

AN INVESTIGATION INTO THE
USE OF GENETIC

PROGRAMMING FOR
INTELLIGENT NETWORK

SERVICE CREATION

BY

PETER MARTIN

A dissertation submitted in partial fulfilment of the
requirements for the degree of

MSc Advanced Computing

Bournemouth University

1998

Copyright – refer to title page
i

This is an unpublished work the copyright in which vests in Marconi

Communications Limited. All rights reserved. The information contained

herein is confidential and the property of Marconi Communications

Limited and is supplied without liability for errors or omissions. No part

may be reproduced, disclosed or used except as authorised by contract or

other written permission. The copyright and the foregoing restriction on

reproduction and use extend to all media in which the information may be

embodied.

Copyright – refer to title page
ii

‘… from so simple a beginning endless forms most beautiful and most wonderful have

been and are being evolved’

Charles Robert Darwin (1809-1882), On the Origin of Species by Means of Natural

Selection. 1st Edition.

Copyright – refer to title page
iii

ABSTRACT

Service creation is crucial to the success of Intelligent Networks (IN). However, the time

required to develop complex services is increasing. By reducing the elapsed time needed to

generate the service logic and by reducing the opportunity for implementation errors to

appear in the service logic, a higher quality IN service can be delivered.

This project explores an alternative method to the existing manual service creation, by

exploiting the properties of Genetic Programming (GP). Genetic Programming is a

powerful method for evolving computer programs via the process of natural selection.

[Koz92]. The use of Genetic Programming to produce service logic programs for IN is

analysed and a number of key features identified. Principally for GP to be of benefit to

IN it must be able to reduce the time to create a service and reduce the number of

implementation errors in the resultant program.

Experimental evidence is presented that shows that using Genetic Programming is a

viable method for service creation in Intelligent Networks, and can reduce the time to

create a program by several orders of magnitude compared to a human. The case is also

argued that since GP needs a fitness function to be developed, the initial specification

should be of a higher quality than one produced for a human programmer, thereby

reducing the number of errors in the final program.

To implement the experimental prototype, existing methods of evolving complex systems

using GP were researched. A new method of ensuring the property of closure is presented

that does not constrain the development of novel service logic implementations, in contrast

to existing methods commonly employed in GP.

Further work is identified at the end to improve upon the performance and to explore

more complex services.

Copyright – refer to title page
iv

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1-1

1.1. PROJECT OUTLINE ... 1-1
1.2. PROJECT APPROACH .. 1-1

CHAPTER 2. INTELLIGENT NETWORKS AND SERVICE CREATION ... 2-1

2.1. AN ALTERNATIVE APPROACH ... 2-4

CHAPTER 3. GENETIC PROGRAMMING PRINCIPLES ... 3-1

3.1. FUNCTION AND TERMINAL SETS .. 3-2
3.2. CREATION OF INITIAL POPULATION ... 3-4
3.3. SELECTION METHODS .. 3-6

CHAPTER 4. GENETIC PROGRAMMING APPLIED TO SERVICE CREATION .. 4-1

4.1. CHOOSING A LEVEL OF ABSTRACTION .. 4-3
4.2. METHOD OF MEASURING FITNESS ... 4-3
4.3. MEASURING PERFORMANCE AND ESTIMATING EFFORT .. 4-4
4.4. IMPLEMENTATION DETAILS ... 4-6

CHAPTER 5. DETAILS OF PROTOTYPE AND OUTCOME OF THE INVESTIGATION 5-1

5.1. FUNCTION AND TERMINAL SET ... 5-2
5.2. EXPERIMENT 1. SIMPLE NUMBER TRANSLATION ... 5-3
5.3. EXPERIMENT 2. COMPLEX NUMBER TRANSLATION ... 5-7
5.4. EXPERIMENT 3. RUN-TIME DECISION MAKING – SIMPLE CASE ... 5-16
5.5. EXPERIMENT 4. RUN-TIME DECISION MAKING – MORE COMPLEX CASE ... 5-20
5.6. EXPERIMENT 5. REDUCED COMPLEXITY FUNCTION SET .. 5-23
5.7. SUMMARY OF EXPERIMENT RESULTS .. 5-26

CHAPTER 6. ANALYSIS .. 6-1

CHAPTER 7. AREAS FOR FURTHER WORK .. 7-1

CHAPTER 8. CONCLUSIONS ... 8-1

APPENDIX A. HARDWARE AND SOFTWARE CONFIGURATION .. A-1

A.1. HARDWARE ... A-1
A.2. SOFTWARE ... A-1

APPENDIX B. GLOSSARY .. B-1

APPENDIX C. RUN TIME PARAMETER VALUES ... C-1

APPENDIX D. SOURCE CODE LISTINGS .. D-1

D.1. PROBLEM 1 DESCRIPTION .. D-27
D.2. PROBLEM 2 DESCRIPTION .. D-27
D.3. PROBLEM 3 DESCRIPTION .. D-27
D.4. PROBLEM 4 DESCRIPTION .. D-27
D.5. PROBLEM 5 DESCRIPTION .. D-28
D.6. NODESET 1 DESCRIPTION .. D-29
D.7. NODESET 2 DESCRIPTION .. D-29
D.8. NODESET 3 DESCRIPTION .. D-30

Copyright – refer to title page
v

Copyright – refer to title page
vi

LIST OF FIGURES

Number Page
FIGURE 1 BASIC ELEMENTS OF AN INTELLIGENT NETWORK .. 2-2
FIGURE 2 SERVICE CREATION LIFECYCLE .. 2-3
FIGURE 3 FLOWCHART OF GENETIC PROGRAMMING ... 3-2
FIGURE 4 OPERATION OF CROSSOVER IN GENETIC PROGRAMMING ... 3-5
FIGURE 5 LAYOUT OF AUTONOMOUS POLYMORPHIC ADDRESSABLE MEMORY ... 4-3
FIGURE 6 MESSAGE SEQUENCE CHART FOR A SIMPLE NUMBER TRANSLATION SERVICE 5-4
FIGURE 7 STATE DIAGRAM FOR SIMPLE NUMBER TRANSLATION SERVICE ... 5-5
FIGURE 8 PERFORMANCE OF SIMPLE NUMBER TRANSLATION FOR M=500 .. 5-7
FIGURE 9 MESSAGE SEQUENCE CHART FOR AN EXTENDED NUMBER TRANSLATION SERVICE 5-8
FIGURE 10 STATE DIAGRAM FOR EXTENDED NUMBER TRANSLATION .. 5-9
FIGURE 11 PERFORMANCE OF COMPLEX NUMBER TRANSLATION FOR M=500 .. 5-9
FIGURE 12 EXAMPLE PROGRAM TREE FOR COMPLEX NUMBER TRANSLATION – 1 ... 5-10
FIGURE 13 EXAMPLE PROGRAM TREE FOR COMPLEX NUMBER TRANSLATION – 2 ... 5-11
FIGURE 14 EXAMPLE PROGRAM TREE FOR COMPLEX NUMBER TRANSLATION – 3 ... 5-12
FIGURE 15 SIZE OF FITTEST INDIVIDUAL WITH GENERATION ... 5-13
FIGURE 16 PROGRESSION OF STATE FITNESS EVOLUTION ... 5-14
FIGURE 17 PROGRESSION OF MESSAGE FITNESS EVOLUTION ... 5-15
FIGURE 18 MESSAGE SEQUENCE CHART FOR EARLY RUN TIME DECISION MAKING 5-16
FIGURE 19 STATE DIAGRAM OF EARLY RUN TIME DECISION MAKING .. 5-17
FIGURE 20 PERFORMANCE OF EARLY DECISION MAKING FOR M=500 ... 5-19
FIGURE 21 MESSAGE SEQUENCE CHART FOR LATE DECISION EXPERIMENTS ... 5-21
FIGURE 22 STATE DIAGRAM FOR LATE DECISION EXPERIMENT .. 5-22
FIGURE 23 PERFORMANCE OF LATE DECISION MAKING FOR M=500 ... 5-22
FIGURE 24 PERFORMANCE USING REDUCED COMPLEXITY FUNCTIONS FOR M=500 5-24
FIGURE 25 EXAMPLE PROGRAM TREE USING REDUCED COMPLEXITY FUNCTIONS ... 5-25
FIGURE 26 SIMPLE C PROGRAM .. 6-5

Copyright – refer to title page
vii

LIST OF TABLES

Number Page
TABLE 1 DATA TYPES ENCOUNTERED IN TELEPHONY SERVICES .. 4-1
TABLE 2 POTENTIAL SIZE OF POPULATION FOR DIFFERENT SIZE F ... 4-2
TABLE 3 LANGUAGES USED FOR IMPLEMENTING COMMON EC SYSTEMS .. 4-7
TABLE 4 AVAILABLE IMPLEMENTATIONS OF GP SYSTEMS .. 4-10
TABLE 5 MESSAGES SUPPORTED IN PROTOTYPE ... 5-2
TABLE 6 SUCCESSFUL OUTCOMES VS POPULATION SIZE FOR SIMPLE NUMBER TRANSLATION 5-6
TABLE 7 SUMMARY OF PERFORMANCE FOR SIMPLE NUMBER TRANSLATION .. 5-7
TABLE 8 SUMMARY OF PERFORMANCE FOR COMPLEX NUMBER TRANSLATION .. 5-10
TABLE 9 SUMMARY OF PERFORMANCE FOR EARLY DECISION MAKING ... 5-20
TABLE 10 SUMMARY OF PERFORMANCE FOR LATE DECISION MAKING .. 5-23
TABLE 11 SUMMARY OF PERFORMANCE USING REDUCED COMPLEXITY FUNCTIONS 5-24
TABLE 12 SUMMARY OF EXPERIMENTS AND RESULTS ... 5-26
TABLE 13 RUN-TIME PARAMETER VALUES FOR GP KERNEL .. C-1

Copyright – refer to title page
viii

AUTHOR DECLARATIONS

1. During the period of registered study in which this dissertation was prepared

the author has not been registered for any other academic award or

qualification.

2. The material included in this dissertation has not been submitted wholly or in

part for any academic award or qualification other that that which is now

submitted.

This dissertation consists of 115 pages.

Copyright – refer to title page
ix

ACKNOWLEDGMENTS

Firstly I would like to thank my project supervisor Mike Jones of Bournemouth

University for his help and encouragement. I am also grateful to my colleague Dr.

Jeremy Bennett for reading a late draft of this paper and his helpful comments and

encouragement.

Finally I would like to thank Marconi Communications Limited, formerly GPT

Limited for sponsoring me to do this MSc.

Copyright – refer to title page
1-1

CHAPTER 1. INTRODUCTION
This chapter gives an outline of the project and describes the approach used.

1.1. Project Outline

As telecommunication systems become more complex and the effort needed to

create services in a timely manner becomes greater, so the need for alternative

means of realising systems becomes more urgent.

The purpose of this work is to explore how a method from the field of evolutionary

computing can be of assistance in the field of Intelligent Networks (IN) in helping

to create new telecommunications services.

The premise used in this work is that using a branch of evolutionary computing, a

system can translate a specification into an implementation without the direct

assistance of a human programmer. The benefits to be gained are faster system

realisation and a more reliable implementation by focusing the effort on the

requirements of a system rather than it’s implementation.

1.2. Project Approach

Starting from the idea that some form of automatic programming was a feasible

method to use, a detailed analysis of one method – Genetic Programming (GP) –

was made. From this analysis a number of questions were raised concerning the

basic feasibility, performance and scalability.

To explore the issues raised a number of experiments were then devised. Finally the

experimental results were analysed and further questions uncovered.

The paper is organised into the following sections:

Chapter 2 presents the basics of IN and makes the case for considering the

use of GP.

Chapter 3 gives an outline of GP in a problem independent context.

Copyright – refer to title page
1-2

Chapter 4 discusses the problem specific details of Genetic Programming

Chapter 5 presents the experiments devised to establish the suitability of GP

for IN

Chapter 6 discusses the results in the context of IN

Chapter 7 gives some outline of further work

Chapter 8 presents the general conclusions.

Copyright – refer to title page
2-1

CHAPTER 2. INTELLIGENT NETWORKS AND SERVICE

CREATION
This chapter introduces the idea of Intelligent Networks in telecommunications networks

and describes the role of service creation. Some of the drawbacks of current methods of

service creation are discussed and the rationale for alternative methods given.

Traditional telephony in the past 20 years has concentrated on delivering telephony

services to customers by means of stored program switches. Customers have, until

recently, been restricted to relatively crude terminal equipment that supports voice

and Dual Tone Multi Frequency (DTMF) user controls.

As the number of services offered has grown and the sophistication of telephone

equipment has risen, it has become clear that offering services via the traditional

embedded switch technology does not scale well, and that other platforms for

providing the services are required.

The primary objective of Intelligent Networks is to move the service computation

to readily available computers. The basic intelligent network is shown in Figure 1.

Copyright – refer to title page
2-2

Switch SSP

Switch SSP

SCP

SDP

SMP

SCEP

Conventional
Telephone Network

Intelligent Network
Components

Subscribers

Telephone
Transmission
Network

Interface B
INAP over SS7

Interface A
User Interaction
(Voice, DTMF)

Exchange

Exchange

Key Name Function

BCSM Basic Call State Machine The description of the internal operation of the IN
portion on an SSP

SCP Service Control Point. The computing platform that executes the service
logic

SCEP Service Creation Environment
Point.

Used to create the services that execute on the SCP

SDP Service Data Point. Supplies database functionality.

SMP Service Management Point. Used to manage the network and subscriber data

SSP Service Switching Point. Performs normal telephony and associated service
triggering

Figure 1 Basic elements of an Intelligent Network

A secondary aim of introducing IN was to reduce the time required to develop and

deploy new services. Traditional switch based solutions typically require 2 years

Copyright – refer to title page
2-3

from the initial requirements being specified until the service is in operation [BJ97].

In a highly competitive environment this is too long, and the market window will

have disappeared by the time the services come into operation. IN aims to reduce

this to around 6 months by exploiting mainstream IT techniques.

In order to achieve such a startling reduction in timescales, new methods of creating

service applications were required. From this followed the introduction of the

SCEP, or Service Creation Environment Point.

One such system has been developed by Marconi Communications Limited,

formerly GPT Limited [Mar96] and is marketed as GAIN INventor (ä) . This

employs a service lifecycle shown in Figure 2. This shows a simplified waterfall

model where the stages 1-4 as a whole map to subgoals 2 to 7 described by Boehm

[Boe81] Chap. 4. Page 37. An implicit assumption is that the feasibility of a service

has already been established. Maintenance and phaseout are part of the service

creation process but are not considered for development purposes.

Requirements
Capture [1]

Create
Service [2]

Test &
Verify [3]

Deployment
[4]

Figure 2 Service Creation Lifecycle

The first two phases occur when either a customer specifies their service

requirements directly to the provider of the network, or as a result of collaboration

between user and provider. They are carried out using the tools and techniques

provided by the IN equipment vendor. During the requirements capture phase, it is

quite likely that the same tools will be used in order to produce rapid prototypes so

Copyright – refer to title page
2-4

that the customer can verify the essential requirements early on in the development

of the service.

In the GAIN INventor (ä) system the user selects sets of iconic images from a

palette and joins them together to create a directed graph. Each node (icon) in the

graph has a set of attributes that the service creator can change to determine the

eventual behaviour of the service being constructed.

A compiler is used to translate the abstract service representation to C code that

conforms to the requirements of the runtime environment.

Experience has shown that the time required to complete the first phase is relatively

short, but the time required to implement complex services in phases 2 and 3 can

be several months. A typical non-trivial service can require several thousand icons,

and results in dozens of valid traversals of the graph. A means of reducing the

duration of these phases is therefore of benefit to the network and service

operators.

2.1. An Alternative approach

The major problems encountered in the existing system are associated with

software engineering management issues namely, productivity and quality control.

Despite the promises of the early IN systems and the advanced tools available,

complex services still take a considerable amount of time to develop using

traditional software engineering techniques and there is still a level of defects found

in the services themselves [BJ97].

This work attempts to address the difficulties with the first two phases, by means of

automatically deriving an implementation from the requirements, or as Teller

[TA97], Langdon [Lan98] and others put it, by using Automatic Programming. This

approach was hinted at by Boehm [Boe81] Chap. 33 where a mention is made of

automatic programming. In 1981 the idea was considered interesting but ‘somewhat

beyond the current frontier of the state of the art’. This paper demonstrates that

Copyright – refer to title page
2-5

automatic programming by using Genetic Programming (GP) is now a viable

alternative in the domain of IN.

To be able to judge whether an alternative approach to manual programming is

worthwhile a number of questions need to be answered with regards to the

alternative:

1. Has the alternative approach demonstrated that it can generate programs that

perform as well as or better than a human?

2. In the domain being considered what are the observable and measurable

attributes of the process of generating programs?

3. What are the observable and measurable attributes of the generated programs ?

4. Does the alternative have the ability to create IN applications.

5. Can it handle the range of program complexity that a human can; i.e.; is it

scalable?

Firstly, GP has demonstrated that it can produce results that are at least as good as a

human programmer and in some cases provide solutions to problems that a human

has not been able to achieve as in the case of discovering an electronic circuit to

yield a cube root function [KBF96], and to create a rule for cellular automata that

performs better than any rule written by a human [ABK96]. Sharman et al [SEL95]

has also shown that programs for Digital Signal Processors (DSPs) evolved using

GP can outperform existing programs. Clearly then GP has the potential to

generate programs that humans find hard.

Secondly, we can consider an existing service creation case study [BJ97]. This study

showed that for a complex service a human required 4.5 Man years of effort to

analyse, design, code and test the service. The principle measurable attribute is

therefore the elapsed time required to implement the service and this attribute will

Copyright – refer to title page
2-6

be quantified for GP by experimental data presented later. Other attributes are cost

of equipment and the degree of human intervention but are not considered further

in this work.

Thirdly, a key measurable attribute of the program is the level of defects. Broadly

defects fall into one of two categories [Som96]; errors due to incorrect requirements

analysis and errors due to implementation deficiencies either by errors in

programming or design. The first type is common to whatever method of

programming is adopted. As summarised by Davis [Dav93] the earlier requirement

related errors are found, the lower the cost to remedy the error. As will be seen later

using GP forces the designer to consider requirements in more detail initially (for

fitness evaluation) so the implication is that using GP will result in fewer errors

introduced by faults in the requirements. Again the study by Boulton et al [BJ97]

shows that even using advanced tools such as INventor, there were 15 failures

associated with the service. Anecdotal evidence suggests that these were all

implementation errors.

Fourthly, there is no existing information on using GP for IN services creation.

Experimental work will be required to ascertain whether GP can be used for service

creation.

Lastly, the question of whether GP can scale can only be answered in full by

analysing experimental data, but initial indications show that GP can create

programs to solve complex problems in other domains.

It is worth noting that other alternatives such as artificial neural networks, hill

climbing, decision trees, reinforcement learning, combinatorial search or knowledge

based systems have not been explored in the context of this problem, but Koza

[Koz96] makes a powerful argument why such a comparison would not be

beneficial anyway. The main point of his argument is that most machine learning

Copyright – refer to title page
2-7

paradigms are highly specialised and any attempt to do a cross paradigm

comparison will ‘gravitate to utterly trivial problems’.

Notwithstanding the above, one area that promises to offer a viable alternative to

GP is Inductive Logic Programming [BG95], and a useful comparison has been

made between Inductive Logic Programming and GP by Tang [TCM98] albeit for a

fairly simple problem. Furthermore some limited experimental results have been

presented between traditional Genetic Algorithms (GA) and GP in the domain of

telecommunications applications by Sinclair [SS97] and Aiyarak [ASS97]. None of

these comparisons offers any convincing arguments in favour of any particular

method, indeed, the comparisons between GA and GP give contradictory results

and appear to be heavily influenced by the type of problem being solved.

Copyright – refer to title page
3-1

CHAPTER 3. GENETIC PROGRAMMING PRINCIPLES
This chapter describes Genetic Programming as a general method for solving problems.

Genetic Programming (GP) is an extension of Genetic Algorithms (GA) first

proposed by Holland [Hol92] where the individuals that make up a population are

not fixed length, limited alphabet strings, but rather structures that represent

programs. The structures are typically trees that describe the program [Koz92], but

may take on other forms such as a binary string [Ban93]. The purpose therefore is

to evolve programs that can solve the problem presented to the system

GP uses four steps to solve a problem:

1. A set of individuals (programs) is randomly created. This is the initial

population.

2. These are then evaluated (executed or interpreted) for fitness, and a fitness value

is assigned to each individual.

3. These individuals are then used to form the next population by means of

probabilistically selecting one of:

• asexual reproduction

• sexual reproduction or crossover

• mutation.

This new population is then re-evaluated.

4. This cycle is repeated until either a pre-determined number of generations have

been processed or an individual meets a predetermined level of fitness.

This is illustrated as a flow chart in Figure 3

Copyright – refer to title page
3-2

Create initial
population

Evaluate fitness
of each

individual

Select highly fit
individual

Select
Genetic
Operator

Select two highly
fit individuals

Select highly fit
individual

Perform
reproduction

Perform
mutation

Perform
crossover

Add to new
population

Termination
criteria

satisfied

Reproduction Mutation

Crossover

No

YesSelect best
individual

END

START

All
individuals
processed

Yes

No

Figure 3 Flowchart of Genetic Programming

3.1. Function and terminal sets

In classic tree based GP each genetic program consists of one or more nodes,

chosen from one of two sets. The non-leaf nodes are known as the function set

F={f1,…, fn}.

All nodes in F have arity (that is can take a number of arguments) one or greater.

The leaf nodes are the terminal set T = {t1,…tn}. Nodes in T have arity of zero.

Copyright – refer to title page
3-3

If the members of T are considered as functions with arity zero, then the total set

of nodes is:

C = F È T

The search space is the set of all possible compositions of the members of C. This

set must exhibit two properties [Koz92]: closure and sufficiency.

Closure requires each member of C to accept as its arguments any other member in

C. This property is required in order to guarantee that programs can operate

without run time errors being generated. The common example cited is that of

protecting the division operator to prevent division by zero errors, but also extends

to data types used when calling functions and accessing terminal types.

This may be achieved in a number of ways. Firstly Koza [Koz92] restricts the types

of arguments and function return types to compatible types. For instance, all

floating point types as in the symbolic regression examples or logical in the Boolean

examples. For simple problems with single data types this is sufficient.

Secondly, in strongly typed approaches such as those described by Montana

[Mon95] and Haynes et al [HWSS95]constraints are placed on the creation of

individuals to satisfy the type rules. The advantage here is reducing the size of the

search space by eliminating individuals that would fail due to syntax errors. Clack

[CY97] extended this work to show that expression based parse trees can yield

more correct programs, and introduced the idea of polymorphism into the data

types. Later an alternative is presented to strongly typed approaches that removes

some of the deficiencies.

The sufficiency property requires that the set of functions in C is sufficient to

express a program capable of solving the problem under consideration [Koz92].

This is a problem specific property and must be determined before any GP can be

evolved. This together with determining a suitable fitness test requires the most

effort by a user of GP.

Copyright – refer to title page
3-4

3.2. Creation of initial population

To create the initial population a number of randomly selected nodes from the

function set F are used to build trees according to the arity of the function. Leaf

nodes from T are inserted according to certain criteria. Two main methods are

described by Koza [Koz92]; the full, and the grow methods.

In the full method, members of F are selected until the tree reaches a pre-

determined depth, then from T. This results in trees with uniform depth.

The grow method differs in that a node is selected from C if the depth is less than a

pre-determined maximum, else it selects from T.

A third method combining the full and grow is called ‘ramped half and half ’.

Ramped half and half operates by creating an equal number of trees with a depth

between 2 and a pre-determined maximum. That is if the maximum depth is 10,

then 1/9 will have depth 2, 1/9 depth 3 and so on up to depth 10. Then for each

depth, 50% of the trees are created using the full method and 50% using the grow

method. This is claimed by Koza [Koz92] to offer a wider variety of shapes and size

in the initial population. The difference in performance between the three methods

is documented in [Koz92] and [Ban93], with ramped half-and-half clearly yielding

higher probabilities of success on a number of problems. Therefore this is the

method used in all cases in the work described in this paper.

During the operation of GP, one of three methods of producing the next

generation are used, reproduction, crossover and mutation.

Reproduction is the straightforward copying of an individual to the next generation,

otherwise known as Darwinian or asexual reproduction.

Crossover, or sexual recombination, consists of taking two individuals A and B, and

randomly selecting a crossover point in each. The two individuals are then split at

Copyright – refer to title page
3-5

these points creating four subtrees A1 A2 B1 B2, and two new individuals created C

and D by combining A1 B2 and B1 A2. This is shown in Figure 4

F1

F2 T1

T2 T3

F2
Figu
re 6

Figu
re 6

Figu
re 6

F3

T4

T5 T6

F3

T5 T6

F2

T2 T3

F2
Figu
re 3

Figu
re 3

Figu
re 3

T4

F1

T1

Individual A

Individual B

Parents Offspring

Crossover
point

Crossover point

A2

A1

B2

B1

Individual C

Individual D

A1

B2

A2

Figure 4 Operation of crossover in Genetic
Programming

Mutation consists of randomly selecting a mutation point in a parse tree and

substituting a new randomly generated sub tree at that point.

There is still much debate over whether crossover and mutation are useful

operators [GPMAIL]. Koza [Koz92]claims that mutation does not play a large part

in finding fit individuals and consequently does not use it in most of his

experiments. In contrast studies by Banzhaf et al [BFN96] and Luke and Spector

[LS97] show that mutation can be useful in some cases, however they have not

discovered any robust heuristics that allow the selection of optimal settings. Finally,

Angeline [Ang97a] puts forward some evidence that crossover may be a form of

macromutation and not play any real role in propagating so called building blocks.

Copyright – refer to title page
3-6

3.3. Selection methods

The two main methods of selecting individuals from a generation are fitness

proportionate and tournament. When using fitness proportionate, all individuals are

ranked according to their absolute fitness values and the best selected. A refinement

on this is rank selection [GD91] which reduces the influence of single highly fit

individuals.

In tournament selection, n individuals are selected and the best one in the selection

is propagated to the next generation. The value of n can be any number greater than

one. The winning individual can be left in the donor population, resulting in so

called over selection, where it stands a chance of being reselected as a result of

further tournaments.

The choice of selection method was based on the work by Banzhaf [Ban93] where

tournament selection with over selection performed better in most cases, therefore

tournament selection with over selection was used in the work described later.

In order to identify good individuals, a fitness function is required that can provide

a measure of how good (or bad) an individual is. Some problems use the result of

the program directly as the fitness measure, for example symbolic regression. Other

problems use side effects, such as the Ant problem [JCC92] that is commonly used

as a benchmark of GP systems. The Ant problem uses a two dimensional toroidal

grid containing a trail of food. A simulated ant is placed in this grid. The objective is

to discover a controlling program that allows the ant to collect the maximum

amount of food in a given time. The ant is able to move forward, turn left or right

and sense food in the cell adjacent to the direction it is facing.

Copyright – refer to title page
4-1

CHAPTER 4. GENETIC PROGRAMMING APPLIED TO SERVICE

CREATION
This chapter explores the domain specific details required to use Genetic Programming

in creating services for an Intelligent Network.

Section 3.1 explained that the set of functions must satisfy the sufficiency property.

That is they must be rich enough to allow an evolving program to be able to satisfy

the functional requirements. For instance, a requirement for a program to generate

messages would require one or more functions to support this. The functions

selected however also depend on the level of abstraction selected. This is dealt with

in section 4.1.

Terminals may be side affecting or yield data. For this work, the functions were

chosen to perform all external operations, while the terminals were chosen to yield

data. In order to arrive at a sufficient set of data types, it is useful to consider what

types of data are commonly encountered in telephony services. Table 1 summarises

these data types.

Data Type Comments

telephone numbers Strings of digits [0-9 # *] that can be dissected and
concatenated. The string length may be up to 24.

constant integral values Used for counters and message parameter values

boolean values Flags and status values

message types An enumerated set used to distinguish messages

Table 1 Data types encountered in telephony
services

From this it is clear that restricting functions and terminals to use a single data type

in order to satisfy the closure property is not feasible.

Copyright – refer to title page
4-2

In addition, since most IN services require some state information to be stored

between message transfer points, a mechanisms for saving state information was

required. The first approach to this requirement, Indexed Memory, was suggested

by Teller [Tel94] where he argues that in order for GP to be able to evolve any

conceivable algorithm, GP needs to be Turing Complete and that addressable

memory enables this. A useful side effect of this is that memory also allows state

information to be explicitly saved and retrieved.

Of course other approaches to saving state information are possible as for example

in the work by Angeline [Ang97b] that uses Multiple Interacting Programs (MIPS).

However for the purposes of this work Indexed Memory was chosen since it was

thought that it would be easier to analyse the operation of the evolving programs.

As already noted in 3.1, several methods have been proposed to ensure that the

closure property is maintained during initial creation and subsequent reproduction.

An alternative is proposed in this work, based on polymorphic data types with

independent values for each type supported.

This approach was devised as an alternative to the strongly typed methods by

making the observation that it is possible that the criteria used to decide what is a

correct program has more to do with correctness as seen by a human programmer

rather than any inherent property of GP. In other words, strong typing is a

necessary artefact of languages used by humans to help ease the burden on the

programmer, by means of assisting machine interpretation. Perkis [Per94] has

shown that an apparently haphazard mechanism in the form of a stack can yield

useful results. Another objection to using a strongly based type system was that the

potential number of solutions could be greatly diminished.

The work presented here uses a new data type termed Autonomous Polymorphic

Addressable Memory (APAM). This consists of a set of memory locations M =

{L1, … Ln} which can be addressed randomly or by name. Each location is a set of

Copyright – refer to title page
4-3

data items L = {d1, … dn}. The values of Ln.d1, Ln.d2 etc are independent of each

other. Selection of the correct type and therefore value is performed by any

function that is passed a memory reference as an argument.

Memory M

L1 … Ln

d1 d2 d3 d1 d2 d3

Figure 5 Layout of Autonomous Polymorphic
Addressable Memory

To support this memory architecture, the terminal set T consists of memory nodes

T = {TVAR1. . TVARn}. Each node returns a reference to memory address Ln.

and can be passed as arguments to any function.

It should be noted that this is not the same as using a generic data type where a data

item is coerced into the correct type at run time. A difficulty with coercion is that

many automatic conversions are meaningless. For example, in the context of

telephony it would be hard to imagine what the coercion of a Boolean value into a

telephone number would mean.

4.1. Choosing a level of abstraction

The number of functions in C and their arity can be used to estimate the size of the

search space as described by Iba [Iba96] and Langdon [Lan97]. It is clear that a large

function set would result in a large search space, and therefore reduce the

probability of achieving good performance. Therefore, a level of abstraction that

uses a smaller number of functions is desirable.

As an example, consider several sizes for F, assuming each member of F has arity

of two, and that there are ten members of T. The population size is calculated using

Langdon’s method [Lan97] and the results summarised in Table 2

Copyright – refer to title page
4-2

Size of F Number of possible trees of depth 10

5 8.0 x 109

10 1.3 x 1011

15 6.0 x 1011

20 2.0 x 1012

25 5.0 x 1012

100 1.2 x 1015

Table 2 Potential size of population for different
size F

In the domain of IN, there are three main levels of abstraction that can be

considered. This list does not include low-level functions, for instance the UNIX

API, or raw machine language, though the latter is clearly feasible as demonstrated

by the use of Java byte code as the working set for C as described by Banzhaf et al

[BNO97]:

• ICON level with attributes as terminals. This level is based on the set of

functions offered to service creators using the GPT GAIN INventor (ä)

product [Mar96]. Other service creation systems have similar or even higher

level of abstraction. A subset of around twenty icons is sufficient to construct

the majority of services encountered in existing networks.

• Icon function level. This is the level used by the internal tools within GAIN

INventor (ä). Each ICON typically makes use of between one and twenty

functions. The total number of functions is around 200.

• API level. This is the lowest practical level. This is the set of API functions

offered by the target platform. In the case of the GPT GAIN INventor (ä)

product, this is a set of over one hundred and fifty function calls designed to

allow services and other applications to be constructed.

Copyright – refer to title page
4-3

For these experiments, the level was initially pitched at the ICON level since this

level allows humans to create production quality services, giving a potential size of

F of around twenty. In this work only a small subset of this potential set was

chosen. An attempt was made to see if this level of abstraction was optimal by

carrying out additional experiments using a level closer to the API. Initial results

indicate that using the ICON level may not be the most effective.

4.2. Method of measuring fitness

The decision was made to measure the fitness of the GP at Interface B (Figure 1)

since this is a standardised external interface [Itu94a] and would allow the

specification of services to be performed at the network level.

The Basic Call State Machine (BCSM) of the standards [Itu94a] is simplified, and

called a Simple Call State Model (SCSM) in order to focus on the GP methodology

rather than being distracted by the complexities of the BCSM.

By treating the GP as a black box it should be possible to have a high degree of

confidence that individuals operate as expected. This would operate by means of

sending messages to each individual and waiting for an appropriate response. At the

conceptual level this is exactly what is done, but at the practical level things are not

so simple.

The initial attempt used this approach, setting a timeout against each response

expected, but this resulted in excessive time required to test poor individuals since

many timeouts were encountered for highly unfit individuals. It was also very hard

to debug such a system.

In order to simplify the system, the execution of the system was driven by the

service logic so that when evaluating fitness, the service logic is executed directly. It

then makes requests to the SCSM as required. This inversion of roles removes the

problems of detecting non-responsive service logic programs, and simplifies the

initial debugging and verification.

Copyright – refer to title page
4-4

When running a fitness test, there are two problem specific related measures used

to determine how fit an individual is, as well as non-problem specific measures such

as parsimony:

• The number of correct state transitions made. Each correct transition is

rewarded with a value of 100. Each incorrect transition is penalised with a value

of -20. The reward and penalty values are summed. Call this value s.

• The number of correct parameter values passed back to the SCSM. A correct

parameter value is rewarded with a value of 100, and each incorrect value is

penalised with a value of -20. The reward and penalty values are summed. Call

this value p.

Raw fitness r is given by r = s + p

Normalised fitness n is given by n = k – r where k is a constant that is dependent

on the number of state transtions and message parameters in the problem being

considered, such that for a 100% fit individual n = 0.

A count is maintained of the number of correct and incorrect state transitions and

correct and incorrect message parameter values.

4.3. Measuring performance and estimating effort

Koza [Koz92] p.191 describes a method of measuring the performance of a GP

system that consists of running a large number of trials noting for each run,

whether the run yielded a correct individual, and the generation number that the run

produced such an individual.

For a population size M, the cumulative probability of success P (M, i) for any

generation i is calculated. This is a measure of the success of the particular set of

configuration settings. From this it is possible to estimate the effort required to find

a satisfactory outcome. The cumulative probability P (M, i), is the total number of

Copyright – refer to title page
4-5

runs that produced a successful outcome up to and including generation i, divided

by the number of runs conducted.

From this, an estimate can be made of the number of independent runs required to

reach a satisfactory result with probability z for generation i, using equation 1

([Koz92] p.194):

() ()
()()úû

ù
ê
ë

é
-

-
=

iMP
zzR
,1log

1log
 (1)

In all cases described in this work, z=99%

The quantities P (M, i) and R (z) are plotted on a graph.

The effort e required to find a solution by generation i for is given by equation 2:

)(. zRM=e (2)

Additional information collected includes the total time taken for each run (t), the

number of individuals processed, the number of unique individuals that were 100%

fit (Y), the number of 100% individuals at the final generation (J) and details of

the best individual of each run.

Copyright – refer to title page
4-6

4.4. Implementation details

Given that the purpose of the project was to investigate the usefulness of the GP

method in a practical application, there was little to be gained by implementing a

GP kernel since several implementations were already available. An existing study

into GP tools on the Web by Deakin and Yates [DY97] only addressed basic

operational issues and considered whether the package compiled. It also only

considered five implementations.

The choice of an implementation for the experimental work was based on a larger

number of criteria than Deakin’s [DY97]; implementation language, portability,

performance, availability, flexibility, extensibility, level of support from the author

and popularity. In addition, this work considered 12 implementations.

The language issue was looked at first. Without considering GP in particular, an

early search revealed several languages in use in the field of Evolutionary

Computing (EC). These are summarised in Table 3 with some of their important

characteristics.

Copyright – refer to title page
4-7

Language Comments
C++ Common language. Highly portable. OO features may help in

producing problem specific solutions. Good performance
characteristics

C Common language. Very portable. Good performance
characteristics.

LISP Interpreted language. Finds favour with AI community. Initial
work on GP by Koza [Koz92] was done in LISP. Performance
dependent on machine and environment. Fairly portable, but
requires platform specific changes to optimise some
functionality.

Smalltalk Usually interpreted environment. Another favourite language
with the AI community. Requires specialised run-time
environment.
Strongly Object Oriented.

Java New language. Safer to use than C++. Good support for OO.
It is an interpreted language and therefore its performance is
poor, but forthcoming compilers should improve the situation.
Claims to be highly portable.

Table 3 Languages used for implementing
common EC systems

Because C and C++ exhibit good performance characteristics, portability, ready

availability on the platforms to be used for the work, and maturity, these were the

preferred languages when selecting an implementation. Performance was

considered particularly important since the computational effort of using GP can be

high, and using commodity computers (see APPENDIX A) meant that limited

computational power was available. The need to use commodity computers is

related to the fact that a GP approach would not be acceptable in a commercial

environment if exotic and therefore expensive computers were required.

Secondly, support for a range of computing platforms was desirable to allow work

to be carried out at various locations on Windows95/NT, Linux, Solaris, and other

UNIX platforms.

Copyright – refer to title page
4-8

Thirdly, in order to be considered an implementation should be able to demonstrate

the ability to implement some of the commonly encountered example tasks. These

include symbolic regression and the artificial Ant problem [JCC92], and while they

cannot be considered as standard, these examples demonstrate the ability to

perform basic GP tasks having been described in the early works [Koz92].

Fourthly, the popularity of each package was assessed by trying to determine which

implementation (if any) has been discussed or used in a sample of over 50 papers

studied, the GP mailing list archive [GPMAIL] and an informal straw poll

conducted on the GP mailing list. Whilst not a rigorous investigation, it indicated

whether the GP community regards the packages with confidence. Popularity was

rated as high (H) if the package appeared in 5 or more papers or mail threads,

medium (M) if found more than twice, otherwise low (L).

Finally, easy access to the tuning options of GP without re-compilation was

important to allow semi-automatic tests to be performed. This was especially

important given the number of runs that have to be made.

The initial search revealed a number of implementations. These are summarised in

Table 4. Implementations that were not found originally have also be included in

this list for completeness.

Copyright – refer to title page
4-9

Name Language

Platform
s

Supported

Popularity

Passed Tests

Comments and reference

LISP Kernel and
problems

LISP UNIX,
Linux,
Win95

H Y As described in [Koz92] and available from
[Koz97]
This is subject to U.S. Patents #4,935,877,
5,136,686 (symbolic regression), 5,148,513
(co-evolution), 5,343,554 (automatically
defined functions) and 5,390,282.
Other patents pending, but is free for
academic applications.

Lilgp C UNIX H Y A C implementation of the work described in
[Koz92], but with many additions. Available
from [Lil98]. Further additions made by Sean
Luke [Luk97].

Gpc++ C++ UNIX,
Linux,
Win95

H Y A strongly Object Oriented based
implementation. Originally by Adam Fraser,
but now maintained by Thomas Weinbrenner.
[Wei97].

GP-COM C++,
Tcl,
Tk

UNIX L N Component based system with GUI.
[HB96. Not evaluated.

Gpquick C++ DOS,
Win95,
UNIX

M N Simple GP system written in C++ by Andy
Singleton. And can be found at [Sin94]

GPDATA C++ UNIX,
Linux

M Y [Lan97]

Geppetto ? ? L N Written by David Glowacki. Available from
[Gep98]

Gpsys Java All L N Available from [Qur98].

Gpjpp Java All L N A Java implementation of the Gpc++ kernel
([Wei97]). Available from Kok98

SGPC C All H Y Simple Genetic Programming in C. Based on
Koza’s LISP code. Written by Walter Tacket
and Avi Cormi. Can be found at [Sgp1998]

Copyright – refer to title page
4-10

Vienna C++ All L N Not located in time for the initial stud, but
included here for completeness. Available
from [Vie98]

Gpeist4 Small
talk

? L N Not evaluated due to language restriction.
Available from [Gpe98].

Table 4 Available implementations of GP systems

Each implementation was obtained and an attempt was made to exercise the two

common tests. Some failed because of lack of a suitable platform.

By considering platforms supported, the desired language (C++ followed by C),

probable performance and popularity, the Gpc++ package was finally selected for

the implementation of the experimental work.

Copyright – refer to title page
5-1

CHAPTER 5. DETAILS OF PROTOTYPE AND OUTCOME OF

THE INVESTIGATION
This chapter describes the experimental work carried out in order to address some the

issues previously raised.

The main body of the experimental work uses a set of increasingly complex service

scenarios based on a simple but complete number translation service. Number

translation, also popularly known as ‘freephone’ or ‘premium rate’ is the most

common service offered by IN platforms [Ebe98]. Further scenarios look at how

error conditions and decisions can be handled within the evolving service.

A number of simplifying assumptions were made at the start of the work:

• the number of functions present in the function set was limited in order to

concentrate on the essential requirements of services.

• the external world is implemented such that the SDP is integrated with the

SCSM to ease the job of the fitness evaluation function. In the real world the

two would be separate functions.

• the number of parameters passed in the messages was limited in order to ease

the implementation of the fitness function.

These simplifications do not detract from the basic goals of the project and can be

eliminated in future work.

The system supports five message types analogous to the real world Intelligent

Network Application Part (INAP) and SDF operations. These are summarised in

Table 5

Copyright – refer to title page
5-2

Message
type

Equivalent
INAP/SDF
message

Parameters Comments

IDP InitialDP CalledDN and Flag The message is generated
by the SSP as a result of a
trigger detection point
being activated by a call.

DBREQ DB_REQUEST1 Key A database request.

DBRESP DB_RESPONSE1 Result and status of
request

The response from the
database

CONNECT Connect Translated Address An instruction from the
SCF to the SSP to connect
party A to party B.

END Pre-arranged end None A message issued by either
end of a SS7 link to
terminate an active session.

Table 5 Messages supported in prototype

5.1. Function and terminal set

The function set F selected for the initial set of experiments consists of five

functions: FSTART, FROUTE, FDBREAD, FEND and STRSUB.

FSTART takes two arguments. It accepts a message of type IDP from the SCSM.

The first argument is then evaluated and the value from the message is stored at the

location returned. The second argument is then evaluated and returned.

FDBREAD takes 3 arguments. The first argument is evaluated, and the parameter

value passed in a DBREQ message sent to the SCSM. It then accepts a DBRESP

message and the second argument is evaluated, and the parameter value from the

message is stored at the location returned. Finally, the third argument is evaluated

and returned.

1 GPT proprietary message used for SCF to SDF communication.

Copyright – refer to title page
5-3

FROUTE takes two arguments. The first argument is evaluated and the parameter

value used in the Connect message sent to the SCSM. The second argument is then

evaluated and returned.

FEND takes one argument, which is evaluated and returned. An END message is

sent to the SCSM.

STRSUB was included because real life services require digit string manipulations.

It takes two arguments, which are both evaluated. The string value from the first

argument is shifted left by one character and stored at the location returned by the

second argument. The result of the second argument is returned.

5.2. Experiment 1. Simple Number Translation

This simple initial experiment was devised to discover how well GP could solve a

simple problem and to act as a testbed while debugging the system. It was during

the development of this experiment that the ideas for APAMS were formed and the

implementation put in place.

A simple number translation service is required to translate in incoming number to

a new number. Typically this is done by means of using the incoming number

(CalledDN) as a key to read the new number from a database, and to issue a

connection command to the SSP with the translated address (TAD). A message

sequence chart for this service is shown in Figure 6.

Copyright – refer to title page
5-4

SCSM/
SDF

Service
Logic

1. IDP (CalledDN)

2. DB Request(CalledDN << 1)

3. DBResp(TAD)

4. Connect(TAD << 1)

5. End()

NOTE: CalledDN << 1 denotes that the
CalledDN string is shifted left by one
character, discarding the 1st character.
This is used to simulate the real world
operational requirement to modify the digit
string in some way, for instance to strip any
leading zeros from a national number.

Figure 6 Message sequence chart for a simple
number translation service

The external operation of this service is as follows:

1. The SSP sends an initial trigger message called the Initial Detection Point (IDP)

containing the number (CalledDN) dialled by the user (the A party).

2. The service logic makes a request to the SDF to get the real number to route the

call to.

3. The SDF returns the number (TAD) to the service logic.

4. The service logic sends a Connect message to the SSP, causing it to route the

caller (A party) to the correct number (B party).

Copyright – refer to title page
5-5

5. The SCP sends an END message to the SSP indicating that the service logic has

relinquished control of the call and is no longer concerned with any events

generated by the SSP as a result of the call progressing.

From the message sequence chart an external state model can be derived as shown

in Figure 7.

State 0 State 1

Key:
Indicates direction of message

s1, s2 Indicate string parameter values
i1, i2 Indicate integer parameter values
* Indicates ‘Don’t care’

State 2 State 3

State 5

Initial DP
s1 = 123456
I1 = *

DBRequest
s1 = 23456
I1 = *

DBResponse
s1 = 654321
I1 = *

Connect
s1 = 54321
I1 = *

State 4

End
s1 = *
I1 = *

Figure 7 State diagram for simple number
translation service

This experiment was evaluated using a range of populations between fifty and five

hundred to determine the behaviour for different population sizes. Fifty

independent runs were made for each population, and the total number of

successful outcomes for each generation was recorded.

Each run was allowed to complete to generation 200, irrespective of whether it had

found a 100% fit individual.

The raw performance of this experiment is shown in Table 6. A good run is where a

100% fit individual was produced or formally where P(M,200) >0.

Copyright – refer to title page
5-6

Population M Number of good runs Time t (secs)

50 12 105

100 22 326

150 35 476

200 42 783

250 42 971

300 49 1159

350 48 1382

400 50 1749

450 48 1937

500 50 2140

Table 6 Successful outcomes vs population size for
simple number translation

Two points can be deduced from these results. Firstly, even for small population

sizes, a significant number of successful and therefore useful programs were

generated. Secondly, the running time is roughly proportional to the population

size.

The raw data was then processed to show the probabilities of success and the

number of independent runs required. This is shown graphically in Figure 8 for a

population size M of 500. Note that R(z) is proportional to the effort required from

equation (2). The performance summary is shown in Table 7.

Since for a population of 500, there was an 80% probability of success, this

population size was used for all subsequent experiments.

Copyright – refer to title page
5-7

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
Generation Number

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f r
un

s
re

qu
ire

d

P(M,i)
R(z)

80.9%

3

Figure 8 Performance of simple number
translation for M=500

Effort e Number successful at
generation 200 J

Number of different
100% fit programs y

1,500 50 50

Table 7 Summary of performance for simple
number translation

5.3. Experiment 2. Complex Number Translation

The purpose of this experiment was to observe how more complex external

behaviour affected the GP process in terms of processing required to solve the

problem. Some additional results are also presented to illustrate the behaviour of

the GP system and to explore some of the operational issues of GP.

This is an extension of the simple case with an additional database request, and

additional variable manipulation requirements. This scenario occurs in the real

world where a service requries two items of data in order to route a call. For

example, a service may need to route to one number during working hours and

Copyright – refer to title page
5-8

another number during out of work hours. The first database request in this

example represents the query that determines a time based key for the subsequent

request. Again a message sequence chart and state diagram are shown in Figure 9

and Figure 10

SCSM Service
Logic

IDP (CalledDN)

DB Request(CalledDN << 1)

DBResp(TAD1)

DBResp(TAD2)

Connect(TAD2 << 1)

DB Request(TAD1 << 1)

End

Figure 9 Message sequence chart for an extended number translation service

Copyright – refer to title page
5-9

State 0 State 1

Key:
Indicates direction of message

 S1, s2 Indicate string parameter values
I1, i2 Indicate integer parameter values
* Indicates ‘Don’t’ care’

State 2 State 3

State 4

Initial DP
s1 = 123456
I1 = *

DBRequest
s1 = 23456
I1 = *

DBResponse
s1 = 654321
I1 = *

Connect
s1 = 54321
I1 = *

DBRequest
s1 = 23456
I1 = *

State 5State 6State 7

DBResponse
s1 = 654321
I1 = *

End
s1 = *
I1 = *

Figure 10 State diagram for extended number
translation

The performance of this experiment is shown in Figure 11 and the performance

summary in Table 8.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
Generation Number

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f r
un

s
re

qu
ire

d

P(M,i)

R(z)

72.6%

4

Figure 11 Performance of complex number
translation for M=500

Copyright – refer to title page
5-10

Effort e Number successful at
generation 200 J

Number of different 100%
fit programs y

2,000 49 49

Table 8 Summary of performance for complex
number translation

The main conclusion that can be drawn from the above is that in comparison with

the simple case, more processing effort was required.

Some sample 100% correct programs from this experiment are shown below.

These were taken from the run when M=500, from runs 1, 9 and 13.

Figure 12 Example program tree for complex number translation – 1

Copyright – refer to title page
5-11

Figure 13 Example program tree for complex
number translation – 2

Copyright – refer to title page
5-12

Figure 14 Example program tree for complex
number translation – 3

From these three examples, the potential variety of solutions that appear can be

seen. It is possible that a human programmer would have come up with that shown

in Figure 13, since this begins with the FSTART operation, followed in sequence

by the other operations, although using the side effect of node 5 is not intuitive. It is

unlikely that a human would have started with the FROUTE operation. The

variety can also be seen from the fact that the 49 successful runs produced 49

different solutions.

It is also interesting to note the presence of unproductive nodes. For instance, in

Figure 14, node <10> performs an STRSUB between TVAR6 and TVAR5.

TVAR5 is not used again, until it is overwritten with the result of the string

manipulation at node 14, therefore node <10> is a redundant non result affecting

node.

Copyright – refer to title page
5-13

The presence of these unproductive nodes – called introns – is part of the

evolutionary process. It has been argued by Nordin [NFB96] that the presence of

introns can help the evolutionary process by isolating productive sequences from

other sequences, and thus preserving them for future generations. The presence of

these introns can be seen by observing the change in population size of a totally fit

individual while running the GP system.

The presence of introns during evolution is shown in Figure 15 for M=500, run

number 24. The plot shows the normalised fitness (§4.2) and tree size of the fittest

individual for each generation. It is important to note that this does not show any

one particular individual throughout the run.

0

100

200

300

400

500

600

1 11 21 31 41 51 61 71
Generation

N
or

m
al

is
ed

 F
itn

es
s

0

5

10

15

20

25

30

35

40

45

N
um

be
r o

f n
od

es
 in

 re
su

lt

Normalised Fitness
Tree size (nodes)

Figure 15 Size of fittest individual with generation

As the fitness improved, the size of the fittest individual tended to increase initially

presumably due to the effects of crossover introducing new material to the fittest

individual, or due to other fitter individuals being produced. It can also be seen that

the size increased at the same point that an improvement was made to the fittest

individual. However additional pressure to evolve parsimonious individuals resulted

Copyright – refer to title page
5-14

in each stable case decreasing in size. This is true even for the 100% fit individual

that appeared at generation 53.

The problem presented here has two distinct measures for fitness:

1. Whether states are handled correctly

2. Whether the message values returned from the program are correct.

It is interesting to observe the rates at which the system can find totally fit solutions.

To do this, the number of successful and unsuccessful state transitions and

messages was recorded by the SCSM for each generation.

Figure 16 shows the progression of the states for M=500, run number 19, and

Figure 17 shows the message fitness progression.

0

50

100

150

200

250

300

350

400

1 11 21 31 41
Generation

N
or

m
al

is
ed

 F
itn

es
s

0

1

2

3

4

5

6

7

8

Normalised Fitness

Successful state transitions

State errors

Figure 16 Progression of state fitness evolution

Copyright – refer to title page
5-15

This shows that the state handling is quickly evolved, with 100% of the states

correctly handled by the first generation. However, there are still a number of extra

incorrect states present until generation 25. This can be attributed to the fact that

bad states incur a penalty of 20, while good states are rewarded with a value of 100.

0

50

100

150

200

250

300

350

400

1 11 21 31 41
Generation

N
or

m
al

is
ed

 F
itn

es
s

0

2

4

6

8

10

12

Normalised Fitness

Message errors

Succcessfull messages

Figure 17 Progression of message fitness evolution

By comparing Figure 16 and Figure 17 it can be seen that message fitness lags

behind the state fitness. This is because a correct message cannot be delivered until

the correct state handler is in place

The implication of this behaviour is that if there are fitness measures (as in message

parameter values) that are completely dependent on other fitness measures (such as

the message ordering) , the effort required to evolve solutions increases. . There is

therefore effectively a hierachy of fitness and there is probably a practical limit to

the depth of such a hierachy.

Copyright – refer to title page
5-16

5.4. Experiment 3. Run-time decision making – simple case

The cases studied so far require a linear sequence of message exchanges and the

correct data passed with those messages, but in real life systems exceptions occur

which must be handled. Additionally, services often make decisions based on the

current state, user inputs, database values or environmental factors such as the time

or date.

This experiment was designed to discover if logic could evolve to handle these

cases.

The simple case requires the service logic to return one of two numbers depending

on the value of a flag that is passed into the service from the SSP. Such a flag may

indicate that a particular caller is denied access to parts of a service.

The message sequence is shown in Figure 18 and the state diagram in Figure 19

SCSM Service
Logic

IDP (CalledDN, 0)

DB Request(CalledDN << 1)

DBResp(TAD)

Connect(CalledDN << 1)

IDP (CalledDN, 1)

Case 1

Case 2

Figure 18 Message sequence chart for early run
time decision making

Copyright – refer to title page
5-17

State 0 State 1

Key:
Indicates direction of message

s1, s2 Indicate string parameter values
i1, i2 Indicate integer parameter values
* Indicates ‘Don’t care’

State 2 State 3

State 5

Initial DP
s1 = 123456
I1 = 0

DBRequest
s1 = 23456
I1 = *

DBResponse
s1 = 654321
I1 = *

InitialDP
s1 = 654321
I1 = 1

State 4

Connect
s1 = 54321
I1 = *

Figure 19 State diagram of early run time decision
making

To handle run time decisions, two changes are required to the system previously

described:

1. The fitness function must expose the GP to all the cases.

2. An additional test function needs to be added to the existing function set.

Two methods of modeling this behaviour suggest themselves. Firstly, a

probabilistic or sampling model that only subjects each individual to a subset of

possible sequences. Secondly, a deterministic approach that models the complete

set of behaviour required by any correct solution. These two alternatives are

examined from a theoretical point of view, and then some experimental results are

presented.

The probabilistic method requires only a single fitness run for each individual, the

fitness case being selected on a weighted random basis from all possible fitness

cases. The obvious attraction is that the number of fitness tests could be less that of

the deterministic method. However, there are several difficulties with this method.

Firstly there is a danger of losing useful genetic material and finding a poor local

Copyright – refer to title page
5-18

minimum if an individual should score poorly for the normal case, but in fact

contain a good solution for the error case. Secondly, if the error cases are only

evaluated on average according to their probability of occurring, then the error

cases will not have as much exposure to the normal evolutionary effects as the

normal case. If this were to happen, then the normal cases would likely evolve at a

rate similar to the single case, while the error cases would require additional

computational effort to yield a highly fit individual.

The third difficulty is more fundamental in that to identify 100% fit individuals, all

paths must be traversed at some point. If this is done for each generation then this

degenerates into the deterministic method described next, or it must be done at

prescribed points, for instance after a given number of generations. The question

then arises as to what the real fitness criteria is. Is it the partial result from

probabilistically selecting a subset of all paths, or is or is it the complete set of path

traversals?

Because of this fundamental problem, this approach was not pursued any further.

An alternative is suggested by Gathercole [GR94] and [GR97] in adaptively

modifying how many fitness cases should be used with a technique called Dynamic

Subset Selection (DSS). This may help in future work in this area.

When considering the alternative deterministic method we are concerned with

achieving a full coverage of all possible sequences of events and messages. This

would ensure that all cases have an equal chance of evolving correctly. The major

disadvantage, at least for large problems, is the time required to fully evaluate each

case, since each individual must be subjected to all possible cases.

The number of fitness tests is proportional to the number of paths in the problem

N. If all possible paths are the same length, then the net result on the time required

to find a solution would be at least N times the time required for the case where a

single thread of control existed. The real problem is that the number of paths is

likely to increase exponentially in the number of nodes that must handle error cases.

Copyright – refer to title page
5-19

For the purposes of simplifying the prototype work the number of paths was

restricted to two. More work would be required to allow arbitrary numbers of paths

to be evaluated.

The new function added to the function set F is the equality test FEQ. This takes

three arguments and operates as follows:

The first argument is evaluated and if the integer portion of the result is equal to 1,

then the second argument is evaluated, else the third argument is evaluated. The

result of the final argument evaluated is returned.

The performance of the experiment is shown in Figure 20 and the performance

summary in Table 9.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Generation Number

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f r
un

s
re

qu
ire

d

P(M,i)
R(z)

25
%

17

Figure 20 Performance of early decision making
for M=500

Copyright – refer to title page
5-20

Effort e Number successful at
generation 200 J

Number of different 100% fit
programs y

8,500 17 17

Table 9 Summary of performance for early
decision making

5.5. Experiment 4. Run-time decision making – more complex case

The previous case involved the service in making a decision early in its execution

tree. This case involves a making a decision later in the tree where, for instance, the

database cannot find a record corresponding to the key. Other failures such as an

internal database error or a communications failure are also covered by this

example. The decision point was moved to see what effect on the evolutionary

process was of delaying the point at which the branch was required.

The response from the database contains an additional parameter, in this case used

to indicate success or failure. It is an integer value that takes the value 0 indicating

normal operation, or 1 indicating an error condition. The error condition results in

the value returned by the error response being sent as the translated address.

This case uses the same function set as the previous experiment, and uses the full

coverage (deterministic) method of fitness evaluation.

The message sequence chart is shown in Figure 21 and the associated state diagram

in Figure 22.

The performance of this experiment is shown in Figure 23 and the summary in

Table 10.

Copyright – refer to title page
5-21

SCSM Service Logic

IDP (CalledDN, 0)

DB Request(CalledDN << 1)

DBResp(TAD1,0)

Connect(TAD1 << 1)

Connect(TAD2 << 1)

Case 1

Case 2

End

DBResp(TAD2,1)

End

Figure 21 Message sequence chart for late decision
experiments

Copyright – refer to title page
5-22

State 0 State 1

Key:
Indicates direction of message

 s1, s2 Indicate string parameter values
i1, i2 Indicate integer parameter values
* Indicates ‘Don’t care’

State 2 State 3

State 7

Initial DP
s1 = 123456
I1 = *

DBRequest
s1 = 23456
I1 = *

DBResponse
s1 = 654321
I1 = 0

State 6

Connect
s1 = 87654
I1 = *

State 8

End
s1 = *
I1 = *

Connect
s1 = 54321
I1 = *

State 4

State 5

End
s1 = *
I1 = *

DBResponse
s1 = 87654
I1 = 1

Figure 22 State diagram for late decision
experiment

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Generation Number

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f r
un

s
re

qu
ire

d

P(M,i)

R(z)

25

17
%

Figure 23 Performance of late decision making for
M=500

Copyright – refer to title page
5-23

Effort e Number successful at
generation 200 J

Number of different 100%
fit programs y

12,500 11 11

Table 10 Summary of performance for late
decision making

This graph clearly shows the inferior performance of this experiment using the

standard value of M=500, the effort being much greater than 2 * e for experiment

1. Obviously other factors come into play when trying to evolve such a program.

5.6. Experiment 5. Reduced Complexity Function Set

Earlier the choice of function set was discussed (sect. 4.1). This experiment was

devised to give an indication of whether the original level of abstraction was

reasonable or whether by using a lower level of abstraction in the function set better

performance could be achieved. A literature search failed to find any detailed

discussion of this aspect of GP. Most problems discussed in the literature deal in

small problems whose function and terminal set are fairly obvious.

The input for this experiment is identical to the complex number translation service

described in section 5.3. This case was chosen since it was the first experiment that

had a value of J of < 50 and was therefore seen as not trivial.

The high level functions FSTART, FDBREAD, FROUTE and FEND were

removed and two new functions ReadMSG and SendMSG were added.

• ReadMSG accepts an incoming message and places the parameters into

memory locations as provided by the arguments to this function. In this case,

only one parameter is accepted.

• SendMSG constructs a message containing a message type and a single

parameter value.

Copyright – refer to title page
5-24

In §4.1 it was indicated that the lower the level of abstraction the more functions

would be needed. The fact that there are two fewer functions for this experiment

compared to §5.3 is explained by the fact that the higher level funcitons FSTART

etc are synthesised from these lower level functions.

Lastly, the memory cells were extended to contain a message type, enumerated over

the range of message types required.

The overall performance of the system when using lower level functions is shown

in Figure 24 with the performance summary in Table 11.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
Generation Number

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f r
un

s
re

qu
ire

d

P(M,i)

R(z) [Effort]

82.3
%

3

Figure 24 Performance using reduced complexity
functions for M=500

Effort e Number successful at
generation 200 J

Number of different
100% fit programs y

1,500 49 49

Table 11 Summary of performance using reduced
complexity functions

Copyright – refer to title page
5-25

It is interesting to note the performance in comparison to that using higher level

functions in Figure 11. The effort curve R(z) reaches the value 10 at an earlier point

and the probability curve is also steeper. The disadvantage of this method though is

the more CPU time required to process each run. This is shown in Table 12 and

may be an important factor when considering the scalability of GP.

As an example of the difference in output, an example from this experiment, run 1

is shown in Figure 25.

Figure 25 Example program tree using reduced
complexity functions

An interesting feature of this particular example is the regularity with which the

pattern at nodes 3, 4, 5, 6 and 7 occur. This pattern is repeated at the subtrees

rooted at nodes 10 and 18. It is likely that using Automatically Defined Functions

Copyright – refer to title page
5-26

(ADFs) [Koz94] for this level of functions would be beneficial since there are

repeating patters emerging.

5.7. Summary of experiment results

In order to be able to estimate the difficulty of any problem, some means of

expressing the problem in its constituent parts is required. This section summarises

the experiments in terms of the problem complexity, and the corresponding results.

In all cases, the results are for a population M=500, and the number of generations

I=200.

The average time for a run to complete is taken as the total wall clock time of the

experiment divided by the number of runs, which was 50 in each case.

Input requirements Output results
Experiment

Number

Input

States

Parameters Paths Average
time per

run
(secs)

Average

Complexity

of fittest

P(M,i)
%

R(z) e

1 6 2 1 42 13 81 3 1,500

2 8 3 1 44 19 72 4 2,000

3 6 2 2 117 21 25 17 8,500

4 9 3 2 124 32 17 25 12,500

5 8 3 1 71 28 82 3 1,500

Table 12 Summary of experiments and results

The average complexity is the sum of the complexity values of the fittest 100%

correct individuals in each run, divided by the number of runs that produced a

100% correct individual. The complexity of an individual is the number of nodes in

that individual.

The data presented is not the only data pertaining to the experiments but is an initial

attempt to try to identify any useful patterns that may exist in the system.

Copyright – refer to title page
6-1

CHAPTER 6. ANALYSIS
This chapter analyses the results from chapter 5 and attempts to answer some of the

questions raised previously.

The results presented in experiment 2 show that even for small problems, there is

more than one program that satisfies the problem statement. This can be argued as

true program induction taking place, since any mechanical translation or mapping of

the input specification would result in the same program every time. Surprisingly,

every experiment resulted in 100% diversity in the solutions found giving some

indication of the size of the solution space, even when using a small number of

nodes. This result is important since it confirms the idea that for any given problem

statement there is a very large number of possible programs that satisfy the problem

statement.

It is clear from the experiments, that as the problems get ‘harder’ the longer a

solution will take to be found, and the greater the population size or the greater the

number of attempts required to find a solution. Unfortunately, there is no standard

measure of difficulty in the current GP literature. This is a problem when trying to

determine the settings to use in systems to get the best results.

In the context of the work described in this paper, the difficulty of any problem is

related to a number of factors:

1. The number of states in the input requirements

2. The number of messages it has to handle

3. The number and position of decision points required

Handling decision points required much more computational effort to find a

correct program. In a real service, there would be many such decision points, and it

is not clear how well this approach can scale to accommodate this requirement.

Copyright – refer to title page
6-2

Much of the GP literature is concerned with solving problems that have no 100%

correct solution. In the problem domain of IN however it is not sensible to

consider anything but a 100% correct program. Barring operating system and

hardware faults, it is expected that a service will operate correctly for all customers

all the time.

This has two effects on using GP:

• The evaluation of fitness is simpler since there is no doubt as to whether a

program is successful or not

• It requires that the fitness cases cover 100% of the possibilities. In the problems

considered here, this is not an issue, but when there are many decision points,

the number of fitness cases increases greatly. This obviously has an effect on

the time required to complete a run.

During the early part of the work, considerable time was spent trying different

combinations of the control parameters. The set arrived at for the experiments

(APPENDIX C) is probably not optimal.

Two questions arise from this:

1. Is there an envelope of operation that gives good results?

2. Is it possible to determine all environment control values by some method?

It should also be noted, that although studies into different control parameter

values has some measurable effect on particular problems the scale of effect is often

small, and the universality of the effect is often limited, as for instance reported by

Goldberg [GKH95] in his study on deme size, and the results presented as part of

the GP kernel [Wei97]. These and other questions raises the point made by

Goldberg [GO98] that unlike GA there is no good theoretical basis for GP, and

that until one is developed we are reliant on empirical methods for determining the

operational parameters for GP.

Copyright – refer to title page
6-3

The use of APAMS was very powerful. It meant that evolving programs were not

constrained in the shape they took. The memory locations were used for several

different purposes in the experiments – targets for storing message parameters,

both string and integer, and a source for function arguments, and as a constant

value as when used by some examples using the FEQ function. In the last

experiment they also contained message types. Extension of APAMS would prove

beneficial in future developments such as using it to hold partial or complete

messages.

APAMS also contributed to the great variety seen in the 100% correct solutions by

avoiding the need to restrict the semantic structure as in [HWSS95], [Mon95],

[CY97] and others. To examine this claim, a simple hypothetical case can be

considered, such as the FSTART function. A strict typing of this by a human

programmer during the early stages of building a GP system could define this

function returning a status, or particular parameter to a calling function and having

arguments of type DialledNumber for the first and some other type for the second.

Immediately it can be seen that by adding these constraints, a human programmer

imposes their own perceived structure on the function and therefore it’s place in

any tree. Doing this would preclude two out the three solutions illustrated in section

5.3

The work originally by Koza [Koz92] used LISP as the implementation language.

This was attractive in one sense in that the programs that were evolved were LISP

s-expressions, and could be executed by the run-time environment without any

external translation. Using C++ means that the structures being evolved cannot be

used directly as programs and an additional stage needs to be added if the output is

to be used in any practical application. This does have one big advantage however,

in that the structures can be viewed as high level languages and are therefore

amenable to mechanical translation and optimisation, for example using the

techniques described in [Ben96] and [Hlb90].

Copyright – refer to title page
6-4

The original choice of abstraction for the internal nodes gave satisfactory results,

but as shown in experiment 5, a lower level of abstraction gives a better overall

performance (higher probability of yielding a 100% correct program) using the

same basic system architecture, but required approximately 40% more processing

effort. Interestingly the average complexity of the reduced complexity experiment

was also approximately 40% greater than the standard experiment. This suggests

there may be a direct link between the two measures. Additionally, it is suggested

that using ADFs could well be useful in this case. Clearly more work is required in

order to arrive at an optimal level of abstraction.

The initial choice of the function set and terminal set had some interesting

properties. Firstly, most of the external behaviour was determined by the state

affecting functions FSTART, FDBREAD, FROUTE and FEND. The only non

state affecting function STRSUB and in later experiments FEQ had the ability to

appear in a program in one of two modes:

1. Result affecting

2. Non result affecting.

The latter mode introduced introns into the program, allowing it to evolve via more

than one route. Clearly, the state affecting functions could not operate as introns. In

any subsequent work, it would be useful to observe the effect of adding more

functions that can operate in both modes. The use of Explicitly Defined Introns

(EDI) as described by Nordin [NFB96] has the potential to improve the

performance of GP, but it has also been reported by Blickle [Bli96] and Andre

[AT96] that EDI can degrade the performance in some applications. The utility of

EDI appears to be problem specific.

A question that arises when this type of system is discussed is the degree of

confidence with which the result can be trusted. There is a perception that a

program created by human is somehow more trustworthy than one created by a

machine. This perception is not helped when looking at large, apparently

Copyright – refer to title page
6-5

unstructured programs generated by GP systems. The flaw in this perception is that

for all programs whether created by a human or by some mechanical means the

final arbiter of correctness is the behaviour of the program, or more properly does

the program behave as the specification requires it to? Consider a common

example of a simple C program such as shown in Figure 26:

main ()
{
 int a= 10;
 int b= 20;
 printf(“Sum = %d\n”, a + b);
}

Figure 26 Simple C program

While the program may be obvious to a human reader, the output from an

optimising compiler would be hard to follow, and the execution ordering of the

machine instructions in a modern RISC chip could be understood by only the most

knowledgeable of engineers, yet our experience give us confidence that the program

will work correctly.

The opaqueness of machine generated programs can of course be considered to be

a positive attribute in that it forces the systems engineer to look more closely at the

specification and the associated system testing. A consequence of this is that the

systems engineer must specify exactly what the system should do, not as the

introduction to Koza’s third book [KABK98] states ‘… a high level statement of

the requirements …’.

This question concerning the opaqueness of programs generated using GP or other

EC technique has inspired some work to try to address the perceived deficiency.

For instance Pringle [Pri95] suggests an approach that tries to create programs that

look like those produced by a human programmer, while Langdon [Lan98] has

dedicated a whole book to automatic programming adopting techniques used by

human programmers as building blocks. A potential flaw in this approach is that

practices such as modularity, data hiding, object oriented disciplines, data structures

and other ‘good engineering practices’ have been developed to aid human

Copyright – refer to title page
6-6

programmers in writing fault free and maintainable software. They are not of

themselves required for a program to be correct and while the aforementioned

work has delivered some useful techniques and insights it does not address any of

the essential features of GP. A counter argument has been made by Blickle [Bli96]

pointing out that a clear structured program can give valuable insights into the

problem being solved. For example when trying to find an analytical expression to

difficult integral equations, a clear analytic expression would allow further

investigation of the problem. However it is worth revisting the original inspiration

for this work and noting that Darwin observed ‘nature cares nothing for

appearances, except so far as they may be useful to any being’ [Dar1859] (Chapter

IV, ‘Natural Selection’).

Lastly the question of whether GP can perform as well as or better than a human

programmer needs to be considered. In section 2.1 it was claimed that GP would

only be worthwhile if it could generate an implementation in a shorter time and

with fewer defects that a human. The problems considered in this paper have been

trivial compared to those encountered in existing IN systems, and comparing these

results directly with a human is not a reliable indication of scalability. However an

indication that GP is at least as good as a human for simple services can be seen

when ad-hoc experiments with a few engineers show that a simple number

translation service requires less than an hour of effort to complete using INventor.

This compares well with the results in Table 12. If the first correct program was

chosen, then the time required by GP can be measured in minutes. Clearly further

work is required to explore this issue for complex services.

Copyright – refer to title page
7-1

CHAPTER 7. AREAS FOR FURTHER WORK
This chapter describes some further work that will extend the utility of the work

presented so far and will provide answers to some of the harder questions raised.

Some areas for further work have already been pointed out. The main area for study

is how to model more complex services, with an arbitrary number of paths. From

the experimental results it is apparent that a monolithic approach would fail or at

least be very time consuming for fairly small numbers of paths. Partitioning the

problem would be a useful technique to consider when extending the system.

Alternatively, it may turn out that ADFs would give useful benefits for complex

problems. This is a project requiring several engineer months of effort.

Another area for future work involves developing robust interfaces to the system to

enable it to operate in a commercial environment. This involves adding a

requirements specification interface at the front end and completing the back end

program generation to yield usable programs. This would complete the feasibility of

using this approach. Use of the techniques described by Bennett [BM98] may be of

use. This is project requiring perhaps an engineer year.

Considering the theoretical aspects of using GP, a means of selecting the best set of

parameters, possibly based on GA techniques would remove this burden from the

user. Certainly, this is needed if GP is to have any utility outside of a research

context. Some work has already been done to look at adaptive mechanisms by

Angeline [AK96], Gathercole [GR97], Teller [TA97] and others but these tend to

focus on the internal operation of GP. This is a project requring several engineer

months.

Whether GP is highly scalable and therefore whether it can help in realising

complex new services is still an open question. In order to answer this, a more

detailed understanding of the computational effort required to create such services

is needed, and what, if any, limitations there are on the complexity of the service

Copyright – refer to title page
7-2

requirements. The experiments presented in this paper show that as the complexity

of the requirements increases, so does the computational effort required to solve

the problem. With the further work described above it should be feasible to explore

large services and therefore gain a better insight into this question.

Copyright – refer to title page
8-1

CHAPTER 8. CONCLUSIONS

This work has extended the application of Genetic Programming by demonstrating

that it can be used to generate service logic for an Intelligent Network application,

namely Number Translation.

Once the system had been set-up, the elapsed time required to create the service

logic program was several orders of magnitude less than using the existing manual

toolkits available for simple services, thereby potentially reducing the time required

to create IN services.

The level of defects in the generated application due to implementation errors is

zero due to the fitness evaluation applied to the application. The level of defects

due to errors in requirements should be reduced since more attention is needed at

the specification stage.

The scalability of GP is still not well characterised and work is required to address

this area further. The work presented uses a new and novel memory architecture,

which removes the need for strict typing. In contrast to strict typing, there is no

such thing as a syntactically incorrect program, which leaves the GP system free to

evolve a semantically correct solution.

Copyright – refer to title page
A-1

APPENDIX A. HARDWARE AND SOFTWARE CONFIGURATION
A.1. Hardware

The hardware used for generating the results presented and performing the

experiments consisted of:

• PC computer with:

• AMD K6 CPU running at 200MHz.

• 512Kbytes of cache

• 32Mbytes of main memory.

A.2. Software

Operating system

The software environment consisted of the Linux operating system, kernel version

2.0.0 from the Slackware version 3.0 distribution.

Compiler

The GNU C++ compiler gcc 2.7.2 was used to compile the software. All the runs

were run performed using optimisation level 3.

Other tools

Gpc++ version 0.5.2 [Wei97]was used to construct the GP system.

Tcl version 7.6, Tk version 4.2 [Ous94] and the Tree package [Bri97] version 4.2

were used to create the parse tree diagrams.

PERL version 5.003 was used to write the scripts used to drive the experiments.

GSView version 2.4 was used to prepare the parse tree diagrams for inclusion into

this paper.

Microsoft Excel 97 was used to prepare the performance graphs.

Copyright – refer to title page
B-1

APPENDIX B. GLOSSARY
This appendix explains the abbreviations specific to telecommunications and

Intelligent Networks.

DTMF Dual Tone Multi Frequency. A dual audio tone signalling method used by
telephone instruments to indicate to the switch the digits 0-9 and the * and #
symbols.

ICON A graphical abstraction of a building block used in the GPT GAIN
INventor™ product.

IN. Intelligent Networks. The use of standard computing platforms to extend the
functionality of traditional telephone networks.

INAP Intelligent Network Application Part. The standard protocol defined to allow the
SSP and SCP to communicate with each other.

SCP Service Control Point. The Intelligent network node that contains the service
logic programs.

SDP Service Data Point. This function provides traditional database support for the
service logic.

SS7 Signalling System number 7. An internationally agreed standard for carrying
signalling information between nodes in a telephony network.

SSP Service Switching Point. The traditional Stored Program switch that contains the
IN trigger and message functions.

SMP Service Management Point. A network and customer management system.

TCAP Transaction Capability Part. The transaction layer in the SS7 stack.

Copyright – refer to title page
C-1

APPENDIX C. RUN TIME PARAMETER VALUES
Within the GP Kernel there are a number of tuneable parameters. In order to gain

an insight into the performance of GP for different problems without introducing

other variables, the variable factors were kept the same throughout all the

experiments and are listed here for reference.

Parameter Value Comments

PopulationSize 10

NumberOfGenerations 200

CreationType 2 2 = ramped half and half

CrossoverProbability 100 Crossover operations will always be used

CreationProbability 0 No replacement of a subtree with random subtree
during crossover

MaximumDepthForCreation 10

MaximumDepthForCrossover 17

SelectionType 1 Use tournament selection

TournamentSize 10 Size of the tournament

DemeticGrouping 1 ON

DemeSize 10

DemeticMigProbability 10

SwapMutationProbability 10

ShrinkMutationProbability 10

SteadyState 0 Not steady state

AddBestToNewPopulation 1 Always reproduce best of generation

Table 13 Run-time parameter values for GP Kernel

Copyright – refer to title page
D-1

APPENDIX D. SOURCE CODE LISTINGS
This appendix contains listings for the code developed specifically for this project.

It does not contain any code from the GPC++ GP kernel.

The following files are listed:

Gpsc.cc The main GP program. Contains the driver for the GP system.

Gpsc.h The class definitions and general file for the GP system

Scsm.cc The simple call state machine and APAMs class methods

Scsm.h The class definitions and general header info for the simple call state
machine

Problem.h There are five problem specific files, each one specifying the
required behaviour of the system.

Nodeset.h There are three nodeset files that define the function and terminal
set for the various experiments.

Showgptree A TCL program used to display a graphical representation of the
program trees.

Supporting scripts, written mainly in PERL and used to analyse results and generate

statistical data, are not listed here.

Copyright – refer to title page
D-2

//
//
//
// #### ##### #### #### #### ####
// # # # # # # # # # # #
// # # # #### # # #
// # ### ##### # # ### # #
// # # # # # # # ### # # # #
// #### # #### #### ### #### ####
//
//
//
// gpsc.cc
//
// This is the main GP program
//
// Notes:
// ======
// This file is common to all experiments.
// The problem specific part is contained in nodeset.h which defines the
// nodeset for each problem
//
//
// HISTORY
// =======
// 27-Sept-97 Initial Version
// 04-Nov-97 Added parameter passing in messages
// 12 Nov 97 Changed filenames from gpsc to gpsc and scsm to scsm
// 19 Dec 97 Added generation report specialisation
// 20 Dec 97 Added support for multi-path support
// 29 Dec 97 Added support for reduced complexity functions
// 11 Apr 98 Removed unused functions and general tidy up
//
//

//
// System header files
//
#include <stdlib.h>
#include <unistd.h>
#include <new.h>
#include <fstream.h>
#include <strstream.h>

//
// Application specific header files
//
#include "gp.h"
#include "gpconfig.h"
#include <gpsc.h>
#include <scsm.h>

//
// Define some global flags that control debug behaviour
//
int debug = 0; // If 1 then emit run-time debug information
int thegen = 0;
int check_child = 1;
int quiet = 1;
int optim = 0;

//
// Externals used for multi fitness case evaluation
//
extern const int ntrials; // The number of passes required by evaluate
extern int trial; // Current fitness case

//
// Define configuration parameters and the neccessary array to
// read/write the configuration to a file. If you need more
// variables, just add them below and insert an entry in the
// configArray.
//
GPVariables cfg;
struct GPConfigVarInformation configArray[]=
{
 {"PopulationSize", DATAINT, &cfg.PopulationSize},

Copyright – refer to title page
D-3

 {"NumberOfGenerations", DATAINT, &cfg.NumberOfGenerations},
 {"CreationType", DATAINT, &cfg.CreationType},
 {"CrossoverProbability", DATADOUBLE, &cfg.CrossoverProbability},
 {"CreationProbability", DATADOUBLE, &cfg.CreationProbability},
 {"MaximumDepthForCreation", DATAINT, &cfg.MaximumDepthForCreation},
 {"MaximumDepthForCrossover", DATAINT, &cfg.MaximumDepthForCrossover},
 {"SelectionType", DATAINT, &cfg.SelectionType},
 {"TournamentSize", DATAINT, &cfg.TournamentSize},
 {"DemeticGrouping", DATAINT, &cfg.DemeticGrouping},
 {"DemeSize", DATAINT, &cfg.DemeSize},
 {"DemeticMigProbability", DATADOUBLE, &cfg.DemeticMigProbability},
 {"SwapMutationProbability", DATADOUBLE, &cfg.SwapMutationProbability},
 {"ShrinkMutationProbability", DATADOUBLE, &cfg.ShrinkMutationProbability},
 {"AddBestToNewPopulation", DATAINT, &cfg.AddBestToNewPopulation},
 {"SteadyState", DATAINT, &cfg.SteadyState},
 {"Penalty", DATAINT, &cfg.Penalty},
 {"Reward", DATAINT, &cfg.Reward},
 {"", DATAINT, NULL}
};

//
// Define class identifiers
//
const int MyGeneID=GPUserID;
const int MyGPID=GPUserID+1;
const int MyPopulationID=GPUserID+2;

//
// Define a memory object
// This is the Automous Polymorphic Addressable Memory object that
// holds a number of VarVal objects. It is pre-defined with a number of
// cells
//
Memory memory(10);

//
// Define a BCSM object
// This defines the call related functionality. It contains the details
// of the required call bahavour.
//
Scsm myScsm;

//
//
// Name: usage
//
// Parameters: cmd. A string containing the command name
//
// Returns: void function
//
// Purpose: Usage function. Prints the usage to stdout
//
//
void usage(const char * const cmd)
{
 cout << "Usage: " << cmd <<
 "[-debug] [-v]" << endl;
 cout << "\t-debug turns on all run-time debugging" << endl;
 cout << "\t-v turns on a summary run-time status report" << endl;
 exit(1);
}

//
//
// Name: evaluate
//
// Member of: MyGene
//
// Parameters: scsm a reference to a simple call state machine
// that defines a service
// gp a reference to a GP object defining the current
// individual
//
// Returns: A reference to a VarVal object that is the result of
// this or a subtree.
//
// Purpose: This function evaluates the fitness of a genetic tree.
// Each gene may either interact with the BCSM and change
// it's state, or it may alter the values of the current

Copyright – refer to title page
D-4

// GP variable members
//
//
VarVal & MyGene::evaluate (Scsm & scsm, MyGP & gp)
{
 Msg *inmsg;

 if(debug)
 {
 cout << "Evaluating gene <" << node->value() << ">" ;
 printOn(cout);
 cout << endl;
 }
 Msg msg;

 switch (node->value ())
 {
 case FSTART:
 //
 //
 // This node take two parameters and accepts an input message
 // The message contains the CallersDN and a flag parameter.
 // The calledDN and flag are placed into the location returned by the
 // first parameter.
 // The result of the second parameter is returned from this function
 //
 //
 {
 VarVal child0;

 inmsg = scsm.emitMsg();

 child0=NthMyChild(0)->evaluate(scsm, gp);
 if(debug) {
 cout << " Child 0 = " << child0 << endl;
 cout << "Got a message from the BCSM. Type = " << inmsg->_type <<
 inmsg->p1() << endl;
 }
 if(debug)
 cout << "ABC Assigning " << inmsg->p1() <<
 " to child " << child0 << endl;
 memory.write(child0.index(), inmsg->p1());
 if(debug) cout << "Setting child 0 to " << child0 << endl;
 memory.print();
 // Go and evaluate the rest of the tree returning the value
 return NthMyChild(1)->evaluate(scsm, gp);
 break;
 }
 case FDBREAD:
 //
 //
 // the first parameter is an input containing a key value
 // the second is the output containing the result.
 //
 //
 {
 VarVal child0;
 VarVal child1;

 child0=NthMyChild(0)->evaluate(scsm, gp);

 msg._type = Dbreq ;
 if(debug) cout << "XYZ:Assigning value " << child0 <<
 " to message p1 " <<endl;
 msg.p1() = child0;
 if(debug){
 cout << "XYZ:Assigned value to message. Actual msg p1 = " <<
 msg.p1() << endl;
 }

 scsm.acceptMsg(msg);
 inmsg=scsm.emitMsg();

 child1=NthMyChild(1)->evaluate(scsm, gp);

 memory.write(child1.index(), inmsg->p1());
 return NthMyChild(2)->evaluate(scsm, gp);
 }

Copyright – refer to title page
D-5

 break;
 case FROUTE:
 //
 //
 // The first parameter is the number to route to so evaluate it first
 //
 //
 {
 VarVal child0;

 child0=NthMyChild(0)->evaluate(scsm, gp);

 // Plug the value into the message and send it
 msg.p1() = child0;
 msg._type = Connect;
 scsm.acceptMsg(msg);

 // Evaluate the rest of the tree
 return NthMyChild(1)->evaluate(scsm, gp);
 break;
 }
 case STRSUB:
 {
 //
 // For now we will support a simple shift left 1 char operation
 // Child 0 is shifted left 1 character and copied to child1
 // returns child1
 //

 VarVal child0, child1;
 char tmp[1024];

 child0 = NthMyChild(0)->evaluate(scsm, gp);
 child1 = NthMyChild(1)->evaluate(scsm, gp);

 if(strlen(child0.strval) > 1)
 {
 strcpy(tmp, &child0.strval[1]);
 strcpy(child1.strval, tmp);
 memory.write(child1.index(), child1);
 }
 // return the memory cell modified
 return memory[child1.index()];
 break;
 }
 case FEND:
 //
 // Evaluates the child and sends a message to the SCSM.
 // The result of evaluating child 0 is returned.
 //
 msg._type = End;
 scsm.acceptMsg(msg);
 return NthMyChild(0)->evaluate(scsm, gp);
 break;
 case FEQ:
 //
 //
 // Child 0 is evaluated. If the integer part of the child is equal to 1
 // then child1 is evaluated and returned
 // else
 // child 2 is evaluated and returned.
 //
 //
 {
 if(debug)
 {
 cout << "Evaluating an FEQ node" << endl;
 }
 VarVal child0;

 child0 = NthMyChild(0)->evaluate(scsm, gp);

 if(child0.intval == 1)
 {
 if(debug) cout << "Got a TRUE in FEQ" << endl;
 return NthMyChild(1)->evaluate(scsm,gp);
 }
 else
 {

Copyright – refer to title page
D-6

 if(debug) cout << "Got a FALSE in FEQ" << endl;
 return NthMyChild(2)->evaluate(scsm,gp);
 }
 break;
 }
 case READMSG:
 //
 //
 // The message is accepted from the scsm.
 // Child 0 is evaluated, and the parameters from the message
 // placed into the resulting location.
 // Child 1 is then returned
 //
 //
 {
 VarVal child0;

 inmsg = scsm.emitMsg();

 child0=NthMyChild(0)->evaluate(scsm, gp);
 if(debug) {
 cout << " Child 0 = " << child0 << endl;
 cout << "Got a message from the BCSM. Type = " << inmsg->_type <<
 inmsg->p1() << endl;
 }
 if(debug)
 cout << "ABC Assigning " << inmsg->p1() << " to child " << child0 << endl;
 memory.write(child0.index(), inmsg->p1());
 if(debug) cout << "Setting child 0 to " << child0 << endl;
 memory.print();
 // Go and evaluate the rest of the tree returning the value
 return NthMyChild(1)->evaluate(scsm, gp);
 break;
 }
 case SENDMSG:
 //
 //
 // Child 0 is evaluated to get the message type
 // Child 1 is evaluated to get the data value
 // Child 2 is evaluated to get the next tree
 //
 //
 {
 VarVal child0;
 VarVal child1;

 child0=NthMyChild(0)->evaluate(scsm, gp);
 child1=NthMyChild(1)->evaluate(scsm, gp);

 msg._type = child0.msgType;
 msg.p1() = child1;

 scsm.acceptMsg(msg);

 return NthMyChild(2)->evaluate(scsm, gp);
 }
 break;
 case TVAR1:
 //
 // Each TVARx simply returns a reference to a memory location.
 // These are all terminal nodes
 //
 return memory[0];
 break;
 case TVAR2:
 return memory[1];
 break;
 case TVAR3:
 return memory[2];
 break;
 case TVAR4:
 return memory[3];
 break;
 case TVAR5:
 return memory[4];
 break;
 case TVAR6:
 return memory[5];

Copyright – refer to title page
D-7

 break;
 case TVAR7:
 return memory[6];
 break;
 case TVAR8:
 return memory[7];
 break;
 case TVAR9:
 return memory[8];
 break;
 case TVAR10:
 return memory[9];
 break;
 default:
 //
 // A node value is unrecognised. Possibly a fault in the nodeset
 //
 GPExitSystem ("MyGene::evaluate", "Undefined node value");
 }
 GPExitSystem ("MyGene::evaluate", "Invalid node evaluation");
 exit(1);
}

//
// Load the problem specific node set
//
#include "nodeset.h"

//
//
// Name: evaluate
//
// Member of: MyGP
//
// Parameters: None
//
// Returns: void function
//
// Purpose: Evaluate the fitness of a GP and save it into the
// class variable fitness.
//
// Notes:
// The external variable ntrials controls how many
// individual fitness trials are performed.
// The external variable trial contains the current
// fitness case being evaluated against.
//
//
void MyGP::evaluate ()
{
 double tempfitness = 0.0;
 double fitness;

 // Evaluate main tree
 if(debug)
 {
 cout << "===\n";
 cout << "Evaluating a GP\n";
 }

 goodx=badx=goodm=badm=0;
 for(trial=0;trial < ntrials; trial++)
 {
 memory.reset();
 myScsm.reset();
 if(debug) cout << "Doing trial " << trial << endl;
 NthMyGene (0)->evaluate (myScsm, *this);

 fitness = myScsm.finalStateFitness();
 tempfitness += fitness;
 goodx += myScsm.good;
 badx += myScsm.bad;
 goodm += myScsm.goodparm;
 badm += myScsm.badparm;
 }

 fitness = tempfitness;

Copyright – refer to title page
D-8

 if(debug)
 cout <<" STAT1 @ gen " << thegen << ' '
 << '[' << goodx << ' '
 << badx << ' '
 << goodm << ' '
 << badm << ']' << endl;
 stdFitness = fitness;
 if(optim && fitness == 0)
 {
 cout << "Got totally fit individual on generation " << thegen << endl;
 printOn(cout);
 exit(0);
 }
}

//
//
// Name: checkForValidCreation
//
// Member of: MyPopulation
//
// Paremeters: MyGP & a ref to a created GP object
//
// Returns: 1 if indivudual is ok, 0 otherwise
//
// Purpose: To perform per individual checks. In this application
// this is a null function, since all individuals are deemed
// to be OK by virtue of APAM which ensures closure.
//
//
int MyPopulation::checkForValidCreation(MyGP &)
{
 return 1;
}

//
//
// Name newHandler
//
// Purpose: To handle an out of memory situation. In this application
// we just terminate the entire run since there is little
// that can be done.
//
//
void newHandler ()
{
 cerr << "\nFatal error: Out of memory." << endl;
 exit (1);
}

//
//
// Name: main
//
// Parameters: int argc a count of the number of arguments
// char argv[] an array of pointers to strings. Each string
// contains a command line argument.
//
// Purpose: Standard C++ main function. This drives the entire
// program
//
//
int main (int argc, char *argv[])
{
 char * filename = NULL;

 if(argc > 1)
 {
 for(int i=1; i<argc; i++)
 {
 if(argv[i][0] == '-')
 {
 if(strcmp(argv[i], "-debug") == 0)
 {
 cout << "Setting debug = 1\n";
 debug=1;
 }
 else if(strcmp(argv[i], "-v") == 0)

Copyright – refer to title page
D-9

 quiet = 0;
 else
 usage(argv[0]);
 }
 else
 filename = argv[i];
 }
 }

 // Set up a new-handler, because we might need a lot of memory, and
 // we don't know it's there.
 set_new_handler (newHandler);

 // Init GP system.
 GPInit (0, -1);

 myScsm.init(filename);

 // Read configuration file.
 GPConfiguration config (cout, "gpsc.ini", configArray);

 // Print the configuration
 if(!quiet)
 cout << cfg << endl;

 // Print state table
 if(!quiet)
 myScsm.printStates();

 // Create the adf function/terminal set and print it out.
 GPAdfNodeSet adfNs;
 createNodeSet (adfNs);
 if(!quiet)
 cout << adfNs << endl;

 // Open the main output file for the data and statistics file.
 // First set up names for data file. Remember we should delete the
 // string from the stream, well just a few bytes
 ostrstream strOutFile, strStatFile;
 strOutFile << "data.dat" << ends;
 strStatFile << "data.stc" << ends;
 ofstream fout (strOutFile.str());
 ofstream bout (strStatFile.str());

 // Create a population with this configuration
 if(!quiet)
 cout << "Creating initial population ..." << endl;
 MyPopulation* pop=new MyPopulation (cfg, adfNs);
 pop->create ();
 pop->createGenerationReport (1, 0, fout, bout);

 // This next for statement is the actual genetic programming system
 // which is in essence just repeated reproduction and crossover loop
 // through all the generations ...
 MyPopulation* newPop=NULL;
 for (int gen=1; gen<=cfg.NumberOfGenerations; gen++)
 {
 thegen=gen;
 // Create a new generation from the old one by applying the
 // genetic operators
 if (!cfg.SteadyState)
 newPop=new MyPopulation (cfg, adfNs);
 pop->generate (*newPop);

 // Delete the old generation and make the new the old one
 if (!cfg.SteadyState)
 {
 delete pop;
 pop=newPop;
 }

 // Create a report of this generation and how well it is doing
 pop->createGenerationReport (0, gen, fout, bout);
 }
 return 0;
}

//

Copyright – refer to title page
D-10

//
// Name: printOn
//
// Member of: MyGene
//
// Parameters: ostream & a reference to an output stream on which
// to write the information
//
// Purpose: Print function to display and record the details of
// an individual
//
//
void MyGene::printOn (ostream& os)
{
 if (node->isFunction ())
 os << "(";
 os << *node;

 // Print all children, if any
 for (int n=0; n<containerSize(); n++)
 {
 GPGene* current=NthChild (n);

 os << ' ';
 if (current)
 os << *current;
 else
 os << "(NULL)";
 }

 if (node->isFunction ())
 os << ")";
}

//
//
// Name: createGenerationReport
//
// Member of: MyPopulation
//
// Parameters: printLegend. A flag to indicate whether to print
// a legend
// generation The generation number
// fout a stream reference to a file
// bout a stream reference to the console
//
// Purpose: Output all the data found in a generation....
//
//
void MyPopulation::createGenerationReport (int printLegend, int generation,
 ostream& fout, ostream& bout)
{
 if (printLegend)
 {
 if(!quiet)
 cout << "Gen| Fitness | Length | Depth\n"
 << " | Best|Avg.|Worst | Best|Avg.|Worst | Best|Avg.|Worst\n";
 bout << "#Gen| Fitness | Length | Depth\n"
 << "# | Best|Avg.|Worst | Best|Avg.|Worst | Best|Avg.|Worst\n";
 }
 bout << generation
 << ' ' << NthMyGP(bestOfPopulation)->getFitness()
 << ' ' << avgFitness
 << ' ' << NthMyGP(worstOfPopulation)->getFitness()
 << " "
 << ' ' << NthMyGP(bestOfPopulation)->length ()
 << ' ' << avgLength
 << ' ' << NthMyGP(worstOfPopulation)->length ()
 << " "
 << ' ' << NthMyGP(bestOfPopulation)->depth ()
 << ' ' << avgDepth
 << ' ' << NthMyGP(worstOfPopulation)->depth ();
 if(!quiet)
 bout << "\t[" << NthMyGP(bestOfPopulation)->goodx
 << ' ' << NthMyGP(bestOfPopulation)->badx
 << ' ' << NthMyGP(bestOfPopulation)->goodm << ' '
 << NthMyGP(bestOfPopulation)->badm << "]"
 << endl;

Copyright – refer to title page
D-11

 else
 bout << "\n";

 if(debug)
 cout << "Best of population = " << bestOfPopulation << endl;
 if(!quiet)
 cout << generation
 << ' ' << NthMyGP(bestOfPopulation)->getFitness ()
 << ' ' << avgFitness
 << ' ' << NthMyGP(worstOfPopulation)->getFitness ()
 << " "
 << ' ' << NthMyGP(bestOfPopulation)->length ()
 << ' ' << avgLength
 << ' ' << NthMyGP(worstOfPopulation)->length ()
 << " "
 << ' ' << NthMyGP(bestOfPopulation)->depth ()
 << ' ' << avgDepth
 << ' ' << NthMyGP(worstOfPopulation)->depth ()
 ;
 if(!quiet)
 cout << "\t[" << NthMyGP(bestOfPopulation)->goodx
 << ' ' << NthMyGP(bestOfPopulation)->badx
 << ' ' << NthMyGP(bestOfPopulation)->goodm << ' '
 << NthMyGP(bestOfPopulation)->badm << "]"
 << endl;

 // Place the best of generation in output files
 fout << "Best of generation " << generation
 << " (Fitness = " << NthMyGP (bestOfPopulation)->getFitness ()
 << ", Structural Complexity = " << NthMyGP (bestOfPopulation)->length ()
 << ")" << endl
 << NthMyGP(bestOfPopulation)->goodx
 << ' ' << NthMyGP(bestOfPopulation)->badx
 << ' ' << NthMyGP(bestOfPopulation)->goodm << ' '
 << NthMyGP(bestOfPopulation)->badm << ' '
 << endl
 << *NthMyGP (bestOfPopulation)
 << endl;
}

Copyright – refer to title page
D-12

//
//
// #### ##### #### #### # #
// # # # # # # # # #
// # # # #### # ######
// # ### ##### # # ### # #
// # # # # # # # ### # #
// #### # #### #### ### # #
//
//
// gpsc.h
// Class definitions for the GP service creation system
//
// Revision history
// 30 Sept 1997 Initial version using standard gp kernel
// 04 Nov 97 Added parameter passing in messages
// 12 Nov 97 Changed name to gpsc and scsm
// 11 Apr 98 Removed unused functions and general tidy up
//

#ifndef GPSC_H
#define GPSC_H

#include "gp.h"
#include "gpconfig.h"
#include <scsm.h>

// Define function and terminal identifiers
enum FTids
{
 FSTART = 0,
 FDBREAD, FROUTE,
 STRSUB, FEND,
 TVAR1, TVAR2,
 TVAR3, TVAR4, TVAR5,
 TVAR6, TVAR7, TVAR8,
 TVAR9, TVAR10,

 FEQ, // For multi path experiments

 READMSG, SENDMSG, // For reduced complexity functions

 LastID
};

#define MAXMEM 100

//
// A memory object. This is used as indexed memory for the GP
// It stores an array of VarVal objects
//
class Memory
{
private:
 int size;

public:
 VarVal varVal[MAXMEM]; // A global array of variables

//
// Constructor with default size
//
 Memory()
 {
 size = MAXMEM;
 reset();
 }

//
// Constructor with required size
//
 Memory(int wanted)
 {
 if(wanted > MAXMEM)
 {
 cout << "Max memory size is " << MAXMEM << " elements." << endl;
 exit(1);
 }
 else

Copyright – refer to title page
D-13

 {
 size=wanted;
 reset();
 }
 }

//
// Reset the memory to empty
//
 void reset()
 {
 if(debug) cout << "Resetting memory \n";
 for (int cnt=0;cnt<MAXMEM;cnt++)
 {
 varVal[cnt].strval[0] = '\0';
 varVal[cnt].intval = cnt;
 varVal[cnt].setIndex(cnt);
 varVal[cnt].msgType = (MsgType)cnt;
 }
 }

//
// Overload the [] operator to allow indexing
//
 VarVal & operator[](int index)
 {
 if(index < 0 || index >= size)
 {
 cout << "Illegal index into memory array <" << index << ">" << endl;
 exit(1);
 }
 if(debug) cout << "Returning memory index " << index << " value = " <<
 varVal[index] << endl;
 return varVal[index];
 }

//
// print function. Displays the memory object contents, primarily for
// debugging purposes
//
 void print(void)
 {
 if(debug) {
 for(int i=0;i<size;i++)
 {
 cout << "Memory location " << i << " => "
 << varVal[i] << endl;
 }
 }
 }
//
// Write function. This is used when we dont want to
// destroy the index value of the memory cell
//
 void write(int i, VarVal &v)
 {
 varVal[i].intval=v.intval;
 strcpy(varVal[i].strval, v.strval);
 }
};

class MyGP; // Forward declaration
//
// Inherit the three GP classes GPGene, GP and GPPopulation
// These classes define the problem specific details of GP
//
//
// Class: MyGene
//
// Derived From: GPGene
//
// Purpose: Defines the individual genes
//
//
class MyGene : public GPGene
{
public:
// Duplication (mandatory)
 MyGene (const MyGene& gpo) : GPGene (gpo) { }

Copyright – refer to title page
D-14

 virtual GPObject& duplicate () { return *(new MyGene(*this)); }

// Creation of own class objects (mandatory)
 MyGene (GPNode& gpo) : GPGene (gpo) {}
 virtual GPGene* createChild (GPNode& gpo) {
 return new MyGene (gpo); }

// Tree evaluation
 VarVal & evaluate (Scsm & scsm, MyGP & gp);

// Load and save
 MyGene () {}

 virtual GPObject* createObject() { return new MyGene; }

// Print
 virtual void printOn (ostream& os);

// Access children
 MyGene* NthMyChild (int n) {
 return (MyGene*) GPContainer::Nth (n); }
};

//
//
// Class: MyGP
//
// Derived From: GP
//
// Purpose: Defines an individual program
//
//
class MyGP : public GP
{
public:
// Counters for good and bad transtitions and message parameters
 int goodx, badx, goodm, badm;

// Duplication (mandatory)
 MyGP (MyGP& gpo) : GP (gpo)
 {
 goodx=gpo.goodx;
 badx=gpo.badx;
 goodm=gpo.goodm;
 badm=gpo.badm;
 }
 virtual GPObject& duplicate () { return *(new MyGP(*this)); }

// Creation of own class objects (mandatory)
 MyGP (int genes) : GP (genes) {}
 virtual GPGene* createGene (GPNode& gpo) {
 return new MyGene (gpo); }

// Tree evaluation (mandatory)
 virtual void evaluate ();

// Load and save (not mandatory)
 MyGP () {}
 virtual GPObject* createObject() { return new MyGP; }

// Access trees (not mandatory)
 MyGene* NthMyGene (int n)
 {
 return (MyGene*) GPContainer::Nth (n);
 }
};

//
//
// Class: MyPopulation
//
// Derived From: GPPopulation
//
// Purpose: Defines a complete population of programs
//
//
class MyPopulation : public GPPopulation
{

Copyright – refer to title page
D-15

public:
// Constructor (mandatory)
 MyPopulation (GPVariables& GPVar_, GPAdfNodeSet& adfNs_) :
 GPPopulation (GPVar_, adfNs_) {}

// Duplication (mandatory)
 MyPopulation (MyPopulation& gpo) : GPPopulation(gpo) {}
 virtual GPObject& duplicate () { return *(new MyPopulation(*this)); }

// Creation of own class objects (mandatory)
 virtual GP* createGP (int numOfTrees) { return new MyGP (numOfTrees); }

// Load and save (not mandatory)
 MyPopulation () {}
 virtual GPObject* createObject() { return new MyPopulation; }

// Access genetic programs (not mandatory)
 MyGP* NthMyGP (int n) {
 return (MyGP*) GPContainer::Nth (n); }
 virtual void createGenerationReport (int printLegend, int generation,
 ostream& fout, ostream& bout);

// Check for valid trees
 virtual int checkForValidCreation(MyGP &gpo);
};

#endif // GPSC_H

Copyright – refer to title page
D-16

//
//
// #### #### #### # # #### ####
// # # # # ## ## # # # #
// #### # #### # ## # # #
// # # # # # ### # #
// # # # # # # # # ### # # # #
// #### #### #### # # ### #### ####
//
//
//
// Simple SCSM to simulate an external switch interface
// Pete MArtin
// Revision History
//
// Sept 21 1997 Initial version
// Nov 12 1997 Changed name to Simple Call State Model
// Dec 19 1997 Add support for multi fitness cases with multiple
// paths thro state machine.
//

#include <stream.h>
#include <scsm.h>
#include <stdio.h>

//
// Decalartions
//

extern int debug;
extern GPVariables cfg;
int optimistic = 0; // If set then state transitions need not be strict

//
//
// define the message text to type translation table
//
//
MsgTable table[MAXMSGS] =
{
 {None, "None"},
 {Any, "Any"},
 {Idp, "Idp"},
 {Connect, "Connect"},
 {Dbreq, "Dbreq"},
 {Dbresp, "Dbresp"},
 {Dberr, "Dberr"},
 {End, "End"},
 {Timeout, "Timeout"},
 {(MsgType)-1, ""}
};

//
// Include the problem description file
//
#include <problem.h>

//
// Globals used for controlling multi fitness case experiments
//
int ntrials = NTRIALS; // Defined in the problem file
int trial; // Current fitness case

//
//
// Name: decode
//
// Member of: n/a
//
// Parameters: A string containing a message type
//
// Purpose: Converts a text string to a message number
// Used when initialising the state tables
//
//
MsgType decode(char *s)
{

Copyright – refer to title page
D-17

 MsgType result = None;

 for(int i=0;i<MAXMSGS; i++)
 {
 if(table[i].enumtype == -1)
 break;
 if(strcmp(s, table[i].strtype) == 0)
 result = table[i].enumtype;
 }
 if(debug)
 cout << "@@@@@ Decode of type " << s << " to value " << result << endl;
 return result;
}

//
//
//
//
// Name: Scsm
//
// Member of: Scsm
//
// Parameters: None
//
// Purpose: Constructor for an SCSM object
//
//
Scsm::Scsm()
{
 if(debug)
 cout << "Constructing a Scsm " << endl;
 ok = 500;
 fitness = 3.0;
}

//
//
//
//
// Name: ~Scsm
//
// Member of: Scsm
//
// Parameters: None
//
// Purpose: Destructor for an Scsm object
//
//
Scsm::~Scsm()
{
 if(debug)
 cout << "Destructor for SCSM\n";
}

//
//
// Name: init
//
// Member of: Scsm
//
// Parameters: None used
//
// Purpose: Initilise on a per run basis the Scsm.
//
//
void Scsm::init(char *)
{
 for(int i=0;i<MAXSTATES;i++)
 { // Initialise the state table
 if(st[i].c == -1)
 break; // All done
 stateTable.insertState(st[i].c,
 Msg(st[i].o, st[i].op1, st[i].op2),
 Msg(st[i].e, st[i].ip1, st[i].ip2),
 st[i].n,
 st[i].f);
 }
}

Copyright – refer to title page
D-18

//
//
// Name: print
//
// Member of: StateTable
//
// Parameters: None
//
// Purpose: Prints the state table for information purposes
// to standard out
//
//
void StateTable::print(void)
{
 cout << "Index\tCur\tOutMsg\tp1\tp2\tInMsg\tp1\tp2\tNext\n";
 for(int i=0;i<next; i++)
 {
 cout << i << '\t' << table[i].cur << '\t'
 << table[i].outmsg._type << '\t'
 << table[i].outmsg.p1().strval << '\t'
 << table[i].outmsg.p2().strval << '\t'
 << table[i].event._type << '\t'
 << table[i].event.p1().strval << '\t'
 << table[i].event.p2().strval << '\t'
 << table[i].next
 << table[i].fitness << endl;
 }
}

//
//
// Name: emitMsg
//
// Member of: Scsm
//
// Parameters: None
//
// Purpose: called as part of the evaluation of fitness.
// It locates an entry in the state table for the
// current scsm state, and emits a message to the
// evolving program
//
//
Msg * Scsm::emitMsg()
{
 int status;
 static Msg thisMsg;
 State next;

 status = stateTable.state(state, next);
 next.print();
 if(status == 0)
 {
 // still in the same state, so no message to output
 // return a timeout message to the service
 thisMsg._type = Timeout;
 if(debug)
 cout << "Did not get good transition\n";
 penalise();
 bad++;
 }
 else
 {
 thisMsg = next.outmsg;
 thisMsg.p1() = next.outmsg.p1();
 if(debug)
 cout << "Setting p1 to " << thisMsg.p1().strval << endl;
 thisMsg.p2() = next.outmsg.p2();
 if(debug)
 cout << "<<<Going from state " << state << " To " << next.next << endl;
 state = next.next;
 reward(); // We had a correct transition here
 if(debug)
 cout << "Got good transtion in accept\n";
 good++;
 }

Copyright – refer to title page
D-19

 return &thisMsg;
}

//
//
// Name: emitMsg
//
// Member of: Scsm
//
// Parameters: A message object reference
//
// Purpose: called as part of the evaluation of fitness.
// It locates an entry in the state table for the current
// scsm state, and matches the recieved message.
// If Optimistic is set, then a transition is made even if the
// the current state is wrong. This is to try to maintain
// diversity in the population during early generations
//
//
void Scsm::acceptMsg (Msg & msg)
{
 State next;
 int status;
 int optimistic = 0;

 status = stateTable.state(state, msg, next, optimistic);
 if (status == 0)
 {
 // Did not get a transition out of the current state
 // do nothing
 if(debug)
 cout << ">>>Did not accept message type " << msg._type <<
 " in state " << state << endl;
 penalise();
 bad++;
 return;
 }
 if(debug)
 cout << "Message parameter value = " << msg.p1() << endl;
 if(next.event.p1().strval[0] != '*')
 {
 if(debug)
 cout << "$$$$Expecting a parameter value of "
 << next.event.p1().strval << endl;
 if(strcmp(next.event.p1().strval, msg.p1().strval) == 0)
 {
 if(debug)
 cout << "Got good parameter " << msg.p1() << endl;
 reward();
 goodparm++;
 }
 else
 {
 if(debug)
 cout << "Bad parameter. Got " << msg.p1().strval << endl;
 penalise();
 badparm++;
 }
 }

 if(debug)
 cout <<">>>Going from state " << state << " To " << next.next << endl;
 state = next.next;
 // Got a good transition
 reward();
 good++;
}

//
//
// Name: insertState
//
// Member of: StateTable
//
// Parameters: c = state number
// o = output message type
// e = input message type
// n = next state
// f = weighting factor (not used)

Copyright – refer to title page
D-20

//
// Purpose: Insert a state entry into the table
//
//
void StateTable::insertState(int c, const Msg & o,
 const Msg & e,
 int n, double f)
{
 if(next > MAXSTATES) {
 cout << "Too many states\n";
 exit(1);
 }
 table[next].cur = c;
 table[next].outmsg = o;
 table[next].event = e;
 table[next].next = n;
 table[next].fitness=f;
 next++;
}

//
//
// Name: state
//
// Member of: StateTable
//
// Parameters: cur = current state
// msg = message to trigger transtition
// ret = ref to a return variable for next state
// optimistic. See below.
//
// Purpose: Given a message and state, locate a state entry
// Returns the table entry if a match found, or current state if
// not found
//
int StateTable::state(int cur, Msg & msg, State &ret, int optimistic)
{

 for(int i=0;i<next;i++)
 {
 if(table[i].event._type == msg._type)
 {
 switch (optimistic)
 {
 case 0:
 if(table[i].cur == cur)
 {
 if(debug)
 cout << "+++ACCEPT+++Got match in state "<< cur <<
 " to goto state " << table[i].next << "Index = " << i
 << "cur = " << cur << endl;
 current = i;
 ret = table[i];
 return 1;
 }
 break;
 case 1:
 if(debug)
 cout << "+++ACCEPT-OPTIMIST+++Got match in state "<< cur <<
 " to goto state " << table[i].next << "Index = " << i
 << "cur = " << cur << endl;
 current = i;
 ret = table[i];
 return 0;
 break;
 }
 }
 }
 // Failed to find a valid event in this state,
 ret = table[current];
 return 0;
}

//
//

//
//
//

Copyright – refer to title page
D-21

// Name: state
//
// Member of: StateTable
//
// Parameters: cur = current state
// ret = return variable which will hold next state
//
// Purpose: To loacte a state if an output message is required
//
// Given a state, locate a state entry that has an outmsg
// Returns the table entry if a match found, or current state if
// not found
//
// If there are more than one possible states, then this function decides
// which one to select.
// To do this, the table is searched for the number of matching states
// If there are zero, then returns the same state
// If there is more than one say N , then for now we select 1 from N
// using the trial number. Contrast to random selection
//
//
int StateTable::state(int cur, State &ret)
{
 extern int trial; // Holds the run number : 0 or 1
 int matches=0;

 // Find number of matching states
 for(int i=0;i<next;i++)
 {
 if(table[i].cur == cur && table[i].outmsg._type != None)
 {
 matches++;
 }
 }

 if(matches == 0)
 {
 // Failed to find a valid event in this state,
 if(debug) cout << "+++ACCEPT(emit)+++Failed to find valid state\n";
 ret = table[current];
 return 0;
 }
 else if(matches == 1)
 {
 // Go back and find the match
 for(int i=0;i<next;i++)
 {
 if(table[i].cur == cur && table[i].outmsg._type != None)
 {
 if(debug)
 cout << "+++ACCEPT(Emit)+++Got match in state "<< cur <<
 " to goto state " << table[i].next << "Index = " << i
 << "cur = " << cur << endl;
 current = i;
 ret = table[i];
 return 1;
 }
 }
 }
 else
 {
 // there were more than one match, so work out a probability that it was
 // the first or second (assuming here that there are only two states)

 long randval;
 int count=0;

 randval = GPrand() % matches;
 if(debug)cout << "randval = " << randval << endl;
 for(int i=0;i<next;i++)
 {
 if(table[i].cur == cur && table[i].outmsg._type != None)
 {
 // Found a valid entry. If the random value == count then select
 // this entry else select second
 if(trial == count)
 {
 if(debug) cout << "Selecting the entry number " <<
 count << endl;

Copyright – refer to title page
D-22

 current = i;
 ret = table[i];
 return 1;
 }
 else
 {
 if(debug)cout << "Incrementing the counter\n";
 count ++;
 }
 }
 }
 }
 cout << "ERROR> DID NOT FIND VALID ENTRY BUT SHOULD HAVE\n";
 return 0;
}

//
//
// Name: operator =
//
// Member of: VarVal
//
// Parameters: ref to a varval
//
// Purpose: Assignment operator
//
//
VarVal & VarVal::operator=(const VarVal & v)
{
 if(debug) cout << "Ref assignment to VarVal with value " << v << endl;

 strcpy (strval, v.strval);
 intval = v.intval;
 if(_index == -1)
 // Dont change if it will overide an esiting address
 _index = v._index;

 return *this;
}

//
//
// Name: operator =
//
// Member of: VarVal
//
// Parameters: s = a string
//
// Purpose: Assignment for string values to a varval
//
//
VarVal & VarVal::operator=(const char * s)
{
 if(debug) cout << "String assignment to VarVal with value " << s << endl;

 strcpy(strval, s);

 return *this;
}

//
//
// Name: operator <<
//
// Member of: VarVal
//
// Parameters: stream and ref to varval
//
// Purpose: To provide output for debugging
//
//
ostream & operator << (ostream & op, VarVal v)
{
 return op << "[String = " << v.strval << " Int = " << v.intval << " Index = " << v._index << "]" ;
}

Copyright – refer to title page
D-23

//
//
// #### #### #### # # # #
// # # # # ## ## # #
// #### # #### # ## # ######
// # # # # # ### # #
// # # # # # # # # ### # #
// #### #### #### # # ### # #
//
//
// SCSM simulates a simple an external switch interface
// Pete Martin
// Revision History
// Sept 21 1997 Initial version
// 04-Nov-97 Added parameter passing in messages
// 19 Nov 97 Added message type member to VarVal
// 21 Apr 98 Tidy up
//

#ifndef _SCSM_H_
#define _SCSM_H_

#include <stream.h>
#include <gp.h>
//
// Some manifest constants
//
#define MAXMSGS 100
#define MAXSTATES 50

//
// General externals
//
extern int debug;
extern GPVariables cfg;

//
// Msg Types.
// Not all these get used!
//
enum MsgType
{
 None, Any, Idp, Connect, Alarm,
 Dbreq, Dbresp, Dberr, End, Timeout
};

//
// Name: VarVal
//
// Purpose: This class is the type returned from each SLP function or terminal
// It can represent a string value or an integral value
//
typedef char StrVal[24]; // Declare string type. 24 is ITU value

class VarVal
{
private:
 int _index;
public:
 VarVal()
 {
 strval[0]='\0'; intval = 0;
 }
 VarVal(const char *v)
 {
 strcpy(strval,v);
 }
 VarVal(const int v)
 {
 intval=v;
 }

 VarVal(const VarVal & v)
 {
 intval=v.intval;
 strcpy(strval, v.strval);
 }
 VarVal & operator=(const VarVal *);

Copyright – refer to title page
D-24

 VarVal & operator=(const char * s);
 StrVal strval;
 int intval;
 MsgType msgType;
 int index() { return _index;}
 void setIndex(int i) { _index = i; }
 friend ostream & operator << (ostream &, VarVal);
};

//
// MsgTable.
// A member class that holds the name and value of a message for
// translation from one to the other
//
class MsgTable
{
public:
 MsgType enumtype;
 char *strtype;
};

//
// Msg class.
/// Defines the structure of a message
//
class Msg
{
private:
 VarVal _p1;
 VarVal _p2;

public:
 Msg()
 {
 _type = None;
 }
 Msg(MsgType t)
 {
 _type = t;
 }
 Msg(MsgType t, const char *p1, const char *p2)
 {
 _type = t;
 _p1=p1;
 _p2=p2;
 }

 Msg(MsgType t, const char *p1, const int p2)
 {
 _type = t;
 _p1=p1;
 _p1.intval=p2;
 }

 MsgType _type;
 VarVal &p1(void) {return _p1;}
 VarVal &p2(void) {return _p2;}
 void print()
 {
 cout << "Message Type " << _type << " p1 strval = "
 << _p1.strval << " p1 intval = " << _p1.intval
 << " ps = " << _p2.strval << endl;
 }
};

//
// Class to hold the definitions of state information.
//
class State
{
public:
 State()
 {
 cur=-1; outmsg._type = None; event._type = None;
 next = -1; fitness = 0.0;
 }
 void print()
 {

Copyright – refer to title page
D-25

 if(debug)
 cout << "State: cur = " << cur << " next = " << next
 << endl;
 }

 int cur; // This state. -1 if entry not used
 Msg outmsg; // Any message to output
 Msg event; // The event that gets us here
 int next; // The state to go to
 double fitness; // How fit is this state?
};

//
// StateTable class
// This class defines the entire set of states for a run.
//
class StateTable
{
public:
 StateTable() {next = 0; current = 0; reset(); }
 void insertState(int,
 const Msg &,
 const Msg &,
 int,
 double);
 void print(void);
 int state(int state, Msg & msg, State &, int);
 int state(int state, State &);
 int nState() {return next;}

private:
 int next;
 int current;
 State table[MAXSTATES];
 void reset() {
 for (int i=0; i< MAXSTATES;i++) {
 table[i].cur = -1;
 }
 }
};

//
//
// Name: St
//
// Purpose: State table entry object. Contains the description of a state
//
//
struct St // The state table
{
 int c;
 MsgType o;
 char * op1;
 int op2;
 MsgType e;
 char * ip1;
 int ip2;
 int n;
 double f;
};

//
//
// Name: Scsm
//
// Purpose: A simple call state machine.
// Represents the internal call processing states of the SSP
//
//
class Scsm
{
private:
 int state; // Current state
 double fitness;
 StateTable stateTable;
 int ok;

 void read_state_table(char *);

Copyright – refer to title page
D-26

public:
 int good;
 int bad;
 int goodparm;
 int badparm;

 Scsm();
 ~Scsm();
 void init(char *);
 void reset(void) {
 fitness = 1300.0; // Initial fitness value. This goes down as fitness goes up
 state = ok = good = bad = goodparm = badparm= 0;
 }
 void printStates(void) {stateTable.print();}
 Msg * emitMsg();
 void acceptMsg(Msg &);
 int curState();
 double finalStateFitness(void) {
 double f;
 f = fitness;
 f = f - (ok);
 if(debug)
 cout << "Scsm fitness = " << f << endl;
 return f;
 }
 void penalise(void) { ok -= cfg.Penalty; }
 void reward(void) { ok += cfg.Reward;}
 void summary() { cout << "Good = " << good << " Bad = " << bad <<
 "Goodparms = " << goodparm << " badparms = "
 << badparm << endl;}
};

#endif // _SCSM_H_

Copyright – refer to title page
D-27

D.1. Problem 1 description
///
// This problem is for experiment 1. A simple number translation service
// is to be created.
// The Initial DP carries the calledDN. The resultant DB request key is
// the CalledDN stripped of the first number.
// The connect is carries the result of the DBresponse stripped of the
// first digit.
///

static struct St st[MAXSTATES] = {
 {0, Idp, "123456", 0, None, "*", 0, 1, 10.0},
 {1, None, "*", 0, Dbreq, "23456", 0, 2, 5.0},
 {2, Dbresp,"654321", 0, None, "*", 0, 3, 1.0},
 {3, None, "*", 0, Connect, "54321", 0, 4, 1.0},
 {4, None, "*", 0, End, "*", 0,-1, 1.0},
 {-1, None, "*", 0, None, "*", 0,-1, 0.0}};

#define NTRIALS 1

D.2. Problem 2 description
///
// This problem is for experiment 2. A complex number translation service
// is to be created.
// The Initial DP carries the calledDN. The resultant DB request key is
// the CalledDN stripped of the first number. A second Db request is made
// The connect is carries the result of the DBresponse stripped of the
// first digit.
///
///

static struct St st[MAXSTATES] = {
 {0, Idp, "123456", 0, None, "*", 0, 1, 10.0},
 {1, None, "*", 0, Dbreq, "23456", 0, 2, 5.0},
 {2, Dbresp,"654321", 0, None, "*", 0, 3, 1.0},
 {3, None, "*", 0, Dbreq, "54321", 0, 4, 5.0},
 {4, Dbresp,"987654", 0, None, "*", 0, 5, 1.0},
 {5, None, "*", 0, Connect, "87654", 0, 6, 1.0},
 {6, None, "*", 0, End, "*", 0, -1, 1.0},
 {-1, None, "*", 0, None, "*", 0, -1, 0.0}};

#define NTRIALS 1

D.3. Problem 3 description
///
// This is for experiment 3.
// A simple multi-path input file
///

static struct St st[MAXSTATES] = {
 {0, Idp, "123456", 0, None, "*", 0, 1, 0.5},
 {0, Idp, "654321", 1, None, "*", 0, 2, 0.5},
 {1, None, "*", 0, Dbreq, "23456", 0, 3, 1.0},
 {3, Dbresp,"999999", 0, None, "*", 0, -1, 1.0},
 {2, None, "*", 0, Connect, "54321", 0, -1, 1.0},
 {-1, None, "*", 0, None, "*", 0, -1, 0.0}};

#define NTRIALS 2

D.4. Problem 4 description
///
// This is for experiment 4.
// A complex multi-path input file
///
static struct St st[MAXSTATES] = {
 {0, Idp, "123456", 0, None, "*", 0, 1, 1.0},
 {1, None, "*", 0, Dbreq, "23456", 0, 2, 1.0},
 {2, Dbresp,"654321", 0, None, "*", 0, 3, 0.5}, // The ok case
 {3, None, "*", 0, Connect, "54321", 0, 4, 1.0},
 {4, None, "*", 0, End, "*", 0,-1, 1.0},
 {2, Dbresp,"000", 1, None, "*", 0, 6, 0.5}, // The error case

Copyright – refer to title page
D-28

 {6, None, "*", 0, Connect, "000", 0, 7, 1.0},
 {7, None, "*", 0, End, "*", 0,-1, 1.0},
 {-1, None, "*", 0, None, "*", 0,-1, 0.0}};

#define NTRIALS 2

D.5. Problem 5 description
///
// This is for experiment 5.
// A complex Number translation service, but using reduced complexity
// nodes
///

static struct St st[MAXSTATES] = {
 {0, Idp, "123456", 0, None, "*", 0, 1, 10.0},
 {1, None, "*", 0, Dbreq, "23456", 0, 2, 5.0},
 {2, Dbresp,"654321", 0, None, "*", 0, 3, 1.0},
 {3, None, "*", 0, Dbreq, "54321", 0, 4, 5.0},
 {4, Dbresp,"987654", 0, None, "*", 0, 5, 1.0},
 {5, None, "*", 0, Connect, "87654", 0, 6, 1.0},
 {6, None, "*", 0, End, "*", 0, -1, 1.0},
 {-1, None, "*", 0, None, "*", 0, -1, 0.0}};

#define NTRIALS 1

Copyright – refer to title page
D-29

D.6. Nodeset 1 description
//
// nodeset.h
//
// This is the definition of the terminal set.
// for experiments 1 & 2
//
//
void createNodeSet (GPAdfNodeSet& adfNs)
{
 // Reserve space for the node sets
 adfNs.reserveSpace (1);

 // Now define the function and terminal set for each ADF and place
 // function/terminal sets into overall ADF container
 GPNodeSet& ns1=*new GPNodeSet (11);

 adfNs.put (0, ns1);

 // Define functions/terminals and place them into the appropriate
 // sets. Terminals take two arguments, functions three (the third
 // parameter is the number of arguments the function has)

 ns1.putNode (*new GPNode(FSTART, "FSTART", 2));
 ns1.putNode (*new GPNode(FROUTE, "FROUTE", 2));
 ns1.putNode (*new GPNode(FDBREAD, "FDBREAD", 3));
 ns1.putNode (*new GPNode(STRSUB, "STRSUB", 2));
 ns1.putNode (*new GPNode(FEND, "FEND", 1));
 ns1.putNode (*new GPNode(TVAR1, "TVAR1"));
 ns1.putNode (*new GPNode(TVAR2, "TVAR2"));
 ns1.putNode (*new GPNode(TVAR3, "TVAR3"));
 ns1.putNode (*new GPNode(TVAR4, "TVAR4"));
 ns1.putNode (*new GPNode(TVAR5, "TVAR5"));
 ns1.putNode (*new GPNode(TVAR6, "TVAR6"));
}

D.7. Nodeset 2 description
//
// Create function and terminal set
// For experiments 3 and 4
//
void createNodeSet (GPAdfNodeSet& adfNs)
{
 // Reserve space for the node sets
 adfNs.reserveSpace (1);

 // Now define the function and terminal set for each ADF and place
 // function/terminal sets into overall ADF container
 GPNodeSet& ns1=*new GPNodeSet (12);
 adfNs.put (0, ns1);

 // Define functions/terminals and place them into the appropriate
 // sets. Terminals take two arguments, functions three (the third
 // parameter is the number of arguments the function has)

 ns1.putNode (*new GPNode(FSTART, "FSTART", 2));
 ns1.putNode (*new GPNode(FROUTE, "FROUTE", 2));
 ns1.putNode (*new GPNode(FDBREAD, "FDBREAD", 3));
 ns1.putNode (*new GPNode(FEQ, "FEQ", 3));
 ns1.putNode (*new GPNode(STRSUB, "STRSUB", 2));
 ns1.putNode (*new GPNode(FEND, "FEND", 1));
 ns1.putNode (*new GPNode(TVAR1, "TVAR1"));
 ns1.putNode (*new GPNode(TVAR2, "TVAR2"));
 ns1.putNode (*new GPNode(TVAR3, "TVAR3"));
 ns1.putNode (*new GPNode(TVAR4, "TVAR4"));
 ns1.putNode (*new GPNode(TVAR5, "TVAR5"));
 ns1.putNode (*new GPNode(TVAR6, "TVAR6"));
}

Copyright – refer to title page
D-30

D.8. Nodeset 3 description
//
// Create function and terminal set
// for experiment 5 using reduced complexity nodes
//
void createNodeSet (GPAdfNodeSet& adfNs)
{
 // Reserve space for the node sets
 adfNs.reserveSpace (1);

 // Now define the function and terminal set for each ADF and place
 // function/terminal sets into overall ADF container
 GPNodeSet& ns1=*new GPNodeSet (9);
 adfNs.put (0, ns1);

 // Define functions/terminals and place them into the appropriate
 // sets. Terminals take two arguments, functions three (the third
 // parameter is the number of arguments the function has)

 ns1.putNode (*new GPNode(READMSG, "READMSG", 2));
 ns1.putNode (*new GPNode(SENDMSG, "SENDMSG", 3));
 ns1.putNode (*new GPNode(STRSUB, "STRSUB", 2));
 ns1.putNode (*new GPNode(TVAR1, "TVAR1"));
 ns1.putNode (*new GPNode(TVAR2, "TVAR2"));
 ns1.putNode (*new GPNode(TVAR3, "TVAR3"));
 ns1.putNode (*new GPNode(TVAR4, "TVAR4"));
 ns1.putNode (*new GPNode(TVAR5, "TVAR5"));
 ns1.putNode (*new GPNode(TVAR6, "TVAR6"));
}

Copyright – refer to title page
D-31

#!/usr/local/bin/tree_wish -f
-*-Tcl-*-

This script parses a GP data file and produces an X tree
Based on the dirtree demo from Alan Brightons tree package

option add *highlightThickness 0

create a canvas with horizontal and verical scrollbars in the
given frame with the given name

proc MakeCanvas {frame canvas} {
 set vscroll [scrollbar $frame.vscroll -command "$canvas yview"]
 set hscroll [scrollbar $frame.hscroll -orient horiz -command "$canvas xview"]
 set canvas [canvas $canvas \
 -xscrollcommand "$hscroll set" \
 -yscrollcommand "$vscroll set"]
 pack $vscroll -side right -fill y
 pack $hscroll -side bottom -fill x
 pack $canvas -fill both -expand 1
 bind $canvas <ButtonPress-2> "$canvas scan mark %x %y"
 bind $canvas <B2-Motion> "$canvas scan dragto %x %y"

 return $canvas
}

layout the components of the given node depending on whether
the tree is vertical or horizontal

proc LayoutNode {canvas tree dir} {
 set text $dir:text
 set bitmap $dir:bitmap

 if {[$tree cget -layout] == "horizontal"} {
 scan [$canvas bbox $text] "%d %d %d %d" x1 y1 x2 y2
 $canvas itemconfig $bitmap -anchor se
 $canvas coords $bitmap $x1 $y2
 } else {
 scan [$canvas bbox $bitmap] "%d %d %d %d" x1 y1 x2 y2
 $canvas itemconfig $text -anchor n
 $canvas coords $text [expr "$x1+($x2-$x1)/2"] $y2
 }
}

set uniq 0
set SPC ""
set LB "<"
set RB ">"

add the given node to the tree

Args:
canvas - tree's canvas
tree - the tree
parent - name of parent node
dir - name of new node being added
text - text for tree node label (last component of name)

proc AddNode {canvas tree parent dir text} {
 global dirtree
 global uniq
 global SPC
 global LB

Copyright – refer to title page
D-32

 global RB

 set temp [string trimleft $text 0123456789]
 set text $temp
 set font $dirtree(font)
 set font $dirtree(boldfont)
 set cnt "LBuniq$RB"

 $canvas create oval -20 -10 30 20 -tags $dir -fill grey
 $canvas create oval -25 -15 25 15 -tags $dir -fill white
 $canvas create text 0 10 -font $font -text $cnt -tags $dir
 $canvas create text 0 0 -font $font -text $text -tags $dir
 set line [$canvas create line 0 0 0 0 -tag "line"]
 $tree addlink $parent $dir $line -border 2

 set x1 [$canvas coords $dir]

}

set loc 0

GetToken performs a simple (inneffeicient) lexical analysis of the expression
return either a () or a string of alpha numeric chars

proc GetToken {} {
global loc
global expr
global uniq

set result " "

Get a char and see if it is a parenthesis.
 while {$result == " "} {
 set result [string index $expr $loc]
 incr loc
 }
 if {$result == "("} {
 return [string trim $result]
 }
 if {$result == ")"} {
 return $result
 }
Not a parenthesis, so get as many chars as we can and make a string
token, not forgetting to 'put back' and non alphanumeric characters we find

 set tok $result

 while {$loc < [string length $expr] } {
 set result [string index $expr $loc]

 if {$result == ")"} {
 set temp "$uniq$tok"
 incr uniq
 set tok $temp
 return $tok
 }
 if {$result == "("} {
 set temp "$uniq$tok"
 incr uniq
 set tok $temp
 return $tok
 }
 if {$result == " "} {
 incr loc
 if {$tok != "" } {
 set temp "$uniq$tok"
 set tok $temp
 incr uniq
 return [string trim $tok]
 }
 }
 incr loc
 set temp "tokresult"
 set tok $temp
 }
 set temp "$uniq$tok"
 set tok $temp
 incr uniq

Copyright – refer to title page
D-33

 return [string trim $tok]
}

Main procedure to tie it all together

proc ListGP {canvas tree root} {
 global stack
 set t "xx"
 while {$t != ""} {
 set t [GetToken]
 if {$t == "("} {
 set t [GetToken]
 AddNode $canvas $tree $root $t $t
 ListGP $canvas $tree $t
 } elseif {$t == ")"} {
 return
 } else {
 AddNode $canvas $tree $root $t $t
 }
 }
}

Define the graphic scafolding

wm geometry . 400x275

set canvas [MakeCanvas . .c]
set tree [tree $canvas.t -layout vertical]

set dirtree(font) -Adobe-Helvetica-Medium-R-Normal--*-100-*
set dirtree(boldfont) -Adobe-Helvetica-Bold-R-Normal--*-100-*

button .print -text Print
pack .print

The print method outputs a postscript rendition of the tree

bind .print <Button-1> {
.c postscript -pagewidth 6.0i -file tmp.ps
}

.c configure -background white

Read the input stream ready for processing

gets stdin expr

#Get the first two tokens as the root of the tree
set t [GetToken]
set t [GetToken]
set root $t
AddNode $canvas $tree {} $t $t

ListGP $canvas $tree $root

Run the main procedure to generate the tree and display it in a window

update idletasks

Copyright – refer to title page
i

BIBLIOGRAPHY

[ABK96] Andre D, Bennett III and Koza J R. Discovery by Genetic Programming of a Cellular
Automata Rule that is Better than any Known Rule for the Majority Calssification
Problem. In Koza J R, Goldberg D E, Fogel D, and Riolo R. (Eds). Genetic
Programming 1996: Proceedings of the First Annual Conference, pp. 3-11,
July 28-31, 1996, Stanford University. Cambridge, MA. MIT Press.

[AT96] Andre, David., and Teller, Astro. A Study in Response and the Negative Effects of
Introns in Genetic Programming. In Proceedings of the First Annual Conference :
Genetic Programming 1996, pp. 12-30, MIT Press, 28-31 July 1996

[AK96] Angeline, P. and Kinnear, K. (Eds). (1996). Advances in Genetic Programming.
Volume II. Cambridge, Massachusetts: The MIT Press.

[Ang97a] Angeline P. Subtree Crossover: Building Block Engine or Macromutation? pp 9-17 In
Koza J, Deb K, Dorigo M, Fogel D.B, Garzon M, Iba H, and Riolo R (Eds.)
Genetic Programming 1997. Proceedings of the Second Annual Conference
July 13-16, 1997 Stanford University. Morgan Kaufmann Publishers, San
Francisco, CA.

[Ang97b] Angeline P. An Alternative to Indexed Memory for Evolving Programs with Explicit
State Representations. pp 423-430 In Koza J, Deb K, Dorigo M, Fogel D.B,
Garzon M, Iba H, and Riolo R (Eds.) Genetic Programming 1997.
Proceedings of the Second Annual Conference July 13-16, 1997 Stanford
University. Morgan Kaufmann Publishers, San Francisco, CA

[ASS97] Aiyarak P, Saket, A.S and Sinclair, M.C., Genetic Programming Approaches for
Minimum Cost Toplogoy Optimisation of Optical Telecommunications Networks, Proc.
IEE/IEEE Intl. Conf. On Genetic Algorithms in Engineering Systems:
Innovations and Applications (GALESIA ’97), University of Strathclyde,
Glasgow, September 1997, pp.415-420.

[Ban93] Banzhaf W. Genetic programming for pedestrians. In Forrest S. Ed., proceedings of
the 5th International Conference on Genetic Algorithms, ICGA-93. Page 628,
University of Illinois at Urbana-Champaign, 17-21 July, 1993. Morgan
Kaufmann.

Copyright – refer to title page
ii

[BFN96] Banzhaf W., Francone F., and Nordin P. The Effect of Extensive Use of the
Mutation Operator on Generalization in Genetic Programming Using Sparse Data Sets.
In Goos G., Hartmanis J., and van Leewen J. (Eds.) Parallel Problem Solving
from Nature: Proceedings International Conference on Evolutionary
Computation, The 4th Conference on Parallel Problem Solving from Nature,
Berlin, Germany, September 22-26, 1996, Springer-Verlag.

[BNO97] Banzhaf W, Nordin P, and Olmer M. Generating Adaptive Behaviour for a Real
Robot using Function Regression within Genetic Programming. pp 35-43 In Koza J,
Deb K, Dorigo M, Fogel D.B, Garzon M, Iba H, and Riolo R (Eds.) Genetic
Programming 1997. Proceedings of the Second Annual Conference July 13-
16, 1997 Stanford University. Morgan Kaufmann Publishers, San Francisco,
CA.

[Ben96] Bennet, Jeremy, P., Introduction to Compiling Techniques. Second Edition, 1996.
McGraw-Hill Publishing Company, England.

[BM98] Bennett J. Owen H., and Martin P. A Programming Language to assist service
creation. Proceedings of the 7th IEEE Intelligent Network Workshop.
Bordeaux, May 11th 1998. IEEE Press

[BG95] Bergadano F, and Gunetti D. 1995. Inductive Logic Programming: From Machine
Learning to Software Engineering. MIT Press, 1995.

[Bli96] Blickle T. Evolving Compact Solutions in Genetic Programming: A Case Study. In
Voight H., Ebeling W., Recenberg I., Schwefel H., (Eds.): Parallel Problem
Solving from Nature IV. Proceedings of the International Conference on
Evolutionary, Berlin, September 1996. LNCS 1141, pp. 564-573, Heidelberg.
Springer-Verlag.

[Boe81] Boehm B. W. Software Engineering Economics. 1981 Prentice Hall

[BJ97] Boulton C., Johnson W., and Prince M. 1997A Persoanl Number Service for British
Telecom. (BT OneNumber).. Unpublished paper by GPT Limited

[Bri97] Brighton, Allan. Tk Tree Widget. Version 4.2
ftp://mirror.neosoft.com/pub/tcl/alcatel/extensions/
Visited December 26 1997

[CY97] Clack T, and Yu T. Performance Enhanced Genetic Programming. In Angeline P.,
Reynolds R., McDonald J., and Eberhart R., Eds., Proceedings of the sixth
conference on Evloutionary Programming, Volume 1213 of Lecture Notes in
Computer Science, Indianapolis, Indiana, USA, 1997, Springer-Verlag.

Copyright – refer to title page
iii

[Dar1859] Darwin, Charles. On the origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life. 1st Edition. 1859.

[Dav93] Davis A M. Software Requirements; Objects, Functions and States. 1993. Prentice Hall

[DY97] Deakin Alan and Yates Derek F. GP Tools Available on the Web: A first Encounter
Pp 420 In Koza J, Deb K, Dorigo M, Fogel D.B, Garzon M, Iba H, and Riolo
R (Eds.) Genetic Programming 1997. Proceedings of the Second Annual
Conference July 13-16, 1997 Stanford University. Morgan Kaufmann
Publishers, San Francisco, CA.

[Ebe98] Eberhagen S. Considerations for a successful introduction of Intelligent Networks from a
marketing perspective. In the Proceedings of the 5th Intenational Conference on
Intelligence in Networks, Bordeaux, France. 13/15 May 1998. Adera, France.

[GR94] Gathercole C and Ross P. Dynamic Training Subset Selection for Supervised Learning
in Genetic Programming. Davidor Y, Schwefel H and Manner R (Eds) Parallel
Problem Solving from Nature III, Jerusalem, 9-14 October 1994. Springer-
Verlag.

[GR97] Gathercole C and Ross P. Small Populations over Many Generations can beat Large
Populations over Few Generations in Genetic Programming. Pp 111-118 In Koza J,
Deb K, Dorigo M, Fogel D.B, Garzon M, Iba H, and Riolo R (Eds.) Genetic
Programming 1997. Proceedings of the Second Annual Conference July 13-
16, 1997 Stanford University. Morgan Kaufmann Publishers, San Francisco,
CA.

[Gep98] Geppetto GP system.
http://ferarri.snu.ac.kr/~madduk/genetic/impl/gp-systems/geppetto/V20
Last visited 21st Aug. 1998.

[GD91] Goldberg D. E., and Deb K. 1991. A comparative analysis of selection schemes used in
genetic algorithms. In Rawlins G. (Ed), Foundations of Genetic Algorithms.
Morgan Kaufmann.

[GKH95] Goldberg, David E, Kargupta Hillol, Horn Jeffrey and Cantu-Paz Erik. Critical
Deme Size for Serial and Parallel Genetic Algorithms. IlliGAL Report No. 95002.
January 1995

[GO98] Goldberg, David E., and O’Reilly, Una-May. Where Does the Good Stuff Go, and
Why? How Contexual semantics influences program structure in simple genetic
programming, in Banzhaf W., Poli R., Schoenauer M., and Fogarty T.C., (Eds.):
First European Workshop, EuroGP’98, Paris, France, April 1998 Proceedings.
LNCS 1391, Springer-Verlag.

Copyright – refer to title page
iv

[Gpe98] Gpeist GP system.
http://corvo.cpgei.cefetpr.br/EC/GP/src/GPEIST4.tar.gz
Lst visited 21st Aug. 1998.

[GPMAIL] Archive online at:
http://adept.cs.twsu.edu/~thomas/gpmail.html
Visited May 6th 1998

[HB96]

Harris C. and Buxton B. GP-COM: A distributed, Component-Based Genetic
Programming System in C++. Research Note RN/96/2, UCL, Gower Street,
London, WC1E 6BT, UK, January 1996.

[Hol92] Holland, John, H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press 1975. Revised 2nd edition 1992 from the MIT
press.

[Hlb90] Holub, Alan, I., Compiler Design in C. 1st edition. Prentice Hall.

[HWSS95] Haynes T., Wainwright R., Sen S., and Schoenefeld D., Strongly Typed Genetic
Programming in Evolving Cooperation Strategies. In Eshelman L., (Ed) Genetic
Algorithms: Proceedings of the Sixth International Conference (ICGA95),
pages 271-278, Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

[Iba96] Iba, Hitoshi. Random Tree Generation for Genetic Programming. In Goos G.,
Hartmanis J., and van Leewen J. (Eds.) Parallel Problem Solving from Nature:
Proceedings International Conference on Evolutionary Computation, The 4th
Conference on Parallel Problem Solving from Nature, Berlin, Germany,
September 22-26, 1996, Springer-Verlag.

[Itu94a] ITU-T Q.1211. Introduction to Intelligent Networks CS-1 1994.6

[Itu94b] ITU-T Q1.1214. Distributed Functional Plane for Intelligent Network CS-1 1994.

[JCC92] Jefferson D, Collins R, Copper C, Dyer M, Flowers M Karf R, Taylor C and
Wang A. Evolution as a theme in Artificial Life: The Genesys/Tracker System. In
Langton C et al (Eds), Artificial Life II. 1992. Addison-Wesley Publishing
Company Inc.

[Kok98] Kokkonen, Kim. Genetic Programming in Java
http://www.pcisys.net/~kimk/gpjpp.htm
Visited 6th Feb. 1998

[Koz92] Koza, John, R. Genetic Programming, On the Programming of Computers by Means
of Natural Selection. 1st Ed. MIT Press 1992.

Copyright – refer to title page
v

[Koz94] Koza John R. Genetic Programming II. Automatic Discovery of Reusable Programs. 1st
Ed. MIT Press, 1994

[Koz96] Koza John R. Comments on Cross Paradigm Comparisons of Genetic Programming with
existing machine learning paradigms.
http://www-cs-faculty.stanford.edu/~koza/Cross-Para-8-17-95.html
Visited 19th November 1997

[KBF96] Koza J R, Bennett III, Forrest H, Andre D, Keane M. Automated WYWIWYG
design of both the topology and component values of analogue electrical circuits using genetic
programming. In Koza J R, Goldberg D E, Fogel D, and Riolo R. (Eds). Genetic
Programming 1996: Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA. MIT Press.

[Koz97] Koza John R. Home page.
http://www-cs-faculty.stanford.edu/~koza
Visited 14th June 1997

[KABK98] Koza John R. Andre David, Bennett Forret H and Keane, Martin. Genetic
Programming III Unpublished draft version, available on the GP MAILING
LIST

[Lan97] Langdon W B. ntrees.cc – A program to calculate size of GP random trees.
ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/gp-code
Visited 14th June 1997

[Lan98] Langdon W B. Genetic Programming and Data structures: Genetic Programming and
Data structures = Automatic Programming! 1st Edition. The Kluwer International
Series in Engineering and Computer Science. Vol. 438. Kluwer Academic
Publishers, Boston. 1998

[Lil98] Lil-gp Genetic Programming System.
http://GARAGe.cps.msu.edu/software/lil-gp/lilgp-index.html
Last visited 21 Aug 1998

[Luk97] Luke Sean, Patched lil-gp Kernel.
http://www.cs.umd.edu/users/seanl/patched-gp
Visited 12th September 1997.

[LS97] Luke S, and Spector L. A comparison of crossover and Mutation in Genetic
Programming. In Koza J, Deb K, Dorigo M, Fogel D.B, Garzon M, Iba H, and
Riolo R (Eds.) Genetic Programming 1997. Proceedings of the Second
Annual Conference, pp. 240-248, July 13-16, 1997 Stanford University.
Morgan Kaufmann Publishers, San Francisco, CA.

Copyright – refer to title page
vi

[Mar96] Martin, Peter, N. Service Creation for Intelligent Networks: Delivering the Promise.
Proceedings of the 4th International Conference on Intelligence in Networks,
Bordeaux. 1996. ADERA.

[Mon95] Montana, David, J. Strongly Typed Genetic Programming. Evolutionary
Computation, Volume 3, Issue 2, pp. 199-230. Summer 1995. MIT Press

[NFB96] Nordin P., Francone F., and Banzhaf W. Exlpicitly Defined Introns and Destructive
Crossover in Genetic Programming. In Angeline P., and Kinnear K., Eds., Advances
in Genetic Programming 2, Chapter 6, pp. 111-134. MIT Press, Cambridge,
MA, USA, 1996.

[Ous94] Ousterhout, John K. Tcl and the Tk Toolkit. 1st Ed. Addison-Wesley Publishing
Company Inc. 1994

[Per94] Perkis, Timothy. Stack Based Genetic Programming. In the proceedings of the
1994 IEEE World Congress on Computational Intelligence 1994. Volume 1,
pages 148-153, Orlando, Florida, USA, 27-29 June 1994. IEEE Press

[Pri95] Pringle W. ESP: Evolutionary Structured Programming. Technical Report, Penn
State University, Greate Valley Campus, PA, USA, 1995.

[Qur98] Qureshi, Adil. Gpsys
http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html
Visited 5th Jan. 1998

[SEL95] Sharman K., Anna I. Esparcia A., and Yun Li.
Evolving signal processing algorithms by genetic programming. In A. M. S. Zalzala,
editor, First International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, (GALESIA), volume 414, pages 473--
480, Sheffield, UK, 12-14 September 1995. IEE.

[Sgp1998] Simple Genetic Programming in C.
ftp://www.aic.nrl.navy.mil/pub/galist/src/sgpc.1.0.1.tar.Z
Last visited 21st August 1993..

[SS97] Sinclair M., and Shami S. Evolving Simple Software Agents: Comparing Genetic
Algorithm and Genetic Programming Performance. Proceedings of the second
IEE/IEEE Intl. Conf. On Genetic Algorithms ’n Engineering Systems:
Innovations and Applications (GALESIA ‘97), University of Strathclyde,
Glasgow, September 1997, pp. 421-426.

Copyright – refer to title page
vii

[Sin94] Singleton Andy. GPQUICK A simple Genetic Programming system in C++ Version
2, released 2/12/94
http://corvo.cpgei.cefetpr.br/EC/GP/src/gpquick-2.1.tar.gz
Last visited 21st August 1998.

[Som96] Sommerville I. Software Engineering. Fifth Ed. 1996. Addison Wesley Publishers
Ltd.

[TCM98] Tang L, Califf M, Mooney R. An Experimental Comparison of Genetic Programming
and Inductive Logic Programming on Learning Recursive List Functions. Technical
Report, University of Texas, Austin. Number A198-27. March 1998.

[Tel94] Teller, Astro. Turing Completeness in the Language of Genetic Programming with
Indexed Memory. Proceedings of the 1994 IEEE World Congress on
Computational Intelligence., volume 1, Orlando, Florida, USA. June 1994.
IEEE Press.

[TA97] Teller, Astro and Andre David. Automatically choosing the Number of fitness Cases:
The rational Allocation of Trials. pp 321-328 In Koza J, Deb K, Dorigo M, Fogel
D.B, Garzon M, Iba H, and Riolo R (Eds.) Genetic Programming 1997.
Proceedings of the Second Annual Conference July 13-16, 1997 Stanford
University. Morgan Kaufmann Publishers, San Francisco, CA.

[Vie98] Vienna University of Economics Genetic Programming Kernel.
http://aif.wu-wien.ac.at/%7Egeyers/archive/gpk/vuegpk.html
Last vistited 21 Aug 1998.

[Wei97] Weinbrenner, Thomas, The genetic Programming Kernel, Version 0.5.2:
http://www..emk.e-tecknik.th-darmstadt.de/~thomasw/gp.html
Visited 12th Sept 1997

