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Abstract

Genetic Programming and Evolutionary Programming are fields studying the application of
artificial evolution on evolving directly executable programs, in form of trees similar to Lisp
expressions (GP-trees), or Finite State Automata (FSA). In this exercise, we study the perfor-
mance of these methods on several example problems, and draw conclusions on the suitability
of the representations with respect to the task structure and properties. We investigate the role
of incremental evolution in the context of FSA representation. We also present an evolution-
ary software package for educational programming environment Imagine, which can be used for
introducing the principles of evolutionary computing to wider young audience.
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1 Introduction

In our previous experiments[21], we have used augmented finite state automata (FSA, similar to
finite state machines, FSMs) for behavior-arbitration in behavior-based mobile robot controllers.
We have been designing these controllers by the means of evolutionary computation. Our main
motivation for choosing the state-based representations was their structural similarity to the
structure of the robot controller tasks: the robot performing some activity is always in some
state while it reactively responds with immediate actions or it proceeds to other states as a
response to environmental percepts – thus the activity of a robotic agent can be modeled by a
state diagram accurately. We believe that state-diagram formalisms can in fact steer controllers
themselves and be the back-bone of their internal architecture. Secondly, we believe that the
state automata are easier to understand, analyze, and verify than other representations, for
example neural networks. Thirdly, we believe that state automata are more amenable to in-
cremental construction of the controller, because adding new functionality involves adding new
states and transition, and making relatively small changes to the previous states and transitions.
On the contrary, neural network architectures often need to be dramatically modified, unless
some modular approach is used. However, research in modular neural approaches is still in its
very early stages.

While the focus of our previous experiments lied in the issues of incremental evolution and
evolving the arbitration itself, this study pays attention to evaluating the performance of the
state-based representations as such. The purpose is to analyze the performance of the state-based
representations and compare it to the performance of the GP-tree representation. We study the
performance on several artificial tasks of various kinds with the intention to understand the
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set of tasks, where the state-representation might outperform the GP-tree representation, but
also to identify the tasks, where the state-representations are less efficient. For the purposes
of performing these experiments, we have designed a package for evolutionary computation
experiments for educational programming environment Imagine Logo [18] that has an interface
to control both simulated and real robots [22]1.

In the following sections, we review the related work on evolving state-representations, de-
scribe the evolutionary software package we developed, describe the tasks we have experimented
with, and provide the empirical evidence of the performance of the state-based and GP-tree
representations. We conclude the paper with discussion of the results and ideas for further
investigations.

2 Related work

In [10], Fogel et.al. draw a strict distinction between evolutionary approaches where the evo-
lution is modeled as a genetic process and the approaches where the evolution is modeled as a
phenotypic process. The question is the one of the representation of the individuals. Strictly
seen, and pertaining to a biological relevance, the genetic processes deal with genotypes, i.e.
encodings of genes that influence the shape, behavior, or other properties of the individual,
whereas the phenotypic representations attempt to encode directly the complete individual,
its shape, behavior and other properties in their final form. We make a point here that this
biologically-inspired distinction (that by the way leads to a heavily studied field of evolutionary
development) is not very well-grounded in the computational context.

First, the phenotypic representation inherently implies some form of encoding, i.e. storing
the usually complex patterns of interactions of the individual with the environment or with the
details of the particular task instance, where the evolved or evolving solution is applied. This
encoding does not explicitly list all these interactions, and properties, not even all the mecha-
nisms that participate in these interactions. They are rather implied by and contained in the
whole system that executes the solution. Isn’t rather that whole system the phenotype? Where
is the border line between the body of the individual and its environment in the computational
context? What is the difference between interpreting a FSA in order to produce a run-time
behavior of an individual in the computational context and interpreting a DNA of a biological
organism in order to generate chemical compounds that are reacting to the chemicals found in
the agent’s internal and external environment? While the former is supposed to be a phenotypic
process, the second clearly is a biological genetic process. However, in both cases, there is an
encoding that is translated by the “operating system” in order to obtain the actual behavior
of an individual. And even if the encoding involves a directly executable machine code, it is
still being interpreted by the CPU to obtain the actual run-time behavior and execution of the
CPUs own microcode. We argue that there is no evolutionary process in the computational
context that is modeled as phenotypic process. Please also note and do not confuse the differ-
ence between the distinction of a sexual and an asexual process and the distinction between
phenotypic and genetic process. The complex interactive individual must be frozen into some
sort of a static encoding in order to be manipulated by evolutionary operators and stored in a
population. In other words, in computational context, it is difficult and possibly misleading to
try to identify what is a phenotype. In biological terms, body of an individual is distinguished
by its spacial properties, however, those (if there could be any analogy in the computational
world) are rather task-related than representation-related. Does the phenotype include all the
bits of the software, where the solution is being run? Including the operating system, and all the

1A secondary objective for producing this software package was to provide an educational platform for pop-
ularizing and experimenting with evolutionary computation, which is supported by wide use of Imagine in the
schools on elementary and secondary level. This objective is treated in a separate report.
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low-level implementation of the hardware of the computer, which the solution is interacting with
and utilizing? Or does it include only those parts of the evolved solution that can be changed
in the evolutionary process? But isn’t that then the genotype itself?

Secondly, in many instances of the evolutionary algorithms that are rendered by the au-
thors as a genetic process, solutions are represented directly in the genotype – just recall the
popular maxbit sample problem for instance. The implications of our remark for the field of
evolutionary development are not dramatic, we only suggest that many research questions relate
to the genotype representation, and we consider the GP-trees, FSA, and virtually any evolved
representation to be genotype, rather than phenotype evolved in a phenotypic process. In this
respect, however, one has to be very careful about any analogies drawn to the biological process
of development. In the computational context, transformations and configurations of the geno-
type itself are possible, and their usefulness has little to do with the developmental process in
nature even if it might share some [but most likely forced] structural similarities. The research
questions of what transformations on the genotypes and how they can be performed, however,
are still valid, interesting and worth investigation.

FSA or FSMs2 have been used as genotype representation in various works, although this
representation lies on the outskirts of the evolutionary algorithms research and applications.

Evolutionary Programming, [12, 8, 9, 11, 10] is a distinguished evolutionary approach that
originally used FSA as the genotype representation3. EP does not utilize recombination opera-
tors4, and relies on mutations. The original work addressed the tasks of prediction, identification
and control.

In [6], Chellapilla and Czarnecki introduce modular FSMs, which are in fact equivalent
to non-modular FSMs, except that the topology is restricted – in particular, the FSMs are
partitioned into several encapsulated subparts (sub-FSMs), which can be entered exclusively
through their starting states. The authors use modular FSMs to evolve controllers for the
artificial ant problem, that was previously successfully solved by evolving binary-string encoded
FSA[17], they provide evidence that modular FSMs perform better on this task than non-
modular FSMs, and they also provide evidence that direct encoding with structural mutations
of non-modular FSMs perform better than binary-string encodings used in [17]. This idea
of modular FSMs has been adopted also by Acras and Vergilio [1], who develop a universal
framework for modular EP experiments and demonstrate its use on two examples.

In [2], Angeline and Pollack are experimenting with automatic modular emergence of FSA.
They suggest to freeze and release parts of the FSA so that the frozen (or “compressed”) parts
cannot be affected by the evolutionary operators. The compression occurs randomly and due to
the natural selection process, it is expected that those individuals where the compression occurs
for the correctly evolved sub-modules will perform better and thus compression process interacts
with the evolutionary process in mutually beneficial manner. Indeed, the authors document on
the artificial ant problem that the runs with compression performed better than equivalent
runs without compression. They reason: “An explanation for these results is that the freezing
process identifies and protects components that are important to the viability of the offspring.
Subsequent mutations are forced to alter only less crucial components in the representation.”

2The difference between FSA and FSMs in the evolutionary literature seems to be that the former refer strictly
to the formal computational model as originated sometimes in the middle of the 20th century and intensively
formalized and studied for example by [14], while the latter usually refers to models where control actions are
performed when transitions are followed. Other computer science literature, however, often makes no distinction
in these two names, while various other names (Moore, Mealy) are used for different flavors of the formalism.
The core of all representations, however, are the FSA, and we refer to the extensions in this article as augmented
FSA, or FSA for simplicity. When referring to previous work, we attempt to use the same term as the author.

3Further developments of EP moved from the FSA to real-value parameters representation, where the Gaussian
mutation is applied to alter the parameters from generation to generation.

4Even though later the annual EP conferences included all works relevant for Evolutionary Algorithms, and
later have been integrated into Congress on Evolutionary Computation – CEC.
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In [20], Lucas is evolving finite state transducers (FSTs), which are FSA that generate
outputs, in particular, map strings in the input domain with strings in the output domain. FSTs
for transforming 4-chain to 8-chain image chain codes were evolved in this work, while three
different fitness measures for comparing generated strings were used: strict equality, hamming
distance and edit distance.

An interesting piece of work by Frey and Luagering [13] considers FSMs as controllers for
several 2D benchmark functions and the artificial ant problem. In their representation, the
whole transition function is represented as a single strongly-typed GP-tree – i.e. a branching
expression with conditions in the nodes that direct execution either to the left or to the right
sub-tree, and finally arriving to a set of leaves that list the legal transition pairs (old state, new
state).

In the PhD thesis [16], Hsiao is using evolved FSA to generate input sequences for digital
circuits with the purpose of their verification, and fault detection. The author achieves best
fault detection rate on various circuits (as compared to other approaches), except of those that
require specific and often long sequences for fault activation.

In [15], Horihan and Lu are evolving FSMs to accept words generated by a regular grammar.
They use an incremental approach, where they first evolve FSMs for simpler grammars, and
gradually progress to more complex grammars. They use the term genetic inference to refer to
their approach of generating such solution.

In [7], Clelland and Newlands are using EP with probabilistic FSA (PFSA) in order to
identify regularities in the input data. The PFSA is a FSA, where the transitions are associated
with probabilities as measured on input sequences. The EP is responsible for generating the
topology of the FSA – number of states and how they are interconnected, and the transitions
in PFSA are labeled according to their “fire rate”. This combination can be applied for rapid
understanding of an internal structure of sequences.

In [3], Ashlock et. al. are evolving FSMs to classify DNA primers as good and bad in
simulated DNA amplification process. They evolve machines with 64 states in 600 generations.
They used the weighted count of correct/incorrect classifications as their fitness function –
however, they sum the classifications made in each state of FSM throughout its whole run,
they argue that if classifications made in the final state only were used, the performance was
poor. In addition, this allows the machine to produce weighted classification – how good/bad
the classified primer is. The best of 100 resulting FSMs had success rate of classification of
about 70%. Hybridization, i.e. seeding 1/6th of a population of an extra evolutionary run with
the best individuals from 100 previous evolutionary runs improved the result to about 77%.
This work was continued in [4], where the FSM approach was compared to more conventional
Interpolated Markov Models (IMMs), which outperformed FSMs significantly.

In an inspiring study from AI Center of the Naval Research Laboratory [23], Spears and
Gordon analyze evolution of navigational strategies for the game of competition for resources.
The strategies are represented as FSMs. Agent moves on a 2D grid while capturing the free
cells. Another agent with a fixed, but stochastic strategy is capturing cells at the same time,
and the game is over when there are no more cells to capture. Agents cannot leave their own
territory. Authors find that the task is vulnerable to cyclic behavior that is ubiquitous in FSMs,
and therefore implement particular run-time checking to detect and avoid cycles. They experi-
ment with the possibility to disable and again re-enable states (as contrasted to permanent and
complete state deletion). They also compare evolution of machines with fixed number of states
and evolution of machines, where the number of states changes throughout the evolutionary run.
They discover that in the case of varying number, the machines utilize the lately-added states
to lesser extent, as well as that deleting states is too dramatic for performance, and thus suggest
to merge or split states instead of deleting and creating states. Due to the stochastic algorithm
of the opponent agent in the game of competition for resources, the fitness function must evalu-
ated each individuals in many different games (G). Authors disagree with others claiming that
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Figure 1: Architecture and deployment of Evolve with Imagine package.

keeping G low can be well compensated by higher number of generations and conclude that it
results in unacceptable sampling error. The authors therefore evaluate all the individuals on
fewer games (500), and if the individual should outperform the previous best individual, they
re-evaluate it on many more (10000) games.

Some further FSM-relevant references can be found for example in the EP sections in the
GECCO and CEC conferences.

3 Evolutionary algorithm and the EI software package

In order to perform experiments with the state representation, we have designed an evolutionary
computation software package EI (Evolve with Imagine). Figure 1 outlines the architecture of
the EI package.
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non−terminal

if  reg1 > 7

non−terminal
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non−terminal
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terminal
(and optional arguments)

write1

terminal
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right

terminal
...

left

terminal
...

done

Figure 2: Illustration of GP-tree representation: nodes contain non-terminals that have two
sub-trees, terminals are in the leaves.

3.1 Representation

The software package supports two different representations – GP-tree representation and FSA
representation.

In the GP representation, the evolved program is a binary tree with non-terminals in the
nodes and terminals in the leaves. Non-terminals and terminals are symbols with the semantics
of a procedure (not a function as often is the case in GP implementations; here, the state of
the computation is contained completely in the registers and in the state of the environment).
Non-terminals have two sub-trees5, which themselves are binary GP-trees. Both terminals and
non-terminals may contain additional arguments: constants of various ranges, register references,
predicates (or conditions). Each problem domain is thus defined by the syntax and semantics
of, see also figure 2:

• Set of terminals T , |T | = NT

• Set of non-terminals N , |N | = NN

• Number of registers NR, and possibly their semantics (such as coupling to some sensors)

• Binary relations Rel, for example <, >, ==, etc. that can be used by non-terminals.

• Definition of terminals arguments, a function6 ArgT : T → ArgTypes∗, where ArgTypes is
a set of possible argument types: {constant, interval, register reference, relation},
where constant can be instantiated to any integer number given globally specified range,
interval is specified as [min max] and can be instantiated to any integer from this in-
terval, register reference can be instantiated to any of the registers R1, . . . , RNR

, and
relation is instantiated to a member of Rel. For example, a non-terminal if typically
has arguments (register relation constant).

• Definition of non-terminals arguments, a function ArgN : N → ArgTypes∗.

5For the reasons of better topological compatibility of all nodes with respect to evolutionary operators, our
system currently supports only non-terminals with two sub-trees.

6With the notation M∗, we refer to all the possible tuplets (m1, m2, . . . mk), k ∈ N, ∀i(1 ≤ i ≤ k → mi ∈ M),
including tuplets with no members.
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state K

[reg2 == 1]

state L

transition condition

transition condition

state M

terminal (and optional args)

rt

terminal (and optional args)

fd

[reg1 > 0]

terminal (and optional args)

fd

transition condition

[reg2 < 10]

Figure 3: Illustration of FSA representation: transition conditions correspond to GP-tree non-
terminals, however each transition has also an associated terminal. The state transitions can
lead to the same state where they originate, and multiple transitions between the same two
nodes are allowed (although only one is used). Sequences of state transitions can create loops.

In our FSA representation, the programs are augmented state automata, formally defined
as, see also figure 3:

A = (NS , NR, NTrans, Rel, T,ArgT, condition syntax, F,max steps), where

• NS , is the number of states of the automaton, states are numbered S = {1 . . . NS}, and 1
is always the starting state

• NR is the number of registers of the automaton

• NTrans : {1, . . . , NS} → N is a function returning for each state the number of transitions
leading from that state

• Rel is a set of binary relations that can be used in the transition condition

• T is a set of terminals, |T | = NT

• ArgT : T → ArgTypes∗ defines terminals argument types

• condition syntax ∈ ArgTypes∗ is a tuple defining syntax of conditions that can trigger
the transitions between states, for example (register relation [0 3])

• F : S × N → ArgTypes∗ × S × T × ArgTypes∗ is the transition function specifying
transitions in all states, including the conditions and actions. One condition and one action
are associated with each transition. The transitions leading from states are ordered. Each
transition leads from some state to another state and can be followed, if its associated
condition is satisfied. When the program is in state s, only one of the transitions leading
from the state s can be followed, and it is the one that is satisfied and has the lowest
order. Transitions terminating in the same state as they originate are allowed. When a
transition is followed, the associated action represented by a terminal and its arguments
is performed.
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Figure 4: Overview of topological crossover for FSA representation.

• max steps – the maximum number of steps of the automaton to execute. In our FSA,
there are no final states, anytime the automaton arrives at a state when none of the
outgoing transitions is satisfied, the automaton terminates. Otherwise, it terminates only
after max steps are performed (or for another reason defined by the problem domain).

EI implements also the third representation type – weighted FSA (labeled HMM due to its
similarity to Markov Models), where each transition is associated with a real number wt, the
weight that implies the probability that the transition will be followed. In the case of FSA, the
transition that is satisfied and has the lowest order is always followed, even if there are multiple
satisfying transitions. In case of HMM, each satisfied transition in the current state can be
followed, and it is stochastically chosen based on its weight. The probability for a transition to
be chosen is linearly proportional to the weight of that transition.

3.2 Recombination

EI provides recombination operator – crossover for both GP-tree (usual GP-tree node exchange
crossover), and for FSA representation. For the FSA representation, the crossover is the same
as we used in our previous Evolutionary Robotics experiments, see figure 4. We randomly select
states in both parents for the first genotype, the remaining states form the second genotype.
All transitions that can be preserved are preserved. The remaining transitions are redirected
according to a random projection from the states that were given up to the states that are
imported. For more details, please see [21].

In the GP-tree representation, the crossover operator exchanges two random sub-trees of two
selected individuals (or with a probability pcross combine it simply merges the two individuals
in one sequence (using the seq non-terminal)7. Individuals that exceed the maximum allowed

7if the seq non-terminal is not used, pcross combine should be set to zero
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depth are always trimmed immediately.
In addition to the standard GP-tree crossover, EI implements GP-tree homologic crossover,

which exchanges only nodes in the two program trees that are topologically at the same location.
This takes the inspiration from nature, where crossover occurs in highly topological way – only
the genes of the same type can be exchanged. It reduces the bloat (useless offspring), and
smooths the fitness landscape – although also slightly decreases the discovering potential of
the search. The ratio of the homologic crossover can be controlled using phomologic crossover

parameter.
In both representations, EI supports brooding crossover, i.e. generating several broods of

offspring from each selected pair of parents, and evaluating them only on a stochastically se-
lected subset of testing sample (in order to avoid too high growth of CPU demand). Only
the best two of all the generated offspring are chosen for the new generation. The parame-
ter crossover brooding determines the number of offspring pairs generated, and the parameter
cross brood num starts q determines the relative size of the subset of the training set for the
brood evaluation (i.e. 1.0 means to use the whole subset). Brooding increases the success rate
of the crossover, since normally the crossover generates estimated 75% of non-functioning in-
dividuals, which should not even be considered. On the other hand, brooding decreases the
creativity of the search slightly, while some innovative offspring will perform worse than some
other offspring of the same parents – in particular those that perform almost or exactly the same
as their parent. When they perform the same, it is often due to the fact that the difference
in the genotypes of the parent and the offspring is irrelevant for the resulting behavior of the
offspring. And while the parent already has a relatively high fitness, the new useful innovative
genotypes with somewhat smaller fitness than the parent are not accepted.

Therefore the brooding crossover can either be limited by the parameter pbrooding crossover,
or the user may require that the offspring with the same fitness as the parent genotypes be dis-
carded (parameter strict brooding), which, however, works well only for deterministic objective
functions (i.e. the same genotype always has the same fitness).

3.3 Mutation

For the GP-tree representation, EI utilizes the following operators:

• mut change: changes a random node (terminals → terminals), non-terminals → non-
terminals, or changes an argument of terminal/non-terminal, if any;

• mut exchange: exchanges two arbitrary nodes within the individual;

• mut insert: inserts a non-terminal node with a full random sub-tree somewhere inside of
the individual;

• mut remove: removes random node/sub-tree within individual;

• random node: replaces the whole individual with a completely new individual;

For the FSA representation, EI utilizes the following operators:

• mut change: changes a random transition: either by changing terminal, destination state
(either randomly or by following another transition from the original destination state),
changing relation, or splitting the transition to two and inserting new state in the middle;
alternately, it randomly reorders the transitions in a single random state;

• mut exchange: picks two states A, B, and redirects all transitions leading to A and to B
to point to the other one of the two states instead;
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• mut insert: either inserts a new random transition between two existing states or inserts a
new state randomly connected to existing states by at least one incoming and one outgoing
transition.

• mut remove: removes a random transition or a random state;

• random fsa: replaces the whole individual with a completely new individual;

The probability of each mutation type is by default the same, except that the mut insert is
by default applied with 3-times higher probability. However, if the selected mutation operator
can not be applied to the genotype (for instance the maximum number of transitions has been
reached), another operator is selected (and this is repeated at most three times).

3.4 Selection and the remaining parameters and features

EI supports tournament selection with adjustable tournament size and the probability of select-
ing the tournament winner (if less than 1.0, there is a chance that the best individual of the
selected group will not be selected – this is to make the search more stochastic, and improve
chances to escape local extremes). The user can also require that the selected individuals are
removed from the population to ensure that all members of the population participate in the
selection.

Alternately, fitness-proportionate selection (i.e. roulette wheel) can be used.
Optionally, the fitness can be normalized to interval [0,1] and squared in order to increase

selection pressure. The squared normalized fitness is obtained by the following formula:

NormalizedF itnessi =

(

Fitnessi − MinFitness

MaxFitness − MinFitness

)2

EI supports two types of elitism – either the best num elitism individuals are automatically
copied from the previous generation, or alternately the best num elitism different individuals
are copied. Requiring that the elites be different improves the performance of the algorithm
significantly, especially in the cases when the objective function is not deterministic, and the
training set used by the fitness function is random. In those cases, the better individuals can
temporarily in one or very few generations perform worse, and be lost when defeated by a lucky
genotype tailored for a set of the random special cases chosen for evaluation in those generations.
This requirement of difference contributes also to premature convergence prevention.

The EI package has support for pretty-printing of genotypes, loading and saving environ-
ments, and easy addition of new experimental platforms. It allows saving and restoring the state
of the evolution anytime during the run, and this can be performed automatically periodically.

EI was designed for easy extensibility with new experiments. Please consult the software
documentation for more details. The software is an open-source project, freely available from
[24]. The list of all parameters appears in Appendix A.

4 Experimental tasks

In order to asses the performance of the state representations we have designed five tasks of
different nature, falling in two categories: controlling a robotic agent in a two-dimensional
environment, and processing symbolic sequences prepared on a one-dimensional bi-directional,
possibly infinite tape.
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4.1 Experiment “bit collect”

This task is designed to verify the ability of the evolutionary algorithm to encode algorithmic
structures in the chosen representation. The input to the system is a word consisting of bits
(0s and 1s) printed on a tape. The start and the end of the word can optionally be marked by
surrounding -1. The tape can either be infinite, or finite. In the latter case, moving outside of
the tape causes the program to terminate. There is a current read/write pointer that points to
one symbol on the tape. The evolved program can perform the following operations:

• left – move the current read/write pointer one symbol to the left

• right – move the current read/write pointer one symbol to the right

• write0 – write zero to the tape at the current read/write pointer

• write1 – write one to the tape at the current read/write pointer

• done – task completed, terminate

The program has at disposition the symbol of the tape at the position of the current
read/write pointer (register R1). The task for the program is either to fill all holes (tape positions
containing zeros) with ones – in the easy version, or in a difficult version to pack – move the
symbols at the tape in such a way that the remaining word will consist of a continuous sequence
of ones, the same number as the total number of ones in the input word. The program can write
arbitrary number of zeros on both sides of the output word. For example, the input:

10111001010001

would be transformed by a correct program to:

11111111111111

in the easy version, or to (for example):

11111110000000

in the difficult version of the task. The computing platform in this task is similar to the
Turing Machine. The performance of the program is measured in terms of the number of errors
– each extra “1” as well as each missing “1” is penalized by one point. In addition, all remaining
holes – symbols “0” – are penalized by one point each. Fitness function:

fitness = B − s · qs −

nstarts
∑

i=1

(ri · qr +
hi

Hi

· qh +
oi

Oi

· qo)

where nstarts is the number of random input words presented to the program, Hi and Oi

is the number of holes and ones in the ith input word respectively, hi is the number of holes
remaining in the output word, oi is the difference in the number of ones expected (either too
much or too little), ri is the number of execution steps, s is the size of the genotype, and qs,
qr, qh, and qo are weight constants. Coefficients qh and qo were strictly more significant than qs

and qr, and in balance (we used qo = 2qh).
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4.2 Experiment “(abcd)n”

In this task, we test the ability of the representation to encode repetitive structures. Using
the same computational model of the tape state machine as in the previous task, the goal is to
replace a continuous sequence of symbols “1” on the tape of random length with a repeating
sequence of symbols a, b, c, d. For instance, the input:

11111111111111111111

would be transformed by a correct program to:

abcdabcdabcdabcdabcd

The allowed operations are the same as in the previous task, with the addition of the oper-
ations that write the symbols a, b, c, and d. In a simplified version of this task, we require
the sequence (abc)n. Fitness function:

fitness = 1 − s · qs −

nstarts
∑

i=1

(

ei

li

nstarts

− ri · qr)

where ei is the number of incorrect symbols in the output word (including extra placed or
missing symbols) in the ith input word, li is the number of symbols in the input word, and the
meaning of the other symbols is the same as in the previous task.

4.3 Experiment “switch”

This is a task with a structure that shares properties with the structures of robotic tasks where
the robot reacts to environmental percepts depending of its current state, and enters other
states when triggered by some input data. The computational platform – a tape machine – is
the same as in the previous two tasks. The task for the program is to replace all zeros on the
tape with numeric symbols 1, 2, 3, and 4. The input sequence on the tape determines how the
zeros are to be replaced: the input contains random symbols 1, 2, 3, and 4 that are interleaved
with sequences of zeros, each 0-sequence containing up to 10 zeros. The program should replace
the zeros with the closest non-zero input on the left. When the program leaves the tape, it is
automatically terminated. For instance, the following input:

100040300002000130040000000003000020

should be transformed to:

111144333332222133344444444443333322

The performance of the program is measured as the sum of errors from the expected string.
The allowed operations are the same as in the previous tasks, except that the program is allowed
to write the symbols 0, 1, 2, 3, and 4. In a simplified version of the task, the input may contain
(and the program can write) only the symbols 0, 1, 2, and 3. The fitness function is the same
as in the task abcdn. We have experimented with incremental versions of this task, which are
described in the results section below.
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Figure 5: Different environments for the “find target” task (from top-left: experiment fence,

complex environment, ten around). In the first two, the robot (depicted by a turtle) navigates
the environment towards target marked by the cross, there are two different starting locations.
In the last one, there are no obstacles, and 10 different starting locations, all heading upwards.

4.4 Experiment “find target”

In this experiment, a robotic agent is placed in a 2D environment. It understands the following
primitive control commands:

• fd – move forward a little bit (usually 20 steps)

• bk – move backward a little bit

• fdlong – move forward longer distance (usually 100 steps)

• bklong – move backwards longer distance

• lt – turn left a little bit (different angle values result in different behaviors: 90 deg results
in a square grid along which the agent can move, 60 deg results in a hexagonal grid, which
is a very efficient navigational environment, other values that are not divisors of 360 result
in the ability of the agent to turn to many different directions by repetitive turnings and
thus exploit the environment to higher degree – on the cost of more complex navigational
sequences).

• rt – turn right a little bit

• done – task completed, terminate

In addition, the agent is equipped with three binary sensors: short distance wall detection,
long distance wall detection, and target-direction sensor. The wall detection sensors indicate

13



Figure 6: Viewing the progress of simulation in a web browser using a viewer implemented as
Java applet.

whether the agent will hit an obstacle with the next fd, or fdlong command, while the target-
direction sensor indicates whether the agent is heading towards the target. The sensor readings
are always available to the agent in form of three registers R1, R2, R3.

The task for the robotic agent is starting from an arbitrary starting location in the 2D world
to find a path to the target that does not collide with the obstacles. Each collision is penalized.
The performance of the agent is evaluated based on its distance from the target location at the
moment it stops moving (see below). When the agent arrives at the boundary of the 2D world,
it is not penalized, but it slides along the boundary when it tries to move in a direction that
is non-perpendicular to the boundary. Since the robot should arrive to the destination from
different starting locations, it has to develop strategies that are at least somewhat general. For
instance a simple linear sequence of left and right turns and forward movements would be a
satisfactory solution in case of one starting location, but conditional branching that results in
different trajectories is essential when two or more starting locations are used. Eventually, when
the agent is trained at many starting locations, it might develop a general strategy applicable to
an arbitrary starting point of the 2D world. What is the limiting number of starting locations
that leads to general behavior is an interesting question to study. We have performed tests with
both types of environments: with and without obstacles. The figure 5 shows three different
environments used in our experiments.

The fitness function used in this experiment:

fitness = B − s · qs −

nstarts
∑

i=1

(d2(T, Pi) + ri · qr + hi · qh)
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where nstarts is the number of starting locations, d(A,B) is a function returning the distance
of two points A and B, T is the target location, Pi are the locations where the robot stopped
moving, s is the size of the genotype, ri is the number of execution steps – either state transitions,
or evaluated nodes in GP-tree, and hi is the number of times the agent crosses the edge of the
pond. The weight coefficients qs, qr, qh are chosen to comply with strict significance relation:
hits ≫ squared distance ≫ size ≫ number of steps. B is a sufficiently large number to keep the
fitness positive – and maximizing.

4.5 Experiment “dock”

In this experiment, we utilize the ability of the Imagine software environment to connect to
simulated and real robots. A circular robot is placed in a rectangular environment. It under-
stands the same set of primitive operations as in the task “find target” above. In addition, the
robot is equipped with bottom light sensors in the front and in the back that can distinguish
white and black color on the floor. The primitive operations stopON and stopOFF turn on the
sensitivity to the black color: whenever the front or rear part of the robot – depending whether
it is moving forward or backwards – enters or remains above the black surface, the movement
commands are cancelled. The rotation commands lt and rt are not suppressed. The feedback
to the program is passed through the register R1, which is set to 0, if the robot stopped moving
because it entered black surface, and it is reset to 1 otherwise.

The task for the robot is to navigate to a target location, which is marked by a black
rectangle. A pair of “horizontal” parallel lines that are extensions of two opposite sides of the
rectangle pass though the whole width of the environment. The starting locations of the robot
are in a quadrant “under” these two parallel lines and “to the left” of the rectangle, see figure
6, which shows the simulated environment as viewed by an applet in a web browser.

The performance of the program is measured as the distance of the centre of the robot from
the centre of the rectangle when it stopped moving.

fitness = B − s · qs −

nstarts
∑

i=1

(d2(T, Pi) + ri · qr)

5 Results

Various flavors of the “find target” task with GP-tree representation were used to build and test
the software engine, and find starting feasible set of parameters. The GP-trees were successful in
quickly encoding specific trajectories. While the number of the starting locations remained low,
only a couple of sensor conditions in a resulting program were sufficient to generate different and
correct8 trajectories. Utilizing the seq non-terminal, the trajectories represented as GP-trees
are easy to extend with preceding or succeeding trajectory segments. Encoding trajectories,
which have random and non-repetitive shape using FSA representations is far less suitable.
Almost each new trajectory segment requires assembling a new fragile state with a very specific
structure (number of transitions, their destinations, and actions on the transitions). The new
state is, during the continuation of the evolution, subject to further disruptive changes. Chart
in figure 7 shows the progress of the evolution – best individuals for both GP-tree and FSA
representations in an environment with two starting locations and 16 obstacles arranged in a
row. We required that the agent arrives to the target location (in a distance less than one short
step). The state-representations evolved solution in 21, 70, 77, 105, 120, 148, 157, 182, 197,
211, 486, 520, and 558 generations, while the GP-trees evolved in 19, 21, 21, 24, 32, 33, 43, 43,

8By correct we mean that the agent both successfully avoids collisions with obstacles and navigates from the
assigned starting location to the target.
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[seq ()

[seq ()

[seq ()

[if (R1 > 1)

[rt]

[repeat (1)

[seq ()

[seq ()

[repeat (4)

[longfd]

[lt]]

[lt]]

[bk]]

[fd]]]

[repeat (6)

[fd]

[repeat (2)

[fd]

[lt]]]]

[if (R1 > 1)

[nop]

[repeat (1)

[repeat (10)

[fd]

[bk]]

[seq ()

[rt]

[fd]]]]]

[fd]]

6 states

—state 1 with 2 transitions

[R3 < 0] 2 [fd]

[R3 < 1] 2 [bk]

—state 2 with 1 transitions

[R3 < 1] 3 [bk]

—state 3 with 1 transitions

[R2 < 1] 4 [bk]

—state 4 with 1 transitions

[R3 < 1] 5 [bk]

—state 5 with 2 transitions

[R3 > 1] 6 [rt]

[R1 > 0] 5 [fd]

—state 6 with 2 transitions

[R1 > 0] 2 [rt]

[R1 < 1] 5 [longfd]

Table 1: A final evolved GP-tree and FSA (after trimming) for the environment
experiment fence from one evolutionary run.

43, 46, 47, 50, 73, 73, 73, 73, 75, and 98 generations. The fastest-evolved GP-tree and FSA are
shown in table 1.

The figure 8 shows the trajectories of best individuals from all generations for both represen-
tations. Characteristic features of the GP-tree trajectories are branching, and easy extensions,
while the FSA trajectories are good at making loops and traveling long distances where the
sensor conditions do not change.

Both representations evolved solutions for complex environment – an environment with
two starting locations, and 40 obstacles. Tree representation used 57 generations, while FSA
representation used 109 generations (both with population size 250, probability of mutation 0.7,
probability of crossover 0.5, strict brooding crossover with brood size 4, tournament selection
with size 4 and prob. 0.8, 15 non-duplicit elite individuals). Figure 9 shows the trajectories
of the best individuals in all generations for both representations. We can observe from the
figure that FSA representation evolved first an individual that was avoiding the obstacles from
the left, and only later preferred the direction towards the center. In comparison, the tree
representation approached the target location in gradual approximation, coming somewhat closer
each time. The tree representation encoded the trajectories more directly, extending them slowly
by successfully appended segments. The FSA representation encoded strategies, which either

16



 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 0  100  200  300  400  500  600

fit
ne

ss

generation

Task find_target (environment experiment_fence),  comparison of GP-tree and FSA representations

FSA representation
GP-tree representation

Figure 7: Average of the fitness of the best individuals in the “find target” task, environment
experiment fence, comparison from 13 FSA and 17 GP-tree runs. The maximum possible
fitness is 5000.

Figure 8: Example trajectories of evolved individuals using the GP-tree (left) and the FSA
(right) representations, task “find target”, environment experiment fence. The set of tra-
jectories resembles the internals of the representations: loops are easier to be formed in FSA
representations, the GP-tree representation that is subject of crossover and structural mutation
often takes a part of a solution and extends it with further trajectory segments.
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Figure 9: Trajectories of the best individuals from all generations in one evolutionary run, task
“find target” with complex environment. GP-tree representation is on the left-hand side, FSA
representation is on the right-hand side.

Figure 10: Trajectories of the best individuals from final generation in one evolutionary run,
task “find target” with complex environment. GP-tree representation is on the left-hand side,
FSA representation is on the right-hand side.

performed well – in a lucky case, or took the individual astray the route to the target. This is
supported also by the trajectories of the evolved best individuals in both representations (figure
10): the FSA individual arrives to the target and remains circling around it, while the GP-tree
individual arrives to the target and terminates. However, both runs failed to evolve a general
solution, the figure 11 shows their performance when started from 7 random starting locations.
It yet remains to see under what circumstances a general strategy could be evolved. We tried
evolution using all starting locations shown in figure 11, but we terminated the experiment after
several days of no progress.

In ten around environment with 10 starting locations and no obstacles, we expected a general
navigational strategy to arise. Both representations evolved solutions very quickly, examples are
shown in table 2. Most of the time, FSA representation reached a correct solution faster, but
the difference is not significant (see figure 12).

Figure 14 shows the performance of the evolved individuals from randomly selected runs
for 132 different uniformly distributed starting locations. The agents were restricted with 50
execution steps (same parameter was used during the evolution). The size of the circle corre-
sponds to the performance from the given starting location – the smaller the final distance of
the agent from the target the larger the circle. The lines correspond to the trajectories of the
agents. We can see that FSA performs better, because the execution steps are more powerful:
each execution step corresponds to a single state transition, when the agent either performs a
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Figure 11: Performance of the best individuals from final generation in one evolutionary run
when started from 7 other starting locations, task “find target” with complex environment.
Small crosses depict the final location the individual achieved. GP-tree representation is on the
left-hand side, FSA representation is on the right-hand side.
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Figure 12: Performance of the FSA and GP-tree representations on task “find target”, environ-
ment ten around. Average of 25 (GP-tree) and 23 (FSA) runs. FSA individuals quickly learn
to arrive close to the target, but take longer time to fine-tune the solution to arrive exactly to
the target location than GP-tree individuals.
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2 states
—state 1 with 2 transitions
[R3 < 0] 2 [longbk]
[R3 > 1] 2 [fd]
—state 2 with 2 transitions
[R3 > 1] 2 [fd]
[R2 > 0] 2 [lt]

[repeat (4)
[while (R2 < 1)

[if (R2 < 0)
[nop]
[while (R3 < 1)
[rt]
[fd]]]

[nop]]
[lt]]

Table 2: A final evolved GP-tree and FSA (after trimming) for the environment ten around

from one run of simple “bit collect” task.

Figure 13: Trajectories of the best individuals from final generation in one evolutionary run,
task “find target” with ten around environment. GP-tree representation is on the left-hand
side, FSA representation is on the right-hand side.

move, or a turn. In the GP-tree representations execution steps correspond both to executing
the nodes containing terminals and non-terminals. If the number of execution steps was not
restricted, both representations reached target in an optimal way from any location.

We have experimented with both flavors of the “bit collect” task: an easy version where the
holes (zeros) in the input word need to be filled with ones, and a much more complex one, where
the holes need to be “moved away”. In the easy version, both representations evolved correct
solutions quickly, although the FSA representation was quicker on average, see figure 15.

The difference of performance is larger in the more complex version of the task, see figure
16. None of the runs evolved correct solution in 600 generations. A correct solution required the
general strategy to be acquired – that is repeatedly search the input word for a hole, then move
or propagate it to the end or the start of the input word. This strategy is difficult to discover in
approximating steps. Evolved solutions were thus typically only estimating an average number of
holes to be compensated for. Thus, we have still not sufficiently answered the question whether
the GP-tree or FSA representation is more successful in acquiring [this kind of] algorithmic
solutions, this remains for future investigations, the task was either easy or too difficult for
both.

The task (abcd)n, proved to be a challenging one for both representations. The programs
replacing the whole input word with the same symbol quickly appeared scoring high as they
filled 25% of tape slots correctly. Gradual modification of this dominant strategy appeared to
be non-trivial, because our computational model requires the program to first write the symbol
and then move to the next tape slot with a separate instruction. Thus producing an individual
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Figure 14: Trajectories and performance of best individuals from final generation in one evolu-
tionary run, task “find target” Trajectories of the best individuals from final generation in one
evolutionary run, task “find target” with ten around environment, starting locations that were
not used in training. GP-tree representation is on the left-hand side, FSA representation is on
the right-hand side.
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Figure 15: Performance of the FSA and GP-tree representations on simple version of task
“bit collect”. Average of 19 (GP-tree) and 22 (FSA) runs. The programs were presented
20 input words of length 5 to 30, containing about 75% of ones, and were allowed to make
at most 200 execution steps. Other parameters: population size: 250, prob. crossover: 0.5,
brooding crossover (number of non-strict broods 3, 30% of training samples used for brooding),
combining crossover (GP-trees): 0.25, prob. mutation: 0.7, 7 elite individuals, tournament se-
lection (tournament size 4, probability 0.8), max. GP-tree depth: 12, max. number of FSA
states/transitions: 22/10, FSA shuffle mutation: 0.4.
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Figure 16: Performance of the FSA and GP-tree representations on more complex version of
task “bit collect”. Average of best individuals in each generation from 9 (GP-tree) and 13 (FSA)
runs. Other parameters were the same as in the simple version of the task, we terminated the
runs after 600 generations if the solution did not evolve.

that alternates two symbols already requires 4 correctly-tuned transitions, while filling with one
symbol needs only two. GP-tree representation performed somewhat better on this task, see
figure 17. The while non-terminal used in GP-trees is very powerful in this task. The programs
need to keep writing the repeated sequence and moving right while there is a non-zero symbol
in the input. Only 17 out of 23 FSA runs (74%) evolved a correct solution, while 23 out of 25
GP-tree runs (92%) succeeded within 2000 generations. The remaining 2 GP-tree runs placed
only 2 symbols incorrectly, while the incorrect FSA erred on 7–14 symbols. The table 5 shows
the shortest evolved GP-tree and FSA, they are both easy to trace and understand.

The task switch is an example, where state representation outperforms the GP-tree repre-
sentation, and here we have performed several experiments. We started with experiments with
four symbols A,B,C,D, however, we found the task to be too difficult – none of the GP-tree
runs found anything better than “doing nothing” solution, and only 3 out of 10 runs with FSA
representation found a complete solution within 2000 generations, see figure 18. Thus we re-
verted to a simpler version of the task with 3 symbols A,B,C. Figure 19 shows the best fitness
progress for both representations. The convergence varied very much – the fastest run found
solution after 77 generations, the slowest after 1887 generations, and on average the solution was
found after 594 generations (median 383). One possible explanation of this local-optimum traps
could be our using of the fast-converging tournament selection (we used tournament size 2, and
probability of selecting winning individual 0.8), however, since fitness-proportionate selection
seems to perform worse, and since all runs eventually evolved a target solution, we did not try
to replace it with different selection mechanism [yet]. How to escape these local optima remains
for future studies.

With one exception, all runs with the FSA representation evolved a correct solution9, while
no runs with the GP-tree representation found a correct solution, both within 2000 generations.

9In one run, the evolved solution produced usually no errors, but still failed on some input strings.

22



6 states

—state 1 with 5 transitions

[R1 == 1] 2 [write2]

[R1 == 5] 2 [right]

[R1 == 3] 3 [write2]

[R1 == 2] 2 [right]

[R1 == 4] 2 [right]

—state 2 with 3 transitions

[R1 == 5] 1 [write4]

[R1 == 1] 4 [write4]

[R1 == 2] 4 [right]

—state 3 with 6 transitions

[R1 == 0] 3 [left]

[R1 == 4] 2 [write3]

[R1 == 2] 2 [write2]

[R1 == 5] 2 [left]

[R1 == 3] 2 [right]

[R1 == 1] 3 [write5]

—state 4 with 5 transitions

[R1 == 3] 1 [done]

[R1 == 5] 1 [right]

[R1 == 2] 5 [right]

[R1 == 1] 6 [write4]

[R1 == 4] 5 [right]

—state 5 with 1 transitions

[R1 == 1] 4 [write5]

—state 6 with 3 transitions

[R1 == 2] 1 [write2]

[R1 == 4] 3 [write3]

[R1 == 0] 6 [right]

[while (R1 == 1)

[while (R1 == 1)

[seq ()

[while (R1 == 1)

[seq ()

[write2]

[seq ()

[right]

[write3]]]

[seq ()

[right]

[write4]]]

[seq ()

[right]

[write5]]]

[right]]

[right]]

Table 3: A final evolved GP-tree and FSA (after trimming) for the environment ten around

from one run of “abcdn” task.
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Figure 17: Performance of the FSA and GP-tree representations on task “abcdn”. Average of
25 (GP-tree) and 23 (FSA) runs. The programs were presented with input word containing
32 ones, and had 150 execution steps for writing the output word. Population size 300, prob.
crossover 0.6, 15 strict-elite individuals. Other parameters were the same as in the “bit collect”
task, we terminated the runs after 2000 generations if the solution did not evolve.

All parameters common for both representations were the same. The smallest evolved FSA
contained four states, but used only three, and it is shown at the figure 20 after pruning re-
dundant transitions and state. The distributions of the sizes of the best individuals in the final
generations and their useful parts are shown in table 4. In our runs, we did not prune the FSA
during the evolution in order to keep the possibly reusable genetic material in the states that
are not reachable from the starting state.

Even though this task has been designed with having the FSA representation in mind, we
believe that many tasks in various domains, including autonomous robot control, may have
similar structure. We believe and our results suggest that the GP-tree and FSA representations
are to high degree complementing each other. Tasks where FSA perform well may be difficult
for GP-tree representation. This hypothesis, however, needs to be studied in more depth, and
verified on more cases.

A win/win compromise could be hybrid representations – either GP-trees with state machines
in the nodes, or state machines with GP-tree code on the state transitions, or inside of the states.
The choice between the two should again depend on the task structure.

We observe and conclude that the tasks where FSA representation is suitable deal with
processing streams of data, where chunks of data of the same type repeat in many instances,
and where the sequence of interactions of the evolved program with the input contains specific
patterns and reactions. In this context, it would be very interesting to compare the performance
against other representations. For instance, Benson [5] for the purposes of automatic target
detection classification problem developed EMMA representation, which is a FSM that contains
GP-trees in each state. Also of a high relevance is the work of Koza [19] on automatically defined
functions.
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Figure 18: Average of the best fitness from 14 (GP), or 10 runs (FSA) on a switch task with
tournament (FSA), or fitness proportionate (GP-trees) selection, population size 300, prob. of
crossover 0.5, crossover brooding of size 3, with 0.3 starting locations used to evaluate brooding
individuals, probability of mutation 0.9, 15 elites, each individual evaluated on 10 random
strings, input word length randomly varying from 10 to 60 with maximum 10 continuous 0-
symbols, maximum number of GP-tree or FSA execution steps 300, FSA: pshuffle=0.4, number
of states 1–15, number of transitions: 1–15, GP: pcross combine=0.25, maximum tree depth=15.
The number of evaluations is proportional to the generation number. The error bars show the
range of fitness progress in all runs.

total number of states FSA count
4 1
6 1
7 1
8 4
10 6
11 1
12 4
13 2
14 3
15 11

number of reachable states FSA count
3 2
4 1
5 2
6 5
7 6
8 6
9 5
10 3
11 2
12 1
13 1

Table 4: The number of states in the evolved FSA (left) and the number of states that are
reachable (right) in the 34 runs of the switch task with three symbols.
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Figure 19: Average of the best fitness from 15 (GP), or 34 runs (FSA) on a switch task with
tournament selection, population size 300, prob. of crossover 0.5, crossover brooding of size 3,
with 0.3 starting locations used to evaluate brooding individuals, probability of mutation 0.9,
15 elites, each individual evaluated on 10 random strings, input word length randomly varying
from 10 to 60 with maximum 10 continuous 0-symbols, maximum number of GP-tree or FSA
execution steps 300, FSA: pshuffle=0.4, number of states 1–15, number of transitions: 1–15, GP:
pcross combine=0.25, maximum tree depth=15. The number of evaluations is proportional to
the generation number. Also notice that due to the randomness of the testing input strings, the
performance in the succeeding generation can decrease, even though the quality of the individual
remains or even increases. The error bars show the range of fitness progress in all runs, notice
that the partial overlap is only due to the randomness of strings, but the evolved individuals in
all FSA runs outperform those with GP-trees.

21 4

0, write3

1, write1

2, write2

3, write3

0, write2

1, right

2, write2

3, write3

−1, left

0, write1

2, right

1, write1

3, right

Figure 20: The best evolved FSA in the switch task with three symbols.
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Figure 21: Average of the best fitness from 21 (incremental) and 10 (non-incremental) runs on
a 4-symbol switch task with FSA representation and tournament selection, population size 300,
prob. of crossover 0.5, crossover non-strict brooding of size 3, with 0.3 starting locations used to
evaluate brooding individuals, probability of mutation 0.9, 15 elites, each individual evaluated
on 10 random strings, input word length randomly varying from 10 to 60 with maximum 10
continuous 0-symbols, maximum number of execution steps 300, pshuffle=0.4, number of states
1–15, number of transitions: 1–15, The number of evaluations is proportional to the generation
number.

Incremental evolutionary experiments

We were not satisfied with the low performance on the 4-symbol version of the “switch” task,
and studied if it could be evolved incrementally – starting with simpler task and when solved,
increasing the task difficulty, and optionally modifying the set of terminals.

We started with a simple idea of first evolving “switch3” (using the write1--3 terminals)
and then proceeding to “switch4” by adding the write4 terminal, and modifying the fitness
function and input words generator. We wanted to verify if the number of evaluations required
for evolving the complete solution will be less than in a non-incremental “switch4” task. We let
the evolution proceed in the first step for 30 extra generations after the solution has been found
in order to optimize it and spread more in the population. Figure 21 compares the incremental
and non-incremental runs: the line for the first incremental step plots the average from all runs
– if the run proceeded to the 2nd step, we assume the final fitness from that run in subsequent
generations; the line for the second incremental step averages in each generation all the runs
that already proceeded to the second step. The evolution progressed to the second incremental
step in generations 1228, 563, 797, 172, 307, 1749, 616, 1192, 229, 924, 918, 1071, 681, 126, 728,
1476, 1679, 852, 327, 556, 788.

From the chart, we can read that the incremental runs did not perform better in this case,
and in fact the correct solution was found only in 4 out of 21 runs within 2000 generations. Our
analysis attempts to explain this as follows: in the incremental runs, we forced the evolution to
progress in one particular direction (evolve “switch3” first). However also the fitness function in
the non-incremental case rewarded the partial “switch3” solutions. Thus the selection pressure
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Figure 22: Average of the best fitness from 11 (incremental) and 10 (non-incremental) runs on
a 4-symbol switch task with FSA representation and tournament selection. Same parameters as
in 3 to 4 incremental task.

in the direction of such partial solutions was similar in both cases. However, non-incremental
cases allowed and rewarded also other partial solutions that solved other 75% of the complete
task, and these partial solutions might lay on shorter or simply different path to the complete
solution, omitting to pass through the complete “switch3” solution “gateway”. This disadvan-
tage exceeded the advantage of dealing only with write1--3 terminals in the first incremental
step – most of the difficulty lay in the final step, where all four symbols were involved.

In the following experiment, we organized the evolution into four incremental steps – requir-
ing first evolution of task dealing with one, then two, three, and finally four symbols. From the
above analysis, we could expect that the runs would not outperform the non-incremental ones.
Figure 22 confirms this. The transitions to the next incremental step occurred in 31st generation
after first step, i.e. solution was found in the first generation, 71th–113th generation after second
step, and 183rd–958th (avg. 517) generation after third incremental step.

In the last two experiments, we considered other options for helping the evolutionary process
in order to make the incremental method more efficient. After each incremental step, we have
frozen the evolved best individual that was a complete and correct solution to the task in that
step, and continued the evolution. In later steps, more states and transitions were added, keeping
the frozen part unmodified, and dominant. By dominant we mean that the frozen transitions in
each state were placed on top, and were chosen first. As a consequence, the later evolutionary
step could not change the frozen evolved behavior, only add transitions and states that reacted
to new input – novel symbols that were not part of input word or terminal set in earlier steps.

On the other hand, in the first of the two experiments, once a new symbol appears on the
input, the FSA could enter another state and react to the old symbols in a different way, and
thus disturb the frozen behavior strongly. In other words, the terminal set in later incremental
steps still included the terminals to write the old symbols, for instance, the terminals write1,

write2 in the third step.
In the second of the two experiments, the terminal sets in respective incremental steps

contained only the new symbol – thus write1 was only possible during the first step, write2
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Figure 23: Average of the best fitness from 10 runs on a 4-symbol switch task with FSA rep-
resentation and tournament selection. Individuals were frozen at the end of each step, and full
set of write-terminals was available. Same parameters as in 3 to 4 incremental task.

during the second step, write3 in the third, and write4 in the last.
In both experiments, before freezing the FSA, we have removed all unused states and tran-

sitions, and we always increased the number of allowed states when proceeding to the next
incremental step. We have also changed the number of generations used to fix the solution after
it has been evolved in each step to be more gradual, in particular e = (10 · s), where e is the
number of extra generations added in step s.

Figure 23 shows an evolutionary progress from the first of the two experiments. The tran-
sitions to the next incremental step occurred in 11th, 36th–54th and 82nd–211th (avg. 132)
generation. Table 5 shows the evolved frozen individuals from the run that evolved after lowest
number of generations.

As expected, the second of the two experiments evolved faster, the performance of the best
individuals in each generation is shown in figure 24. The transitions to the next incremental
step occurred in 11th, 32nd–46th, and 65th–298th (avg. 132) generation. Both of the last two
incremental experiments performed significantly better than the non-incremental experiment.

Finally, we run the “dock” experiment, which was at the very start of the motivation for
this work. We tried several different angles for one turning step, and different moving steps.
Finally, we attempted to evolve a solution with turning angle=90o, short moving step=20,
and long moving step=400. Since we have only one installation of the simulator of the remotely-
operated robotics laboratory, and the simulator performs only couple of times faster than the
real robot, one evolutionary run takes several days. We therefore set to implement a simulator
of a simulator directly as part of EI, speeding up the runs by several orders of magnitude. We
ran the algorithm with both representations for 2000 generations, with population size 300,
tournament selection (4, 0.8), 10 different elite individuals, strict brooding crossover with 2
broods, 0.5 crossover probability, 0.7 mutation probability. Figure 25 shows that the GP-tree
representation performed better than the FSA representation.

Here, another important difference between our implementations of the GP-tree and FSA
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step1: 1 states

—state 1 with 2 transitions

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

step 2: 3 states

—state 1 with 4 transitions

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

[R1 == 2] 2 [right]

[R1 == -1] 2 [left]

—state 2 with 4 transitions

[R1 == 1] 3 [done]

[R1 == -1] 1 [left]

[R1 == 2] 3 [write2]

[R1 == 0] 3 [write2]

—state 3 with 3 transitions

[R1 == 2] 3 [right]

[R1 == 0] 1 [left]

[R1 == 1] 3 [right]

step3: 4 states

—state 1 with 5 transitions

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

[R1 == 2] 2 [right]

[R1 == -1] 2 [left]

[R1 == 3] 3 [right]

—state 2 with 5 transitions

[R1 == 1] 4 [done]

[R1 == -1] 1 [left]

[R1 == 2] 4 [write2]

[R1 == 0] 4 [write2]

[R1 == 3] 4 [right]

—state 3 with 4 transitions

[R1 == 2] 2 [left]

[R1 == 3] 4 [right]

[R1 == 0] 4 [write3]

[R1 == 1] 2 [write3]

—state 4 with 4 transitions

[R1 == 2] 4 [right]

[R1 == 0] 1 [left]

[R1 == 1] 4 [right]

[R1 == 3] 4 [right]

step4: 5 states

—state 1 with 6 transitions

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

[R1 == 2] 2 [right]

[R1 == -1] 2 [left]

[R1 == 3] 3 [right]

[R1 == 4] 4 [right]

—state 2 with 5 transitions

[R1 == 1] 5 [done]

[R1 == -1] 1 [left]

[R1 == 2] 5 [write2]

[R1 == 0] 5 [write2]

[R1 == 3] 5 [right]

—state 3 with 5 transitions

[R1 == 2] 2 [left]

[R1 == 3] 5 [right]

[R1 == 0] 5 [write3]

[R1 == 1] 2 [write3]

[R1 == -1] 2 [right]

—state 4 with 5 transitions

[R1 == 4] 2 [write1]

[R1 == 1] 2 [done]

[R1 == -1] 2 [write1]

[R1 == 3] 2 [write4]

[R1 == 0] 2 [write4]

—state 5 with 5 transitions

[R1 == 2] 5 [right]

[R1 == 0] 1 [left]

[R1 == 1] 5 [right]

[R1 == 3] 5 [right]

[R1 == 4] 4 [right]

Table 5: Evolved frozen individuals in the incremental steps 1–4.
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Figure 24: Average of the best fitness from 10 runs on a 4-symbol switch task with FSA repre-
sentation and tournament selection. The incremental runs had restricted set of terminals. The
curve from the previous experiment (full set of terminals) is also plotted for comparison. Same
parameters as in 3 to 4 incremental task.
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[seq
[repeat (6)

[longbk]
[repeat (10)
[longfd]
[rt]]]

[repeat (7)
[longfd]
[repeat (8)
[longfd]
[repeat (3)

[longbk]
[bk]]]]]

Table 6: The best evolved GP-tree solution in the “dock” task when the robots are allowed to
push towards wall without penalty.

representations comes to importance. The GP-tree representation can execute commands in a
predefined sequence ignoring all sensor readings. On the contrary, each state transition in the
FSA representation is triggered only when its transition condition is satisfied – i.e. a particular
register contains the required value, i.e. the sensor reading gives that required value. This has
two consequences.

First, the FSA representation is more likely to evolve solutions, where the sensitivity to
environmental events is important. If in addition there is a possibility of approximating the
solution to a large degree using a predefined deterministic sequence of commands, the FSA
solutions may achieve a better quality (utilize the sensors instead of deterministic sequences).
In this particular experiment, one of the GP-tree representation evolved the solution shown in
table 6.

This solution is exploiting the feature of robots being allowed to push against the wall
without punishment, which helps them in aligning. The robot aligns itself at the bottom edge
of the rectangular area first: it travels backwards, more than the available space allows. Thus,
regardless of the y-coordinate of its starting location, it always becomes ”horizontally” aligned
with other runs started from other starting locations. Next, the robot travels forward to acquire
the correct y-coordinate, and then turns right, where again, it travels all the way forward, until
it pushes against the right edge, and becomes aligned also ”vertically”, having the same x-
coordinate regardless the x-coordinate of its starting location. Finally, the robot travels back to
acquire the requested target location.

The second consequence regards the set of registers available for the FSA representation in
a particular experiment. In cases, when the task might require deterministic sequences that do
not depend on the sensory input, the set of registers that are used in FSA transitions should
include constant registers in addition to those mapped to sensor values. In that way a set of
states can be connected by transitions, which are always satisfied and a deterministic piece of
behavior can be evolved. However, it is likely that even if the constant registers are available,
the GP-tree representation is more suitable for evolving deterministic sequences of commands
thanks to the seq non-terminal.

Finally, we aimed at finding solutions that are not utilizing the ”aligning on the border”
feature, because this may contribute to a mechanical damage of the wheels and engines of real
robots. We therefore ran the experiment again, giving a penalty (qh = 3) for each movement,
which collided with one of the edges of the rectangular area. The overall performance of in-
dividuals evolved in 2000 generations dropped slightly, and typical solutions were unable to
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15 states (unused states not shown)

—state 1 with 1 transitions

[R1 == 1] 3 [longfd]

—state 2 with 1 transitions

[R1 == 1] 11 [longfd]

—state 3 with 1 transitions

[R1 == 1] 6 [stopON]

—state 5 with 2 transitions

[R1 == 0] 2 [longfd]

[R1 == 1] 7 [longfd]

—state 6 with 1 transitions

[R1 == 1] 12 [bk]

—state 7 with 2 transitions

[R1 == 1] 8 [longbk]

[R1 == 0] 5 [stopOFF]

—state 8 with 1 transitions

[R1 == 1] 5 [longfd]

—state 10 with 1 transitions

[R1 == 1] 3 [rt]

—state 11 with 1 transitions

[R1 == 1] 10 [longfd]

—state 12 with 1 transitions

[R1 == 1] 5 [fd]

[repeat (1)

[repeat (3)

[longfd]

[seq ()

[lt]

[repeat (6)

[longbk]

[stopON]]]]

[repeat (1)

[repeat (2)

[seq ()

[rt]

[repeat (4)

[longfd]

[longfd]]]

[if (R1 == 0)

[done]

[stopOFF]]]

[seq ()

[seq ()

[lt]

[longfd]]

[longfd]]]]

Table 7: Selected evolved individuals with the best performance for the “dock” task. The FSA
individual is also shown in the figure 26.

utilize sensors, only moving the robot somewhere close to the target, see figure 27. However,
in few cases, the solutions did utilize the sensors and successfully navigated inside of the target
square, FSA representation finding a better solution than the GP-tree representation, see figure
28. Individuals for both representations are shown in table 7 (GP-tree representation individual
achieved fitness 9.67399 and FSA representation individual achieved fitness 9.77089). At the
very end of the experiments, we have performed an experiment with a real robot running in
the remotely-controlled laboratory. The evolved FSA individual from table 7 has been run on
real robot using the replay feature of the EI software. Robot successfully navigated to target
in all of the 10 performed runs when the initial heading was correct. However, when the power
of the battery dropped below critical level, the sensors were returning incorrect values, and the
performance was compromised (the sensors operate well only with fresh battery – in the future
versions of the robot, we therefore recommend to separate the power source for the motors
and the sensors. A video of screen recording is available at the remotely-operated laboratory
homepage [25]. The initial and target locations from one run are shown in figure 29.

Role of the crossover operator and selection methods

We were curious about the contribution of the crossover operator to the evolutionary progress.
We repeated the “switch3” experiment with the probability of crossover equal to zero, thus
relying only on the structural mutation operators. Figure 30 plots the average of the best
fitness for both types of runs, with and without the use of crossover. The performance is
approximately the same when plotted against the generation number, however, the runs with
crossover used extra evaluations due to the use of brooding crossover (num evaluations =
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1 6 123
longfd

longfd

longfdlongfd

longfd

longfdlongbk

fd

rt

bk

stopOFF

stopON

transition when robot did not stop on line or "stop is OFF"

transition when robot stopped on line because "stop was ON"

no transition, FSA terminates if the robot stopped on line

Figure 26: A FSA that evolved in the “dock” task. The robot first moves forward in the loop
of states 5–7–8 until it arrives to line, then it moves forward three more times (states 2–11–10),
turns right, and proceeds again until it stops at line (the left line of the target square). Next, it
moves into the square (states 2–11–10 again), turns right facing now down, and finally the FSA
terminates when the robot attempts to move back in the state 6 when it encounters a line (top
line of the target square as the robot is facing down).

Figure 27: Trajectories for the evolved individuals in typical runs: GP-tree representation on
the left-hand side, FSA representation on the right-hand side. Starting locations are marked
by a small cross in a circle, and final positions are shown by a small cross. Trajectories for 4
starting locations are shown. The GP-tree individual simply moves forward and right the same
distance regardless its starting location. The FSA individual loops several times in a square
and terminates in the corner closest to the target, thus exploiting the feature of terminating
the individual after certain number (80) of steps – i.e. the individual correctly times its loop
that consists of several forward and backward movements (only the resulting trajectory can be
seen in the figure, not the individual movements). The robot on the bottom-right is shown for
illustration: it is using a downwards-oriented light sensor that detects black line. The sensors
are placed both at the very front and the very back of the robot.
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Figure 28: Trajectories for the evolved individuals in selected runs for both representations. The
4 starting locations are marked by a small cross in a circle and the final positions are marked
by a small cross. Individuals in both representations utilize the light sensor, however the FSA
solution is more clean – moving straight in the middle between the two horizontal lines, turning
right and finding the target square. The GP-tree representation is approaching the target in a
stair-like movement and faces difficulties to align with the target location correctly when the
sensoric experiences in the final segments of the trajectories vary.

Figure 29: Initial (left) and target (right) situation for an experiment performed with real robot
using the best evolved FSA shown in table 7.
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Figure 30: Role of the crossover operator for the FSA representation, experiment “switch” with
3 symbols. Average from 20 (no crossover) and 34 (switch3) runs.

population size · pcross · 2 · crossover brooding · num starts · cross brood num starts q). This
suggests that the mutation operators are sufficient for evolutionary progress, and/or that too
few reusable and easy-to-combine modules emerged throughout the evolution. This, however,
could be the case in other tasks or in general, and therefore we have used the crossover operator
in our experiments, believing that a richer set of operators should lead to higher potential of
the algorithm even at the cost of slower convergence rate.

In the following experiment, we compared the performance of two different evolutionary
selection methods: tournament selection and fitness-proportionate selection. Figures 31 and 32
show the performance on two different tasks and two different representations. In all comparisons
we performed, the tournament selection converges faster and leads to either best or better final
evolved solution.

We have also performed several experimental runs with the HMM representation on the
“abcdn” experiment, however we either did not find a correct set of parameters, or the repre-
sentation was not capable of better performance than the FSA representation. This remains for
the further study.

Transferring the experiments to real robot

The main purpose of our research is to study methods for creating programs for real robots. We
have therefore evaluated the evolved individuals on real robots with the same morphology and
sensoric equipment. Obviously, the nature of experiments is simple in this case, however, it is
still an important start and test of this research and educational platform.

6 Conclusions and Future Work

This work touches several important issues of artificial evolution with direct program represen-
tations, in particular GP-trees and FSA. While the GP-tree programs tend to have a relatively
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Figure 31: Comparison of two selection methods, difficult version of the experiment “bit collect”
and FSA representation. Average from 13 runs (both). The tournament selection used tourna-
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 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 0  100  200  300  400  500  600

fit
ne

ss

generation

Comparison of fit.prop. and tournament selection (experiment_fence)

Tournament selection
Fitness-proportionate selection

Figure 32: Comparison of two selection methods on experiment “find target” with environ-
ment experiment fence and the GP-tree representation. Average from 14 (fit-prop) and 17
(tournament) runs. Same parameters as in the comparison in experiment “bit collect”.
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Figure 33: Comparison of two selection methods on experiment “find target” with environment
ten around and the GP-tree representation. Average from 20 (fit-prop) and 12 (tournament)
runs. Same parameters as in the comparison in experiment “bit collect”.

linear path of execution, the FSA are powerful in representing repeated and possibly irregular
patterns and behaviors that react to percepts and possibly launch different mode (or state) of
operation. The internal topology of the representations corresponds 1) to the topology of inter-
actions of the evolved solution with its environment – as demonstrated on the “switch” task and
2) to the topology of the space searched by the evolutionary algorithm – as demonstrated by the
“find target” task. On several sample tasks, we study the performance of both representations,
and confirm that both representations can outperform one another, depending on the structure
of the interactions the program is to perform in the particular task. Further comparisons may
involve automatically defined functions of Koza [19], and hybrid approaches that combine both
FSA and GP, for instance [5].

Another important difference of the GP-tree and FSA representations is that the FSA indi-
viduals require some condition to be satisfied between performing any two actions. This is not
the case in the GP-tree representation, especially when a seq non-terminal can be used. FSA
representation can be compensated by introducing tautology transition conditions, however, it
still remains more sensitive to sensoric inputs (values of the registers).

Some tasks prove to be too difficult for an evolutionary algorithm, and further guidance might
improve the chances for discovering a correct solution. Incremental evolution is a possible method
for such guidance. In this work, we show that using incremental evolution requires careful
preparation and understanding of the evolutionary process. Our experimental runs confirm that
making the evolutionary algorithm incremental can both help and hinder the success rate of the
evolutionary algorithm. Usually, incremental evolution introduces an extra bias, requiring the
evolution to pass through stages that could possibly be avoided in a single run. This incremental
bias must be compensated by larger benefits resulting from evolving incrementally, in favor of
faster and easier progress of the evolution, otherwise the incremental method performs worse.

The future work could focus on further elaboration on the abilities of FSA-based represen-
tations, and task-characterization guidelines that may suggest suitable genotype representation.
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This would be especially interesting in the context of incremental evolution. In the related work
section, we mention several possible modifications to the set of evolutionary operators and setup
of the FSA evolution, comparing those to our implementation would also be valuable. Deeper
investigations into less deterministic representations, such as probabilistic state automatons re-
main for future work.
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8 Appendix A – List of EI parameters

Universal parameters:

representation: genotype representation, one of tree, fsa, hmm
terminals: list of terminals
terminals p: list of terminals weights (proportional to their probability)
terminals args: definition of terminals arguments (list)
conditions: list of predicates
num registers: number of registers
max constant: global constant range (1-max constant)
max eval steps: maximum number of execution steps

Evolutionary parameters:

num elitism: number of directly copied best individuals
elite allow dups: if set to false, the directly copied individuals will be chosen

to be different
num generations: number of generations
pcross: probability of crossover
crossover brooding: number of crossover broods
cross brood num starts q: portion of the sample from the test cases that is used to

evaluate broods
pbrooding crossover: probability of using the brooding crossover
strict brooding: whether the outcome of brooding should provide different

fitness than both parent genotypes
pmutation: probability of mutation
population size: number of individuals in the population
selection: either tournament selection or

fitness proportionate selection

remove after select: if set to true, the individuals will be removed from old pop-
ulation after they are selected

normalize fitness: whether to scale the fitness to 0–1 interval and square it in
each generation

tournament size: size of the tournament if tournament selection is used
tournament selection p: probability of taking the winning individual in the

tournament selection

num starts: number of testing samples used by the objective function
fitness size q: penalty for the size of the genotype (to encourage shorter

genotypes)
evalsteps q: penalty for the number of execution steps (to encourage

faster-running programs)
log file name: string used for naming log file (together with time stamp)
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GP-tree representation:

nonterminals: list of non-terminals
nonterminals p: list of non-terminals weights (proportional to their probabil-

ity)
nonterminals args: definition of non-terminals arguments (list)
max genotype depth: maximum depth of GP-tree
pcross combine: probability of combining crossover
phomologic crossover: probability of homologic crossover

FSA/HMM representation:

transition condition: definition of transition arguments
pshuffle: probability of shuffle change-mutation (changes order of

transitions in a state)
min fsa states: minimum number of states
max fsa states: maximum number of states
min fsa trans: minimum number of transitions within one state
max fsa trans: maximum number of transitions within one state

HMM representation:

palterprob: probability of changing the weight of transition in change-
mutation

All with tape machine:

infinite tape: true or false
num ones min: minimum length of the input word
num ones max: maximum length of the input word

Experiment switch:

switch num symbols: whether we use symbols A,B,C, or A,B,C,D (3 or 4)
increment3to4: when set to true, the experiment will continue with 4 sym-

bols after reaching full performance for 3 symbols
max switch sequence len: maximum number of consecutive zeros between other sym-

bols on the input tape
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Experiment find target:

fitness hits q penalty for hitting an obstacle
find target fitness type how to compute fitness (1 – fraction, 2 – subtract from high

value)
target the target location to be reached
turning step number of degrees to turn left or right at once
moving step number of steps to move on short move commands
long moving step number of steps to move on long move commands
num obstacles number of obstacles
obstacles list of obstacles
starts list of starting locations
target shape shape of the target for visualization only
turtle shape shape of the robot for visualization only

Experiment dock:

turning step number of degrees to turn left or right at once
moving step number of steps to move on short move commands
long moving step number of steps to move on long move commands
lab images background images for all starting locations
targets target locations for all starting locations
starts list of starting locations
dock ip IP address of the simulator
dock port network port of the simulator

Experiment bit collect:

bit collect fill only version of task (true for simple version)
prob one probability of symbol 1 in the input word
max zeros maximum number of symbols 0 in the input word
holes q fitness penalty for remaining symbols 0
ones q fitness penalty for extra or missing symbols 1
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