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A Novel Methodology for Automated Generation of Flexible 
Hardware Architectures  

 
 
Abstract: The automated generation of hardware architectures is a powerful tool in the fully interconnected world. This work presents a new methodology 
based around Cartesian Genetic Programming for generating flexible hardware architectures. The solution is composed by an intelligent module developed in 
software which is responsible for the generation of the solution logic for the pretended architecture, and by a hardware module developed in Verilog-HDL, which 
converts the obtained solution logic into a hardware architecture in FPGA. Good results were reached and compared to other similar proposals found in the 
literature. 
 
Streszczenie: W pracy przedstawiono nową metodologię opartą na Kartezjańskim Programie Genetycznym służącą do tworzenia elastycznych architektur 
sprzętowych. Rozwiązanie składa się z inteligentnego modułu opracowanego w oprogramowaniu odpowiedzialnym za generowanie logiki rozwiązania dla 
danej architektury oraz modułu sprzętowego opracowanego w Verilog-HDL, który przekształca otrzymany algorytm rozwiązania w architekturę sprzętową w 
układzie FPGA. Nowa metoda automatycznego generowania elastycznej architektury sprzętowej 
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Introduction 
Evolutionary Algorithms (EAs) are computational 

techniques for simulating processes with natural evolution 
and for the optimization of problem resolution in which the 
magnitude of the space of solutions is such that the use of 
conventional methods [1], such as the Brute Force 
Algorithm, is not applicable. EAs make use of statistical 
properties and stochastic components in order to get as 
close as possible to the optimum solution [2]. Such 
approach has already been used in research works for 
different applications with promising results [3][4][5].  

The design of hardware architectures using 
conventional techniques in practice is not a trivial task even 
when conducted by experts [6][7]. By using intelligent 
algorithms, it is possible to automate the design process of 
digital circuits even if it includes a very complex FSM (Finite 
State Machine) for many different applications. By 
automating the design process of digital circuits, the 
designer can better focus on optimizing the project by 
reducing the number of logical elements and memory 
usage, while improving energy consumption which usually 
results in a hardware with better performance. 

Many other research works have already used the EA 
approach for the generation of combinatorial logical circuits 
[8][9][10]. However, the majority of these works are 
restricted to software simulation and have not implemented 
such solutions in FPGA – Field-Programmable Gate Arrays 
[11]. Also, only a few works [12][13] have explored the 
generation of sequential circuits so that many work is still 
needed in this context. 

This paper describes a proposal and the implementation 
of a new framework for the automated construction of 
combinatorial and sequential digital circuits to be flexibly 
implemented in FPGA. This framework uses an 
evolutionary hybrid module based on Cartesian Genetic 
Programming (CGP) Algorithm and an evolutionary strategy 
developed as a toolbox for MATLAB. The designer specifies 
the parameters and desired behaviors using a simple 
database for the generation of the desired circuit. Also, a 
set of repetitive tests were conducted in order to 
demonstrate the feasibility of the proposed approach when 
compared to other similar approaches found in the 
literature. 

Genetic Programming 
Different from GAs (Genetic Algorithms) which produce 

fixed solutions, GP (Genetic Programming) generate 
programs instead, what is a much more flexible solution for 
solving problems [14]. The representation of individuals in 
this context is done by syntactic tree structures where each 
tree node corresponds to genes in the chromosome.  

The genetic operators are modified in order to act in this 
type of structure. Mutation in GP occurs by altering not only 
tree nodes but a whole subtree [15][16]. For instance, in 
crossover operation, entire subtrees from the parents are 
switched to generate new offspring trees. The fitness 
function calculates the difference between the output 
obtained from a given chromosome of the population 
individuals and the desired output. 
  
Cartesian Genetic Programming 

GCP (Genetic Cartesian Programming) is a derivation 
from GP in which the individuals are represented by 
indexed graphs [17]. The graph nodes represent the 
chromosome genes. Each node keeps the index to a 
function from a predefined functions table and the indexes 
of the linked nodes which make it possible to determine all 
the arcs between nodes utilizing a vector array of numbers, 
as shown in Figure 1.A. 

The chromosome, in this approach, is organized as a 
matrix with nodes connecting between columns as if each 
column represents a level of the graph, as depicted in 
Figure 1.B. The nodes from the first column connect to the 
program inputs and the nodes from the last column to the 
output from the nodes. The maximum number of levels da 
each gene can connect is called “level-back” which is 
represented by parameter . For instance, when ,  the 
genes can connect to only two previous columns at 
maximum.  

The number of lines , the number of columns , the 
number of inputs , and the number of outputs are 
parameters defined before beginning the evolutionary 
process. In addition, it is necessary to know the number of 
functions  which are going to be used in the genetic 
coding. 
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Fig. 1.  General Representation of the Graph used in CGP [12]. 
 

The nodes from index  are the program 
inputs, while the nodes are the program 
outputs. The remaining nodes represent the chromosomes 
genes with their inputs  and outputs with indexes from  to 

. 
In Figure 1.B, representes the inputs of each gene, 

where represents the index of the node and  denotes 
which input of the gene is designated, also called as arity. 
For instance,  represents the second input of gene 3. 

Given  the number of existing functions in the function 
table, the index of function  used in each node  must be 
in the interval (1). 
(1)                                
 

Considering that the nodes are in column  (begin in 0) 
and that  are the input  from nodes , we have the 
intervals (2) and (3). 

 

(2)       
(3)                
 

The program outputs indexed by  connect with the 
nodes outputs following restriction (4). 

 

(4)                     
 

Methodology for the Automated Generation of 
Hardware Architectures 

The Automated System for Hardware Generation was 
developed as a toolbox in MATLAB. It uses 3 2-input logic 
gates, 1 1-input logic gate and 1 neutral operator for 
constructing its solutions, as depicted in Table 1. The 
neutral operator NOP (unary) copies the input to the output. 
 

Table 1.  Functions for Referencing the Indexes used in the System 
Coding. 

Index Function 
1 AND 
2 OR 
3 XOR 
4 NOT 
5 NOP 

 

The developed toolbox has a graphic interface for input 
the initial data parameters necessary to the EA – see Figure 
2: the quantity of individuals (chromosomes) for 
population , the maximum number of generations 

, the mutation rate, the nodes matrix dimensions (  
and ), the Truth Table with the desired inputs and 
outputs, which logical functions from Table 1 can be used, 
the combinatorial or sequential definition and the number of 
states for the FSM, in case it is sequential. 

In this way, the main objective of this tool is the 
automatic generation of a chromosome (best generated 

circuit for a given problem) in which its configuration will 
serve as parameters for a control module (as seen in Figure 
2) created in VHDL for generating the final equivalent circuit 
in FPGA.  

The following paragraphs details the diagram blocs from 
Figure 2. 
 

Initial Population 
The initial population (Figure 2.A) is randomly created in 

accordance with Figure 1 but modifying a few things: the 
level-back is equal to 1 in this project; the outputs of the 
circuit can only connect to the outputs of the genes of the 
last column of nodes; also, the output indexing of nodes 
was modified in accordance to the following counting from 
first gene: 1 to  instead of  to , as 
described in Figure 1. Therefore, after these modifications, 
the boundaries (5), (6) and (7) describe these changes. 

 

(5)                          
(6)               

(7)                        
 

The inputs from a gene , represented by , can 
connect to the inputs of circuit if is in the first column 
( ) (5), or connect to the genes output from the previous 
column, if  is present in the other columns (6). In this way, 
random values are generated in each gene for its function 
and inputs, obeying the intervals (1), (5) and (6), 
respectively, and at the end the output values using the 
interval (7). 

Considering , the number of outputs of the circuit, the 
entire population is represented by a matrix 

, where each line is a chromosome 
of length . In Figure 3.A shows 
an example of a generated chromosome using the adopted 
intervals in (1), (5), (6) e (7), as well as the respectively 
decoded circuit (Figure 3.B). 
 

 
Fig 2.  General Representation of the Proposed Framework for 
Automated Generation of Hardware Architectures 
 
Decoding and Function Evaluation 

The decoding of each individual of the population 
(Figure 2.B) consists in transforming the genotype 
containing integer numbers in its equivalent circuit 
(phenotype). 

After decoding, the Evaluation Function  (8), given 
the Truth Table for the problem entered by the user, for 
each individual , reasons how close to the desired circuit 
the result is. Hence, the input values from the table are 
sequentially supplied to the chromosome inputs. The output 

 of this individual is determined after the inputs are 
read. When all of the outputs are calculated for that 



chromosome, the outputs are then subtracted from their 
respective desired values ( ) entered in the table and 
the partial values produced are added in accordance with 
the equation, and finally the result is divided by the number 
of outputs values . 

 

 
Fig. 3.  Ex. of a Random Generated Individual and its Phenotype 
(circuit). 
 

In this way, a circuit with evaluation equal to zero is the 
one in which its generated outputs are identical to the ones 
entered in the Truth Table by the user and at this point a 
solution is determined for the problem.  
 

(8)                      
 

Genetic Operators 
The mutation operation (Figure 2.C), is one of the 

genetic operators used in this work. For each position of the 
chromosome it generates a random value between 0 and 1. 
If the value is less or equal to the mutation rate supplied by 
the user then the value of the present position under 
observation must suffer a mutation, which means that its 
allele will be replaced by another random value obeying the 
limits (1), (5), (6) and (7). In case the value is bigger than 
the Mutation Rate, the value in the actual chromosome 
position will remain unaltered. 

The developed tool uses a crossover method as another 
genetic operator used in this Project, referred to as “Two 
Points Crossover”, which demands two parents to produce 
two descendants, as seen in Figure 2.D. 
 

Evolutionary Strategy 
The evolutionary strategy used in this work combines 

the strategy [16] and Steady State [15], using a novel 
hybrid approach. In this case, we have:  and 

. After obtaining the evaluation for each 
population individual, the chromosome with the best 
evaluation for the present generation is selected to be the 
parent.  If its evaluation is better or equal than the parent of 
the previous generation, then it will become the parent of 
this generation. Otherwise, the parent remains the same as 
the previous generation until the criteria is satisfied.  

After that, the parent suffers mutation, generating the 
offspring which compose the next generation. Beyond 
mutation, 3 chromosomes are randomly selected and from 
them, the 2 best are designated for performing crossover 
which produce 2 offspring that will replace the 2 worst 
children from the actual generation.  
 

A Flexible Solution in FPGA 
The obtained chromosome from the solution discussed 

above (Figure 2.E), is converted in a hexadecimal file 
format by MATLAB in order to be read in memory form by 
the flexible architecture (Figure 2.F) in hardware, developed 
in VHDL. The file contents will determine the configurations 

of the connections for each gene, in addition to its functions, 
via multiplexers in each cell, as seen in Figure 2.G. 
Furthermore, the tool also allows the configuration of 
working parameters such as the number of  inputs and 
outputs of the circuit (  and ), the node graph dimensions 

(lines  and columns ), the number of bits  
necessary to represent all the integer values of the 
chromosome, the number of elements , the 
type of circuit (combinatorial/sequential, type=0/1), as well 
as the quantity of bits , necessary to represent the 
number of states in the FSM when sequential, which should 
be inserted in the VHDL module responsible for circuit 
generation. 
 

 
Fig. 4.  Representation of the logic cell used in this project, with an 
input bus, ,  e  and one wire output. The width  
of the input bus depends on the cell connections to the circuit inputs 
( ) or with the output bus of the cells from the previous 
column ( ). 
 

The genes of the CGP are represented by logic cells in 
hardware (Figure. 4). Each cell has all the logic operators 
from the Function Table (Table 1). The operator used by 
each cell is defined by a multiplexer controlled by  
which equals to the first element in each gene in the CGP 
(Figure 5), that is, the index from the Function Table. In 
addition, all cells connect their inputs and outputs (except 
for the first graph column cells which connect to the inputs 
only) to a single bus. The data are selected from the bus 
(Figure 5) to serve as cell inputs for the cells of the next 
columns by using  e . In order to allow every 
possible connection, the cells input/output bus has a 3-state 
logic implemented. 
 

 
Fig. 5. Generic Representation of the Flexible Architecture. 
 

The sequential circuits treated by the architecture are 
FSMs of Moore type. The information about the actual state 
of a given FSM is stored in memory elements (Figure 2.H). 
In this implementation, we used type D Flip-Flops, in a 
number which is equal to number of bits used to represent 
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the states of the FSM. In a general manner, the FSMs are 
formed by combinatorial circuits (as shown in logic structure 
in Figure 5) where the inputs are the FSM inputs and the 
outputs are the FSM output and its next state. 

The Flip-Flops feedbacks the circuit so that it gets as 
input the next state and send to the output the present state 
(Figure 6). The generated chromosome in this case is the 
same as the one generated in the combinatorial circuit 
besides the Flip-Flops which are added by the module 
“memory elements” seen in Figure 2, f or the sequential 
case.  
 

 
Fig. 6.  The general structure of the FSM (Fig. 2.I).  represents 
the number of inputs and , the number of the FSM outputs. The 
indexes n and s represent the number of inputs and outputs of the 
combinatorial circuit inside the FSM, respectively, where  

 e . 
 
Results 

For validating the results, tests were made for the XOR 
circuit, for an even parity check circuit and for a FSM circuit. 
For the XOR circuit the parameters were set to: 

, , mutation rate varying in 10, 30 
and 50% and a network of nodes of sizes , , 
and , with logical functions AND, OR, NOT and NOP 
selected. For the parity verifying circuit of 3, 4, 5 and 6 bits, 
it was used  equals to 10000, 50000, 200000 and 

800000, respectively, , nodes network of a 

fixed size , and a mutation rate of 10%. These circuits 
also used the logical functions AND, OR, NAND, NOR and 
NOP. For the FSM parity verifying circuit the parameters 
were: ,  varying the mutation rate 
in 1, 10 e 30%; size of the node network ,  and 

, also using AND, OR, XOR, NOT and NOP logical 
functions. 

For all cases, in average 30 repetitions were performed 
for the obtaining of the average generations in each case. 
The active nodes refer to the nodes which effectively 
interfere in the result (solution phenotype). The percentage 
of success is when the solution is obtained before reaching 
the maximum number of generations . In addition, the 
XOR circuit, the even parity of 6 bits circuit and the FSM 
were implemented in FPGA for the best execution 
chromosome solutions cases, in order to validate the 
generated solution in hardware. The simulations can be 
seen in Figures 8,9 and 10, as well as a summary of the 
compilation from the generated circuits shown in Table 5 
demonstrating the quantity of logical elements (LE) [25], 
registers and pins used for the implementation in the Altera 
FPGA model Cyclone II EP2C20F484C7 with a 50 MHz 
clock speed, 18752 LEs and 315 pins available for the 
developments. 

 
 

XOR Circuit 
By analyzing, the data gathered from Table 2, it is 

possible to conclude that best results were obtained from 
the  nodes dimension. Figure 7 shows the phenotype 
of a chromosome solution for the best result from the 
performed tests. 

 
Table 2.  Results for the XOR Circuit. 

Dimension 
Mutation 
Rate (%) 

Average 
Generations 

Average 
Active 
Nodes 

Success 
(%) 

 

10 33 8 100 
30 13 8 100 
50 11 8 100 

 

10 10 14 100 
30 6 13 100 
50 7 13 100 

 

10 7 21 100 
30 6 21 100 
50 5 23 100 

 

 
Fig. 7.  Representation of the XOR circuit (phenotype) generated by 
the tool. The highlighted nodes are called “active nodes”. 
 

 
Fig 8. Simulation of XOR circuit generated by the tool, done by 
using the Altera Quartus II development platform.  
 

Even Parity Check Circuit 
These circuits were tested according to the parameters 

indicated previously and then the obtained results (average 
of the generations) were compared with the results from 
Walker and Miller [18] for CGP using exactly the same 
functions AND, OR, NAND and NOR, as shown in Table 3.  
 
Table 3. Results and comparisons for even parity circuits (up to 6 
bits). 

Circuit Tool (in this work) 
Walker e Miller 

[24] 
3 bits 452 5993 
4 bits 5564 30589 
5 bits 30523 136693 
6 bits 70047 577237 

 

 
Fig. 9.  Simulation generated for a 6 bit even parity check circuit. 
 
 



FSM circuit for odd parity check 
For testing the generation of sequential circuits, the 

implemented FSM corresponded to an odd parity check 
circuit (output result = 1 when the number of bits 1 in the 
input is odd). We can see that the best result was obtained 
for a node network of dimension . 
 
Table.4.  Results obtained for the combinatorial FSM circuit. 

Dimensio
n 

Mutation 
Rate (%) 

Average 
Iterations 

Average 
Active 
Nodes 

Success 
(%) 

 

1 363 7 100 
10 86 8 100 
30 67 7 100 

 

1 323 14 100 
10 67 14 100 
30 333 14 100 

 

1 260 25 100 
10 149 27 100 
30 394 22 100 

 

 
Fig. 10.  Simulation generated for the proposed Moore FSM. 
 
Tab. 5. Sumary from the compilation generated for the 
implemented circuits in the FPGA CYCLONE II EP2C20F484C7. 

 
 

Conclusion 
In the work described in this article, we proposed and 

developed a novel methodology for generating hardware 
architectures based on a variation of the CGP technique for 
automating the generation of combinatorial and sequential 
circuits using MATLAB for implementing in FPGA 
afterwards. The tests conducted in the system have 
demonstrated its versatility and a good performance when 
compared to other existing similar works. The system 
allows the user to specify the desired behavior for the target 
digital system which is then accomplished automatically by 
the tool. In this way, the final circuit synthetized in hardware 
minimizes the use of resources from the reconfigurable 
device. Beyond that, the automated generation and 
hardware implementation of sequential circuits is a task 
which needs to be more explored in the literature.  
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