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ABSTRACT

A Gaussian Mixture-Based Approach to Synthesizing
Nonlinear Feature Functions for Automated Object Detection

Pei Fang Guo

Feature design is an important part to identify objects of interest into a known number of
categories or classes in object detection. Based on the depth-first search for higher order

feature functions, the technique of automated feature synthesis is generally considered to

be a process of creating more effective features from raw feature data during the run of
the algorithms. This dynamic synthesis of nonlinear feature functions is a challenging

problem in object detection. This thesis presents a combinatorial approach of genetic
programming and the expectation maximization algorithm (GP-EM) to synthesize

nonlinear feature functions automatically in order to solve the given tasks of object

detection. The EM algorithm investigates the use of Gaussian mixture which is able to

model the behaviour of the training samples during an optimal GP search strategy. Based

on the Gaussian probability assumption, the GP-EM method is capable of performing
simultaneously dynamic feature synthesis and model-based generalization. The EM part

of the approach leads to the application of the maximum likelihood (ML) operation that

provides protection against inter-cluster data separation and thus exhibits improved
convergence. Additionally, with the GP-EM method, an innovative technique, called the

histogram region of interest by thresholds (HROlBT), is introduced for diagnosing

protein conformation defects (PCD) from microscopic imagery. The experimental results
show that the proposed approach improves the detection accuracy and efficiency of

pattern object discovery, as compared to single GP-based feature synthesis methods and
also a number of other object detection systems. The GP-EM method projects the

hyperspace of the raw data onto lower-dimensional spaces efficiently, resulting in faster
computational classification processes.
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Chapter 1

Introduction & Literature Review

In object detection techniques, the objects are generally represented by vectors of feature

values. The concept of detection can be expressed in terms of the partitions of feature

spaces (i.e., mappings from feature spaces to decision spaces). It is not known in advance

which features will provide the best discrimination among the classes. A common

approach is to let human experts provide as many features as possible that are readily

measurable and likely to be related to the detection categories. However, the

computational complexity of classification grows with each additional feature.

In defining features, feature selection is a breadth-first search for many simple features.

The search begins with a large pool of original features and outputs a population of feature

subsets in which the feature number and combination are adapted to seek decision

boundaries [MN09], [MP06]. Obviously, the selection of feature subsets can improve

classification speed and efficiency [KS05], [OL04].

Nowadays, object detection problems often involve large feature dataseis. In high-

dimensional problems, feature subsets are selected to establish complex relationships

within large dataseis where the mapping from data to class labels is often obscure or

difficult to identify. The process of finding the appropriate feature subsets would be a

time-consuming task, and considerable efforts have gone into automating the process of
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the feature synthesis [GJ05], [RZ02], [Ko94].

Based on the depth-first search for higher order feature functions, the technique of

dynamic feature synthesis is generally considered to be a process of creating more

effective features from raw features. The purpose is to employ relatively fewer synthesized

features to perform functional mapping for the data representation without a decline in the

discriminative capability. Researchers have used various approaches for finding good

algorithms for the feature synthesis, such as neural networks (NN) [WJ06J, [GK96], fuzzy

systems [YMOl] and evolutionary algorithms [Lo07], [GN06], [GJ05], [KB05], [CTOl],

[YB06].

Evolutionary algorithms (EA) are randomized search and optimization techniques

guided by the principles of evolution and natural genetics [LR05]. Evolutionary genetic

programming (GP) [Ko94] is a variant of genetic algorithm (GA) [Go89] and evolutionary

computation [F066], in which the GP hypotheses being manipulated are computer

programs, rather than bit strings [ES03].

To perform feature synthesis, a number of researchers have used the single EA-based

methods, such as the GP-based method [Lo07], [GJ05], [KB05], [GN06], [YB06] and the

GA-based method [CTOl]. In these methods, the researchers choose specific fitness

functions, operation selections, and other details. The disadvantages of the single EA-

based feature generators are:

(1) they typically use only one type of processing components regardless of the problem

domain;

(2) they require a large amount of computation time for convergence;

(3) they lack computer models to interpret the visual training data representations in the
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computational evolutionary process.

In order to overcome these limitations, an alternative approach is to choose an

integrated algorithm to constitute an efficient mechanism in the evolutionary computation.

This thesis proposes to integrate GP with EM (we call it the "GP-EM") to synthesize

nonlinear feature functions dynamically from primitive features, to achieve mapping from

the hyperspace of raw data to lower dimensional spaces. During the runs of the GP-EM

algorithm, the system is allowed to alter dynamically the structures of synthesized feature

functions via GP tree representations, which are evolved by undergoing adaptive

combination ofprimitive feature vectors.

1.1 Literature Review

1.1.1 Feature Synthesis Applications

Many researchers experimented with various problems for feature systhesis [GJ05],

[Lo07], [YB06], [WJ06], [KB05], [HG02], [CTOl]. The GP-based method for

synthesizing new features from raw vibration data recorded from a rotating machine was

proposed in [GJ05] to detect bearing faults in six different conditions. The experimental

results showed that the classification performance changed drastically with the variation of

classification methods and data, while the features synthesized by GP maintained a

constantly high level of performance. Based on the Fisher criterion (a two-class based

discriminant), the fitness function proposed in [GJ05] gave the synthesized features more

chance to survive for closest classes, although a compensation was given in order to

achieve the best overall performance.
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The work based on GP in [Lo07] presented a methodology for recognizing epileptic

patterns in human electroencephalogram (EEG) signals recorded from the scalp of real

patients. Prior to the application of GP, the feature extraction was done as a preprocessing

step. The computation time for the classifiers was reasonably fast for the binary classes of

conditions, but more time was needed to produce the resulting synthesized features. A

genetically inspired learning method for facial expression recognition (FER) in [YB06]

was proposed to synthesize features automatically under a GP-based approach; the FER

applied the Gabor wavelet representation for primitive features and linear/nonlinear

operators for synthesizing new features.

A method of machine condition monitoring (MCM) using vibration signals was

proposed in [WJ06] to produce new features based on higher-order statistics of the power

spectral density. The MCM used a modified self organising map (SOM) via artificial

neural network (ANN). Using real-world vibration data sets, the MCM achieved higher

detection accuracy. A slightly lower accuracy in recognizing the normal class was also

reported in [WJ06]. However, this could be improved when a more representative data set

was used for training, or including a pre-training outlier removal process.

In [KB05], a feature synthesis algorithm was proposed to detect objects from the

synthetic aperture radar (SAR) images without or with little human intervention,. In the

approach, a variety of Linear Genetic Programming (LGP) procedures were encoded in

fixed-length sequences of bytes and applied to both the images and scalar data. Since this

was done once per recognition system, a more sophisticated and more time-consuming for

training and/or querying classifier was needed for computation.



In [K099], a feature systhesis method based on GP was proposed to improve detection

accuracy using the K nearest neighbor classifier. The experiments were performed on both

synthetic and real time dataseis, such as the acoustic diagnosis of compressors. However,

the proposed method had to select in advance the number of chromosomes and the penalty

coefficient ? for the fitness function by trials. A technique for electromyography (EMG)

application was proposed in [HG02] to detect the intention of paraplegic persons when

standing up or sitting down with an electrical stimulation orthosis. Using genetic algorithm

(GA), EMG signals were then used to extract learning features for both standing and

sitting positions. Since the selection of the number of samples was important in the

detection process, there was a tradeoff to achieve a reasonable delay time and low

probability of false alarms.

The feature function of symptom parameters synthesized using GA was proposed in

[CTOl] for diagnosing machinery faults of rolling bearing to discriminate two states-

normal and abnormal conditions. Using statistical theory, a distinction index (DI) has been

defined to evaluate the goodness of symptom parameters (SP) to form a new SP, called

GA-SP, in order to ensure high accuracy in the fault diagnosis. The results demonstrated

that DI can be used to evaluate the sensitivity of SP.

A summary of the reviewed work on the applications of feature synthesis is given in

Table 1.1.
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Table 1.1. Applications of feature synthesis.

papers methods applications fitness functions limitations

[GJ05] GP machinery fault detection the Fisher criterion fitness was biased on closest
classes

[Lo07] GP human epileptic pattern
recognition

the fitnesscases" and
'hits"

time-consuming

[KB05] LGP object recognition for 3-D
synthetic aperture radar
(SAR) imagery

the classifiers SVM /
C4.5

time-consuming / more
sophisticated

[YB06] GP facial expression
recognition (FER)

a voting strategy classification accuracy was
depended on primitive
features chosen

[WJ06] ANN machine condition
monitoring (MCM)

the modified Self
Organising Map (SOM)

slightly lower accuracy in
recognizing / needed pre-
training outliers removal

[HG02] GA detection of the intention
of a paraplegic person to
stand up or to sit down

a neuro-fuzzy classifier a tradeoff problem for the
number of samples N chosed

[CTOl] GA machinery fault detection a distinction index (Dl) of
statistical theory

computational complexity

1.1.2 Genetic Programming (GP) Applications

Genetic programming (GP) extends genetic algorithms (GAs) to the evolution of complete

computer programs. GP has been demonstrated to produce intriguing results in a number

of applications [CPlO], [PH09], [ZG07], [VL06], [JH06], [MF07], [KL07], [CW06]. A GP

based approach, named the (µ+?) GP, was introduced in [CPlO] to solve the software

quality classification problems. The (µ+?) GP algorithm applied boosting techniques to

improve the performance based on characteristics of the testing activity of GP. The results

showed that the proposed method of (µ+?) GP was an excellent, computationally less

expensive technique to model software reliability.

The study in [PH09] presented a majority voting genetic programming classifier

(MVGPC) to find the possible biomarkers of cancer diseases. MVGPC evolved multiple

rules in different runs of GP, and then applied them one by one to a test sample. The



sample was assigned to the class by the majority voting. Conducting on four cancer data

sets, including two multiclass data sets, the results showed that the proposed MVGPC

method was suitable for detecting the labels of test samples.

In [ZG07], a more intelligent crossover operator based on GP was developed in the

applications of various object detection problems. The classification accuracy of training

sets was employed as a fitness function. The results showed that this approach

outperformed the standard GP crossover operator in terms of detection accuracy.

[VL06] investigated the time series analysis of the demand and price of an electric

power supply system by modeling them as the output of a low dimensional chaotic

dynamical system. The histogram of the results predicted that the model, more or less like

a Gaussian distribution with a peak close to 0, was correct when compared to other

predicting systems. In [JH06], GP involving different control parameters and fitness

functions was applied to a low-pass filter synthesis problem, using restricted component

values to investigate how they affected the performance. In the case where the component

values were restricted, the method demonstrated that GP can effectively find solutions by

means of circuit topologies, but the computation time was two hours.

A new genetic representation, named analog genetic encoding (AGE), was proposed in

[MF07] for the evolutionary synthesis of analog networks. AGE was designed to search

for the optimal representation of the topologies and sizes of analog networks. The

connection between the evolved network and pre-assigned external devices was obtained

by associating the sequences of characters with the external devices that might be

connected to the evolving networks. The results in [MF07] showed that AGE performed

well when compared with other algorithms reported in the literature.
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The study in [KL07] presented the GP-based decision tree model that facilitated a

multi -objective optimization to solve software quality problems. In that approach, the set

of Pareto-optima was employed to present a multi-objective classification model, and the

experimental results were promising, and demonstrated the effectiveness of the proposed

model. Applied to landmark detection problems, a method was described in [CW06] which

involved GP and particle swarm optimization where a window of pixels was selected as an

input, and then slided over all pixel positions in the region in order to find landmark

locations. In addition, the work presented a quantitative comparison of search space size

and landscape using the evolutionary GP and parameter optimization.

A summary of the reviewed work on the applications of GP is given in Table 1.2.

Table 1.2. Applications of GP.

Papers applications fitness functions data sets

[CPlO] software reliability classification the average error failure datasets

[PH091 prediction of cancer diseases the majority voting microarray datasets
[ZG07] various image object detection detection accuracy images data sets (Shape,

Coins and Texture)
[VL06] time series of power pool demand and price the prediction MSE time series data
[JH06] low-pass filter synthesis estimation of error

values
restricted component
values

[MF07] synthesis of analog electronic circuits the desired output of
voltage and the target
output of current

the parameters number of
the device set

[KL07] software quality classification modified expected cost
ofmisclassification
(MECM)

two large windows with
the embedded system

[CW06] object detection detection accuracy landmark images

1.1.3 Expectation Maximization (EM) Applications

Generally, the expectation maximization (EM) algorithm can be applied in many settings

where we wish to estimate some parameters that describe an underlying probability

distribution [Bi06]. An iterative sequence detector based on the expectation-maximization



(EM) algorithm was proposed in [CUlO] for terrestrial optical wireless (OW) systems. The

complexity of the proposed algorithm was considerably less than a direct evaluation of the

log-likelihood function that was independent of the channel's fading statistics. The results

demonstrate that the EM-based algorithm outperforms the symbol-by-symbol decoder and

achieves a high detection rate.

In [HY09], the EM algorithm was employed to estimate parameters of models for

applications to speech recognition. While estimating the hidden Markov model (HMM)

parameters by taking the benefit of hybridization, a staged-fusion approach maintained the

global sampling capabilities of evolutionary algorithm (EA), and met the population-

diversity requirement for optimization of high dimensional objective functions. A

hierarchical and spatially constrained mixture model was proposed in [NG07] for image

segmentation. This model took into account spatial information by imposing distinct

smoothness priors on the probabilities of each cluster and pixel neighborhoods.

Experimental results showed that the approach improved significantly not only standard

segmentation but also its spatially variant version. Moreover, the number of iterations of

the EM algorithm was reduced significantly.

In [Lu06], the EM algorithm was used to model a set of observation data, which

contained a finite number of components. Using penalized minimum matching distance,

the mixture model fitting technique via the EM algorithm was proposed to find the number

of mixture components. In [GÜ05], under the Gaussian probability assumption via the EM

algorithm, the approach was capable of providing an effective training mechanism for the

mixture of experts (ME), a modular neural network architecture. The learning process was
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thus decoupled in a manner that the data were fitted well under the modular structure for

diagnosing the disease.

The integration of the EM algorithm and rough set initialization was proposed to

perform a non-convex clustering for real life data sets [MP03]. The number of clusters in

the algorithm was specified by users. In the approach, EM provided the statistical model of

the data to handle the associated uncertainties, in which the data was modeled under the

Gaussian mixture in the local level, while the Gaussians were partitioned globally using

graph-theoretic technique; thereby enabling the efficient detection of the non-convex

clusters for the data. Using the EM algorithm, a feature selection method was proposed by

[PN95] to estimate the unknown distributions for a product type of the data. The results

showed that the proposed method was able to perform the feature selection when the class

conditional distributions and functional forms of data were unknown, and further

demonstrated that the approach with a multivariate normal model could be superior to

other feature selection algorithms.

Up to now, to our knowledge, the EM algorithm has not yet been applied in the area of

feature synthesized for automatic object recognition.

A summary of the reviewed works on the applications of EM is given in Table 1 .3.

Table 1 .3. Applications of the EM algorithm.

papers applications methodologies & algorithms
[CUlOI terrestrial optical wireless (OW) systems the EM algorithm
[HY09] speech recognition integrating the EM and a constraint-

based evolutionary algorithm
[NG07] image segmentation the EM algorithm
[Lu06] evaluation of the number of mixture components the EM algorithm
[GU05] prediction of diseases in the supervised learning integrating the EM and a modular

neural network
[MP03] non-convex clustering on real life data sets integrating the EM and rough set

theory
[PN95] feature selection by estimating the density function the EM with unknown mixture

distributions
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1.2 Objectives

In object detection systems, the general techniques of feature extraction and selection

involve linear transformations from primitive feature vectors to obtain new vectors of

lower dimensionality. At times, the newly extracted features might be linear combinations

of some primitive features that are not able to provide a better classification accuracy.

However, feature synthesis is a process that automatically synthesizes higher order

functions based on the given primitive feature set. Clearly, more efficiency can be gained

by automatically synthesizing non-linear feature functions while the algorithms are

searching for the optimal solutions for the problems.

The aim of this thesis is to investigate a method for using GP and the EM algorithm for

the task of feature synthesis. The proposed method should allow the synthesis of feature

functions with the minimal user interaction. The strategies for integrating GP and EM in

this thesis are: (1) GP tree structures are conducive to a global search of non-linear forms

of primitive feature vectors in an optimal control environment; (2) the EM algorithm

consists of hypothesis and modeling; using EM, the learning task then changes to output a

hypothesis that estimates the means of each of the k Gaussians, thus making it easy to find

solutions.

The main objectives of the thesis are:

• to increase the contribution that the overall performance of the detection would make

toward a higher accuracy rate by the improved feature representations.

• to reduce the feature dimensionality of the transformed data, while maximizing

classification accuracy and efficiency.
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• to compare the proposed approach with single GP-based feature synthesis methods

reported in the literature in terms of detection accuracy for the same problems.

• to demonstrate the potential benefits of the proposed approach being applicable to a

range of engineering domains.

1.3 Organization of the Thesis

The remaining chapters are organized as follows. Chapter 2 is a description of the

theoretical background related to this study, which contains the concept of object features,

the classification definitions, and the basis for the GP and the parameter EM algorithm.

Chapter 3 presents the GP-EM method for feature synthesis based on primitive feature

vectors. In particular, we explain the &-mean problem via the EM algorithm in the

estimation of the Gaussian parameters. The validation stage employs the methods of N

folds cross validation and receiver operating characteristic (ROC).

Chapter 4 describes applications of GP-EM for (i) detecting protein conformation

defects (PCD) from microscopic imagery, (ii) diagnosing breast cancer disease, (iii)

supporting identification in a hand-based biometrie system, and (iv) detecting Parkinson's

disease. For each application mentioned above, we present our experimental results and

comparison results with some other algorithms reported in the literature, in terms of the

detection accuracy.

Finally in Chapter 5, we give discussions, conclusions, and also include an example of

a potential application - a power quality monitoring system.
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Chapter 2

Background Information

2.1 Object Features

For object detection techniques, objects are generally represented by a vector of feature

values. Each object is represented as a point in a measurement space, in which the

coordinates are the values of features. In order to manage the data involved in the object,

we define feature values as the set of measurements, which can be interpreted as a

multidimensional vector in hyperspace. In this way, each sample is assigned one axis of

the object hyperspace in a well-defined array of measurements.

Whether of one homogeneous object variable or a number of them, feature values are

ordered in such a way that a particular element in the array has a fixed relationship to the

sampling process; there must always be a fixed number of feature values in a fixed order.

2.1.1 Feature Vectors and Spaces

For a given problem, certain types of features defined can be arranged as an ordered set.

Such a set is called afeature vector. Feature vectors define a multidimensional space in the

object feature space, where each feature is laid out along one axis.

13



Since features must be ordered in fixed number, thus giving rise to another pattern

object space—feature space. In this space, each object, encountered in object detection

procedures, is represented by a single point in each hyperspace, referred as simply feature

spaces hereafter.

An example of a 'three dimensional hyperspace' is shown in Figure 2.1.

3-D graphic vision

20

10

Z
0

-10

-20
3

Figure 2.1 A 3-D hyperspace for a function z = xy(x - y ) / (x + y )

2.1.2 Concepts of Feature Extraction and Selection, in General

The first stage in any object detection task is usually referred to as primitive feature

extraction. Feature extraction changes the data into a form that is simpler and easier for a

system to detect objects. The advantage of performing primitive feature extraction is that it

is a preprocessing process and works on data independently for learning algorithms so that

one can still use any learning algorithm one prefers, but has its performance boosted.

The technique of feature selection is a breadth-first search for many primitive features.

It begins with a large pool of primitive features and outputs a population of feature subsets

in which the feature number and combination are adapted to seek decision boundaries. The

objective of feature selection is to characterize objects, and further to reduce the

14
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dimensionality of measurement spaces. Obviously, the selection of feature subsets can

improve classification speed and efficiency for certain feature dimensional problems.

2.1.3 Target of Feature Synthesis

Based on the depth-first search for higher order feature functions, the technique of feature

systhesis refers to the study of creating new features dynamically in a nonlinear fashion,

which projects raw data from primitive feature space onto a lower dimensional synthesized

feature space. The purpose is to employ fewer efficient features to represent objects

without a decline in the discriminative capability of object detection.

Feature synthesis is a process that automatically synthesizes higher order functions

based on the given primitive feature set. The aim to synthesize features is to reduce the

dimensionality of the pattern object space by using such new created features. While in the

general case synthesized features are functions of the primitive feature set in measurement

spaces, it will be possible to reduce the feature dimensionality or eliminate redundancy of

primitive features in the process of feature creation.

2.2 Classification

In the discipline of computer vision, the classification (or detection) is the process of

grouping objects of interest into a known number of categories or classes, given a set of

observations. The goal of object classification is that the objects or events with some

similar properties are grouped into a class.
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The categories of objects to be classified, or to be detected could be sets of complex

patterns in image analysis areas, or sets of subtle defect states in medical fields, or sets of

multifaceted machine fault phenomena in engineering domains.

2.2.1 Definitions of Object Classification, or Detection

The concept of the object classification, or the object detection, can be expressed in terms

of the partition of feature space (or a mapping from feature spaces to decision spaces).

Suppose that N features are to be measured from each input object. Each set of d features

can be considered as a vector, O? called a ¿/-dimensional feature (measurement) vector.

The problem of classification is to assign each sample to a proper object class by the

means of feature vectors. This can be interpreted as a partition of the feature space into

mutually exclusive regions and each region will correspond to a particular object class.

Mathematically, the problem of classification can be formulated in terms of "discriminant

function", denoted as the D function. Let COx, CO2,..., ()\ defined as the k classes, and let

CIj= {f?,..., fa) be the J-dimensional feature (measurement) vector where f? represents

the /th feature measurement. Then the discriminant function Oj(SId) associated with the

feature vector Cl1, { I = 1, ..., d) and object class COj(J = 1, ..., k), is such that if the input

object represented by the d-dimensional feature vector O,, is in class COj , denoted as Sld

~COj, then the value of Oj(CiJ) must be the largest, i.e., for all Slj-COj, it must be satisfied

with the expression of Oj(CId) > Dn(Qj) in which n,j=\,...,k and ? F j.
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2.2.1.1 Supervised and Unsupervised Object Classification

In the problems of object classification, if there exists some set of objects, the individual

category of which is already known, then it is called a problem of supervised object

classification. If the classes of all of the available objects are unknown, and perhaps even

the number of these categories is unknown, then it is called a problem of unsupervised

object classification or clustering [Bi06].

2.2.2 Minimum Distance Classifier (MDC)

Mathematically, the problem of classification can be formulated in terms of a

predetermined measure [Fu90]. For the minimum distance classifier (MDC), the distance

is defined as an index of similarity so that the minimum distance is identical to the

maximum similarity. The MDC has been used as an important object detection tool. In

such method, the MDC uses the distances between the input object and a set of reference

vectors or prototype points in the feature space as the detection criterion.

Suppose that ? reference vectors Ri, R2, ..., Rn are given in which Rj is associated with

the object class COj. A minimum-distance classification scheme with respect to Ri, R2, ...,

Rn is to classify the input X as from class CDj, i.e., X ~ (Oj if | X — Rj | is the minimum.

The expression of | X - Rj | is the distance between X and Rj.

17



2.23 K Nearest Neighbors (KNN) Classifier

The aim of the K nearest neighbors (KNN) method is to find the nearest neighbors of an

unidentified test object within a hyper-sphere of pre-defined radius in order to determine

its true class. The traditional KNN rule has been described as follows [BiOo]:

• Out ofN training vectors, identify the K nearest neighbors, irrespective of class label.

K is chosen to be odd.

• Out of these K neighbors, identify the number of vectors, Ki, that belong to class CO¡ , i

= 1, 2,..., M (obviously, J]K1 =K).
i

• Assign ? to the class ¿y; with the maximum number K/ of samples.

KNN can detect a single or multiple number of nearest neighbors. A single nearest-

neighbor method is primarily suited to detect objects where we have sufficient confidence

that class distributions are non-overlapping and the features are discriminatory.

In the KNN methods, the first assumption requires that feature vectors for classes are

discriminatory. This means that feature vectors are different among various classes as to

ensure that classes are surrounded by their true samples. The second assumption requires

that the unique characteristic of an object that defines its signature, and ultimately its class,

is not significantly dependent on the interaction among various features.

In other words, the KNN method works better with data where features are statistically

independent. This is because KNN is based on some form of distance measure, not

depending on their feature interaction.
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2.3 Genetic Programming (GP)

2.3.1 Evolutionary GP Process

The first step of GP is to randomly create initial populations of computer programs,

including the parameters for controlling the run. After that, there are two major tasks

processed in the GP loop [Ko94], as shown in Figure 2.2:

1) The evaluation of each program is done by using a fitness function, a user defined

function that will determine how suitable the programs are for the environment;

2) The genetic operations, such as the reproduction, crossover, and mutation, create new

populations based on their fitness values. Selection by themselves allows for the

identification of the best individuals in a probabilistic way.

Initialize parameters & create populations

Evaluate fitness

Apply genetic operations

Randomly vary & create new individuals

Figure 2.2. Flowchart of evolutionary GP.

The cycle ends when a program either reaches some predetermined fitness, or reaches

some other termination criteria such as having evaluated a certain number of generations.

2.3.2 Generative Graphic Representations

One of the key features of GP is that it uses tree structure representations to solve
problems. GP considers the tree structure representations as computer programs that are
able to take various sizes and shapes, as well as use different functions to find solutions.
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An example of a tree representation for the function of z{x + sin (y)} is illustrated in
Figure 2.3.

4 ( ? ) ( sin J 5

Figure 2.3. An expression of z{x + sin(y)} in a GP graphic representation

Generally, the evaluation of genetic programming is done in a recursive, depth-first

way, starting from the left. The three internal points on the tree are labeled with unctions,

such as "+", "x" and "sin ". The three external points /nodes on the tree are labeled with

the arguments (the variables of x, y and z).

2.3.3 Genetic Operations

The operations of reproduction, crossover and mutation in GP are performed on copies of

the selected individuals. The selected individuals remain unchanged in the population until

the end of the current generation [Ko94].

Reproduction

The principle of reproduction is used to create a new offspring population of an

individual computer program from the current population of programs. The reproduction

operation, with its probability of Pr , involves selecting the best individuals on the basis of

their fitness by copying them into the new population.
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Crossover

With the crossover probability of Pc, the sub-tree crossover occurs by selecting two

parents and then choosing random points in their program trees to be swapped over. This

creates two new children. Figure 2.4 illustrates a typical sub-tree crossover operation.

Sub-tree crossover

Figure 2.4. GP crossover.

Because the programs are selected with the reproduction probability based on their

fitness to participate in the crossover operation, which allocates future trials of the search

for a solution to the problem whose programs contain parts from promising programs.

Mutation

The mutation is performed by a single node exchanged against a random node of the

same class. A random index number is generated to indicate the point where the mutation

will happen. The basic idea of this structure-preserving GP mutation for terminators and

operators is that any noninvariant point anywhere in the overall program is randomly

chosen, without any restriction, with the mutation probability of Pm , shown in Figure 2.5.

K
ó

Mutation

Figure 2.5. GP mutation.
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2.3.4 Fitness Measure

The evolutionary GP process is driven by a fitness measure that evaluates how well each

individual computer program in a population performs in its problem environment. The

basic mechanism in GP is Darwinian evolution: bad traits are eliminated from the

population; and good traits survive and are mixed by recombination (mating) to form

better individuals.

The design of fitness function is to ensure that diversity is not lost in the population, so

GP can continue to explore. GP allows each computer program to evolve under specified

selection rules to a state that maximizes fitness values. The fitness measure must satisfy

the requirement of being fully defined in the sense that it is capable of evaluating each

computer program that it encounters in any generation of the population.

2.4 Expectation Maximization (EM) Algorithms

The goal of EM is to find the maximum likelihood solutions for models having hidden

variables [Bi06]. Note that the unobserved data Z are treated as hidden variables whose

probability distributions depend on the parameter ? and the observed data S. The EM

algorithm uses its current hypothesis h in place of the parameter ? to estimate the

distributions governing the complete data Y, a combination of the observed data s¡ e S and

unobserved data Zy e Z.

2.4.1 Estimation of the Means of the k Gaussians

Suppose S is a set of m independently drawn samples that are mapped by a mixture of the
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k distinct Gaussian distributions. Figure 2.6 illustrates an extended example with k = 3

from [Mi97] where the samples are the points shown along the s-axis. Since we cannot

observe which samples are generated by which distribution, we have a prototypical

example of a problem involving the hidden variables Zy. Taking the example of Figure 2.6,

the full description of the z'th sample can be written as the expression of (s„ Zy), where Zy

indicates which of the/ Gaussian distributions, j = 1, 2, 3, is being used to generate the

value s,·.

j "Ml--- ¦' µ2

' ". ! / : '> ¦' ! '
1 ¦' > i ',

,' \ ? ' ! '.

s

Figure 2.6. The samples, shown by the points along the s-axis, are mapped onto a mixture
of three Gaussian distributions.

2.4.2 Statement of the EM Algorithm

The term "incomplete data" in its general form implies the existence of two sample spaces

S and Y and a many-one mapping from Y to S. The observed s¡ is a realization from S. The

corresponding y¡ in Y could not observed directly, but only through Sj indirectly, and that v,

is known only to lie in Y(s¡) [Bi06].

Since the complete data Y are a combination of the observed data S and unobserved

data Z, we must average over the possible values of the unobserved Z according to the

probability. In other words, we take the expected value .E[InP(Y/ h ' )] over the probability

distribution to govern the random variable Y, with //'denoted the revised hypothesis that is

estimated on each iteration of the EM algorithm. Therefore, the EM algorithm uses its
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current hypothesis h in place of the actual parameter ? to estimate the distribution which

governs Y.

In the estimation of the À:-means problem, the EM algorithm consists of the following

steps [Mi97], [DHOl], here we use the notation introduced at the beginning of Section 2.4
and Subsection 2.4.1 :

£"-step: Define the Q function to estimate the expected value E[Zij] that the sample s, is

generated by the yth Gaussian distribution, given its current hypothesis h =

(µ?,..., Mk):

Qih'lh) = E[ In P(Y/h')/h, S]. (2.1)

M-step: Replace the hypothesis h with the revised hypothesis h' = (µ?',..., µ^ that

maximizes this Q function:

h <- argmax QQi'lh). (2.2)

Here, the Q function in the form Q{h' I h) indicates that it is defined partially with the

assumption that the current hypothesis h is equal to T. The complete data Y represents a

combination of the observed data s, e S and unobserved data Zy e Z, h is the current

hypothesis, h' is the revised hypothesis and E[z¡j] is the probability that the sample s, is

generated by the jth Gaussian distribution.
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Chapter 3

The Hybrid GP-EM Approach
3.1 Framework Overview

The design of the GP-EM algorithm involves the optimization of the parameters, i.e., the

means of the k Gaussian distributions, which evaluate the performance of the feature

synthesis. Figure 3.1 is a flowchart of the process. In Subsections 3.2 -3.5, we shall explain

Parameter initialization

\_jVariation of the generated features based
on the GP-EM tree representations

the X ~ G data transformation

??
Gaussian mixture

The EM algorithm

µ? µ: Mk

g /W/N F8
the k - means problem

derivative of the ?-means problem

Fitness measure

GP reproduction

GP crossover GP mutation

the learning process
Convergence

GP-EM

The best solutions of the generated features

Classification algorithms

the validation stage Results

Figure 3.1. The process of the GP-EM feature generator.
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in detail the various steps shown in Figure 3.1.

Consider a problem in which the raw data X is a set of m instances, that belong to the k

known classes, with a ¿/-dimensional primitive feature set. Let G denote the entire

generated data, the input of the EM algorithm. After going through the X-G data

transformation when the synthesized data G are mapped from the raw data X, based on the

variation of the GP-EM tree representations, the question remains how to determine the

probability density function of G, which are the input data of EM (see Figure 3.1). The

sum of a sufficiently large number of independent, identically distributed random variables

itself obeys a Gaussian distribution, regardless of the distributions of the individual

variables [Mi97]. This implies that the value of g„ g¡ e G, generated by the sum of a large

set of independent but identically distributed factors will itself be Gaussian distributed.

Since the generated value g¡ is a Gaussian signal, the parametric EM algorithm assumes

that its input data G follow the Gaussian distribution for each class in the estimation of the

parameters ? = {p, µ, S}. For this independently drawn Gaussian signal g„ the selection of

each of the k Gaussians is based on choosing one with the equal prior probability, Mk, in

the mixing probability vector p [RD03]. Each of the k Gaussian distributions has the same

variance, which means that the covariance matrix S contains only one component of the

variance s2 [Bi06]. Thus, the mean vector, the values of the £-means, becomes the only
unknown component in the parameters ?= {µ}. Further detail of the &-means problem via

EM is presented in Subsection 3.3.

As the generalization of the &-means problem, there are two steps in the GP-EM

learning process. First, one of the k Gaussian distributions is selected with the equal prior

probability Mk for all the k categories [Mi97]. Second, the generated value g¡ is mapped
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onto this selected distribution as a sample g¡. This process is repeated to generate the set of

the sample points, g¡ gG, under the Gaussian mixture along the synthesized feature Fg-

space on each iteration. Once done, the data G under the Gaussian mixture in the

hypothesis of the £-means problem goes through a typical GP process with the following

steps:

(a) the computation of the fitness measure (to be explained in Subsection 3.4);

(b) the application of reproduction, crossover and mutation to generate the next population

(as explained earlier in Subsection 2.3.2);

(c) the convergence testing (to decide whether to stop the process or not).

This process is iterated until the convergence test is satisfied and then the process is

stopped. At the end of the learning process, the GP-EM system returns the best solutions,

see Figure 3.1, as the input into the validation stage.

The following subsections give a detailed description of the various aspects of the

proposed GP-EM algorithm that changes the learning task of the feature synthesis into the

£-means problem (see Subsection 3.3). This is followed by an explanation of each step of

the approach, including the GP-EM tree representations (see Subsection 3.2), which are

the sequences of applications of the function set to the terminal set, the fitness measure

(see Subsection 3.4) and the validation stage (see Subsection 3.5).

3.2 GP-EM Tree Representations

3.2.1 Function and Terminal Sets

The function and terminal sets are the elements from which the GP-EM approach attempts

to build the tree representations for the synthesized feature functions.
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Constructed from the raw data X, the terminal set chosen in this study comes from a

set of d raw features that are replaced with the primitive features of each experimental

dataset.

Table 3.1 lists the mathematical elementary functions designed in this study to fit the

terminal set, which is replaced with the primitive feature set. The division and square root

operators in the function set are protected against divisions by zero and negative values,

respectively.

Table 3.1. Function set.

Signs Elementary functions Terminators __
+, - addition, subtraction 2
*, / multiplication, division 2
A, N absolute, negative value 1
S, C, T sine, cosine, tangent functions 1
P, R, E square, square root, exponential 1

3.2.2 An Example of a GP-EM Tree Representation

The programs of the LISP programming language are S-expressions, in effect, the parse

tree of the program [Ko94]. The outputs of the resulting synthesized features in this study

are presented in parenthesized prefix-terminator expressions, named LISP-like

expressions. Its main characteristic, in comparison to LISP, is that the terminators in each

level are enclosed by a pair of parentheses following each function symbol. However, in

LISP the functions are inside the parentheses. Therefore, the synthesized feature functions

in LISP-like expressions take the form of the GP tree structures. From our LISP-like

expressions, each individual member can be written into a rational expression, an algebraic

expression composed of elementary functions and primitive features.
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Numeric output Fg
Fl

0.1

0.2

0.3

0.4

F5

90°

90°

90°

90°

F6

0.1

0.1

0.1

0.1

Fg
0.11

0.12

0.13

0.14

(a) A GP-EM tree representation in LISP-like (b) The values of the terminators / the output
expression Fg[L1SPIlke] = *(F6 +(Fl S(F5))). for the corresponding rational expression

Fg[ra,ional] = F6X{Fl+sin(F5)}.

Figure 3.2. An example of a GP-EM tree representation.

Figure 3.2 illustrates a single GP-EM tree representation in the LISP-like expression

Fg[Lisp-iike] = *(F6 +(F1 S(F5))) and rational expression Fg[rationa!] = F6 X {Fl + sin (F5)}.
On the tree, there are two kinds of sets: function and terminal. The functions are internal

nodes (the gray nodes), which represent elementary operators such as addition,

multiplication and sine function. The terminators are leaf nodes (the white nodes) that

receive the values of the primitive features, Fl, F5 and F6, from the experimental data

environment. The root is the output of the GP-EM tree for the synthesized feature Fg,

which is determined by executing the terminal arguments ¥1,1 = 1,5, 6, to the elementary

functions with the signs of [+, *, S] (see Table 3.1).

3.3 The ?-means Problem

For a given data set G with m instances, the probability density function of G, which

follows the ^-component finite mixture distributions evaluated at g¡, can be written as

[DHOIl:
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P(g, I ?) ^nJ (g, Ie1), ì = \,...,k, (3.1)
with S?=1, p;>0, j = l A, (3.2)

J='

in which ^j (gi/?) ) represents the component density functions modeling the points of the

y'th distribution, and n} is the mixing coefficient. The multivariate Gaussian mixture with

the mean vector µ and the covariance matrix Ej is given by [Lu06]:

e??(-^,-µ/(S^'(&-µ^)A(BJO1) = 2 . (3.3)

The parameters ? = {p, µ, S} in (3.1) are determined to measure how well the

corresponding mixture model fits the data G. We use the term P(GIu, µ, S) to denote the

the likelihood of the data given the model, expressed in (3.1) - (3.3).

In many cases the correlations between the variables are the same within each group

and this can be used to simplify the EM algorithm that the covariance matrix S contains

only one component - the variance s [Bi06]. The selection of the prior probabilities for

the various categories has been the subject of a substantial body of literature [Mi97]. One

of the most common methods is to estimate the relative frequency for each class from the

training data and use these values for the prior probabilities. An alternate method is to

assume equal prior probabilities, Mk, for all the k categories [RD03].

Therefore, the learning task is reduced to a hypothesis It = ?= {µ} that describes the

means of each of the k distributions. In that case, the probability of a single instance y¡ of

the complete data Y, the combination of the data G and Z, for a mixture of the k Gaussian

distributions is [Bi06], [Mi97]:
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pCyi/A,) = p(g„zil,...,zij)...,zik/A·)

42ps:1 exp^-L^g,^/)2). (3.4)2s2 H

For each instance y¡ = (g¡, Zn,..., Zy..., luì), g¡ is the observed value of the /th instance. Zy is

a binary ¿-dimensionai vector that has the value 1 if g, is created by the/ distribution and

the value 0 otherwise. From (6), the log-likelihood of the complete data Y is:
miit

1?/>(?/?') = S(1?-7_-—T]Tz„(g, -µ/)2). (3-5)V2ps 2s? Fl

Note that the above expression of In P(Y/ A') is a linear function of Zy. In general, for any

function L(z) that is a linear function of z, we have that the expectation E is such that

E [L(z)] - L(E [z] ). So, the Q function defined by (2.1) for the ¿-means problem is:

Q(AVA) = £[lnP(Y/A')/A,G]

-S '"¿^¿4*.,j<8. -.,¦>· ? <«>
When applying the maximum likelihood (ML) method, the first term in (3.6) is a constant

that is independent of A, and can therefore be discarded. Since maximizing the negative

quantity is equivalent to minimizing the corresponding positive quantity, we have:

arg max Q(H / A) = arg max ^]
S£[?„?&-µ/)2

In
?2ps2 2s2

?
m k

:argmin££ /^Kg, -µ/)2
h' 7=1 J=I

(3.7)

In (3.7), the ML estimator minimizes a weighted sum of squared errors over the m

instances to their means, which are weighted by E[Zy]. E[zy] is the probability that the

instance g¡ is generated by the/ Gaussian distribution, defined as the "is-step" [Mi97]:

£[2?] = e??(--t(#,-µ?)2)/?6??(-—-(¿,-µ?)2). (3.8)

We use E[Zy] to obtain a new maximum likelihood hypothesis It'= (µ? ',...,µ^ , defined as



the "M-step" [Mi97]:

µ/^S?^^S,?,^u=1 *¦ (3-9)

In practice, (3.8) and (3.9) establish the EM steps in the implementation of the GP-EM

approach for devising the mixture model of the k Gaussians.

3.4 Fitness Function, the /Value

The nature of the fitness measure varies with the problems. In the GP-EM approach, one

important consideration for the fitness measure is to ensure that the measurement

procedure gives the detection evaluation for the samples, gveG, regardless of the

coordinate system of these generated samples. In addition, there exists in the design the

process of the A>means assignment via EM in the iteration of the GP application.

We wish to see whether the k classes could be separated and whether the homogeneous

instances could be tightly closed by using few resulting synthesized features. The

technique to find the appropriate fitness measure is to determine the separability of the k

classes by a scattering criterion function and the tightness of the homogeneous instances

by a within-class measurement.

In this study, the fitness measure is performed by checking how far separable the

various spectral k classes remain and how much close the homogeneous instances stay

together. For a lower synthesized feature space, we use a scalar measure of the "size" of

the scatter values, instead of matrices.

Suppose there is a set of m instances in the data G divided into the k subsets Gi,. ..,Gr.

The total mean value is [Fu90]:
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1 '"
µt=-S&. (3.10)

The scatter value for the7th class is given by [DHOl], [Th89]:

Sj=X(E1-^Xg, -µ/, (3.11)
8,eG,

and the within-class scatter value is given by:

Further, the between-class scatter value is given by:

d? = S???-µt)(µ,-µt)7 (3,i3)

where Gj is the y'th subset of G, «7 is the number of samples in the y'th class, and µ] is

replaced with the mean of the j Gaussian distribution in the GP-EM approach, instead of

the mean of the7th subset Gj .

There is an exchange between the within-class and the between-class scatter values,

one goes up as the other goes down. Since maximizing the logarithm of a quantity also

maximizes that quantity, we use an optimal partition measurement as the fitness function

by using the J value, which is given by [Fu90]:

J = ln|SB/Sw|. (3.?4)

Therefore, in the assignments of the means of the k Gaussians for the generated data

G, the higher the homogeneity within the class region, the higher would be the J value, or

the higher the separate measurement among the k class categories, the higher would be the
J value.
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3.5 Pseudo-Code for the GP-EM Implementation

We use the following running notation:

t: the index (superscript)_of the maximal generations, N.
p: the index of the population size, P.
/*: the index of the training samples, m.
j: the index of the classes, k.
d: the number of the primitive features obtained from a dataset.

Initialize: the k mean values, µ] l J(p), V/ e (1 ,. . ., k), \/p e (1 ,. . ., Ps).

Input: the raw data X, x¡d>e X with a d-dimensional feature set, V ie (1 ,. . ., m), replaced

individually with each dataset.

1 . while (Increment in the iteration of generations if / < Nw ) do {
2. for ? = 0: Ps populations {

3. synthesize the feature functions based on the GP-EM tree representations (see

Subsection 3.2);

4. for / = 0: m samples {

5. perform the X ~ G data transformation based on the variation of the GP-EM tree

structures (see Subsection 3.2):

6. calculate the expected value, "is-step", as expressed in equation (3.8) (see

Subsection 3.3):

E[zJ'\p) = -t 2^-? ,
y/,«e(l....r/t);

7. end for (/")

8. derive the revised k mean values, "M-step" , as expressed in equation (3.9) (see
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Subsection 3.3):

µ[/+1V) <- YÏJE[zJ'\p)è\'](p)\lY;* EIz9P(P),
V/ e (L...*);

9. replace the k mean values with the new revised ones:
t <- t+l;

10. calculate the within-class scatter value, as expressed in equation (3.12) (see
Subsection 3.4):

4"(?) = S S [?"(?)-µ,;?(?)][?)"(/')-µ?;,(?)]G.
y=i il'Hp-ntíj'Hp)

Y/ e (1,...A);

11. calculate the between-class scatter value, as expressed in equation (3.13) (see
Subsection 3.4):

5?,(?) = S?>[µ,;,(?)-µ,t"(?)][µ?;,(?)-µ?',(?)]G,
V/ e (U*);

12. calculate the fitness function using the logarithm of the J values, as expressed in
equation (3.14) (see Subsection 3.4):

Ju](p) = \n\S^(p)/SH\p)\: }

13. end for (p)

14. select {the best tree representations}1'1 according to the fitness measure, the J values,
as expressed in equation (3.14) (see Subsection 3.4);

15. apply { the reproduction} M with its probability P1-;
16. apply { the crossover}1'1 with its probability Pc;
17. apply { the mutation} w with its probability Pm;
18. create and vary new_populations : = { survivors} '',+ ' , }
19. end while1'1

Complexity theory deals with how algorithms scale with an increase in the input size.

In general, the time required to solve a problem is calculated as a function of the size of
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the instance. If the input size is n, the time taken can be expressed as a time complexity

function of n, T(n), which is equal to the maximum number of basic operations that the

algorithm performs on the input of length ? [AB09]. From the pseudo-code above, the

process of the proposed GP-EM algorithm is evolved in a loop structure, i.e., the number

of N cycles (see the step 1 in the pseudo-code). It is clear that the proposed GP-EM

algorithm has a polynomial time complexity because the run time of the loop is a linear

function of the input size of N cycles, which can be expressed as the function of T(N).

Thus, GP-EM does not have an exponential complexity and so it is computationally

efficient.

3.6 Validation

3.6.1 TV-fold Cross Validation Approach

Cross validation, sometimes called rotation estimation is the statistical practice of

partitioning a sample of data into subsets to estimate the true performance of a classifier.

The idea is to randomly divide the data into N mutually exclusive partitions (folds),

keeping one fold for testing and the rest for training. Then another fold will be selected for

testing and all the remaining folds for training. The cross validation process is then

repeated N times (the folds), with each of the N subsets used exactly once as the validation

data. The N results from the folds then can be averaged (or otherwise combined) to

produce a single estimation.

We employ the 10-fold Cross Validation approach in the applications to detecting

breast cancer disease (see Subsection 4.2) and detecting Parkinson's disease (see

Subsection 4.3).
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3.6.2 Receiver Operating Characteristic (ROC)

A receiver operating characteristic (ROC) graph is a two-dimensional depiction of the

detection performance in estimating a curve of the hit rate (sensitivity) vs. the false

positive rate (1 -specificity). The two axes represent tradeoffs between benefits (the hit

rate) and errors (the false positive rate) that a detection system makes between classes. The

ROC curves are obtained by computing threshold values within a given range, from which

the hit rate is the proportion of true positives and the false positive rate is the proportion of

false positives [Fa06]. The threshold range is a function of the fragment length. The areas

below the ROC curves indicate the discrimination capabilities of approaches, and thus, as

a function of desirable goals, the curves of ROC provide convenient means of evaluating

the performance for the designs of systems.

We employ the ROC analysis in the application of detecting protein conformation

defects (see Subsection 4.1).

3.7 Implementation

Table 3.2 lists the common GP parameter settings used for all the experiments. Depending

on the &-means problem needed to be solved, we choose a medium population size and

relatively large number of generations to help the algorithm adequately sample the search

surface to find better solutions of synthesized features. The rationale for this is that once

the search surface is adequately explored, the algorithm would work with a subset of the

best samples. In addition, the crossover and mutation increase the sampling range of the

algorithm.
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Table 3.2. The common GP parameter values.

Parameter names Values
Population size, Ps 32
No. of generations, N' 400
Max. of tree levels 5
No. of elementary functions 12
Reproduction probability, Pr 0. 1 25
Crossover probability, Pc 0.50
Mutation probability, Pn, 0.375
Function crossover rate 0.75
Terminal crossover rate 0.25
Function mutation rate 0.75
Terminal mutation rate 0.25

GP allocates to every individual some chance of being selected to participate in the

operations of reproduction, crossover and mutation. In each generation, we take these three

genetic operations with the probability condition: Pr + Pc + Pm = 1 .
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Chapter 4

Applications

4.1 Detecting Protein Conformation Defects from
Microscopic Imagery

4.1.1 Introduction

Protein conformational diseases (PCDs) are pathologically diverse disorders in which

specific proteins accumulate in certain organs. Each proteopathy of PCDs is characterized

by a disease-specific buildup of aggregated proteins within cells of the body. Under the

electron microscope, such deposits of abnormal protein aggregation often have a fibrillar

appearance associated with at least 40 human diseases, including oculopharyngeal

muscular dystrophy (OPMD), Alzheimer's disease, Parkinson's disease, Huntington's

disease and prion diseases [NCBl]. Patients with PCDs may benefit from early diagnoses

in order to receive primary care or undergo surgical procedures to address their

progressive symptoms [WM05]. Our work is aimed at providing medical decision criteria

to the physicians, specifically for detecting the OPMD, and may also help them in

identifying the difficult cases.

The OPMD involves a cognitive decline and psychotic manifestations. There is
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currently no cure for the OPMD [BB09]. In most cases, the microscopic imagery of

patients with the OPMD have certain muscular intranuclear inclusions (INIs) that are

thought to be the hallmark of this disease. The detection of the OPMD is usually

established by the presence or absence of the INIs in the microscopic imagery [KM07].

When examining the OPMD microscopic imagery, it is often difficult to analyze the

complex structures of the images due to their irregular sizes and shapes with localized

background structures. Possible approaches could use the existing background extraction

techniques, such as the threshold segmentation [GW07], or the mathematical morphology

[TM96], but such methods require complex preprocessing steps.

To simplify the process, we use a bin-threshold-based technique to filter the image

backgrounds into a histogram margin that is independent of the image size and shape;

then, we perform the texture extraction in a histogram region of interest by thresholds,

named HROIBT that encompasses the color information of the INIs.

4.1.2 The Dataset of CeIIsDB

Collected using microscopic imagery, the CeIIsDB is a database of pre-segmented cell

images in the binary classes of the healthy and sick conditions of the OPMD [KM07].

Each image contains a single cell on a white background at an optimal level of RGB

values. Usually, the healthy cell images have a dark green color while the sick ones

contain the lighter green color of INIs with a bumpy appearance. The presence of INIs in

patients' cell images leads to the suggestion that protein aggregation is a critical molecular

component of the OPMD disease. Figure 4.1. shows four sample images, healthy cells and

sick cells, from CeIIsDB.
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two healthy cells two sick cells

Figure 4.1. Four cell images, healthy and sick samples, from the CeIIsDB.

4.1.3 HROIBT-Based Texture Data Preparation

4.1.3.1 Designs ofHROIBT

Conversion of a color image to grayscale is very common in digital image processing

[GW07]. To be able to capture the inclusion of color information, we begin our color

analysis by converting the cell images into grayscale. We find that: (a) the image

backgrounds are filtered to the margin of the histogram, regardless of differences in size

and shape; (b) the lighter INIs of the OPMD images reside in the middle region of the

grayscale histogram. Accordingly, if we take into consideration the entire region of the

grayscale histogram, we might make errors to compute the intensities of the INIs that

possess discriminant texture features. In order to capture the color information of the INIs,

we use two thresholds to limit the interval of their gray values, and name the interval the

Histogram Region Of Interest By Thresholds (HROIBT). Figure 4.2 illustrates the

procedures for preparing the basic features from HROIBT, using the database CeIIsDB.
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microscopic imagery

CellsDB^-J

image grayscale conversion

the design of HROIBT

HROIBT-based texture extraction

basic texture feature outputs

Figure 4.2. Procedures of the basic texture feature preparation.

Figure 4.3 presents the output of the grayscale histograms for all the sample images with

two classes, the healthy and sick conditions of the OPMD. From Figure 4.3, we see that

there is a near-zero intensity region centered at the bin of 200. The upper threshold, Tu, of

the HROIBT is then set at 200. On the other side of the histograms, there is an overlapping

bin region between the healthy and sick cells in the intensity boundary range (25, 75). We

use the average variances (Vo) to measure the degree of spread of the texture-based

features (the details of the categories will be described in the following subsection) to

determine the lower threshold, Tl. A feature set with a good stability and reliability should

exhibit a small Wa among the samples [Fu90]. As shown in Figure 4.4, the optimal value

of the bin should be at the lowest Vo, so we set the lower threshold, Tl, at the bin of 50.
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Figure 4.3. The upper threshold of the HROIBT, Tu = 200, defined by the histogram
measure for all image samples in the binary classes of the healthy and sick conditions of
the OPMD.

variances (Vo )

bins '5

Figure 4.4. The lower threshold of the HROIBT, TL = 50, defined by Va.

Figure 4.5 illustrates the constraint solution of the HROIBT in the bin range of (50,

200), together with the grayscale histograms of four sample images in Figure 4.1.

intensity levels

two healthy cells

.4 HROIBT (T1,, Tu) >t

jhM, two sick cells

.....1
0 25 50 75 K)O 125 150 175 200 225 250

T, =50 T1,= 200 b'ns

Figure 4.5. Solution of the HROIBT in the bin range of (50, 200), with the grayscale
histogram measure of the healthy and sick samples in Figure 4.1.

4.1.3.2 Basic Texture Feature Extraction from HROIBT

After the presence of the OPMD inclusions is expressed in the HROIBT, 17 basic features,
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Dl -Dl 7, are subsequently extracted from the HROIBT as described below [GW07].

Fourier Descriptors (D1-D6): the /th harmonic amplitude of Fourier descriptors [GW07].

D/ = yjaj + bf , 1 = L...,6 (4.1)
where a, = ——S^G p(z„)xcos(2^xW/NHROIBT)

™ HROlBT

and b,= —— X^°",Tp(z„)xcos(2K/xW/NHROIBT). (4.2)^* HROlBT

Mean (D7): the average intensity [GW07].

D7 = ^T" ZnP(Zn). (4.3)

Moments (D8-D12): the five (second to sixth order) moments [GW07].

Dl = Xn™0,m z'piZi). q=2,...,6 and 1 = 8.....12 (4.4)

Entropy (Dl 3): the homogeneity of the histogram distribution [GW07].

013 = -S?:,?'™ P(Zn)IOg2 P(zn). (4.5)

Angular Second Momentum (D 14): the uniformity [GW07].

014 = S':Gt?2(?„). (4.6)

Peak Density (Dl 5): the strength of the local dominant peak [GW07].

"HROIBT

Dl 5= max{p(zn)}. (4.7)

Range ofthe Densities (D 16): the range of the intensity [GW07].
"HBOlBT

D16 = range{p(zn)}. (4.8)

Median Density (D 17): the median value of the intensity [GW07].
N HROlBT

D17 = median{p(zn)}. (4.9)

Here, z„ indicates the intensity, p(z„) is the histogram of the intensity levels, Nhroibt is the

total number of intensity levels within the HROIBT, and ? is the index ofNhroibt-
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4.1.4 Experimental Results

A collection of 500 microscopic images is selected from the CeIIsDB database [KM07] at

random for the training (with 300 images) and evaluation (with 200 images). Using a total

of 1 7 basic features as the input, the HROIBT-GP-EM training process is evolved in the

medium population size of 32 with the maximum tree depth of 5 in order to avoid any

unnecessary computation, the GP terminal set consists of 17 basic features.

4.1.4.1 Convergence Results

After evolving 350 iterations, the best resulting feature synthesized by GP-EM based on

HROIBT texture is given by:

Hf = cos{-[cos(D13-D16)-(D3- 0.9961)]
(D2XDI4) (-D8/0.9961)

+ |D0xD5x(D2-D12)|x }(D7-D0)/(D11 + D13)

where D/, / = 0,..., 16, represents the (/+l)th basic feature; Figure 4.6 shows the resulting

Hf-processed data that are normalized in the range of (-1, 1). There are altogether 300

images from the binary classes of the healthy and sick conditions of the OPMD, with 1 50

images for each class.

synthesized feature, Hf »' healthy ' image o' sick 'image
1.0

s-? Nk O /O/y o o¿o^>0.5 J· «o o -O <<<.

0.0
OO

f^KCdT0.5

ü^iaasusí1.0

0 50 100 150 200 250 300
index of the training samples

Figure 4.6. Resulting Hf-processed data representation after 350 iterations.

We can see from Figure 4.6 that the training data between the healthy and sick classes
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are clearly separated by the resulting feature Hf that is synthesized without any prior

knowledge about the description of the training examples.

4.1.4.2 Detection Results

Table 4.1 shows the detection results using the synthesized feature Hf and a certain

number of basic features with the classifier K nearest neighbors (KNN) [Fu90] on the test

set of 200 images. The synthesized feature Hf yields at best 92.5% healthy/sick detection

accuracy, as compared to the accuracies of 84.5% and 88.0% obtained by using the 1 1

basic features, D7-D17, and the 17 basic features, Dl -D 17, respectively.

Table 4.1. Comparisons of the accuracy using the synthesized feature and a certain number of basic features
with the classifier KNN.

_________Accuracy Healthy (%) Sick (%) Total (%)
1 1 basic features, D7-D1 7 78.0 (78/100) 91.0(91/100) 84,5
17 basic features, D1-D17 84.0 (84/100) 92.0(92/100) 88.0
synthesized feature, Hf [ 90.0(90/100) | 95.0(95/100) | 9Z5

4.1.5 Further Comparisons

The performance of the design systems is further validated by means of the receiver

operating characteristic (ROC) [Fa06], as shown in Figure 4.7. The areas below the ROC

curves indicate the discrimination capabilities of the design systems. The distance

proportions in the range of the normalized features serve as the intervals; for example, the

end-points of (-1.0) and (1.0) in the synthesized feature Hf-dimension (see Figure 4.6)

produce the points (0, 0) and (1, 1) in the ROC curve.



hit rates

-the synthesized feature function, Hf jj
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•the 11 basic texture features, D7-DÎ7Î;
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Figure 4.7. ROC analysis based on the distance proportions for the synthesized feature Hf
(thick line), the 17 basic features (thin line), Dl -D 17, and the 11 basic features (dashed
line),D7-D17.

For each interval, we record the number of samples that match the classes. In Figure

4.7, the performance of Hf achieves a sensitivity of 0.9 at a specificity of 0.95 with an area

under the ROC curve of 0.963 (thick line) whereas the areas below the curves for the

performance of the 17 basic features is 0.938 (thin line) and for the performance of the 1 1

basic features is 0.882 (dashed line).

4.2 Detecting Breast Cancer Disease

4.2.1 Introduction

Cancer research has led to real progress in the prevention, detection, and treatment of

breast cancer. Breast cancers can be classified by different schemata. Although every

aspect influences treatment response and prognosis, doctors recommend that treatment is

more likely to work well when breast cancer is detected early [NCBI]. Research studies

worldwide are designing many types of detection systems in an attempt to achieve an

earlier diagnosis [GN06], [MP06], [OL04], [BK98], [WS95].

In order to improve the detection accuracy, genetic programming was employed to

generate nonlinear features based on three fitness measures: original Fisher criterion (F-
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GP), alternative Fisher criterion (AF-GP) and modified Fisher criterion (MF-GP); these

methods were compared with the SVM classifier which used the entire raw feature set

[GN06]. Muni et al. [MP06] introduced an online feature selection using multitree genetic

programming (GPmtfs) with two modified crossover operations for multicategory detection

problems. In hybrid genetic algorithms (HGAs) [OL04], chromosomes were improved by

local search operations to enhance the fine-tuning capability of simple GAs in searching

for the feature subsets applied to the problem of detecting the disease.

4.2.2 TheDatasetofWDBC

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset [BK98] were computed from a
digitized image of a fine needle aspirate (FNA) of a breast mass, which described
characteristics of the cell nuclei present in the image. All feature values were recorded
with four significant digits.

The WDBC contains 569 instances, divided into two cases with 357 benign and 212
malignant. The mean, standard error, and "worst" or largest (mean of the three largest
values) of these features were computed for each image, resulting in 30 features.

Class distribution: 357 benign, 2 1 2 malignant

Number ofinstances: 569

Number ofattributes: 32 (ID, diagnosis, 30 real-valued input features)

4.2.3 Experimental Results

4.2.3.1 Convergence Results

The convergence results from one of 10 runs on WDBC are displayed in Figure 4.8 in

which the fitness values are normalized in the range of (0, 1). When the GP-EM system

proceeds into iteration, the fitness values of the best synthesized features from the
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examples of the experiments begin to increase. This indicates that the surfaces are being

successfully explored and that optimization is proceeding. However, there comes a point

where repeated applications of the operations yield little or no effect on the fitness values

associated with the most elite solutions. This is a termination criterion for the evolutionary

algorithms. From that point, we terminate at a maximum of 400 generations when the

maximum fitness value converges to less than 0.0001 from the variance prior in each of

the training dataseis.

Fitness
1.00

max fitness
080

0 60

mean fitness
0.40

? » ,VUK ?
?>'?? 1^rWcuti '*-:i;|i? ì; ;«<0.20 J^ra^f- ?

mm fitness
SMNMkMJLkLyI »ii» ? »fliilii0.00 m

50 100 50 200 250 300 350 400
Generations

Figure 4.8. Convergence results from one of 10 runs on WDBC.

4.2.3.2 Feature Synthesized Results

The output results of the synthesized functions in this study are LISP-like expressions,

composed of the signs of elementary functions and 30 features of the WDBC data, which

can be written as rational expressions.

The generated feature in LISP-like expression:
FgHwDBC= P(-(-(C(*(-(d22 dl6)E(/(dl4 d2))))E(*(*(dl9 d17)*(dl2 d29))))

+(/(+(d23 d25)C(*(dl 7 d23)))*(-d1 0 dl 7)S(*(d20 dl ))))));

written as the rational expression:
?§???????={e?5((a22-a16)?/,^)-?^'???1?2!"

i -[(d23 + d25)/cos(dl7xd23) + (dl0-dl7)xsin(d20xdl)]}2 I

Figure 4.9. The feature synthesized results for a single run on WDBC.
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Figure 4.9 shows the best of the synthesized functions for a single experiment on

WDBC. The signs of 'S', 'C, ?' and 'P' represent sine, cosine, exponential and square

functions and di (/' = 0,..., 29) refers to the (z'+l)th primitive feature of the WDBC data.

4.2.3.3 Training Data Representation Results

Figure 4.10 illustrates the behavior of the training samples, 313 benign and 199 malignant,

on WDBC from an example of a GP-EM learning experiment. Modeled as the Gaussian

mixture with the common variance s2, the generated data G is normalized in the range of

(-1, 1) along the 1 -dimensional Fg || wDBc-space in certain selected generations.
ACiass ¿Malignant « Class HBenign]"

» - - s: = 0.0437

• 0.8 -0 6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

When generations = 50 FgllwDBC :

When generations = 200

- tammxm&fflpe&ag^
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

When generations = 300 FgjWDBC

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

When generations = 400 f^tlw

Figure 4.10. The GP-EM training data representation results from the example of the 10
runs on WDBC.

Initialized with unit variance, the variance s2 is calculated experimentally in each

generation to illustrate the evolutionary learning process. In Figure 4.10, the data clouds

along the Fg || WDBc-space persist in moving to symmetrically surround their centers (the
50



signs of '+') that define the means of the Gaussian distributions through the generations.

The bulk of the improvement occurs before the first 100 generations in which the

difference of the variance s2 (e.g. 0.0143 decrements between the 50th ~ 100th

generations) is larger than those decrements in each subsequent 100 generation interval.

This fact is clear in the responses to the fitness curve on WDBC in Figure 4.10 where a big

jump in performance occurs during the first 100 learning cycles.

When reaching 400 generations, we can see that the interface, as indicated by the solid

vertical line in Figure 4.10, between the class data sets is better defined. Clearly, the

overlap is smaller and the cluster centers are decoupled in a manner that fits well with the

modular structure of the Gaussian mixture in the GP-EM training process.

4.2.3.4 Detection Results

The detection accuracy (DA) rates of the training accuracy from the training sets and the

target recognition accuracy from the test sets over 10 runs are presented in Figure 4.1 1 ; the

statistic analysis for 10 runs on the combined training and test sets is illustrated in Table

4.2. The classifier MDC is employed to evaluate the performance of the GP-EM method

on each given object vector of their training and test sets.

BO
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98

CA(%)

O O

Iramingsets
Test set

\ /
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The index o f K) nms

Figure 4.11. Detection accuracy (DA) of the combined training sets and test sets against
the index of 10 independent runs on WDBC.
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We achieve the average training score of 99.32% accuracy. With only one synthesized

feature, the average performance over 10 runs on WDMC shows that 98.21% of the test

data can be classified correctly.

Table 4.2. The detection accuracy (DA) over 10 runs on WDBC.

Statistics

Training sets (CA%)
Test sets (CA%)

Maximum

99.61

100

Minimum

98.23

96.49

Average
99.32

98.21

Std

0.437

1.230

4.2.4 Further Comparisons

To determine whether the proposed GP-EM system is potentially a good automatic feature

generator, we further compare it with the single GP-based feature generators and some

other well-known object detection algorithms reported in the literature on the WDBC

dataset [GN06], [MP06], [OL04].

Researchers have worked on WDBC [BK98] for detecting breast cancer disease using

the method of the feature synthesis based on GP [GN06], and feature selection algorithms

based on GP and hybrid GAs [MP06], [OL04]. In the following sections of the

comparisons, the average CA rates, including the GP-EM study, are all recorded over 10

runs, except for the rates recorded by [OL04] over 5 runs.

4.2.4.1 Comparisons with the Single GP-Based Feature Generators

Using one synthesized feature as the input to the same classifier MDC, the average CA

rates are reported in Table 4.3 for our GP-EM feature generator and are compared to the

performances achieved by the single GP-based feature generators [GN06]. The results

were all documented on the 10-folds of cross validation method using each algorithm. In
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accuracy comparisons, the standard deviation (Std) is needed to determine whether any

difference in accuracy is significant.

Table 4.3. Comparisons of the GP-EM approach and the single GP-Based feature generators on WDBC.

Algorithms Average CA (%) No. of features Std. (%)
F-GP[GNOO] 97.40 1 1.60
AF-GP [GN06] 97.36 1 1.39
MF-GP [ GN06 ] 97.47 1 1.56

GP-EM (this study) 98^ 1 1.23

Notably, for the test CA, the GP-EM algorithm achieves a 98.21% average

performance rate, the highest of all the single GP-based feature generators. It also yields

the lowest standard deviation of 1 .23% on detection, suggesting that the hybrid GP-EM

algorithm correctly labeled target objects with a high level of consistence and confidence,

which is important in real-time applications.

4.2.4.2 Comparisons with Other Detection Systems

In Table 4.4, we show the comparison results with some other published recognition

systems [GN06], [MP06], [OL04] on WDBC. As shown in Table 4.4, the difference of the

features in the range of (1, 30) used by the algorithms is particularly large, compared with

the performances ranged (94.27%), 98.21%). Significantly, the GP-EM approach achieves

the highest average test score of 98.21%» accuracy by using the synthesized feature

Fg I WDBC, compared with the recognition systems [GN06], [MP06], [OL04] using multiple
or all 30 primitive features.
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Table 4.4. Comparisons of the proposed GP-EM Algorithm and other object detection systems on WDBC.
The number of features is the mean of the features used in detection. Note: the run time is the average
computation time (hours: minutes: seconds)

_____Algorithms Average DA (%) # Features Run time
SVM[GN06] 96.32 30
HGAs [OL04] 94.27 12
GPmtft[2] 96.31 6.72 0:04:10

GP-EM (this study) 98.21 1 0; 06: 40

4.3 Supporting Identification in a Hand-Based
Biometrie System

4.3.1 Introduction

Biometrics-based identification is a verification approach using biological features in each

individual. Hand features have been widely used in designing a biometrie identification

system and the challenge has been established [ZW07], [ZK03], [KS05].

In object detection problems, the analytical selection of features and the automatic

synthesis of features provide two distinct approaches, because they rely on different

sources of information [RZ02]. It would be useful to explore new biometrie identification

systems that combine both methods of the feature selection and synthesis.

The method of cooperative coevolutionary clustering algorithm (CCCA) on a hand

image dataset can be categorized as the unsupervised feature selection for clustering hand

images [Gu03], [KS05]. The main tool for accomplishing this was the GA. The CCCA

was designed to search for a proper number (without prior knowledge of it) of clusters of

hand images, and simultaneously to achieve the goal of feature selection.
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4.3.2 Previous Feature Selection Work on the Hand Image Dataset

The hand image dataset consists of 1000 hand images, from which about 83% showed

'good' contour output, see a sample of a hand image in Figure 4.12. The problems related

to the rest of hand images were predominantly the results of poor image enrolment system

[KS05]. Therefore, positive identification, based on this hand image dataset, is a

challenging biometrie identification problem in its own right.

Figure 4. 1 2 . A sample of a hand image.

In the previous work [Gu03], [KS05], the CCCA method attempted to find classes of

hand image objects with similar properties. The CCCA was implemented using 100 hand

images as the test set. The experimental results showed that the dimensionality of the

clustering space was reduced from 84 original biometrie features to 41 selected features

(1 1 geometric and 30 statistical features), with 4 clusters produced. At the end, the output

clusters were labeled with the number of input hand image objects per class, assigned to

each cluster.

4.3.3 The GP-EM-MSE Supporting Biometrie Identification System

The pre-requisite for the technique of the feature synthesis is the preparation of primitive

feature sets. Using our previous method in [Gu03], [KS05] on a dataset of 200 hand
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images, we cluster the 200 images into 4 categories, with a total number of 41 features

selected as the primitive feature set for the current study of the feature synthesis.

/ fitness measure ? generated features [\ classifiedselected feature vectors iers performance resultsMSE
MDC

\
GP EM \

yKNN

/the ?-means problem

training evaluation

Figure 4.13. The GP-EM-MSE hand-based biometrie identification system.

Figure 4.13 presents the method of the feature synthesis by GP-EM with the MSE

fitness indicator (GP-EM-MSE). As an extension of the method of CCCA for the feature

selection in [Gu03], [KS05], the purpose of GP-EM-MSE in this work is to find the

improved feature representations in an optimal control environment in order to further

minimize identification errors for the hand-based biometrie system.

The previous work of the CCCA method [Gu03], [KS05] was evolved without

supervision in such a way that the selected feature sets operated globally to cluster hand

images. Consequently, the current study of GP-EM-MSE for the feature synthesis is a

supervised learning algorithm, via the results of CCCA.

4.3.3.1 Mean Square Error Fitness (MSE)

The MSE measure is well known in the function approximation and learning system

theories when the number of classes is assumed to be a prior known. In this supervised

problem of the feature synthesis, we employ the MSE measure as the fitness which is

given by [Le02]:
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the MSE fitness = £S D(c j.r/), (4.10)
j=l i=l

where D is the Euclidean distance between the instance r,and its mean center c¡.

4.3.4 Experimental Results

In the implementation, we divided the 200 images into the training and testing sets, each

with 100 images. Using the 41 primitive features as the input, the GP-EM-MSE training is

evolved with the maximum tree depth of 5 and the population size of 32.

4.3.4.1 Convergence Results

We ended the GP-EM-MSE training after running 400 iterations. The total time for

computation was about three minutes on a Pentium 4 at 1 .60 GHz. The results for the two

features, Pfeature 1 and Pfeature 2, produced by GP-EM-MSE are as follows:

Pfeature 1 = cos{sin[A0xA39x/g(A22xA21)]x/g[| A32xA0|+A39xA27]
+ 1 sin[( A30/A7)2 - e*2**19] - ( Al 2 ? A31 + A14 x A26)2 |} and

P feature 2 = cos cos[-(A32 + A25)x(A9 + A28)]
A25 ,h9,+ cos( — )
A23 ?8

, ^8 AlO ,,„ ,„„,? + +cos(A35xA20)''A22xsin(A25 + A32) A8

where hà is the (d+l)th feature of 41 primitive features, and the convergence results are

presented in Figure 4.14; in the sequel, the resulting synthesized features will be employed

to identify hand images.
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Figure 4.14. Convergence results for the features produced by GP-EM-MSE.

4.3.4.2 Detection Results

The goal of the identification is to classify hand images into a known number of 4
categories or classes according to the decision space of the synthesized features. With the
classifier MDC, Table 4.5 shows the confusion matrix of the identification performance
for four classes on the test set, using two features, Pfeature 1 and Pfeature 2, produced
by GP-EM-MSE. Each row of the table represents the identification performance for a
given category, while each column represents a percentage of the number of samples in an
actual class. It can be observed, from Table 4.5, that the difference of the related
identification accuracy among the classes is small, ranging from 95.00 % to 96.96 %.

Table 4.5. Identification accuracy (%) using two features, Pfeature 1 and P feature 2, produced by GP-
EM-MSE with MDC.

_______categories class 1 class II class III class IV
class! (33 samples) 96.96 3.04 0 0
class II (25 samples) 0 96.00 0 4.00
classili (22 samples) 4.55 0 95.45 0
class IV (20 samples) 0 5_00 0 95.00

4.3.5 Further Comparisons

The classifiers MDC and KNN are utilized in order to assess the capability of different

feature sets over different detection systems. In terms of the detection accuracy, Table 4.6

shows the comparison results between the features produced by GP-EM-MSE with MDC
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and 41 primitive features selected by the method [Gu03],[KS05] with KNN in which the

value of K is tested by the input of 41 primitive features (K = 41).

Table 4.6. The comparision between the features produced by GP-EM-MSE / MDC and 41 primitive
features selected by [Gu03],[KS05] / KNN, in terms of the detection accuracy (%).

_______________feature types / classifier no. of features accuracy (%)
the primitive features selected by [Gu03], [KS05] / KNN 41 93.0
Pfeature 1 / MDC ] 92.0

Pfeature I, Pfeature 2 / MPC 2 96S)

It can be seen from Table 4.6 that the detection accuracy using one feature, Pfeature

1, is slightly lower than when using 41 primitive features. However, the combination of

two features, Pfeature 1 and Pfeature 2, produced by GP-EM-MSE achieves the best

detection performance with an accuracy rate at 96.0%.

4.4 Detecting Parkinson's Disease

4.4.1 Introduction

Symptoms of Parkinson's disease (PD) include muscle rigidity, tremors, and change in

speech and gait. The causes of PD are currently unknown. There is no cure for PD and the

prognosis depends on the patient's age and symptoms [ET03]. Research has shown that the

typical Parkinsonian movement disorders (i.e. tremor at rest, rigidity, akynesia and

postural instability) considerably reduce when medication is available offering clinical

intervention to alleviate symptoms at the onset of the illness [RC07]. To this aim, studies

in medical biometrics on detecting PD in the early stage are under way and have drawn a

lot of attention from the biometrics community in recent years [LM98J, [RG09], [CS08],

[SS07]. Little et. al [LM98] applied a feature pre-selection filter that removed redundant
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measures, and then using an SVM classifier, an exhaustive search was executed by testing

all possible subsets of features in order to discriminate healthy from disordered PD

subjects. In [RG09], features sets were analyzed using the rough set approach that mapped

feature vectors associated with objects onto the medical decision support system for

detecting the PD objects.

4.4.2 TheDatasetofOPDD

The OPDD dataset contained 195 biomedical voice samples recorded from 31 people, in

which 23 were diagnosed with PD. Each datum is 22-dimensional and consisted of certain

types of voices ranging from 1 to 36 seconds in length, listed in Table 4.7. The dataset is

divided into two classes according to its "status" column which is set to O for healthy

subjects and 1 for those with PD. The data set used for this implementation are described

in detail in [LM09], and at the UCI website [BK98].

Table 4.7 Descriptions of the features of the dataset OPDD.

No Features Descriptions
1-3 MDVP (Hz) ave./max. /min, vocal fundamental frequency

MDVP (%) MDVP jitter as a percentage
MDVP (abs) MDVP absolute jitter in microseconds

6-8 RAP/ PPQ/ DDP 3 measures of variation in frequency
9-10 shimmer / (dB) 2 MDVP local shimmer
11-12 shimmer: APQ 3- /5- point Amplitude Perturbation Quotient
13 MDVP: APQ 1 1 - point Amplitude Perturbation Quotient
14 shimmer: DDA a measure of variation in amplitude
15-16 NHR /HNR 2 ratios of the noise to tonal components
17-18 RPDE /D2 2 nonlinear dynamical Complexity measures
19 DFA signal fractal scaling exponent
20-21 spread 1 - 2 2 measures of frequency variation
22 PPE pitch period entropy
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4.4.3 Experimental Results

Using the classifier MDC, we employ the 10-fold cross validation approach to assess the

capabilities of the GP-EM detector for the implementation of Oxford Parkinson's Disease

Database (OPDD) [BK98].

4.4.3.1 Convergence Results

In the evolutionary explorations, the specification of a termination criterion is usually

required to terminate runs. In this application, we ended the evolutionary GP-EM training

process when a certain number of iterations are reached, as the result of a run. After

running 350 iterations, the resulting created feature function from one of the 10 runs is

given by:

Pa_dclecllon=cos{cos{-[(/4-/5)/(/4 + /16)2]xtg[/2 + /7-(/5x/]8)2]}
x[/6 + /3-(/18//21) + tg(/152)/(/4-/0)]},

where yd, d = 0,..., 21, is the (d+l)th ordinary feature of OPDD listed in Table 4.7;

normalized in the range of (0, 1), its fitness values is presented in Figure 4.15.

fitness values

100 150 .200 250 300generations

Figure 4.15. The convergence results for the created feature function, Paleteen«
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4.4.3.2 Detection Results

In the detection experiments, the resulting feature function, Padetection, is employed as

the medical decision space to diagnose PD. By using the classifier MDC, the detection

performance for 10 runs on the combined training and test sets is illustrated in Table 4.8.

We achieve the average training score of 95.06 % detection accuracy (DA); with only one

created function Padetection, the average performance over 10 runs shows that 93.12 %

of the test data can be classified correctly.

Table 4.8. Detection accuracy (DA) for 10 runs on OPDD.

Performance The training (DA) The test (DA)
maximum (%) 97.71 95.00

minimum (%) 91.42 80.00

average (%) 95.06 93.12

Std (%) 1.42 2.86

4.4.4 Further Comparisons

To assess whether a single feature function created by the GP-EM detector would be

sufficient for the identification of the Parkinsonian subjects, we compare our algorithm

with other methods existing in the literature on OPDD [BK98]. The comparison works

with [LM98], [RG09] are given in Table 4.9.

Table 4.9. Comparisions of the GP-EM detector and other methods in terms of the detection accuracy (DA)
on OPDD; note: the sign '-' means 'not specified'.

Methods

rough set [RG09]
feature preselection with an exhaustive search [LM98]
the GP-EM detector

DA (%)
100

91.40

93.12

No. of features
22

10

Time

5 minutes

Little et. al [LM98] applied exhaustive search by testing all possible subsets of

features; the subset, consisted of 1 0 ordinary features, was thus selected that produced the
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best detection performance of 91.4%. Using all of 22 ordinary features, the approach using

the rough set approach [RG09] yielded the highest recognition rate of 100% from one

example of 10 runs.

As shown in Table 4.9, by using the single created function, Padetection, the GP-EM

detector achieves the average detection accuracy of 93.12% over 10 runs, indicating the

advantages of the reliability and efficiency for the discrimination of healthy subjects from

those with PD.
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Chapter 5

Conclusions

5.1 Discussion and Conclusions

The performance of automated feature synthesis depends upon the designed approaches.

The method should allow the system to synthesize the feature functions in an optimal

control environment without any or with minimal user interaction. We use the EM

algorithm involved in an evolutionary GP to simultaneously achieve the dynamic feature

synthesis and the model-based generalization without user influence for the object

detection. In the GP-EM systems, the process is driven by a fitness measure, the J value,

accounting for the inter-class separability and intra-class homogeneity. As the

generalization of the ?-means problem via EM, the GP-EM approach projects the

hyperspace of each dataset onto its lower dimensional synthesized feature space with the

competitive correct recognition rates.

One function of the EM algorithm involved in this study is its ability to perform the

optimization of parameters ? = {p, µ, S}· Direct optimization of the multivariate

Gaussian mixture P(GZn, µ, S) is difficult, as the covariance matrix S cannot be inverted.

However, the optimization of the univariate Gaussian mixture is significantly easier when

we assume the independence among all the k classes. In the approach, the synthesized

feature functions are independent of each other, and the generated data G is mapped onto
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lower dimensional feature spaces in which the covariance matrix contains only one

component of the variance. Nevertheless, this is one reason why we could reduce the

feature dimensions from the hyperspace of primitive features to a lower synthesized

feature space, while improving the detection accuracy; the results consistently validate the

initial assumption of reducing the covariance matrix to an identical variance.

The search space in GP-EM is the space of all possible computer programs composed

of the designing mathematical elementary functions and the primitive features. A pre-

condition for solving the problem with GP in this study is that the sets of functions

(elementary functions) and terminals (the primitive features) satisfy the requirement in a

conceptually straightforward way. Together they are capable of expressing a solution to

the problem of the nonlinear feature function synthesis. In addition, each complete EM

cycle, the "£-step" and the "Af-step", of the GP-EM approach turns out to be simple to

implement by performing a complete, rather than partial, optimization of the means of the
k Gaussians.

5.2 Summary of Main Contributions

The main contributions of the thesis are:

• When a designed approach has a streamlined hierarchy and a parallel processing

structure based on multifaceted components, the capacity of data processing will
increase.

Unlike single GP-based feature synthesis methods existing in the literature, the

hybrid GP-EM approach is composed of many different components that apply to the

problem of feature synthesis. This flexibility in GP-EM allows the system to have
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multifaceted components, i.e., some components dynamically synthesize features from

the reduced data flow; some will combine the features to perform data modeling under

the Gaussian mixture; and others are going to act as a device for accelerating the

convergence, just as a multifunctional machine would solve the different tasks

associated with specific components of the complete system.

For example, acting as an acceleration device to help GP, the EM with the

operation of ML keep the generated values near their means, see equation (3.7),

thereby the convergence of GP-EM is assured.

• The innovative histogram-based technique of HROIBT helps to constrain the problem

space within the region of the color information, i. e., the lighter INIs is indicative of

the OPMD, regardless of image sizes, shapes and background structures. A

combination of methods based on the bin-threshold HROIBT and feature-synthesis

GP-EM, as a whole, not only shows the applicability to irregular images, but also

exhibits a good detection strategy for PCD in the development of medical decision

systems.

• Since many practical problems have a class-conditional density that is approximately

Gaussian, we assume that the generated data with the k known classes are modeled

under the mixture of the k Gaussians, from which the task of feature synthesis, via EM,

results in searching. for the optimal means of the k Gaussians only. In other words, it

dramatically changes the task into a simpler ¿-means problem; generally, the number

of Gaussian distributions, k, is much less than the total number of data points, m, and

therefore the hybrid GP-EM approach exhibits the computational efficiency of the

technique.
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5.3 Other Possible Applications

Due to the wide ranges of examples that fall under the umbrella of the Gaussian

distribution, a number of problem domains are good candidates for successful applications,

including electronic systems for monitoring and controlling machine faults [KT07],

bioinformatics for predicting protein-protein interactions [NCBI], telecommunication for

detecting fraud cases in handling both voice and data type of data record [MB09]. In

addition, finding more sophisticated circumstances in engineering domains that make use

of the approach is an interesting direction for future works. Next, an example of a potential

application for monitoring the power quality is described in the following subsection.

5.3.1 Power Quality Monitoring System

In recent years, concern over the quality of electrical power in manufacture industries has

been increasing rapidly since poor electrical power quality causes many problems for the

affected loads, such as malfunctions, instabilities, short life time and so on. Poor quality of

electrical power is normally caused by power line disturbances, such as impulses, notches,

glitches, momentary interruptions, wave-faults, over-voltages, under-voltages, and

harmonic distortion [KT07].

In order to determine the causes and sources of disturbances, we must have the

capability to detect those disturbances and further to improve electrical power quality. To

this aim, the procedures for preparing the primitive feature set for a power monitoring

system is given in Figure 5.1 . In the following subsection we explain the steps in detail.

67



construction of

vibration signal for
different power
phenomena
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Figure 5.1. Procedures for preparing primitive features for a power quality monitoring
system.

5.3.1.1 Primitive Feature Extraction from Vibration Signals

Figure 5.2 illustrates phenomena for the power quality problem. It is known that vibration
signals depend mainly on the resonant frequencies of different parts of the machine. If the
machine condition varies due to wear or damage, the resonant frequencies and the
vibrations will change. It is generally not possible to classify the condition based upon an
individual sample of the vibration, thus, some transformation of the recorded vibration
time-series is required to extract time invariant features [KT07].

11
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Figure 5.2. Phenomena for the power quality problem; the horizontal axis presents the time
in second and the vertical axis presents the magnitude in its four power conditions.
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For example, in the case of machine condition deteriorates, the energy (mean square
value) in vibration signals is expected to increase. A number of different statistical features
(prepared for automated synthesizing nonlinear feature functions) can be extracted from
the vibration data by using statistical measures and cumulants, such as central moments,
Fourier descriptors and Zernike moments.

5.4 Refereed Publications Based on the Research

P.-F. Guo, P. Bhattacharya and N. Kharma, "Advances in detecting Parkinson's disease,"

in Internat. Conf. Med. Biometrics (ICMB 2010), Hong Kong, July, 2010. Proceedings

appeared in the series Lecture Notes in Computer Science (LNCS), Springer, vol. no, 6165,

pp. 306-314(2010).

P.-F. Guo, P. Bhattacharya and N. Kharma, "On supporting identification in a hand-based

biometrie framework," in Internat. Conf. Image Signal Process. (ICISP 2010), Quebec,

June, 2010. Proceedings appeared in the series Lecture Notes in Computer Science

(LNCS), Springer, vol. no, 6134, pp. 210-217 (2010).

P.-F. Guo, P. Bhattacharya and N. Kharma, "Automated synthesis of feature functions for

pattern detection," in IEEE Canadian Conf. Electr. Comput. Eng. (CCECE 2010),

Calgary, pp. 105-1 08, May, 2010.

P.-F. Guo, P. Bhattacharya and N. Kharma, "An efficient image pattern recognition system

using an evolutionary search strategy," in IEEE Internat. Conf. Syst., Man, Cybernetics

(IEEE SMC 2009), San Antonio, pp. 605-610, October, 2009.
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P.-F. Guo and P. Bhattacharya, "An evolutionary approach to feature function generation

in application to biomedical image patterns," Internat. Conf. Genetic Evol. Comput.

(GECCO 2009), Montreal, pp. 1883-1884, July, 2009.

5.5 Final Remarks and Future Work

For multiclass problems, finding the appropriate boundary values, which are mostly driven

by fitness measures, is difficult in evolutionary computation. The proposed GP-EM

algorithm offers the framework to perform the pattern classification and visual training

data representations to improve the pattern discovery and decision support in

computational evolutionary processes. Our future work will be dedicated to assessing

further the practical components of the proposed algorithm.
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