Elitism Reduces Bloat in Genetic Programming

Riccardo Poli
Department of Computing and
Electronic Systems
University of Essex
Colchester, UK

rpoli@essex.ac.uk

ABSTRACT

Elitism is commonly used in generational GP to ensure that the
best individuals discovered in a generation are not lost, and are
made available for possible further improvements to new genera-
tions. Using two GP systems and four problems, we show how
elitism reduces the growth of mean program size.

Categories and Subject Descriptors: 1.2.2 [Artificial Intelli-
gence]: Automatic Programming

General Terms: Algorithms, Performance
Keywords: Genetic Programming, Bloat, Elitism

1. INTRODUCTION

Elitism is a technique, commonly used in GP, where one or more
of the highest-fitness individuals are copied, unchanged, from one
generation to the next. The ratio N /M between the elite size, N, and
the population size, M, is called the elite fraction. In a recent study
of the evolution of robustness in GP, Piszcz and Soule [4] used
different degrees of elitism in one of their four sets of experiments
(Experiment 3, a symbolic regression problem with sin(x) as target
function). In that experiment they analysed how different levels of
elitism affected the robustness of the best-of-run individuals, and
found that the average size of such individuals decreased as the
elite fraction was increased from O to 1% in steps of 0.2%.

In this paper we extend this study and show that elitism modu-
lates the dynamics of the mean program size of a GP population
with two different GP systems and four different problems, using
elite fractions from O to 50%. We find that elitism often substan-
tially slows the rate of bloat [5] in the later generations of a run.

2. GP SYSTEMS AND PROBLEMS

Our first system is a linear generational GP system. It ini-
tialises the population by repeatedly creating random individuals
with lengths uniformly distributed between 1 and 100 primitives;
the primitives are drawn randomly (uniformly) from each prob-
lem’s primitive set. The system uses fitness proportionate selection
and crossover applied with a rate of 100%. Crossover creates off-
spring by selecting a random crossover point in each parent, taking
the first part of the first parent and the second part of the second
w.r.t. their crossover points. We used populations of size 1,000,
performing 100 independent runs. Runs lasted 100 generations.

With the linear GP system we used two families of test problems:
Polynomial and Lawn-Mower. Polynomial is a symbolic regres-
sion problem where the objective is to evolve a function which fits
a degree d polynomial of the form x + x> + --- + x4, for x in the

Copyright is held by the author/owner.
GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

Nicholas Freitag McPhee
Division of Science and
Mathematics
Univ. of Minnesota, Morris
Morris, MN, USA

mcphee@morris.umn.edu vanneschi@disco.unimib.it

1343

Leonardo Vanneschi
Department of Informatics,
Systems and Communication
University of Milano-Bicocca,
Milan, ltaly

range [—1,1]. Polynomials of this type have been widely used as
benchmark problems in the GP literature. In particular we con-
sidered degree d = 6, and we sampled the polynomial at the 21
equally spaced points x € {—1.0,—0.9,...,0.9,1.0}. We call the
resulting problem instance Poly-6. Fitness was the sum of the
absolute differences between target polynomial and the output pro-
duced by the program under evaluation over these 21 fitness cases.
For this problem we considered a primitive set including the fol-
lowing instructions: R1 RIN, R2 = RIN, Rl = Rl + R2, R2
Rl + R2,R1 Rl * R2,R2 Rl * R2, and Swap R1 R2. The
instructions refer to three registers: the input register RIN which is
loaded with the value of x before a fitness case is evaluated and the
two registers R1 and R2 which can be used for numerical calcula-
tions. R1 and R2 are initialised to x and 0, respectively. The output
of the program is read from R1 at the end of its execution.

Lawn-Mower is a variant of the classical Lawn Mower problem
introduced by Koza in [2]. As in the original version of the prob-
lem, we are given a square lawn made up of grass tiles. In particu-
lar, we considered lawns of size 10 x 10. The objective is to evolve
a program which allows a robotic lawnmower to mow all the grass.
In our version of the problem, at each time step the robot can only
perform one of three actions: move forward one step and mow the
tile it lands on (Mow), turn left by 90 degrees (Left) or turn right
by 90 degrees (Right). Fitness (to be minimised) was measured
by the number of tiles left unmowed at the end of the execution
of a program. We limited the number of instructions allowed in a
program to a small multiple of the number of tiles available in the
lawn (400 in these experiments).

For the experiments with tree-based GP we adapted Fraser and
Weinbrenner’s GPC++ so as to allow the use of elites of any size.
We considered two classical problems: the Ant problem and the
Even-5 Parity problem. In both cases we used the standard prim-
itives as described in [1], using populations of size 1,000. Runs
lasted 300 generations for Ant and 500 generations for Even-5
Parity. We used fitness proportional selection and Koza’s sub-
tree crossover applied with 100% probability. In all conditions we
performed 100 independent runs.

3. RESULTS

We ran all the configurations outlined in the previous section us-
ing six different elite fractions: 0%, 1%, 5%, 10%, 30%, and 50%
of the population.

Figure 1 shows the results we obtained with our linear GP sys-
tem on the Poly-6 symbolic regression problem for the different
elite percentages (all plots are averages over 100 independent runs).
The main thing to note here is that, while all systems behaved rather
similarly in the early generations, elitism seems to induce a reduc-
tion in the rate of bloat in the later generations, with the runs using
the bigger elites bloating more slowly than those with smaller elites
and than “no elite” case. By generation 100, the runs with < 10%

1200 : ; ,
no elitsm —+—
elite size=1% ---x---
elite size=5% ---*---

e:}te size:;g:ﬁ; & o

L elite size=20% —-=-— a 4

1000 elite size=30% --&-- g

elite size=50% - -e-- -

e
800 | &
8 ’
5
(E“ o
2 600 A S .'“,M‘"A
g 5
§ -
g
= '.".nﬁ‘
400 | B
o

200 22 4

60 70 80 90

ol ! I I I
40

|
50
Generations

100

Figure 1: Dynamics of mean program size in a linear GP system
solving the Poly-6 problem for different elite fractions.
4000

T - :
no elitsm —+—
elite size=1% -->--—
elite size=5% ---%---

3500 elite size=10% & ol

T

elite size=20% ——=—
elite size=30% ---o--
elite size=50% -- -o- -

3000

2500

2000

Mean program size

1500

1000

500

Generations

Figure 2: As in Figure 1 but for the lawnmower problem.

had average sizes that were nearly twice as large as those using 50%
elitism, for example. In the early generations we don’t see faster
growth in the presence of elitism because in symbolic regression
problems of the kind considered here, fitness values across the pop-
ulation have very high variance in the early generations. So, fitness
proportional selection is more aggressive than truncation selection.
Essentially the same can be seen for the Lawn-Mower problem, as
illustrated in Figure 2, where initially there is a strong correlation
between length and fitness.

For tree-based GP, both for the Ant problem (Figure 3) and for
the Even-5 Parity problem (Figure 4) we see that, when the pop-
ulation settles into a stagnating phase, the rate of bloat is very
markedly reduced by increasing the elitism in the system, with elite
fractions of 30% and 50% essentially behaving almost identically.

Only one case appears to deviate from what we expected. This
is represented by the runs of the Even-5 Parity problem where
no elitism was used. These runs (see Figure 4) appear not to bloat
at all, contrary to our expectation that the no-elitism case would be,
in general, the fastest growing. The reason for this is very simple.
In this problem, with a population of 1,000 individuals, most (if not
all) programs in the first generation satisfy 16 out of the 32 fitness
cases (e.g., see [3]). When an improvement is found, it typically is
a program that satisfies one extra case. With fitness proportionate
selection this produces a very small increase in the selection prob-
ability for such a program. Since we use 100% crossover, with-
out elitism this improved program is very likely to be destroyed
at the next generation. Its offspring (which statistically might be
slightly longer then average) are likely to have the same fitness

1344

Ant Problem, Popsize=1000

12000

no elite R ' ' ' '
elite=1% ---x---
elite=5% ---*---
elite=10% &
10000 | elite=30% — -~]
elite=50% ---&--
XX
8000 - el
2
3
13
s
S 6000 [g
o
§
=
4000 g
=l=lzle)
2000 - R
o s s
0 50 100 150 200 250 300
Generations
Figure 3: Dynamics of mean program size in a tree-based GP
system solving the Ant problem for different elite fractions.
Even-5 Parity Problem, Popsize=1000
12000 : : : T
|nt° e1m/e 28
ite=1% X
altec5% % X
elite=10% & X
10000 + elite=30% —-#-— Na g
elite=50% ---&--)2(
8000 - g
I
3
13
s
g 6000 -
o KK
=
4000 g
2000 | noBa)
o ZamsssusEEERiTETe
0 hannnnf 8RR } L ;
0 100 200 300 400 500

Generations

Figure 4: As in Figure 3 but for the Even-5 Parity problem.

as the rest of the population. So, they are not likely to be rese-
lected. In short, there is very little correlation between size and
fitness, so many generations are needed before significant progress
can be made on the problem and bloat can really set in. Eventu-
ally it does so; notice the small rise in the very bottom right corner
of the figure, which corresponds to an average size of 67.1 nodes.
The average size in the initial population was 15.3. We conjecture
that if given many more generations eventually populations without
elitism would overtake those with elitism.

In conclusion, our results make it clear that elitism can have a
powerful effect on bloat, generally reducing the level of bloat in the
later generations, with larger elite sizes typically controlling bloat
more strongly.

4. REFERENCES

[1] J.R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts, May 1994.

W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer,
Berlin, Heidelberg, New York, Berlin, 2002.

A. Piszcz and T. Soule. Dynamics of evolutionary robustness. In M. Keijzer et
al., editor, GECCO 2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, volume 1, pages 871-878, Seattle, Washington,
USA, 8-12 July 2006. ACM Press.

R. Poli, W. B. Langdon, and N. E. McPhee. A field guide to genetic
programming. Published via http://lulu.comand freely available at
http://www.gp-field-guide.org.uk,2008. (With contributions by J. R.
Koza).

[2]
[3]
[4]

[5

