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ABSTRACT
Learning surrogates for product design and optimization is poten-

tial to capitalize on competitive market segments. In this paper we

propose an approach to learn surrogates of product performance

from historical clusters by using ensembles of Genetic Program-

ming. By using computational experiments involving more than

500 surrogate learning instances and 27,858 observations of vehicle

models collected over the last thirty years shows (1) the feasibility

to learn function surrogates as symbolic ensembles at different

levels of granularity of the hierarchical vehicle clustering, (2) the

direct relationship of the predictive ability of the learned surro-

gates in both seen (training) and unseen (testing) scenarios as a

function of the number of cluster instances, and (3) the attractive

predictive ability of relatively smaller ensemble of trees in unseen

scenarios. We believe our approach introduces the building blocks

to further advance on studies regarding data-driven product design

and market segmentation.

CCS CONCEPTS
• Theory of computation → Genetic programming; • Com-
puting methodologies→ Heuristic function construction;
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1 INTRODUCTION
A fundamental challenge to trigger product innovation and to cap-

italize on profitable market segments lies in identifying granular
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patterns of product evolution in competitive markets, and in learn-

ing function surrogates which predict product performance to allow

rapid prototyping while meeting preferential objectives.

To tackle the above, designing effective search heuristics and

expressible knowledge representations ar key to realize mappings

from historical product definitions to their performance predic-

tors. In one hand, artisans build relevant heuristics by interaction

and iteration[1], implying that product design mining can be trig-

gered by mimicking functions from pre-existing referents[2], or

by building through granularity principles while scaling toward

sophisticated hierarchical entities and ontologies[3].

However, approaches based on interaction and iteration are time-

consuming. For instance, consider the problem to design new chem-

ical reactors for failing batteries[4], or the problem to design robust

inhibitors to a new type of emerging influenza[5]. Here, predictors

of performance are inexistent and therefore experiments using sur-

rogate models, to obtain information on the design space is the

preferred choice[6–10].

However, in problem scenarios such as vehicle rear design[11],

vehicle component sizing and evaluation[12–19], the straightfor-

ward use of surrogate models brings a number of challenges: real-

world experiments are time consuming and expensive[11, 20–23],

and simulations are unable to consider real-world invariance[24–

26].

In line of the above, although researchers have proposed surro-

gates for vehicle performance based on either driver behaviour, road

density, route planning, torque control, inductive charge, market

data and aerodynamic rear[10, 11, 27–34], the problem of learning

predictive functions on vehicle clusters has received little attention.

In this paper, we evolve performance surrogates on vehicle clusters

in which fuel consumption is modeled as symbolic functions of

sizing variables. Basically, our contributions are summarized as

follows:

• We identify granular patterns of vehicle layouts by using ag-

glomerative clustering, allowing the representation of para-

metric designs considering concepts of hierarchy.

• We evolve surrogates of fuel consumption by using sym-

bolic functions represented though ensembles of Genetic

Programming, enabling the expression ability of surrogates

based on historical vehicle sizing variables.

• Computational experiments with more than 500 learning in-

stances using {10, 20, ..., 100} hierarchical clusters of 27,858

observations of car models between 1982 and 2016 show the

https://doi.org/10.1145/3205651.3208310
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(1) the feasibility to learn function surrogates at different lev-

els of granularity, (2) the enhanced predictive ability of the

learned surrogates as a function of cluster size in both train-

ing and testing phase, and (3) the attractive predictive ability

during the testing phase of relatively smaller ensemble of

trees.

We believe our approach introduces the building blocks to enable

further studies in data-driven product and vehicle design mining,

differentiation, as well as market segmentation. Our approach aims

at contributing towards the holistic design of things.

In the rest of this paper, Section 2 describes the basic ideas in

our approach; Section 3 describes the computational experiments

in evolving surrogates on vehicle clusters, and provides insights on

our experimental set; finally Section 4 concludes the paper.

2 EVOLVING SURROGATES ON VEHICLE
CLUSTERS

Here, we describe the main tenets of our approach, in which the

existence of historical product data (X ,Y ) is assumed, for X being

product design variable and Y being the performance metric.

2.1 Hierarchical Clustering
In order to identify granular patterns of historical products, we

use the hierarchical clustering algorithm with complete (furthest)

linkage in which product segments are computed by agglomerating

the similarity of the most dissimilar products, from the Euclidean

distance perspective, and a dendogram is rendered by assembling

products and modules hierarchically. It is well-known that the

agglomerative clustering can be computed in O(m2) time[35] time.

Formally, the hierarchical clustering maps the historical data X
to a dendogram, as shown by Algorithm 1 with

θ : X → Z

, in whichX is the set of historical points, andZ is the hierarchical

tree. Then by using the dendogram, it is possible to obtain a set of

individual clusters C , for ρ = |C | and c ∈ C is a hierarchical tree.

The setC comprise the individual collection of trees which attain

the maximum number of clusters for a given value of ρ. Also, in the

above formulation, higher values of ρ induce in having increased

depth for granularity of hierarchical analysis. And the unique point,

and the key reason, of using the hierarchical clustering with com-

plete (furthest) linkage rests in the following:

• Hierarchical clustering brings the ability to compute trees

encoding not only similarity, but also modularity through

hierarchy, being useful to analyze granular patterns in prod-

uct differentiation and enable quick reference for in-depth

analysis of market segmentation,

• It is possible to use the convex hulls over hierarchical product

clusters to define metrics of hierarchical product differenti-

ation and market segmentation. Indeed, for a set of inputs

consisting ofm observations in Rn (m = |X |), computing the

convex hulls with the gift wrapping algorithm takes time

complexity O(m( ⌊
n
2
⌋+1)) [36]. Though, the quick hull algo-

rithm provides reasonable approximations with average time

complexity O(mlogm) [37].

• Hierarchical clustering with complete (furthest) linkage has

the ability to approximate compact clusters with small di-

ameters while paying attention to product outliers, allowing

to identify products which do not fit well to the compact

structure of the cluster, and

• Furthermore, the complete (furthest) linkage has the ability

to avoid the well-known chaining problem in single-linkage

approaches, leading to a more useful organization of histori-

cal product data. For thoroughness of analysis and without

loss of generality, we use ρ = {10, 20, 30, ..., 100}.

2.2 Learning Surrogate Functions with Genetic
Programming

In order to learn performance functions which map historical de-

sign variables X to its performance metric Y , we learn surrogate

functions f that explain variances on product design variables

on historical clusters. In formal settings, the procedures can be

expressed as follows:

Find fc : Xc → Yc , (1)

where Xc is the set of historical data of design variables asso-

ciated to cluster c ∈ C , Yc is the historical performance metric

associated with the set of observed points Y in cluster c , and fc is
the function that maps design variables x ∈ Xc to its performance

metric Yc . Basically, without knowledge on the convexity of Yc , the
above is a nonlinear regression problem:

Minimize
x

√
1

|Xc |

∑
x ∈Xc

[fc (x) − Yc ]2

with fc ∈ F ,

(2)

where F is the space of function encodings.

In order to tackle the above, and given that convexity of the

above function is unknown, we use Genetic Programming due to

its feature to offer understandability of the modeled performance

metric in terms of symbolic functions compared to the black-box

nature of Neural Network Ensembles.

Although it is possible to tackle the above equation by Kernel-

based methods, we use Genetic Programming due to the flexibility

in modeling function compositions. However, using Kernels and

black-box based approaches are potential to tackle the above in

scenarios in which understandability and flexibility of the modeled

function is irrelevant.

Thus, due to the above observations, Genetic Programming is

used to learn surrogate functions in which the function is repre-

sented as follows:

fc = wo +

nt∑
i=1

wi .ti (3)

wherew0 is the bias term, ti is a tree of Genetic Programming,

wi is the weight of the i-th tree used in the linear combination, and

nt is the maximum number of ensembles being advantageous to

avoid overfitting to a single large tree.

In line of our key motivations, learning the performance function

in vehicle clusters is useful to analyze the behaviour of product

differentiation in the market, and to support initiatives in market
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Algorithm 1

1: procedure Evolving Surrogates

2: Input (X ,Y ) ◃ Historical Data

3: Z ← Hierarchical Clustering (X )

4: for ρ ∈ {10, 20, 30, ..., 100} do

5: C ← Dendograms with (Z ) with ρ max. clusters

6: for c ∈ C do

7: Xc ← {x/x ∈ X ,x ∈ c ∈ C}train

8: Yc ← {y/y ∈ Y ,y ∈ c ∈ C}train

9: Find fc : Xc → Yc

10: Evaluate fc on X ′c ,Y
′
c

11: end for

12: end for

13: end procedure

segmentation. Also, the learned performance function fc for cluster
c ∈ C aims at giving reasonable estimations on the performance of

vehicle clusters whose analysis becomes possible at finer granularity

by using the hierarchy of the dendogram Z .

3 COMPUTATIONAL EXPERIMENTS
In order to evaluate the feasibility of learning surrogate functions

on vehicle clusters, this section describes the nature of our compu-

tational experiments and our obtained results.

3.1 Dataset
Our dataset consists of 27,858 observations of models between

1982 and 2016 considering the publicly available design variables

{x1,x2, . . . ,x7} and surrogate metric in terms of fuel consumption

Y as shown Table 1. In order to show the basic layout of the vari-

ables in our study, Fig. 1 shows the basic layout of a vehicle, and the

description of all variables. Also, in order to show the main charac-

teristics of our dataset, Table 2 shows the minimum, maximum and

standard deviation for each variable.

3.2 Settings
Our computational experiments were performed in Matlab in an

Intel Core i7-4930 @3.4GHz.

As for learning performance functions, Algorithm 1 shows the

basic procedures by which functions are learned from vehicle clus-

ters. Here, the main input is the tuple (X ,Y ), representing historical
vehicle data, and then the functions fc are learned for each c ∈ C .
Also, in order to evaluate the ability to generalize the performance

of the learned functions to unseen data, we use 10% of the data

(X ,Y ) for testing, denoted as X ′c and Y ′c , and the rest is used for

training.

Table 1: Vehicle Variables

Symbol Name Units

x1 Full Width mm

x2 Full Length mm

x3 Full Height mm

x4 Front to Top mm

x5 Bonnet mm

x6 Bottom - Window mm

x7 Bottom-Bonnet mm

Y Fuel Consumption km/l

Table 2: Statistics of Historical Variables

Symbol Min. Max. Std.

x1 1390.0 1980.0 104.0236

x2 2735.0 5380.0 481.5148

x3 920.7 2103.1 171.9982

x4 124.7 2680.7 338.0010

x5 113.3 2437.0 307.2736

x6 536.1 1373.0 106.4181

x7 383.3 1348.4 132.7766

Y 3.8708 57.200 5.3828

Table 3: Parameters in Genetic Programming

Symbol Parameter Name Value

P Population Size 250

G Generation Number 1000

ER Elite Ratio 0.1

Pm Mutation Probability 0.14

Pc Crossover Probability 0.84

CR Constant Range [-100, 100]

nt Tree Ensembles 5

TD Tree Depth 10

As for the configuration of hierarchical clustering, we used the

complete (furthest) linkage approach with Euclidean distance met-

ric and rendered ten dendograms, each of which corresponds to

clusters for ρ = {10, 20, 30, ..., 100}.
As for Genetic Programming, we used the parameters as shown

by Table 3, and used the function terminal set consisting of×,−,+, /,

(.)2,add3,mult3 which consider a collection of symbolic functions

to allow simplicity in modeling noisy function landscapes. In the

above, add3 and mult3 are the sum and multiplication of three

elements, respectively.

Furthermore, the key motivation of using the parameters in Ta-

ble 3 for Genetic Programming is to enable a reasonable balance

between exploration and exploitation while searching functional

trees. Here, exploration is realized by high value of crossover prob-

ability, which induces in large structural changes in the trees; and

exploitation is realized by low elitism ratio and low mutation prob-

ability, which implies generating new trees by small perturbations
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Figure 1: Layout of a Vehicle and Sizing Variables.

(a) ρ = 10 (b) ρ = 50 (c) ρ = 100

Figure 2: Dendograms for different cluster configurations

of the best solution reference. Furthermore, by setting the ensemble

trees and tree depth to small values, we aim to learn functional

trees which avoid bloating problems in Genetic Programming. Fine-

tuning of the parameters in Table 3 is out of the scope of this paper,

and is left for future work.

3.3 Results
In order to show the kind of dendograms in vehicle clustering,

• Fig. 2 shows examples of hierarchical clusterings for ρ =
{10, 50, 100}.

• Also, for simplicity and without loss of generality, Fig. 3

shows the cluster configuration for ρ = 20 (dummy hu-

manoid models were inserted for clarity of visualization).

The reader may note that as a result of the procedure outlined

in Algorithm 1 there exists 550 clusters in total. By observing the

results of Fig. 2 and Fig. 3, we confirm the following facts:

• It is possible to compute clusters with different levels of prod-

uct granularity, as specified by the user-defined parameter

involving the maximum number of trees ρ,
• the automatic vehicle segmentation and compact visualiza-

tion of vehicle layouts given historical information is realiz-

able.

• The granularity of observed clusters is enhanced by increas-

ing the value of parameter ρ.

We believe that enabling the formation of vehicle clusters is

advantageous to facilitate not only studies in market segmentation,

but also to explore the possibility of product differentiation. Indeed,

the above described diagrams form building blocks for potential

uses in vehicle design, and pinpoints towards layouts not discovered

or experimented yet. Also, Genetic Programming is attractive to sur-

rogate modeling of vehicles due the freedom in modeling function

composition, and due to the fact of not assuming priors in function

ensembles, whereas other methods such as Polynomial Regression,

Gaussian Process, Support Vector Machines and template-based

methods do so.

In order to evaluate the convergence ability in terms of behaviour

of the fitness as a function of generations,

• Fig. 4-(a) shows the performance of the elite individual dur-

ing the evolution of ensembles of Genetic programming for

all clusters scenarios ρ = {10, 20, 30, ..., 100}.
• Fig. 4-(b) shows the performance of mean population for all

clusters scenarios ρ = {10, 20, 30, ..., 100}.

By looking at Fig. 4, we can observe the following facts:
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Figure 3: Vehicle clusters for ρ = 20.

(a) Elite Individual (b) Population

Figure 4: Average convergence over all cluster groups for all values of ρ

• The elite individuals aim at minimizing the fitness function

gradually as expressed at Eq. 2.

• The fitness convergence of the mean population diverges

from the fitness function of the elite individual at earlier

generations.

• The converged fitness of the elite individual and the popu-

lation at later generations are similar to each other over all

evaluated clusters.

The above observations implies that whereas the population is

arbitrarily distributed over the search space, at later generations
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(a) Best in Training (b) Best in Testing (c) Number of Nodes

Figure 5: R2 coefficient for the best individuals in Training and Testing.

the populations may reach areas in which the fitness values are

equivalent.

In order to show the performance in terms of the predictive

ability of the learned surrogates for all vehicle clusters in both seen

and unseen scenarios, Fig. 5 shows in

• In Fig. 5-(a), the average R2 coefficient of the best solution

in training overall clusters for each ρ = {10, 20, 30, ..., 100},
• In Fig. 5-(b), the average R2 coefficient of the best solution

in testing overall clusters for each ρ = {10, 20, 30, ..., 100},
• In Fig. 5-(c), the comparison of the average of the total num-

ber of nodes in the best solutions for the above instances (a)

and (b).

By looking at Fig. 5, we can observe that the following facts:

• In both instances (a) and (b), the predictive ability is en-

hanced as the number of vehicle clusters increase.

• In both instances (a) and (b), the total number of nodes of

the best solutions remains relatively constant, with small

variability in the range (200, 270), for ρ ≥ 30. However,

smaller clusters induces in trees with larger number of nodes.

• The best individuals during the training phase incur in trees

having larger number of nodes compared to the best individ-

uals of the testing phase.

• The best individuals during the training phase incur in lower

performance over the testing phase for all values of ρ.
• The best individuals during the testing phase have in lower

performance over the training phase for all values of ρ.

The above observations imply that relatively smaller, rather than

larger, surrogate models based on ensemble of Genetic Program-

ming trees induce in improved predictive ability in unseen scenarios.

Also, considering that the elite individual and the population have

relatively similar converged performance, the above observations

imply that the search space of surrogate models based on ensembles

of Genetic Programming trees is multimodal.

Investigating the learning performancewith canonical encodings

in directed graphs[38] and undirected graphs[? ], the use of con-
currency concepts in networks[39] and in exploration-exploitation

in sampling[18], as well as the changing structures in network

ensembles[40], and the formation ofmodules by subset partitions[41]

are in our agenda.

4 CONCLUSION
In this paper we have presented an approach to learn surrogate pre-

dictors of product performance from historical hierarchical clusters

by using ensembles of Genetic Programming. By using exhaus-

tive computational experiments through 27,858 observations of car

models between 1982 and 2016, we have shown the following:

• the feasibility to learn function surrogates at different lev-

els of granularity based on 550 hierarchical dendograms of

vehicle similarity configurations,

• the enhanced predictive ability of the learned surrogates

in both training and testing phase, in which the predictive

ability increases as the number of clusters increase, and

• the attractive predictive ability during the testing phase of

relatively smaller ensemble of trees.

Our approach is useful to learn surrogate functions at granu-

lar levels, in which knowledge discovery and aiding surrogate-

based analysis becomes possible due to differences in product seg-

mentation, which is otherwise impossible to perform due to real-

world experiments being either time-consuming or expensive[20–

22], and simulations being unable to consider real-world vehicle

invariances[24–26].

In our future agenda, we aim at exploring concepts related to

optimization of vehicle layouts using surrogate optimization. We

believe our approach provides the building blocks to enable further

studies in data-driven product differentiation and market segmen-

tation. Also, our approach aims at contributing towards the holistic

design of things.
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