
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018 17

Emerson Carlos PEDRINO1, Igor Felipe GALLON1, Fredy João VALENTE1, Márcio Merino FERNANDES1,
 Osmar OGASHAWARA1, Valentin Obac RODA2

UFSCAR - Universidade Federal de São Carlos (1), UFRN - Universidade Federal do Rio Grande do Norte (2), Brazil

doi:10.15199/48.2018.04.05

A Novel Methodology for Automated Generation of Flexible
Hardware Architectures

Abstract: The automated generation of hardware architectures is a powerful tool in the fully interconnected world. This work presents a new methodology
based around Cartesian Genetic Programming for generating flexible hardware architectures. The solution is composed by an intelligent module developed in
software which is responsible for the generation of the solution logic for the pretended architecture, and by a hardware module developed in Verilog-HDL, which
converts the obtained solution logic into a hardware architecture in FPGA. Good results were reached and compared to other similar proposals found in the
literature.

Streszczenie: W pracy przedstawiono nową metodologię opartą na Kartezjańskim Programie Genetycznym służącą do tworzenia elastycznych architektur
sprzętowych. Rozwiązanie składa się z inteligentnego modułu opracowanego w oprogramowaniu odpowiedzialnym za generowanie logiki rozwiązania dla
danej architektury oraz modułu sprzętowego opracowanego w Verilog-HDL, który przekształca otrzymany algorytm rozwiązania w architekturę sprzętową w
układzie FPGA. Nowa metoda automatycznego generowania elastycznej architektury sprzętowej

Keywords: Cartesian Genetic Programming, FPGA, Flexible Hardware Generation, Evolutionary Algorithms.
Słowa kluczowe: kartezjańskie programowanie genetyczne, FPGA, elastyczne generowanie sprzętu, algorytmy ewolucyjne.

Introduction
Evolutionary Algorithms (EAs) are computational

techniques for simulating processes with natural evolution
and for the optimization of problem resolution in which the
magnitude of the space of solutions is such that the use of
conventional methods [1], such as the Brute Force
Algorithm, is not applicable. EAs make use of statistical
properties and stochastic components in order to get as
close as possible to the optimum solution [2]. Such
approach has already been used in research works for
different applications with promising results [3][4][5].

The design of hardware architectures using
conventional techniques in practice is not a trivial task even
when conducted by experts [6][7]. By using intelligent
algorithms, it is possible to automate the design process of
digital circuits even if it includes a very complex FSM (Finite
State Machine) for many different applications. By
automating the design process of digital circuits, the
designer can better focus on optimizing the project by
reducing the number of logical elements and memory
usage, while improving energy consumption which usually
results in a hardware with better performance.

Many other research works have already used the EA
approach for the generation of combinatorial logical circuits
[8][9][10]. However, the majority of these works are
restricted to software simulation and have not implemented
such solutions in FPGA – Field-Programmable Gate Arrays
[11]. Also, only a few works [12][13] have explored the
generation of sequential circuits so that many work is still
needed in this context.

This paper describes a proposal and the implementation
of a new framework for the automated construction of
combinatorial and sequential digital circuits to be flexibly
implemented in FPGA. This framework uses an
evolutionary hybrid module based on Cartesian Genetic
Programming (CGP) Algorithm and an evolutionary strategy
developed as a toolbox for MATLAB. The designer specifies
the parameters and desired behaviors using a simple
database for the generation of the desired circuit. Also, a
set of repetitive tests were conducted in order to
demonstrate the feasibility of the proposed approach when
compared to other similar approaches found in the
literature.

Genetic Programming
Different from GAs (Genetic Algorithms) which produce

fixed solutions, GP (Genetic Programming) generate
programs instead, what is a much more flexible solution for
solving problems [14]. The representation of individuals in
this context is done by syntactic tree structures where each
tree node corresponds to genes in the chromosome.

The genetic operators are modified in order to act in this
type of structure. Mutation in GP occurs by altering not only
tree nodes but a whole subtree [15][16]. For instance, in
crossover operation, entire subtrees from the parents are
switched to generate new offspring trees. The fitness
function calculates the difference between the output
obtained from a given chromosome of the population
individuals and the desired output.

Cartesian Genetic Programming

GCP (Genetic Cartesian Programming) is a derivation
from GP in which the individuals are represented by
indexed graphs [17]. The graph nodes represent the
chromosome genes. Each node keeps the index to a
function from a predefined functions table and the indexes
of the linked nodes which make it possible to determine all
the arcs between nodes utilizing a vector array of numbers,
as shown in Figure 1.A.

The chromosome, in this approach, is organized as a
matrix with nodes connecting between columns as if each
column represents a level of the graph, as depicted in
Figure 1.B. The nodes from the first column connect to the
program inputs and the nodes from the last column to the
output from the nodes. The maximum number of levels da
each gene can connect is called “level-back” which is
represented by parameter . For instance, when , the
genes can connect to only two previous columns at
maximum.

The number of lines , the number of columns , the
number of inputs , and the number of outputs are
parameters defined before beginning the evolutionary
process. In addition, it is necessary to know the number of
functions which are going to be used in the genetic
coding.

18 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018

Fig. 1. General Representation of the Graph used in CGP [12].

The nodes from index are the program
inputs, while the nodes are the program
outputs. The remaining nodes represent the chromosomes
genes with their inputs and outputs with indexes from to

.
In Figure 1.B, representes the inputs of each gene,

where represents the index of the node and denotes
which input of the gene is designated, also called as arity.
For instance, represents the second input of gene 3.

Given the number of existing functions in the function
table, the index of function used in each node must be
in the interval (1).
(1)

Considering that the nodes are in column (begin in 0)
and that are the input from nodes , we have the
intervals (2) and (3).

(2)
(3)

The program outputs indexed by connect with the
nodes outputs following restriction (4).

(4)

Methodology for the Automated Generation of
Hardware Architectures

The Automated System for Hardware Generation was
developed as a toolbox in MATLAB. It uses 3 2-input logic
gates, 1 1-input logic gate and 1 neutral operator for
constructing its solutions, as depicted in Table 1. The
neutral operator NOP (unary) copies the input to the output.

Table 1. Functions for Referencing the Indexes used in the System
Coding.

Index Function
1 AND
2 OR
3 XOR
4 NOT
5 NOP

The developed toolbox has a graphic interface for input
the initial data parameters necessary to the EA – see Figure
2: the quantity of individuals (chromosomes) for
population , the maximum number of generations

, the mutation rate, the nodes matrix dimensions (
and), the Truth Table with the desired inputs and
outputs, which logical functions from Table 1 can be used,
the combinatorial or sequential definition and the number of
states for the FSM, in case it is sequential.

In this way, the main objective of this tool is the
automatic generation of a chromosome (best generated

circuit for a given problem) in which its configuration will
serve as parameters for a control module (as seen in Figure
2) created in VHDL for generating the final equivalent circuit
in FPGA.

The following paragraphs details the diagram blocs from
Figure 2.

Initial Population
The initial population (Figure 2.A) is randomly created in

accordance with Figure 1 but modifying a few things: the
level-back is equal to 1 in this project; the outputs of the
circuit can only connect to the outputs of the genes of the
last column of nodes; also, the output indexing of nodes
was modified in accordance to the following counting from
first gene: 1 to instead of to , as
described in Figure 1. Therefore, after these modifications,
the boundaries (5), (6) and (7) describe these changes.

(5)
(6)

(7)

The inputs from a gene , represented by , can
connect to the inputs of circuit if is in the first column
() (5), or connect to the genes output from the previous
column, if is present in the other columns (6). In this way,
random values are generated in each gene for its function
and inputs, obeying the intervals (1), (5) and (6),
respectively, and at the end the output values using the
interval (7).

Considering , the number of outputs of the circuit, the
entire population is represented by a matrix

, where each line is a chromosome
of length . In Figure 3.A shows
an example of a generated chromosome using the adopted
intervals in (1), (5), (6) e (7), as well as the respectively
decoded circuit (Figure 3.B).

Fig 2. General Representation of the Proposed Framework for
Automated Generation of Hardware Architectures

Decoding and Function Evaluation

The decoding of each individual of the population
(Figure 2.B) consists in transforming the genotype
containing integer numbers in its equivalent circuit
(phenotype).

After decoding, the Evaluation Function (8), given
the Truth Table for the problem entered by the user, for
each individual , reasons how close to the desired circuit
the result is. Hence, the input values from the table are
sequentially supplied to the chromosome inputs. The output

 of this individual is determined after the inputs are
read. When all of the outputs are calculated for that

chromosome, the outputs are then subtracted from their
respective desired values () entered in the table and
the partial values produced are added in accordance with
the equation, and finally the result is divided by the number
of outputs values .

Fig. 3. Ex. of a Random Generated Individual and its Phenotype
(circuit).

In this way, a circuit with evaluation equal to zero is the
one in which its generated outputs are identical to the ones
entered in the Truth Table by the user and at this point a
solution is determined for the problem.

(8)

Genetic Operators
The mutation operation (Figure 2.C), is one of the

genetic operators used in this work. For each position of the
chromosome it generates a random value between 0 and 1.
If the value is less or equal to the mutation rate supplied by
the user then the value of the present position under
observation must suffer a mutation, which means that its
allele will be replaced by another random value obeying the
limits (1), (5), (6) and (7). In case the value is bigger than
the Mutation Rate, the value in the actual chromosome
position will remain unaltered.

The developed tool uses a crossover method as another
genetic operator used in this Project, referred to as “Two
Points Crossover”, which demands two parents to produce
two descendants, as seen in Figure 2.D.

Evolutionary Strategy
The evolutionary strategy used in this work combines

the strategy [16] and Steady State [15], using a novel
hybrid approach. In this case, we have: and

. After obtaining the evaluation for each
population individual, the chromosome with the best
evaluation for the present generation is selected to be the
parent. If its evaluation is better or equal than the parent of
the previous generation, then it will become the parent of
this generation. Otherwise, the parent remains the same as
the previous generation until the criteria is satisfied.

After that, the parent suffers mutation, generating the
offspring which compose the next generation. Beyond
mutation, 3 chromosomes are randomly selected and from
them, the 2 best are designated for performing crossover
which produce 2 offspring that will replace the 2 worst
children from the actual generation.

A Flexible Solution in FPGA
The obtained chromosome from the solution discussed

above (Figure 2.E), is converted in a hexadecimal file
format by MATLAB in order to be read in memory form by
the flexible architecture (Figure 2.F) in hardware, developed
in VHDL. The file contents will determine the configurations

of the connections for each gene, in addition to its functions,
via multiplexers in each cell, as seen in Figure 2.G.
Furthermore, the tool also allows the configuration of
working parameters such as the number of inputs and
outputs of the circuit (and), the node graph dimensions

(lines and columns), the number of bits
necessary to represent all the integer values of the
chromosome, the number of elements , the
type of circuit (combinatorial/sequential, type=0/1), as well
as the quantity of bits , necessary to represent the
number of states in the FSM when sequential, which should
be inserted in the VHDL module responsible for circuit
generation.

Fig. 4. Representation of the logic cell used in this project, with an
input bus, , e and one wire output. The width
of the input bus depends on the cell connections to the circuit inputs
() or with the output bus of the cells from the previous
column ().

The genes of the CGP are represented by logic cells in
hardware (Figure. 4). Each cell has all the logic operators
from the Function Table (Table 1). The operator used by
each cell is defined by a multiplexer controlled by
which equals to the first element in each gene in the CGP
(Figure 5), that is, the index from the Function Table. In
addition, all cells connect their inputs and outputs (except
for the first graph column cells which connect to the inputs
only) to a single bus. The data are selected from the bus
(Figure 5) to serve as cell inputs for the cells of the next
columns by using e . In order to allow every
possible connection, the cells input/output bus has a 3-state
logic implemented.

Fig. 5. Generic Representation of the Flexible Architecture.

The sequential circuits treated by the architecture are
FSMs of Moore type. The information about the actual state
of a given FSM is stored in memory elements (Figure 2.H).
In this implementation, we used type D Flip-Flops, in a
number which is equal to number of bits used to represent

20 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018

the states of the FSM. In a general manner, the FSMs are
formed by combinatorial circuits (as shown in logic structure
in Figure 5) where the inputs are the FSM inputs and the
outputs are the FSM output and its next state.

The Flip-Flops feedbacks the circuit so that it gets as
input the next state and send to the output the present state
(Figure 6). The generated chromosome in this case is the
same as the one generated in the combinatorial circuit
besides the Flip-Flops which are added by the module
“memory elements” seen in Figure 2, f or the sequential
case.

Fig. 6. The general structure of the FSM (Fig. 2.I). represents
the number of inputs and , the number of the FSM outputs. The
indexes n and s represent the number of inputs and outputs of the
combinatorial circuit inside the FSM, respectively, where

 e .

Results

For validating the results, tests were made for the XOR
circuit, for an even parity check circuit and for a FSM circuit.
For the XOR circuit the parameters were set to:

, , mutation rate varying in 10, 30
and 50% and a network of nodes of sizes , ,
and , with logical functions AND, OR, NOT and NOP
selected. For the parity verifying circuit of 3, 4, 5 and 6 bits,
it was used equals to 10000, 50000, 200000 and

800000, respectively, , nodes network of a

fixed size , and a mutation rate of 10%. These circuits
also used the logical functions AND, OR, NAND, NOR and
NOP. For the FSM parity verifying circuit the parameters
were: , varying the mutation rate
in 1, 10 e 30%; size of the node network , and

, also using AND, OR, XOR, NOT and NOP logical
functions.

For all cases, in average 30 repetitions were performed
for the obtaining of the average generations in each case.
The active nodes refer to the nodes which effectively
interfere in the result (solution phenotype). The percentage
of success is when the solution is obtained before reaching
the maximum number of generations . In addition, the
XOR circuit, the even parity of 6 bits circuit and the FSM
were implemented in FPGA for the best execution
chromosome solutions cases, in order to validate the
generated solution in hardware. The simulations can be
seen in Figures 8,9 and 10, as well as a summary of the
compilation from the generated circuits shown in Table 5
demonstrating the quantity of logical elements (LE) [25],
registers and pins used for the implementation in the Altera
FPGA model Cyclone II EP2C20F484C7 with a 50 MHz
clock speed, 18752 LEs and 315 pins available for the
developments.

XOR Circuit
By analyzing, the data gathered from Table 2, it is

possible to conclude that best results were obtained from
the nodes dimension. Figure 7 shows the phenotype
of a chromosome solution for the best result from the
performed tests.

Table 2. Results for the XOR Circuit.

Dimension
Mutation
Rate (%)

Average
Generations

Average
Active
Nodes

Success
(%)

10 33 8 100
30 13 8 100
50 11 8 100

10 10 14 100
30 6 13 100
50 7 13 100

10 7 21 100
30 6 21 100
50 5 23 100

Fig. 7. Representation of the XOR circuit (phenotype) generated by
the tool. The highlighted nodes are called “active nodes”.

Fig 8. Simulation of XOR circuit generated by the tool, done by
using the Altera Quartus II development platform.

Even Parity Check Circuit
These circuits were tested according to the parameters

indicated previously and then the obtained results (average
of the generations) were compared with the results from
Walker and Miller [18] for CGP using exactly the same
functions AND, OR, NAND and NOR, as shown in Table 3.

Table 3. Results and comparisons for even parity circuits (up to 6
bits).

Circuit Tool (in this work)
Walker e Miller

[24]
3 bits 452 5993
4 bits 5564 30589
5 bits 30523 136693
6 bits 70047 577237

Fig. 9. Simulation generated for a 6 bit even parity check circuit.

FSM circuit for odd parity check
For testing the generation of sequential circuits, the

implemented FSM corresponded to an odd parity check
circuit (output result = 1 when the number of bits 1 in the
input is odd). We can see that the best result was obtained
for a node network of dimension .

Table.4. Results obtained for the combinatorial FSM circuit.

Dimensio
n

Mutation
Rate (%)

Average
Iterations

Average
Active
Nodes

Success
(%)

1 363 7 100
10 86 8 100
30 67 7 100

1 323 14 100
10 67 14 100
30 333 14 100

1 260 25 100
10 149 27 100
30 394 22 100

Fig. 10. Simulation generated for the proposed Moore FSM.

Tab. 5. Sumary from the compilation generated for the
implemented circuits in the FPGA CYCLONE II EP2C20F484C7.

Conclusion
In the work described in this article, we proposed and

developed a novel methodology for generating hardware
architectures based on a variation of the CGP technique for
automating the generation of combinatorial and sequential
circuits using MATLAB for implementing in FPGA
afterwards. The tests conducted in the system have
demonstrated its versatility and a good performance when
compared to other existing similar works. The system
allows the user to specify the desired behavior for the target
digital system which is then accomplished automatically by
the tool. In this way, the final circuit synthetized in hardware
minimizes the use of resources from the reconfigurable
device. Beyond that, the automated generation and
hardware implementation of sequential circuits is a task
which needs to be more explored in the literature.

This work has been supported by FAPESP, processes
2014/26796-9, 2015/23297-4 and 2017/17226-2.

Authors: Prof.Dr. Emerson Carlos Pedrino, Dept.of Computing,
UFSCAR - Universidade Federal de São Carlos, Brazil,
emerson@dc.ufscar.br, Igor Felipe Gallon, Dept.of Computing,
UFSCAR - Universidade Federal de São Carlos, Brazil,
igor.gallon@dc.ufscar.br, Prof.Dr. Fredy João Valente, Dept.of
Computing, UFSCAR - Universidade Federal de São Carlos, Brazil,
fredy@dc.ufscar.br, Prof.Dr. Márcio Merino Fernandes, Dept.of
Computing, UFSCAR - Universidade Federal de São Carlos, Brazil,
marcio@dc.ufscar.br, Prof.Dr. Osmar Ogasawara, Dept.Electrical
Engineering, UFSCAR - Universidade Federal de São Carlos,
Brazil, oogasawara@dee.ufscsr.br, Prof.Dr. Valentin Obac Roda,
Dept.of Electrical Engineering, UFRN - Universidade Federal do
Rio Grande do Norte, Brazil, valentin@ct.ufrn.br.

REFERENCES
[1] J. H. Holland. “Adaptation in Natural and Artificial Systems”.

University of Michigan Press, Ann Arbor, re-issued by MIT
Press, 1992.

[2] L. D. Davis. “Handbook of Genetic Algorithms”. Van Nostrand
Reinhold, 1991.

[3] M. Z. Fortes, V. H. Ferreira and A. P. F. Coelho. “The
Induction Motor Parameter Estimation Using Genetic
Algorithm”. IEEE Latin America Transactions, v. 11, n. 5, sep.
2013.

[4] L. X. Medeiros, G. A. Arrijo, E. L. Flôres and A. C. P. Veiga.
“Genetic Algorithms Applied in Face Recognition”. IEEE Latin
America Transactions, v. 10, n. 6, dec. 2012.

[5] M. L. Carneiro, L. C. Brito, S. G. Araújo, P. C. M. Machado
and P. H. P. Carvalho. “Genetic Programming Applied to
Programmable Logic Controllers Programming”. IEEE Latin
America Transactions, v. 9, n. 3, jun. 2011.

[6] G. Boole. “An Investigation of the Laws of Thought”.
Prometheus Books. 2003.

[7] M. Karnaugh. “The Map Method for Synthesis of
Combinational Logic Circuits”. Transactions of the American
Institute of Electrical Engineers, 1953.

[8] S. A. Karzalis, J. Kalomiros and V. A. Kalaitzis. “A Cartesian
Genetic Programming Approach for Evolving Optimal Digital
Circuits”. T.E.I. of Central Macedonia, Serres, Greece. 2015

[9] M. Irfan, Q. Habib, G. M. Hassan, K. M. Yahya and S. Hayat.
“Combinational digital circuit synthesis using Cartesian Genetic
Programming from a NAND gate template”. 2010 6th ICET,
p.343-347. IEEE. out. 2010.

[10] L. SekaninaandZ. Vasicek.“Evolutionary Computing in
Approximate Circuit Design and Optimization”. WAPCO.
Amsterdam, Holland. 2015.

[11] S. Asha andR. Hemamalini. “Synthesis of Adder Circuit Using
Cartesian Genetic Programming”. Middle-east Journal of
Scientific Research, Chenaai, India, p.1181-1186. 2015.

[12] P. Shanti and R.Parthasarathi.“Evolution of Asynchronous
Sequential Circuits”. Anna University, India. 2005.

[13] P. Soleimani, R. Sabbaghi-Nadooshan, S. Mirzakuchaki and
M. Bagheri. “Using Genetic Algorithm in the Evolutionary
Design of Sequential Logic Circuits”. IJCSI, Tehran, Iran, v. 8,
n. 5, 2011.

[14] J. R. Koza. “Genetic Programming: On the Programming of
Computers by Means of Natural Selection”. Cambridge
Massachusetts: MIT Press, 1992.

[15] Z. Michalewicz. “Genetic Algorithms + Data Structures =
Evolution Programs”. Artificial Intelligence Series. Springer-
Verlag: Berlin, 1992

[16] J. F. Miller. “Cartesian Genetic Programming”. Springer, 2011
[17] S. N. Sivanandam and S. N. Deepa.“Introduction to Genetic

Algorithms”. 1 ed. Springer, 2007.
[18] J. A. Walker andJ. F. Miller. “The Automatic Acquisition,

Evolution and Reuse of Modules in Cartesian Genetic
Programming”. IEEE Transactions on Evolutionary
Computation, [s.l.], v. 12, n. 4, p.397-417. ago. 2008.

