Skip to main content

Feature Extraction for Surrogate Models in Genetic Programming

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

We discuss the use of surrogate models in the field of genetic programming. We describe a set of features extracted from each tree and use it to train a model of the fitness function. The results indicate that such a model can be used to predict the fitness of new individuals without the need to evaluate them. In a series of experiments, we show how surrogate modeling is able to reduce the number of fitness evaluations needed in genetic programming, and we discuss how the use of surrogate models affects the exploration and convergence of genetic programming algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. De Rainville, F.-M., Fortin, F.-A., Gardner, M.-A., Parizeau, M., Gagné, C.: DEAP: a python framework for evolutionary algorithms. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, pp. 85–92. ACM, New York (2012)

    Google Scholar 

  3. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol. Comput. 23(3), 343–367 (2015)

    Article  Google Scholar 

  4. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  5. Křen, T., Pilat, M., Neruda, R.: Evolving workflow graphs using typed genetic programming. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1407–1414, December 2015

    Google Scholar 

  6. Li, R., Emmerich, M., Eggermont, J., Bovenkamp, E., Back, T., Dijkstra, J., Reiber, J.: Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 2764–2771, June 2008

    Google Scholar 

  7. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests of randomized trees. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 431–439. Curran Associates Inc., Red Hook (2013)

    Google Scholar 

  8. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaśkowski, W., Krawiec, K., Harper, R., Jong, K.D., O’Reilly, U.-M.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, pp. 791–798. ACM, Philadelphia (2012)

    Google Scholar 

  9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)

    Google Scholar 

  11. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.-M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Prog. Evol. Mach. 14, 3–29 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Czech Science Foundation project no. P103-15-19877S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pilát .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Pilát, M., Neruda, R. (2016). Feature Extraction for Surrogate Models in Genetic Programming. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics