Skip to main content

Combining Semantically-Effective and Geometric Crossover Operators for Genetic Programming

  • Conference paper
Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

Abstract

We propose a way to combine two distinct general patterns for designing semantic crossover operators for genetic programming: geometric semantic approach and semantically-effective approach. In the experimental part we show the synergistic effects of combining these two approaches, which we explain by a major fraction of crossover acts performed by geometric semantic crossover operators being semantically ineffective. The results of the combined approach show significant improvement of performance and high resistance to a premature convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Sakran, S.H., Koza, J.R., Jones, L.W.: Automated re-invention of a previously patented optical lens system using genetic programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 25–37. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: IEEE CEC 2008, pp. 111–116. IEEE Press (2008)

    Google Scholar 

  3. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic programming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)

    Article  Google Scholar 

  4. Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic programming. In: IEEE CEC 2009, pp. 1336–1342. IEEE Press (2009)

    Google Scholar 

  5. Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F., Maccagnola, D.: An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 78–89. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. D’haeseleer, P.: Context preserving crossover in genetic programming. In: IEEE CEC 1994, vol. 1, pp. 256–261. IEEE Press (1994)

    Google Scholar 

  7. Ferreira, C.: Genetic representation and genetic neutrality in gene expression programming. Advances in Complex Systems 5(4), 389–408 (2002)

    Article  MATH  Google Scholar 

  8. Galvan-Lopez, E., et al.: Using semantics in the selection mechanism in genetic programming: A simple method for promoting semantic diversity. In: IEEE CEC 2013, vol. 1, pp. 2972–2979 (2013)

    Google Scholar 

  9. Harries, K., Smith, P.: Exploring alternative operators and search strategies in genetic programming. In: GP 1997, pp. 147–155. Morgan Kaufmann (1997)

    Google Scholar 

  10. Jackson, D.: Phenotypic diversity in initial genetic programming populations. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Kanji, G.: 100 Statistical Tests. SAGE Publications (1999)

    Google Scholar 

  12. Keller, R.E., Banzhaf, W.: Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes. In: GP 1996, pp. 116–122. MIT Press (1996)

    Google Scholar 

  13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Koza, J.R., et al.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman (April 1999)

    Google Scholar 

  15. Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers (2003)

    Google Scholar 

  16. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: GECCO 2009, pp. 987–994. ACM (2009)

    Google Scholar 

  17. Krawiec, K., Pawlak, T.: Quantitative analysis of locally geometric semantic crossover. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 397–406. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic backpropagation. In: GECCO 2013, pp. 941–948. ACM (2013)

    Google Scholar 

  19. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: A study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines 14(1), 31–63 (2013)

    Article  Google Scholar 

  20. Langdon, W.B.: Size fair and homologous tree genetic programming crossovers. Genetic Programming and Evolvable Machines 1(1/2), 95–119 (2000)

    Article  MATH  Google Scholar 

  21. Lohn, J., Hornby, G., Linden, D.: An evolved antenna for deployment on Nasa’s Space Technology 5 Mission. In: Genetic Programming Theory and Practice II, ch. 18, pp. 301–315. Springer (2004)

    Google Scholar 

  22. Luke, S.: The ECJ Owner’s Manual – A User Manual for the ECJ Evolutionary Computation Library, zeroth edition, online version 0.2 edition (October 2010)

    Google Scholar 

  23. McDermott, J., et al.: Genetic programming needs better benchmarks. In: GECCO 2012, pp. 791–798. ACM (2012)

    Google Scholar 

  24. Moraglio, A.: Abstract convex evolutionary search. In: FOGA XI, pp. 151–162. ACM (2011)

    Google Scholar 

  25. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantics based mutation in genetic programming: The case for real-valued symbolic regression. In: Mendel 2009, pp. 73–91 (2009)

    Google Scholar 

  27. Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing search operators in genetic programming. IEEE Transactions on Evolutionary Computation (2014)

    Google Scholar 

  28. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point crossover and point mutation. Evolutionary Computation 6(3), 231–252 (1998)

    Article  Google Scholar 

  29. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Lulu Enterprises, UK Ltd. (2008)

    Google Scholar 

  30. Uy, N.Q., et al.: Semantically-based crossover in genetic programming: Application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

    Article  Google Scholar 

  31. Uy, N.Q., et al.: On the roles of semantic locality of crossover in genetic programming. Information Sciences 235, 195–213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genetic Programming and Evolvable Machines (online first)

    Google Scholar 

  33. Walker, J.A., Miller, J.F.: Investigating the performance of module acquisition in cartesian genetic programming. In: GECCO 2005, vol. 2, pp. 1649–1656. ACM Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pawlak, T.P. (2014). Combining Semantically-Effective and Geometric Crossover Operators for Genetic Programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics