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Mathematical morphology supplies powerful tools for low-level image analysis. Many applications in computer vision require
dedicated hardware for real-time execution. The design of morphological operators for a given application is not a trivial one.
Genetic programming is a branch of evolutionary computing, and it is consolidating as a promising method for applications
of digital image processing. The main objective of genetic programming is to discover how computers can learn to solve
problems without being programmed for that. In this paper, the development of an original reconfigurable architecture using
logical, arithmetic, and morphological instructions generated automatically by a genetic programming approach is presented.
The developed architecture is based on FPGAs and has among the possible applications, automatic image filtering, pattern
recognition and emulation of unknown filter. Binary, gray, and color image practical applications using the developed architecture

are presented and the results are compared with similar techniques found in the literature.

1. Introduction

Morphological image processing is a nonlinear branch in
image processing developed by Matheron and Serra in
the 1960s, based on geometry and on the mathematical
theory of order [1-6]. Morphological image processing has
proved to be a powerful tool for binary and grayscale image
computer vision processing tasks, such as edge detection,
noise suppression, skeletonization, segmentation, pattern
recognition, and enhancement [7]. Initial applications of
morphological processing were biomedical and geological
image analysis problems [8]. In the 1980s, extensions of
classical mathematical morphology and connections to other
fields were developed by several research groups worldwide
along various directions, including computer vision prob-
lems, multiscale image processing, statistical analysis, and
optimal design of morphological filters, to name just a few.
The basic operations in mathematical morphology are
the dilation and the erosion, and these operations can

be described by logical and arithmetic operators. Dilation
and erosion morphological operators can be represented,
respectively, by the sum and subtraction of Minkowski sets
[9]:

A®B=U{B+alacA}, (1)

A®(-B) =n{A+b|beB}. (2)

In (1), A is the original binary image, B is the structuring
element of the morphological operation, and B + a is the
B displacement by a. Therefore, the dilation operation is
obtained by the union of all B displacements in relation to
the valid A elements. In (2), —B is the 180° rotation of B
in relation to its origin. Therefore, the erosion operation
corresponds to intersection of the A displacements by the
valid points of —B. These ideas can be extended to gray-level
image processing using maximum and minimum operators,
too [9].



As mentioned by Haralick [10], since mathematical
morphology operates with shapes, it becomes a natural
processing to deal with problems of identification of image
objects based on shape. Some other basic computer vision
operations such as edge detection, skeletons, and noise
elimination can be performed eroding or dilating objects in
an algorithmic way.

In color images, pixels are represented by vector values
(RGB, e.g.):

P(x,y) = [P1(x,7),P2(x,9),P3(x, »)]".  (3)

Mathematical Morphology is based on the application
of lattice theory to spatial structures [11]. The definition of
morphological operators needs a totally ordered complete
lattice structure. A lattice is a partially ordered set in which
any two elements have at least an upper bound (supremum)
and a greatest lower bound (infimum). The supremum and
the infimum are represented by the symbols Vv and A,
respectively. Thus, a lattice is complete if every subset of
the lattice has a single supremum and a single infimum.
Color is known to play a significant role in human visual
perception. The application of mathematical morphology to
color images is difficult due to the vector nature of the color
data. The extension of concepts from grayscale morphology
to color morphology must first choose an appropriate color
ordering, a color space that determines the way in which
colors are represented and an infimum and a supremum
operator in the selected color space should also be defined.
There are several techniques for ordering vectors. The two
main approaches are marginal ordering and vector ordering.
In the marginal ordering, each component P1, P2, or P3
is ordered independently and the operations are applied
to each channel; unfortunately, this procedure has some
drawbacks, for example, producing new colors that are not
contained in the original image and may be unacceptable in
applications that use color for object recognition. The vector
ordering method for morphological processing is more
advisable. Only one processing over the three dimensional
data is performed using this method. There are several
ways of establishing the order, for example, ordering by one
component, canonical ordering, ordering by distance, and
lexicographical order [12].

Once these orders are defined, then the morphological
operators are defined in the standard way. The vector erosion
of color image f at pixel x by the structuring element B of
size nis [2].

EnB(f)(x) = {inf[ f(2)], z € n(Bx)}. (4)

The corresponding dilation DnB is obtained by replacing
the inf by sup

DnB(f)(x) = {sup[f(2)], z € n(Bx)}. (5)

An opening is an erosion followed by a dilation, and a
closing is a dilation followed by an erosion.

The design of morphological procedures is not a trivial
task in practice [13]. Some expert knowledge is necessary to
properly select the structuring element and the morphologi-
cal operators to solve a certain problem [14]. In the literature,
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there are several approaches using automatic programming
to overcome these difficulties [15-22]; however, they present
several drawbacks as a limited number of operators, only reg-
ular forms of structuring elements and only morphological
instructions, to name just a few.

Genetic programming (GP) is the most popular tech-
nique for automatic programming nowadays and may
provide a better context for the automatic generation of
morphological procedures [23]. GP is a branch of evolution-
ary computation and artificial intelligence [24-26], based
on concepts of genetics and Darwin’s principle of natural
selection to genetically breed and evolve computer programs
to solve problems.

Genetic programming is the extension of the genetic
algorithms [27] into the space of programs. That is, the
objects that constitute the population are not fixed-length
character strings that encode possible solutions to a certain
problem. They are programs (expressed as parse trees) that
are the candidate solutions to the problem [28, 29].

There are few applications of GP for the automatic
construction of morphological operators [14, 23] and for
color image processing. Thus, we propose a linear genetic
programming approach for the automatic construction of
morphological, arithmetic, and logical operators, generating
a toolbox named morph_gen for the Matlab program. The
proposed toolbox can be used for the design of nonlinear fil-
ters, image segmentation and pattern recognition of binary,
grayscale, and color images. The instructions generated by
the toolbox are transferred to a 32-stage pipeline architecture
developed in this work, which has been implemented on an
FPGA. Some examples of applications are presented, and the
results are discussed and compared with other approaches.

This paper is organized as follows; a brief review of
the basic concepts of morphological operations and genetic
programming is presented in Section 1; a detailed descrip-
tion of the developed system is presented Section 2; results
and application examples are presented in Section 3; and
Section 4 is the conclusions.

2. Developed System

2.1. Training Process. The developed algorithm for automatic
construction of morphological operators uses a linear genetic
programming approach that is a variant of the GP algorithm
that acts on linear genomes [30, 31]. It operates with two
images, an input image and an image containing only
features of interest which should be extracted from the input
image. The genetic procedure looks for operators’ sequences
in the space of mathematical morphology algorithms that
allow extracting the features of interest from the original
image. The operators are predefined procedures from a
database that work with particular types of structuring
elements having different shapes and sizes. It is also possible
to include new operators in the database when necessary. The
program output is a linear structure containing the best indi-
vidual of the final population. The output result from one
operator is used as input to the subsequent operator and so
on, for example, the sequence “ero_q_3->dil_q_3” performs
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Figure 1: Flowchart of developed system. The index i refers to
an individual in the population. The reproduction rate is pr, the
crossover rate is pc, and the mutation rate is pm. The goal image
can be created using an editor program or a processing program.

an erosion in the input image followed by a dilation using
for each operation a 3 X 3 square structuring element. The
genetic algorithm parameters are supplied by the user using
a graphical user interface (GUI). The main parameters are:
tree depth, number of chromosomes, number of generations,
crossover rate, mutation rate, reproduction rate, and certain
kinds of operators suited to a particular problem. It has been
used for the problems the mean absolute error (MAE) as
a fitness measure. The cost function using MAE error was
calculated as follows:

1 X Y
d(a,b) = ﬁZZ|a(i,j) - b(i, )] (6)
i

In (6), a is the resulting image evaluated by a particular
chromosome, b is the goal image with the same size as g, and
(1, j) is the pixel coordinate. The chromosomes are encoded
as variable binary chains. The main steps of the proposed
algorithm are illustrated in Figure 1.

The genetic parameters and the images are supplied by
the user; the initial population of programs is randomly gen-
erated. Since the chromosomes are encoded as binary chains,
if the user has selected the instructions: and (AND logic), sto
(STORE), ero (EROSION), and ¢p/ (COMPLEMENT), the
first operator will be coded as “00,” the second as “01,%
the third as “10,” and the last as “11,”. If the chosen tree
depth was four, for example, the chromosome: “00011011,”
could be created. The evaluation of this chromosome will be
as illustrated in Figure 2, for example, AND (A, A) followed

Original
image =
A

And STO

Temporary
image =
A

Temporary
image =
Aand A

3 X 3 square
Structuring
element

ERO CPL

1

CPL (ERO (A and A))

FIGURE 2: Evaluation of chromosome: “00011011,” from program:
“and-sto-ero-cpl” applied to original image A.
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FIGURE 3: Crossover and mutation operators where * is the selected
operator.

by a Store in a temporary variable followed by an Erosion,
and followed by a Logical inversion. In example, A is an
input binary image. This idea is repeated for the others
chromosomes from the initial population.

After evaluation of each chromosome in a generation, a
cost value is assigned to each one using (6). The next step is to
create a new population of the fittest programs. The selection
method used to choose the best individuals for reproduction
was the tournament selection [32]. The best ones are selected
for the genetic operations of crossover and mutation. In
crossover operation, morphological operators are randomly
selected and exchanged between parents chromosomes. The
mutation operation replaces a randomly selected instruction
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FIGURE 4: Block diagram of the developed system. After FPGA
programming, the composite video is deinterlaced by the video_dec,
and the 10-bit RGB data produced are processed by the pipeline
architecture. The results are converted again to an analog format to
be shown in a VGA monitor.

by another in the range of morphological algorithms space.
The reproduction operator copies a single parent into the
new generation according to its fitness value. In Figure 3, we
can see the crossover and mutation operators used in this
paper. This process is repeated for several generations until
a stop criteria is reached (the fittest program).

2.2. Implemented Architecture. The block diagram of the
developed architecture can be seen in Figure 4. The opcodes
(best chromosome) file “program.mif” with the sequence
of operators (binary chain) seen in Section 2.1 generated by
Matlab is transferred with the other project files containing
the description of the architecture to the FPGA board by
means of the USB interface from PC through the Quartus II
software. In this project, the DE2 board from Altera [33] was
used to develop the video architecture that is based on a 32-
stage pipeline. The DE2 board contains a Cyclone II (2C35)
FPGA, a NTSC/PAL TV decoder circuit, and a VGA output
circuit. A composite video signal supplied by a commercial
video camera is deinterlaced and converted to 10bit RGB
data (640 x 480 pixels) through a video decoder stage. The
RGB frames are processed through the pipeline stages, and
the results are converted to an analog format again through
a DA converter. Then, the processed images can be shown
in a VGA monitor. A 27 MHz oscillator was used as a clock
source.

In Figure 5, a block diagram of the pipeline stages is
presented. The opcodes from morph_gen toolbox are loaded
into the stages through a state machine named ROM that
contains the original program. The implementation of a
stage from the pipeline can be seen in Figure 8, and it is
described below.

The state machine ROM uses the bus dat and the bus
add to distribute the data (instructions) to each processor
that uses an add (address) in the architecture. For example,
the P1 has the add = 01h, the P2 has the add = 02h,
and so on. The “program.mif” contains a binary chain
representing the chromosome generated by Matlab where
each line corresponds to an instruction according to Table 1
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that will be processed by each stage. The block diagram
of ROM unit explained before can be seen in Figure 6. In
Figure 7, a simulation of this unit is shown. Considering
Figure 6, after the reset process of the architecture, while the
end_add pin is low, the state machine loads the instructions
referring to a certain problem into the instruction register
(IR) of each processor of the pipeline. When the load process
ends, the end_add pin will be high and the state machine will
indicate the timing of the video processing, and this cycle will
be repeated when the state machine reads a reset state again.

Each stage stores two adjacent 640-pixel lines followed by
a 3-pixel line to constitute a (3 X 3) input to a morphological
processor implemented in that stage. This same structure is
used by a previously stored result that is delayed by each
stage, too. This result is stored in img_temp register. Figure 8
shows the block diagram of a stage from the pipeline. Each
stage has been built using the Verilog language. The Instr_dec
block in the processor decodes the instruction stored in
IR register and apply a morphological or logical operation,
according to Table 1, to input pixels p1_1, p1.2, p1_3, p2_1,
p2-2, p2_3, p3_1, p3-2, and p3_3 (input window) and/or s2_2
(previous stored result from n-1 stage). In Instr_dec block, the
dilation and erosion operations are implemented according
to (5) and (4), respectively.

For example, the instruction dil_c_3 (dilation by a 3 X 3
circular structuring element) and ero_c_3 (erosion by a 3 x 3
circular structuring element) are implemented in Verilog as
follows, respectively: out_dil<=0|p1_2|p2_1|p2_2|p2_3|p3_2,
and out_ero<=1&p1_2&p2_1&p2 2&p2_3&p3-2. To avoid
bottlenecks, the system does not use memory access. The
only significant delay presented in this architecture is due to
the number of the pipeline stages. The logical instructions
have been implemented using Verilog HDL through Quartus
II. In this architecture, a chromosome is decoded according
to Figure 2. Each stage can work with a RGB digital image of
10 bit/channel. For binary processing, the least significant bit
of G channel is used. For monochromatic images, the R, G,
or B channel is used and for color processing, a combination
of R, G, and B, to form a lattice structure required for
morphological processing. This combination is as follows:
{R1G1B1R2B2G2,..., R10G10B10}, thus, RnGnBn is a 30-
bit scalar number, and the morphological operations ((4)
and (5)) can be defined for color images. After processing,
the resulting scalar value is decomposed again into its RGB
component.

The implementation idea of the proposed architecture
can be seen in the following simplified example (Figure 9)
for a dilation of a 5 X 5 binary input image using a 3 X 3
circular structuring element. In this figure, only one stage of
the pipeline architecture is shown. Firstly, the image pixels
are inserted into the buffers using a raster sweep. The buffers
are necessary to maintain a window with the current pixels to
be processed in each stage during the raster sweep. Once the
structuring element has size 3 x 3, the first three pixels of each
buffer (b1, b2,b3,b6,b7,b8,b11,b12,and b13) are passed to
the processor along the time. Since the structuring element,
in this hypothetical case, is circular, the only pixels used by
the processor are b2, b6, b7, b8, and b12. In this example,
a dilation operation that was preconfigured by the state
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FIGURE 5: Block diagram of the pipeline stages.

TasLE 1: Implemented instructions.

Opcode Name Comment
0x00 nop No operation. The input image is copied to the output image.
0x01 dil_q-3 The input image is dilated by a (3 x 3) square structuring element.
0x02 ero_q-3 The input image is eroded by a (3 X 3) square structuring element.
0x03 dil_c_3 The input image is dilated by a (3 x 3) circular structuring element.
0x04 ero_c.3 The input image is eroded by a (3 X 3) circular structuring element.
0x05 dil-h_3 The input image is dilated by a (1 X 3) horizontal structuring element.
0x06 ero_h_3 The input image is eroded by a (1 x 3) horizontal structuring element.
0x07 dil.v_3 The input image is dilated by a (3 x 1) vertical structuring element.
0x08 ero_v_3 The input image is eroded by a (3 X 1) vertical structuring element.
0x09 dil_dd_3 The input image is dilated by a (3 x 3) right diagonal structuring element.
0x0A ero_dd-3 The input image is eroded by a (3 x 3) right diagonal structuring element.
0x0B dil_de_3 The input image is dilated by a (3 x 3) left diagonal structuring element.
0x0C ero_de_3 The input image is eroded by a (3 x 3) left diagonal structuring element.
0x0D xorl Exclusive OR between the input image and a temporary image (previous result).
0x0E Cpl Logical complement of the input image.
0xOF stol Temporary storage of the input image.
0x10 and1 Logical AND between the input image and a temporary image (previous result).
0x11 orl Logical OR between the input image and a temporary image (previous result).
0x12 Ldi Load of the original image.
0x13 cplcz Complement of the input image (grayscale or color).
0x14 add_cz Arithmetic sum between the input image (grayscale or color) and a temporary image (previous result).
clk clk add_delayed [4..0] st - - J_l
rst Control M) \ Delay:> dk .- - |—| |—| |—| |—| |—| ..
add [4..0] '
-+ SOOI - D> -
dk dat [7..0]
— Rom :) end_add - - - I_\_

F1GURE 6: Schematic circuit of ROM unit.

machine ROM is implemented using a logical OR operator.
The output of the stage is given by a stream of pixels. In this
specific case, the input active pixels were img_in (3,2) and
img_in (3,3), thus, after the logical operation, the active pixels
of the dilated output image can be seen by means of the result
variable.

FIGURE 7: Simulation example of ROM unit.

3. Results and Application Examples

In this section, some results using the developed architecture
are presented.

In Figure 10, the input image was corrupted by salt and
pepper noise with a density of 0.09 generated by Matlab.
The instructions ero_q-3 and dil.q.3 (morphological
operators) were used to construct a morphological filter.
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FiGure 8: Block diagram of a stage.
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F1GURE 9: Implementation idea of the proposed architecture.

The genetic procedure converged before the 5th genera-
tion and the filter “ero_q_3-> dil_q_3-> dil_q_3-> ero_q-3”
(morphological algorithm) was automatically created. The
genetic parameters chosen for this task were: 50 generations,
25 chromosomes, depth of tree 4, crossover rate of 90%,
mutation rate of 20%, and reproduction rate of 20%. The
MAE error found between the goal image and a clear version
of the original image was less than 0,4%. The training time
was less than 4,3 seconds, and the execution time was
performed in real time by the developed system. In this
example and in the following ones, a PC notebook equipped
with an AMD 64 Athlon processor and 512 MB of system
memory was used for the training process.

In Figure 11, an original image and a training image
containing features (heads) from a fragment of a music score
to be extracted by the evolutionary system are presented.
The genetic procedure found the following best program
to extract heads using the developed system: “dil_dd_3->
dil_de_3->dil_dd_3-> dil_v_3-> dil_v_3-> dil_.dd_3-> dil_v_3-
> ero_q-3-> ero_v_3-> ero_q_3-> ero_c.3”. The genetic
parameters chosen for this task were: 50 generations, 50
chromosomes, tree of depth 12, crossover rate of 97%,
mutation rate of 3%, and reproduction rate of 10%. The
MAE error found between the goal image and the obtained
result was less than 1,1%. The training time was less than
12 min, and execution time was in real time. This procedure
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FIGURE 10: Automatically generated filter to eliminate the salt and pepper noise from the corrupted original image.
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FiGure 11: Obtained result by developed hardware for head
extraction in real time.

was applied to image in Figure 12 producing an expected
result, too.

In Figure 13, an emulation result of the Photoshop’s
Trace Contour filter after a training process of the evolution-
ary system is presented. After the presentation of training

In Out
Pree ihoctonsc from wee Saas
Old MacDonal .
Pipeline
architecture
ESSESEEE =S 0D o P

FiGure 12: Example of head extraction in real time.

samples the best program found was “ero_(c_3)-> stol->
stol->dil_(q-3)-> dil_(c_3)-> cpl-> cpl-> dil_¢_3-> ero_q_3-
> ¢cpl-> orl-> cpl-> cpl” The genetic parameters chosen
for this task were 50 generations, 90 chromosomes, tree of
depth 16, crossover rate of 97%, mutation rate of 3%, and
reproduction rate of 10%. The MAE error found was less
than 2,86% compared to Photoshop’s result. The training
time was less than 18 min, and execution time was in real
time.

In Figure 14, there is an example of an emulation result of
the Photoshop’s Glowing Edge filter generated automatically
after a training process of the evolutionary system for the
following parameters: 51 generations, 70 chromosomes, tree
of depth 9, crossover rate of 95%, mutation rate of 20%, and
reproduction rate of 10%. For this task, an intensity image
was used as input and the best program found was “add_cz-
> add_cz-> dil_c_3-> stol-> cpl.cz-> dil.c_3-> dil.c_3->
add_cz-> stol” The MAE error found was less than 6,2%
compared to Photoshop’s result. In Figure 15 the same result
was applied to a color image. The morphological operations
in this example preserve the colors in the original image [34].
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FIGure 13: Emulation result of the Photoshop’s Trace Contour filter
implemented in hardware.

The training time was less than 10,6 min, and execution time
was in real time.

Comparing the results with those obtained from other
works in the literature, our implementation presented
improvements in fitness, processing time, and programming
flexibility. In [20], a genetic algorithm was used for the task
of head extraction in music scores. The error found in this
work was about 11,8% for a chromosome of size 14. In [23],
the error for the same task was greater than 20%. In this
paper, the error was less than 0,7% for a chromosome of size
6. In [23] and [20], the processing time of the procedures
is not specified. In [13], a genetic algorithm for the task of
automatic design of morphological filters is presented. The
error found in this work for this task was about 10,59% and
the processing time was not performed in real time. In this
work, this error was about 2,2% for the same task. In this
work, all applications were performed in real time by the
developed architecture.

As a contribution of the current paper in relation to
the paper [35] presented at SPL, 2010, there are some
improvements, such as, the sections were updated, the
morphological operators were extended, to gray and color
images, new morphological processing arithmetic operators
were introduced, additional references were included and
new figures and new experiments were shown.

In relation to the paper [36], the current work presents
some improvements such as the intelligent reconfiguration
of the pipeline architecture by means of a genetic procedure.

Table 2 summarizes all the obtained results, and Table 3
presents the FPGA device used resources.
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FIGURE 14: Emulation result of the Photoshop’s Glowing Edge filter
implemented in hardware.
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FiGure 15: Emulation result of the Photoshop’s Glowing Edge filter
applied to a color image.

4. Conclusions

In this paper an original reconfigurable architecture using
logical and morphological instructions generated automati-
cally by a linear approach based on genetic programming was
presented. The developed architecture was based on an FPGA
from Altera’s Cyclone II family. The system is composed by a
32-stage pipeline and can be used in real-time mathematical
morphology and linear applications. The system is able to
process 640 x 480 pixels images at 60 frames/sec. Binary,
gray-level, and color image practical applications using the
developed architecture were presented, and the results were
compared with other implementation techniques. The devel-
oped system can be applied to digital images for automatic
design of nonlinear filters, image segmentation, and pattern
recognition. Applications examples were shown where the
solutions were expressed in terms of basic morphological
operators, dilation, and erosion, in conjunction with arith-
metic and logical operators. Compared with other methods
described in the literature, the developed methodology
presents many improvements in processing time, fitness, and
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TABLE 2: Summary of results.

Example Generations Chromosomes Tree depth Cross rate Mut rate Repr rate MAE error Training time E)r(gzutlon
Morphological filter 50 25 4 90% 20% 20% 0,4% 43s Real time
Head extraction 50 50 12 97% 3% 10% 1,1% 12min  Real time
Trace Contour 50 90 16 97% 3% 10% 2,86% 18 min Real time
Glowing edge (gray level) 51 70 95% 20% 10% 6,2% 10,6 min  Real time
Glowing edge (color) 51 70 95% 20% 10% 6,2% 10,6 min  Real time
TaBLE 3: Summary of FPGA device.
Device: Cyclone II EP2C35F672C6/Application Pins Memory Bits LEs (Logic elements)

Morphological Filter

Head extraction from music scores
Trace contour

Glowing edges (niveis de cinza)
Glowing edges (colorido)

125 (26%)
125 (26%)
125 (26%)
125 (26%)
125 (26%)

134208 (28%)
134208 (28%)
134208 (28%)
264944 (55%)
233032 (48%)

2702 (8%)
2702 (8%)
2702 (8%)
5672 (17%)
5249 (16%)

flexibility in relation to program size (variable), types of
operators, and extension to color images. The developed
method can be used as a guide to morphological design
as well as to other applications involving linear image
processing.
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