    Article  Google Scholar 

  83. M. Oltean, Evolving evolutionary algorithms using linear genetic programming. Evol. Comput. 13, 387–410 (2005)

    Article  Google Scholar 

  84. M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, A. Brabazon, GEVA: Grammatical evolution in Java. SIGEVOlution 3(2), (2008)

  85. E. Özcan, B. Bilgin, E.E. Korkmaz, A comprehensive analysis of hyper-heuristics. Intell. Data Anal. 12(1), 3–23 (2008)

    Google Scholar 

  86. G.L. Pappa, A.A. Freitas, Automatically evolving rule induction algorithms tailored to the prediction of postsynaptic activity in proteins. Intell. Data Anal. 13(2), 243–259 (2009)

    Google Scholar 

  87. G.L. Pappa, A.A. Freitas, Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach. (Springer, Berlin, 2009)

    Google Scholar 

  88. D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res. 34, 2403–2435 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  89. R. Poli, L. Vanneschi, W.B. Langdon, N.F. McPhee, Theoretical results in genetic programming: the next ten years? Genet. Program. Evolvable Mach. 11(3-4), 285–320 (2010)

    Article  Google Scholar 

  90. D. Posada, K.A. Crandall, Modeltest: testing the model of dna substitution. Bioinformatics 14(9), 817–818 (1998)

    Article  Google Scholar 

  91. R. Qu, E.K. Burke, Hybridisations within a graph based hyper-heuristic framework for university timetabling problems. J. Oper. Res. Soc. 60, 1273–1285 (2009)

    Article  MATH  Google Scholar 

  92. R.B. Rao, D. Gordon, W. Spears, For every generalization action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. in Proc. of the 12th International Conference on Machine Learning. (Morgan Kaufmann, 1995), pp. 471–479

  93. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. (Frommann-Holzboog, Stuttgart, 1973)

    Google Scholar 

  94. J.R. Rice, The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  95. L. Rokach, Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Comput. Stat. Data Anal. 53(12), 4046–4072 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  96. P. Ross, Hyper-heuristics. in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, chap. 17, ed. by E.K. Burke, G. Kendall (Springer, Berlin, 2005), pp. 529–556

    Chapter  Google Scholar 

  97. P. Ross, J.G. Marín-Blázquez, Constructive hyper-heuristics in class timetabling. in IEEE Congress on Evolutionary Computation. (2005), pp. 1493–1500

  98. P. Ross, S. Schulenburg, J.G. Marin-Blazquez, E. Hart, Hyper-heuristics: learning to combine simple heuristics in bin-packing problem. in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’02 (2002)

  99. O. Roux, C. Fonlupt, Ant programming: or how to use ants for automatic programming. in Proceedings of ANTS’2000, ed. by M. Dorigo, E. Al (Brussels, Belgium, 2000), pp. 121–129

    Google Scholar 

  100. A. Salehi-Abari, T. White, Enhanced generalized ant programming. in Proceedings of the 2008 Genetic and Evolutionary Computation Conference GECCO. (ACM Press, 2008), pp. 111–118

  101. C. Schaffer, A conservation law for generalization performance. in Proc. of the 11th International Conference on Machine Learning. (Morgan Kaufmann, 1994), pp. 259–265

  102. R. Schapire, The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

    Google Scholar 

  103. H.P. Schwefel, Numerische Optimierung von Computer-Modellen Mittels der Evolutionstrategie, ISR, vol. 26. (Birkhaeuser, Basel/Stuttgart, 1977)

    Book  Google Scholar 

  104. Y. Shan, R. McKay, D. Essam, H. Abbass, A survey of probabilistic model building genetic programming. in Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, ed. by M. Pelikan, K. Sastry, E. Cantu-Paz (Springer, Berlin, UK, 2006), pp. 121–160

    Chapter  Google Scholar 

  105. K. Smith-Miles, Towards insightful algorithm selection for optimisation using meta-learning concepts. in Proc. of IEEE International Joint Conference on Neural Networks IJCNN 2008. (2008), pp. 4118–4124

  106. K.A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41, 6:1–6:25 (2008)

    Article  Google Scholar 

  107. L. Spector, Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-Solving Genetic Programming Systems, vol. 8 (Springer, Berlin, 2010), pp. 17–33

    Google Scholar 

  108. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)

    Article  Google Scholar 

  109. T. Stutzle, S. Fernandes, New Benchmark Instances for the QAP and the Experimental Analysis of Algorithms, Lecture Notes in Computer Science, vol. 3004. (Springer, Berlin/Heidelberg, 2004), pp. 199–209

    Google Scholar 

  110. E.G. Talbi, Metaheuristics: From Design to Implementation. (Wiley, London, 2009)

    Book  Google Scholar 

  111. J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54, 453–473 (2008)

    Article  Google Scholar 

  112. H. Terashima-Marin, E.J. Flores-Alvarez, P. Ross, Hyper-heuristics and classifier systems for solving 2D-regular cutting stock problems. in Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2005. (2005), pp. 637–643

  113. H. Terashima-Marin, P. Ross, C.J. Farias Zarate, E. Lopez-Camacho, M. Valenzuela-Rendon, Generalized hyper-heuristics for solving 2D regular and irregular packing problems. Ann. Oper. Res. 179(1), 369–392 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  114. A. Vella, D. Corne, C. Murphy, Hyper-heuristic decision tree induction. in Nature Biologically Inspired Computing, 2009. NaBIC 2009. (World Congress on, 2009), pp. 409 – 414

  115. R. Vilalta, Y. Drissi, A perspective view and survey of meta-learning. Artif. Intell. Rev. 18, 77–95 (2002)

    Article  Google Scholar 

  116. G. Wäscher, H. Haußner, H. Schumann, An improved typology of cutting and packing problems. European Journal of Operational Research 183(3), 1109–1130 (2007)

    Article  MATH  Google Scholar 

  117. D.H. Wolpert, Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  118. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  119. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

G. L. Pappa, A. A. Freitas, J. Woodward and J. Swan would like to thank the 2011 GECCO’s workshop organizers for putting them in contact. G. L. Pappa was partially supported by CNPq, CAPES and FAPEMIG, all Brazilian Research Agencies. G. Ochoa and J. Swan were supported by UK Research Council EPSRC, grants EP/F033214/1 and EP/D061571/1. J. Wooward was supported by UK Research Council EPSRC, grant EP/J017515/1. A.A. Freitas was partially supported by UK Research Council EPSRC, grant EP/H020217/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele L. Pappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappa, G.L., Ochoa, G., Hyde, M.R. et al. Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet Program Evolvable Mach 15, 3–35 (2014). https://doi.org/10.1007/s10710-013-9186-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-013-9186-9

Keywords

Navigation