
HAL Id: inria-00000494
https://inria.hal.science/inria-00000494

Submitted on 24 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying Evolutionary Optimisation to Robot Obstacle
Avoidance

Olivier Pauplin, Jean Louchet, Evelyne Lutton, Michel Null Parent

To cite this version:
Olivier Pauplin, Jean Louchet, Evelyne Lutton, Michel Null Parent. Applying Evolutionary Optimi-
sation to Robot Obstacle Avoidance. ISCIIA 2004, Dec 2004, Haikou, Chine. �inria-00000494�

https://inria.hal.science/inria-00000494
https://hal.archives-ouvertes.fr

ISCIIA04, December 20-24, 2004, Haikou, China

APPLYING EVOLUTIONARY OPTIMISATION TO ROBOT
OBSTACLE AVOIDANCE

Olivier Pauplin, Jean Louchet, Evelyne Lutton, Michel Parent
INRIA, IMARA & COMPLEX Projects, BP 105, 78153 Le Chesnay Cedex France

olivier.pauplin@inria.fr, jean.louchet@inria.fr, evelyne.lutton@inria.fr, michel.parent@inria.fr

Abstract: This paper presents an artificial evolution-
based method for stereo image analysis and its
application to real-time obstacle detection and avoidance
for a mobile robot. It uses the Parisian approach, which
consists here in splitting the representation of the robot's
environment into a large number of simple primitives,
the “flies”, which are evolved following a biologically
inspired scheme and give a fast, low-cost solution to the
obstacle detection problem in mobile robotics.

Keywords: evolutionary algorithm, stereovision, vision
systems for robotics, obstacle detection

1 Introduction.
Artificial Vision, an important element in the
design of autonomous robots, can be
approached as the resolution of the reverse
problem of reconstructing a probable model of
the scene from the images. Although
probabilistic optimisation methods like
Evolutionary Algorithms [1],[2],[3] are in
theory well adapted to the resolution of such
inverse problems, their use in real applications
has been relatively neglected because of their
reputation of low speed and complexity.
Indeed, evolving a population in which each
single individual would be a complete 3-D
representation of the environment should raise
problems of code size and memory handling
wildly out of the reach of current optimisation
algorithms.

However, the technique of Parisian Evolution,
introduced by Lutton et al. [4] to resolve an
optimisation problem in Iterated Function
Systems, showed that in some cases, splitting
the representation of the object to be optimised
into a collection of smaller primitives and
evolve them, then use them as a collective
representation of the problem's optimal
solution, may lead to fast and efficient
optimisation algorithms. The Fly Algorithm
[5],[6] has been developed along this line to
solve Computer Vision problems, using a small
grain decomposition of the scene

representation and evolving its components
following principles inspired from Darwin's
descriptions of biological evolution.

2 Evolutionary algorithms.
Darwin’s theory assumes that a population of
individuals, characterised by their genes, will
evolve towards a better adaptation to its
environment according to laws of natural
selection. Genes mutations may occur and
maintain diversity in the population.

Figure 1: General layout of genetic algorithms.

Evolutionary algorithms manipulate individuals
evaluated by a function, called fitness function,
in a way similar to biological Evolution. The
general diagram of such algorithms is presented
in figure 1, where:
- the population is a group of individuals
- an individual is defined by his genes X =

(x1, x2,…, xn), usually coordinates in the
search space

- evaluation is the calculation of each
individual’s fitness value

- selection eliminates part of the population,
keeping preferably the best individuals

- evolution applies genetic operators
(crossover, mutations…), leading to new
individuals in the population.

 no
Parents

Offspring

yes

Evaluation

Population initialised at random

Stop criterion
is reached ?

Selection

Optimal solution

Genetic
operators

ISCIIA04, December 20-24, 2004, Haikou, China

3 The Fly algorithm.
The Fly algorithm is a special case of Parisian
evolution for which individuals (the “flies”) are
defined as 3-D points with coordinates (x, y,
z). As far as we know, it is the only existing
evolutionary algorithm used to detect obstacles
by stereovision. The aim of the algorithm is to
drive the whole population - or a significant
part of it - into suitable areas of the search
space, corresponding to the surfaces of visible
objects in the scene.

The population of flies is initialised at random
inside the intersection of two cameras’ field of
view. Flies then evolve following the steps of
evolutionary algorithms. All cameras’
calibration parameters are known.

3.1 Evaluation.
The fitness function used to evaluate a fly
compares its projections on the left and right
images given by the cameras. If the fly is on an
object’s surface, the projections will have
similar neighbourhoods on both images and
hence this fly will be attributed a high fitness.

Figures 2 and 3 illustrate that principle. Figure
3 shows neighbourhoods of two flies on left
and right images. On that example, Fly1, being
on an object’s surface, will be given a better
fitness than Fly2.

Figure 2: Example of device using the Fly algorithm,

showing two flies from the population (top view).

Figure 3: Projections of two flies in left and right

images.

The mathematical expression of the fitness
function is [7],[8]:

∑ ∑
∈

++−++
∇∇

=

colours Nji
RRLL

RL

jyixRjyixL
MM

F

),(

2)],(),([
)(.)(

where:
- (xL,yL) and (xR,yR) are the coordinates of
the left and right projections of the current
individual
- L(xL+i , yL+j) is the grey value at the left
image at pixel (xL+i , yL+j), similarly with R
for the right image
- N is a neighbourhood around the projection
of each fly, introduced to obtain a more
discriminating comparison of the flies
-)(LM∇ and)(RM∇ are Sobel gradient
norms on left and right projections of the fly.
That is intended to penalise flies which project
onto uniform regions, i.e. less significant flies.

3.2 Selection.

Selection is elitist and deterministic. It ranks
flies according to their fitness values and
retains the best individuals (around 40%).

A sharing operator [7],[8] reduces the fitness of
flies packed together and forces them to
explore other areas of the search space.

3.3 Genetic operators.
The following operators are applied to selected
individuals.

- Barycentric cross-over: given two parents
F1 and F2, the algorithm builds their offspring F
such as:

R
ig

ht
 c

am
er

a

Fly1 Fly2

Obstacle
Obstacle

Mobile robot

z

x

y

Le
ft

ca
m

er
a

Left image Right image

Fly1

Fly2

3-D
 space

Projections
 in im

ages

ISCIIA04, December 20-24, 2004, Haikou, China

→→→
−+= 21)1(OFOFOF λλ

with λ chosen at random in the interval [0,1].

- Gaussian mutation adds a Gaussian noise to
each one of the three coordinates of the
mutated fly. The mutation rate is set to 40%,
parisian algorithms normally using a higher
mutation rate than conventional evolutionary
algorithms.

- Another operator, “immigration”, is used to
improve exploration of the search space,
creating new individuals at random. It ensures
a constant exploration of the search space,
whose high-fitness regions evolve as the scene
in front of the cameras changes.

4 Robot simulator.
The original way the scene is described by the
population of flies led our team to adapt
classical robot navigation methods in order to
use the results of the Fly algorithm as input
data. Boumaza [7],[9] developed a simulator of
a robot moving in a simplified environment, to
test theoretically control methods using the
output of the Fly algorithm.

The simulator showed the possibility to build
guidance methods based on the output of the
Fly algorithm. Our current work consists in
transferring and extending these control
methods to real life situations.

Figure 4: Application example of the Fly algorithm.

5 Real life experiments.
Figure 4 shows an application example of the
Fly algorithm. Flies (black dots) concentrate
on obstacles and on regions where the grey
level gradient is high, for example on the
roadsides. The numerator of the fitness
function prevents flies from getting trapped
into uniform regions (sky, road surface, etc.).

The three coordinates of each fly being known,
the population of flies gives a rough
description of the real 3-D scene.

5.1 Control.
In the scope of using the Fly algorithm in the
field of automatic driving - or at least assisted

driving, we developed a strategy to make the
program quantify the probability that an
obstacle is in front of the vehicle. The aim is to
deliver a slow down or stop order when an
obstacle appears close enough in the field of
vision, in order to avoid frontal collision.

The general idea to achieve this goal is to see
each fly as the source of a “warning value”,
higher when:
- the fly is near the vehicle
- the fly is in front of the vehicle (i.e. close

to the z axis)
- the fly has a good fitness.

Beforehand, flies useless for this specific
application have there fitness value penalised,
and thus have high probability to be eliminated

ISCIIA04, December 20-24, 2004, Haikou, China

by the algorithm’s mechanisms. We considered
such flies are:
- flies more than 2 metres above the road

surface
- flies with a height under 10 centimetres

(detecting the ground)
- flies more than 16 metres ahead of the

vehicle.

An experimental analysis led us to choose the
simple following formula for the warning
value of a fly:

zx
Fflywarning
×

= 2)(

where F is the fitness value of the fly, and z
and x its coordinates as shown on figure 2.

For |x| < 0.5 m we consider x = 0.5 m, and for
z < 1 m we consider z = 1 m. This is to avoid
giving excessive warning values to flies with a
not necessarily good fitness but with a very
small x or z coordinate. Moreover, obstacles
within a range of half a metre to the left or to
the right from the centre of the vehicle
(|x| < 0.5 m) are equally dangerous, and are
consequently processed the same way.

The warning function was built in order to give
high warning values to flies for which the three
coefficients F, 1/x² and 1/z are simultaneously
high. Indeed a fly with a low fitness value
(thus probably not on an obstacle), far from the
vehicle or not in front of it, does not show
evidence of an imminent collision.
Experiments with a 1/x factor instead of 1/x²
did not give satisfactory results, as it tended to
overestimate the importance of flies off the
cameras axis.

5.2 Results.

To validate the algorithm, we tested it on two
stereo pairs of images: one representing a road
with no immediate obstacle (figures 5 and 6),
and one representing a pedestrian crossing the
street in front of the vehicle (figures 7 and 8).
Figure 5 does not show a case of emergency
breaking, whereas figure 7 shows a situation
closer to a collision.

Results are obtained using two commercial
CCD cameras and a computer (Pentium

2 GHz). The population of flies is 5000. One
generation takes about 10 milliseconds.
Population update and calculation of the
warning values are done in a quasi-continuous
way, and the system needs about 10 to 30
generations to react to a new event in the scene.

Figures 5 and 7 show the 250 best flies of the
resulting population. Flies appear as black
crosses. We note that, on both figures 5 and 7,
flies gather on the visible objects of the scene
(car, pedestrian, road sides...).

Figures 6 and 8 show the same (x,y) view as
figures 5 and 7, with only flies represented.
Flies appear as spots as dark as their warning
value is high.

We note the algorithm delivers higher warning
values in figure 8 than in figure 6, where they
are very close to zero.

Figure 5: A road with no immediate obstacle.

Figure 6: Warning values of figure 5 flies.

ISCIIA04, December 20-24, 2004, Haikou, China

Figure 7: A pedestrian at 4 metres from the cameras, on
the middle of the road.

Figure 8: Warning values of figure 7 flies.

A global warning value can be defined as the
mean of the warning values of a population. In
the first case, this mean is 0.09, whereas in the
second case it is 0.85. The high difference
between these two values suggests that they
can be used to discriminate between the two
situations. Further experiments will be needed
in order to confirm or refine this criterion.

6 Conclusion.
The Fly algorithm has proved a valid method
for obstacle detection in outdoor environments.
The simplicity of the fitness function used
opens the way to real time applications. Real
time vehicle control based on the information
of flies (coordinates, fitness value) has been
developed.

Classical image segmentation and stereo
reconstruction methods are potentially able to
give more complete and accurate results than
the Fly algorithm, though requiring higher

processing times. However, the Fly algorithm
presents some features which are outstandingly
interesting in real time vision applications: in
particular its asynchronous properties and its
principle of continuous refinement of previous
results, giving reaction times to new events
intrinsically faster than classical methods [8].

Our future work will be directed toward
developing guidance algorithms for mobile
robots in real life situations, and to integrate
them into a vehicle of IMARA project.

Acknowledgements.
We thank Dr Amine Boumaza for his
important contribution to the development of
the code used in our experiments.

This research was funded in part by the IST
Programme of the European Commission in
the CyberCars project:
http://www.cybercars.org/

References.
1. D.E. Goldberg, Genetic Algorithms in

Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA
(1989)

2. I. Rechenberg, “Evolution strategy”, J.M.
Zurada, R.J. Marks II, C.J. Robinson,
(Eds.), Computationnal Intelligence
Imitating Life, IEEE Press, Piscataway, NJ,
pp. 147-159 (1994)

3. J.-P. Rennard, Vie artificielle, Vuibert,
ISBN 2-7117-8694-3, pp 241-242 (2002)

4. P. Collet, E. Lutton, F. Raynal, M.
Schoenauer, “Individual GP: an alternative
viewpoint for the resolution of complex
problems”, Genetic and Evolutionary
Computation Conference GECCO99,
Morgan Kauffmann, San Francisco, CA
(1999)

5. J. Louchet, “From Hough to Darwin: an
individual evolutionary strategy applied to
artificial vision”, Artificial Evolution,
European Conference, AE 99, Dunkerque,
France, Selected papers, Springer Verlag,
Lecture Notes in Computer Science 1829
(1999)

ISCIIA04, December 20-24, 2004, Haikou, China

6. J. Louchet, “Stereo analysis using
individual evolution strategy”, Internat.
Conf. on Pattern Recognition, ICPR2000,
Barcelona, Spain (2000)

7. A. Boumaza, J. Louchet, “Dynamic Flies:
Using Real-Time Parisian Evolution in
Robotics”, EVOIASP 2001, Lake Como,
Italy (2001)

8. J. Louchet, M. Guyon, M.-J. Lesot, A.
Boumaza, “Dynamic Fies: a new pattern
recognition tool applied to stereo sequence
processing”, Pattern Recognition Letters,
No. 23 pp. 335-345 (2002)

9. A. Boumaza, “Introduction de techniques
d’évolution artificielle en vision
tridimensionnelle et en robotique mobile”,
Thèse Université René Descartes, Paris
(2004)

10. Z. Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs,
Springer Verlag (1992)

