Skip to main content

Using Genetic Programming for Software Reliability

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10012))

Abstract

Software reliability methods, such as testing and model checking, are well integrated into the software development process. They are complemented by safety enforcement mechanisms such as run time verification. However, even with a wealth of techniques and methodologies for developing reliable systems, it is still quite challenging to eliminate all the bugs from software systems. One of the reasons is the magnitude of software systems, having to handle a very large number of use cases and possible interactions with an environment or between concurrent components. Genetic algorithms and programming provide a powerful heuristic search that involves randomization based on operators that simulate natural reproduction. We show various ways where genetic algorithms and programming can be integrated with formal methods to enhance software reliability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)

    Article  MathSciNet  Google Scholar 

  2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming - An Introduction; On the Automatic Evolution of Computer Programs and its Applications. 3rd edn. Morgan Kaufmann, dpunkt.verlag (2001)

    Google Scholar 

  3. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algorithms. In: PODC, p. 305 (2003)

    Google Scholar 

  4. Chellapilla, K.: Evolving computer programs without subtree crossover. IEEE Trans. Evol. Comput. 1(3), 209–216 (1997)

    Article  Google Scholar 

  5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

    Chapter  Google Scholar 

  6. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order techniques. STTT 2(3), 279–287 (1999)

    Article  MATH  Google Scholar 

  7. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8(9), 569 (1965)

    Article  Google Scholar 

  8. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algorithms. STTT 6(2), 117–127 (2004)

    Article  MATH  Google Scholar 

  9. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1_18

    Chapter  Google Scholar 

  10. Harman, M., Jones, B.F.: Software engineering using metaheuristic innovative algorithms: workshop report. Inf. Softw. Technol. 43(14), 905–907 (2001)

    Article  Google Scholar 

  11. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  12. Ince, D.C. (ed.): Mechanical Intelligence (collected works of A.M. Turing). North-Holland Publishing Co., Amsterdam (1992)

    Google Scholar 

  13. Johnson, C.G.: Genetic programming with fitness based on model checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71605-1_11

    Chapter  Google Scholar 

  14. Katz, G., Peled, D.: Genetic programming and model checking: synthesizing new mutual exclusion algorithms. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88387-6_5

    Chapter  Google Scholar 

  15. Katz, G., Peled, D.: Model checking-based genetic programming with an application to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_11

    Chapter  Google Scholar 

  16. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19237-1_13

    Chapter  Google Scholar 

  17. Katz, G., Peled, D.: Code mutation in verification and automatic code correction. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2_36

    Chapter  Google Scholar 

  18. Katz, G., Peled, D.: MCGP: a software synthesis tool based on model checking and genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 359–364. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4_28

    Chapter  Google Scholar 

  19. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  20. Koza, J.R.: Human-competitive results produced by genetic programming. Genet. Program. Evol. Mach. 11(3–4), 251–284 (2010)

    Article  Google Scholar 

  21. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proceedings of 16th Annual IEEE Symposium on Logic in Computer Science, Boston, 16–19 June 2001, pp. 389–398 (2001)

    Google Scholar 

  22. Manna, Z., Pnueli, A.: How to cook a temporal proof system for your pet language. In: Conference Record of the Tenth Annual ACM Symposium on Principles of Programming Languages, Austin, pp. 141–154, January 1983

    Google Scholar 

  23. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

    Article  MATH  Google Scholar 

  24. Myers, G.: The Art of Software Testing. Wiley, New York (1979)

    MATH  Google Scholar 

  25. Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty synchronization. Concurr. Pract. Exp. 16(12), 1173–1206 (2004)

    Article  Google Scholar 

  26. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS, pp. 746–757 (1990)

    Google Scholar 

  27. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Peled .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Peled, D. (2016). Using Genetic Programming for Software Reliability. In: Falcone, Y., Sánchez, C. (eds) Runtime Verification. RV 2016. Lecture Notes in Computer Science(), vol 10012. Springer, Cham. https://doi.org/10.1007/978-3-319-46982-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46982-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46981-2

  • Online ISBN: 978-3-319-46982-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics