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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Engineering and the Environment
SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

Applications and Enhancements of Aircraft Design Optimization

Techniques

by Stephen R. Powell

The aircraft industry has been at the forefront in developing design optimization strate-
gies ever since the advent of high performance computing. Thanks to the large computa-
tional resources now available, many new as well as more mature optimization methods
have become well established. However, the same cannot be said for other stages along
the optimization process - chiefly, and this is where the present thesis seeks to make its
first main contribution, at the geometry parameterization stage.

The first major part of the thesis is dedicated to the goal of reducing the size of the
search space by reducing the dimensionality of existing parameterization schemes, thus
improving the effectiveness of search strategies based upon them. Specifically, a re-
finement to the Kulfan parameterization method is presented, based on using Genetic
Programming and a local search within a Baldwinian learning strategy to evolve a set of
analytical expressions to replace the standard ‘class function’ at the basis of the Kulfan
method. The method is shown to significantly reduce the number of parameters and
improves optimization performance - this is demonstrated using a simple aerodynamic
design case study.

The second part describes an industrial level case study, combining sophisticated, high
fidelity, as well as fast, low fidelity numerical analysis with a complex physical exper-
iment. The objective is the analysis of a topical design question relating to reducing
the environmental impact of aviation: what is the optimum layout of an over-the-wing
turbofan engine installation designed to enable the airframe to shield near-airport com-
munities on the ground from fan noise. An experiment in an anechoic chamber reveals
that a simple half-barrier noise model can be used as a first order approximation to the
change of inlet broadband noise shielding by the airframe with engine position, which
can be used within design activities. Moreover, the experimental results are condensed
into an acoustic shielding performance metric to be used in a Multidisciplinary Design
Optimization study, together with drag and engine performance values acquired through
CFD. By using surrogate models of these three performance metrics we are able to find
a set of non-dominated engine positions comprising a Pareto Front of these objectives.
This may give designers of future aircraft an insight into an appropriate engine position
above a wing, as well as a template for blending multiple levels of computational analysis
with physical experiments into a multidisciplinary design optimization framework.





Contents

Declaration xv

Acknowledgements xvii

1 Introduction 1
1.1 Optimization in Engineering Design . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Optimization in Aircraft Design 7
2.1 A Review of Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Local Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 The Simplex Method . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Genetic Algorithms (GAs) . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Machine learning and Surrogate Modelling . . . . . . . . . . . . . . . . . . 13

2.4.1 Polynomial Modelling and Least Squares . . . . . . . . . . . . . . 15
2.4.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Cross-Validation of a Surrogate Model . . . . . . . . . . . . . . . . 18
2.4.4 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Support Vector Classification . . . . . . . . . . . . . . . . . . . . . 20

2.5 Design of Experiments for Computer Simulations . . . . . . . . . . . . . . 22
2.6 Optimizer Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Objectives and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Multidisciplinary Design Optimization . . . . . . . . . . . . . . . . . . . . 27

2.8.1 Multiobjective Optimization (MO) . . . . . . . . . . . . . . . . . . 28
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Geometry Parameterization Methods 31
3.1 Parameterization Model Attributes . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Parametric Shape Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Polynomial Approaches . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Bézier Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Aero-Specific Modelling Techniques . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 NACA Series Airfoils . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Hicks-Henne Bump Functions . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Orthogonal Basis Functions . . . . . . . . . . . . . . . . . . . . . . 44

v



vi CONTENTS

3.3.4 PARSEC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.5 Kulfan’s Class/Shape Transformation Method . . . . . . . . . . . . 46

3.4 Modifying Existing Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Hierarchical B-Spline Refinement . . . . . . . . . . . . . . . . . . . 48
3.4.2 Free-Form Deformation . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Comparison of the Different Techniques . . . . . . . . . . . . . . . . . . . 50
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Application - Optimization of a NASA SC(2) Airfoil 53
4.1 NASA’s Supercritical Airfoils . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Design Space Dimensionality Reduction through Physics-based Geometry
Re-Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Verifying the Design Process of the SC(2) Airfoils . . . . . . . . . . . . . . 58
4.4 Optimization of the SC(2)-0412 airfoil . . . . . . . . . . . . . . . . . . . . 60

4.4.1 The Optimization Procedure . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Application-Specific Class Functions for The Kulfan Transformation of
Airfoils 67
5.1 Kulfan Transformation Performance in Describing Supercritical Airfoils . 69
5.2 Using Genetic Programming to Evolve a New Class Function . . . . . . . 70
5.3 Applying the Fitness Function to GP . . . . . . . . . . . . . . . . . . . . . 71
5.4 Applying the GP Method to Find a New Class Function . . . . . . . . . . 72
5.5 Finding a Universal Class Function for the Supercritical Airfoils . . . . . . 75
5.6 2D Airfoil Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 The Over-Wing Engine Configuration: Using Surrogates to Under-
stand Noise Shielding Performance 83
6.1 Tackling Aircraft Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 The Over-Wing Configuration . . . . . . . . . . . . . . . . . . . . . 85
6.1.2 Acoustic Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.1 Description of the Aircraft Model . . . . . . . . . . . . . . . . . . . 88
6.2.2 Experiment Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Diffraction Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 A Possible Analytical Model to Assess Noise Shielding . . . . . . . . . . . 97
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 The Over-Wing Engine Configuration: An MDO Approach 103
7.1 Aerodynamic Studies on the Over-Wing Engine Configuration . . . . . . . 104
7.2 Aerodynamic Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Description of the CFD Setup . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS vii

7.2.2 Inlet Efficiency Results . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.3 Aerodynamic Efficiency Results . . . . . . . . . . . . . . . . . . . . 107

7.3 Trade-Off Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Conclusions and Recommendations for Further Work 115
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2.1 A Set of Class Functions for Specific Applications . . . . . . . . . 117
8.2.2 New Shape Function Techniques for the Kulfan Transformation . . 118
8.2.3 Increase the Number of Objectives for the Over-Wing Engine In-

stallation Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2.4 A More Detailed Parameterization of the Over-Wing Engine In-

stallation Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 119

A CFD Replication of Results from the ATAT Program 121
A.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.1.2 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B Overwing Engine Installation – The CFD Setup 129
B.1 Geometry Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.3 Engine Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.3.1 Exhaust Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.3.2 Inlet conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.4 Solver Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.5 Validation of CFD Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 137





List of Figures

1.1 The effect of increased use of computational modelling in design; the
external shape of Formula 1 cars have changed drastically, whilst the
influence on civil aircraft is more subtle. . . . . . . . . . . . . . . . . . . 2

2.1 Flow chart of a typical optimization process. . . . . . . . . . . . . . . . . 8
2.2 An objective function landscape for a one variable problem at different

variable ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 A simple example of a surrogate model generated using 36 training points

in a two-dimensional input space. . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Flowchart, edited from Keane and Nair [2005], of a surrogate modelling

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 The symbolic expression b(2 + a) depicted in tree form. . . . . . . . . . . 20
2.6 A separable problem of two classes (shown by 2 and # ), showing the two

support vectors (the dotted lines) and the boundary hyperplane (solid line). 21
2.7 A variety of sampling plans that can be used in a DoE. . . . . . . . . . . 23
2.8 Two objective functions plotted against each other for numerous designs

(the black stars), and the respective Pareto front (the line in the bottom
left corner) generated using NSGA-II. . . . . . . . . . . . . . . . . . . . . 29

3.1 Dependence of computational time with number of variables. . . . . . . . 33
3.2 Bernstein polynomial representation pyramid reproduced from. Kulfan

and Bussoletti [2006] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Repeated linear interpolations have been utilised by deCasteljau to find
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3.5 Bézier curve and a B-Spline curve. . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Variables used in the PARSEC method [Sobieczky, 1998]. . . . . . . . . . 46
3.7 The exponents to the class function (N1, N2) must agree with the shape

being modelled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 An example of free form deformation. . . . . . . . . . . . . . . . . . . . . 50

4.1 The SC(2) airfoils have a number of characteristics different to other
airfoils, notably the leading edge curvature and the cusp of the aft lower
surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The typical pressure coefficient plots for a NACA64-A series airfoil and
for the Supercritical airfoils [Harris, 1990]. . . . . . . . . . . . . . . . . . . 56

4.3 Actual cl at design conditions versus ‘cl’ design variable for 20 airfoils
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Chapter 1

Introduction

1.1 Optimization in Engineering Design

The current financial turmoil that has engulfed the world’s most affluent nations, along
with the acceptance of human contribution to climate change, has resulted in political
leaders putting more emphasis on improving the economy and reducing the effect we have
on the environment. Air travel affects, and is affected by, both issues; there is intense
media coverage of the current rate of increased air travel as the world becomes more
accessible to expanding multi-national companies, leading to increased fuel emissions
that forces a greater influence on climate change. With the economic future uncertain
for many countries around the world there is an increased need to reduce ticket costs.
Due to the ever increasing cost of oil, and the fines issued by airports to aircraft that fail
to meet their environmental emission targets, average ticket prices are set to increase
further. This has led to aircraft manufactures having to find solutions to stricter aircraft
design requirements in the areas of fuel emissions, efficiency, and noise reductions.

Solutions to these design drivers could be achieved by a radical rethink in the design, but
we may also be able to achieve significant advances by making subtle changes to current
configurations. These two mind-sets are visually seen in the design evolution of Aircraft
and Formula 1 racing cars (Figure 1.1); major civil airline manufacturers have typically
refined the tube-fuselage/wing concept, whilst Formula 1 has gone through numerous
revolutions in the past 60 years, due to the fast introduction of new parts that vastly
improve the car’s performance. Formula 1 teams do not solely rely on the knowledge
and flair of their engineers to create radically different parts. They too go through the
process of iteratively improving the designs until the ‘optimal’ solution is found. This
fundamental difference in mind-set is not due to the lack of creativity of the airline
manufacturer’s engineers, but due to the differences in requirements between the two
industries; Formula 1 companies are striving to win races, whereas airline manufacturers
are looking to make a profit. Many of the new ideas in civil aircraft design that are

1
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(a) Lotus 78 F1 car (b) McLaren’s 2010 F1 car

(c) Boeing 737-200 (d) Boeing 787 in 2007

Figure 1.1: The effect of increased use of computational modelling in design; the
external shape of Formula 1 cars have changed drastically, whilst the influence on civil

aircraft is more subtle.

publicised in aircraft journals and presented at conferences are considered too much of
a financial risk to the airline manufactures, mainly due to the development costs, but
also due to the probability of success.

This thesis presents and improves upon methods and tools used to optimize aircraft.
The term ‘optimization’ is sometimes used to describe a structured process that we use
to improve upon a current design. Until recently, the process involved was not always
systematic, and generally centred around a trial and error approach. Nowadays, with
the aid of modern supercomputing clusters and computational analysis tools, highly
effective and time efficient optimization strategies exist that require little input from the
design engineer. Many different optimization methodologies exist, all with their own
strengths and weaknesses, and so the user must have an understanding of all available
to him/her to be able to choose the most appropriate technique for the problem at hand.
A weakness common in many optimization applications is that the time taken to find a
solution can be long - we target this in the work presented in this thesis.

An important stage in the formulation of any optimization process is in the identifi-
cation of the main variables (or parameters) in the problem and modelling them ap-
propriately, which is termed the parameterization of the problem. Typical examples
include Euclidean positions of components and their dimension values. A more difficult
parameterization problem involves the definition of the shapes of the components, for
example, wing cross sections or engine intake geometry. The complexity of these shapes
can, at this point in time, only be modelled by methods that use a set of parameters.
However, increasing the design space, that is, increasing the number of parameters, has
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a detrimental effect on the time taken to find a solution. For example, consider a param-
eter set with n parameters. If we wished to sample every parameter d times, we would
need to evaluate dn designs. If the analysis of each design took t hours to compute then
the final solution would take tdn hours to find – the time taken to find a solution is of
the order dn. Optimization methods are often discounted due to computational budget
constraints, and so the size of the parameter set n is an important factor in the setup
of an optimization problem.

Along with the requirement to limit the number of parameters used to describe shapes, a
parameterization model must also be able to take the form of a variety of different shapes.
At worst, the model must be able to generate all existing designs of the component in
question. However, the flexibility of the model must be restricted somewhat – we must
ensure that for any given parameter set, the model produces physically viable shapes;
for example, in most cases we cannot have surfaces crossing each other. In summary,
optimization requires a shape parameterization method that can accurately approximate
a variety of physically viable shapes whilst restricting the number of parameters. The
limited research currently being published in this area and the potential performance
improvements that can be made in this field, as discuss above, has been the motivation
of part of the work presented in this thesis.

Within the many different fields of the aerospace industry, developments are being made
to computational analysis tools that can be used within an optimization framework.
The development of such methods has been assisted by an increase in computational
power, as well as the ability to use parallel computing clusters. For example, RANS
computational fluid dynamics (CFD) solvers are widely used today, whereas before lower
fidelity potential solvers were the only realistic tools that could be applied. However,
some of these prediction methods are still not of the required degree of fidelity, and so
physical experiments still have their role to play in preliminary design. This causes a
significant difficulty in a design optimization setting, with a physical experiment unable
to be coupled within an automated optimization process.

Although numerical simulations have become more popular as design analysis tools, they
can still significantly prolong the optimization process, with some simulations taking
several hours to complete. This effect may prohibit the use of some optimization methods
that require a large number of function evaluations. However, surrogate models provide a
relatively cheap alternative for finding an optimal design: a surrogate essentially models
the performance output for a given set of parameter inputs. The surrogate, built on a
set of carefully chosen sample points where the expensive analysis was run, thus becomes
a cheap substitute of the expensive numerical simulation. We then search this model for
the optimal solution. Of course, we still require to perform a set of numerical analyses,
but the amount is minute compared to that of, say, a global optimizer.
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In ‘real world’ design problems the ability of a component to perform well is dependent
upon multiple characteristics. For example, we may require a component to possess
a high tensile strength whilst also being lightweight. Moreover, the important design
characteristics are more often than not topics within different engineering disciplines.
In these situations we must look towards using a Multidisciplinary Design Optimization
(MDO) approach to find the most appropriate design solution. This involves the coupling
of performance disciplines in an effort to find a balance between all competing goals, as
opposed to a sequential iterative procedure between the disciplines. The difficulties in
performing multi-disciplinary case studies of more than two disciplines, as well as the
restrictions of using physical experiments in optimization, are addressed in this thesis
using surrogate modelling.

1.2 Thesis Overview

The performance of an optimization procedure depends upon the performance of the
various techniques applied at different stages along the optimization process. The overall
performance can be categorised not only by the quality of the final solution, but also
the time taken to find the solution. The goals tackled in this thesis concentrate on the
latter, without hindering the former.

Firstly, we pursue the need for reducing the parameter space without the loss of flexibility
in creating application-relevant shapes. For this we take inspiration from Kulfan’s Class-
Shape transformation, which is a relatively new parameterization model that meets the
aforementioned parametric model attributes well. It essentially separates the problem
by selecting a suitable analytical class function, then a parameterization model adds the
specific detail. Kulfan suggests a general form class function that can be used for differ-
ent applications (i.e. airfoils, dart, etc.) by modification of a pair of variables. However,
if the class function chosen is not specifically applicable to the problem then it is likely
that a large number of parameters will be required in the parameterization model to
accurately define the existing set of designs. We therefore look into a possible method-
ology that can define application specific class functions to aid this parameterization
process.

Secondly, we introduce an original aircraft optimization case study: we investigate the
potential of an alternative aircraft configuration as an answer to the growing concern of
aircraft noise emissions. Installing the engines so that they are positioned above the wing
is considered to give the potential ability to use the airframe as a noise shield between
the engine and on-the-ground communities. Initially, we investigate this by performing a
shielding study based on a physical experiment to obtain the performance of each design.
However, engine integration is dependent upon a number of other performance factors,
making it a candidate for an MDO study. Therefore, we also investigate the aerodynamic
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performance as well as engine performance, and consider all three performance metrics
in an MDO setting.

Chapters 2 and 3 give an overview of design optimization and parameterization respec-
tively. These chapters are aimed to give a brief introduction to aircraft design optimiza-
tion, giving a flavour of some of the most common methods, as well as introducing those
used subsequently in this thesis.

The main aim of Chapter 4 is to present a simple optimization problem on a 2D airfoil
that underpins the basic design optimization process. After introducing NASA’s SC(2)
airfoil family, and presenting a method that finds the design conditions of these airfoils,
we optimize a member of the SC(2) family for flow conditions away from those that the
airfoil was designed for.

Chapter 5 is dedicated to improving the Kulfan transformation parameterization via
a method that generates application specific class functions. The significance of this
method is shown by comparing the results of using the Kulfan class function and the
generated class functions in an optimization procedure similar to the one presented in
Chapter 4.

In Chapter 6 we present the over-wing engine installation case study, along with the
noise experiment performed in the University of Southampton’s large anechoic chamber.
We find the optimal position of the engines above the wing in terms of noise shield-
ing performance, and present a first order approximation model built around simple
half-plane barrier theory. Chapter 7 presents the MDO study on the over-wing engine
installation, based on generating surrogate models of the individual objectives and using
them as a quick evaluation of each performance metric in the generation of the Pareto
optimal solutions.

We complete this thesis in Chapter 8 by drawing conclusions on what has been achieved,
as well as giving potential avenues of further work within the realm of aircraft design
optimization.





Chapter 2

Optimization in Aircraft Design

2.1 A Review of Optimization

To correctly and efficiently use optimization strategies in aircraft design, one must not
only understand the optimization methods, but every stage along the optimization pro-
cess. Figure 2.1 presents a flowchart of a basic optimization procedure, showing the
main stages in this process. The first stage is the parameterization of the problem. This
is essentially the mathematical formulation used to define designs using a unique set of
variables. Moreover, modification of these variables must generate a variety of different
designs. It is very important to create an accurate parameterization model, as the per-
formances of all the proceeding stages are dependent upon this first stage. This will be
further discussed in Chapter 3. Some optimization techniques require a population of
initial designs, with others only needing a single design to start the optimization loop.
In the present discussion here we assume that only a single design is required in the
first instance. However, we will discuss, later in this chapter, strategies that require
numerous designs to initialise the optimization cycle, and we introduce methods that
aid us in choosing them.

Once we have decided on the initial design, defined by its unique variable set, we can
evaluate its performance. In preliminary design nowadays, designs are usually evaluated
using a set of computationally expensive simulations that describe the physics of the
problem. Examples include Computational Fluid Dynamics (CFD) and Finite Element
Analysis (FEA). Physical experiments, such as wind tunnel testing, are rarely used
in this respect primarily due to the inability to automate the optimization loop, as
human interaction is needed to swap, calibrate, and test the models. Note that physical
experiments are still essential, as a means to validate the idealised solutions of the
numerical analyses.

For the optimizer to understand the difference between designs that perform well or
poorly we must quantify the performance of designs using an objective function, which

7
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is based upon the results taken from the performance analysis module. From the value
of the objective function the optimizer decides whether to change the parameter values,
as well as what to change these values to, and iterate over the process again, or to regard
the current solution good enough to be chosen as the final optimal design. This decision
is usually made with reference to a convergence criterion of the optimization process
that is usually some residual value from the optimizer, rate of change in the solution, or
the time expired from when the optimization process began. It can also be some target
value that the optimizer attempts to match.

We can describe the optimization procedure as

min f(x)
subject to gi(x) = ci for i = 1, . . . , n

hj(x) ≤ dj for j = 1, . . . ,m.

(2.1)

In words, it is the requirement to minimize (or maximize) an objective function (f(x))
by modifying a set of inputs (x) within a set of inequality (h(x)) and equality (g(x))
constraints. These constraints will be discussed later, but their job is regarded as re-
stricting the range of the input variables, either directly or indirectly, through using
other functions.

We often describe the optimization process as a ‘search’ for the optimal solution; given
a set of bounds to the inputs of a problem, we can assume that the optimal solution
is out there within these variable bounds, and so the job of the optimizer is to search
for the optimal solution within these bounds. There are a vast number of optimization
techniques available, all with different capabilities and restrictions. There is no single
technique that is superior for all situations, and so the user must have an underlying
understanding of the different types so the one most suitable for the application is
selected. Misusing these optimization methods can lead to a long wait for the final
solution. Moreover, it can fool the user by returning an apparently optimal solution,
when, in fact, better solutions exist. This could result in designers wrongfully dismissing

Figure 2.1: Flow chart of a typical optimization process.
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significant design changes when in fact those changes, if optimized in the right manner,
could lead to improved performance.

In this section we review the optimization techniques by grouping them into two different
types: local and global. The optimization process is notoriously slow, and so the never
ending desire to reduce the time from start to finish has led to the branch of optimiza-
tion that uses surrogate models to approximate the objective function in a predefined
variable space. We describe surrogate modelling as a type of machine learning, where a
computational model learns the mapping between the design variables and the objective
function. We also consider other techniques that belong to the machine learning family:
Genetic Programming, which hails from a specific set of global optimizers, and Sup-
port Vector Classifiers, used to find optimal boundaries to separate members of different
classes. We discuss other aspects in optimization that are as important to understand as
the optimizers themselves in order to achieve the best solution. These include defining
the objective function, the constraints in the problem, and penalty functions. We also
discuss the situation where we have more than one objective, and have to trade the best
solution of an objective for consideration of others.

2.2 Local Optimization

When discussing optimization with a non-specialist, the general description given is that
the inputs to a system are altered in a systematic fashion to improve upon the outputs
of that system. A slight alteration or ‘tinkering’ can be regarded as a local optimization
process, whereby we search the neighbourhood of an initial set of inputs to improve
upon the system outputs. Historically, local optimizers have used gradient information
of the input/output relationship as a means to target the most appropriate direction to
search. For multivariable optimization this involves finding the gradients of a function
with respect to all the inputs when deciding the next step. The simplest technique is
the steepest descent method [Press et al., 2007], where the new approximation can be
found by:

xi+1 = xi − λ∗i∇f(xi) (2.2)

where ∇f(xi) is the gradient at the previous step xi, and λ∗i is the optimal step length.

These first order optimization methods can be impossible to use if affordable gradient
information is not available (finite difference gradients are expensive to compute and
their cost rises with the dimensionality of the problem), and so zeroth order methods
also exist that do not have the need to compute gradients. Methods such as Hooke and
Jeeves [1960] and Nelder and Mead [1965] use a set of heuristics or rules to try to home
in on the local optimum.
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2.2.1 The Simplex Method

In Chapters 4 and 5 we use MATLAB’s fminsearch command that utilises the Nelder
and Mead [1965] algorithm. This method uses a simplex (a construction in n dimensional
space that has n+1 vertices where, n equals the number of input variables) and modify
it to search the local domain. There are four moves we can take to modify the simplex
to home in on our target minimum;

1. Reflection - The worst vertex is reflected through the face opposite.

2. Reflection and Expansion - The worst vertex is reflected through the opposite face
but the point is placed further away from that face.

3. Contraction - The vertex is pulled toward the face opposite it, but not as far as to
pull it through the face, reducing the volume.

4. Multiple contraction - A face is pulled toward the vertex opposite, reducing the
volume.

To make these movements the algorithm must initially rank the vertices, from best to
worst. It then compares them to a point opposite the worst point outside the simplex.
Then the following tests are applied in order to decide which move to make;

1. if the solution at the trial point lies between the best and the next best it is
accepted and the simplex is reflected.

2. if the solution is better than the best point then the worst point is not only reflected
but expanded in this direction as well, unless the expansion fails and then it is just
reflected.

3. if the solution is poorer at this point, the new trial point is found along the line
joining the worst and the trial point. If this point is better than the worst vertex
point it is accepted and the simplex is contracted, if not then all points apart from
the best are contracted.

4. otherwise the trial point must be better than the worst so it replaces the worst
and a contraction is also made.

The process terminates when the simplex reduces to a predefined minimum size or when
the difference between the objective function values of the vertices is below a specified
tolerance.

Local search methods are generally very efficient and accurate at finding a local solution
from an initial starting point. Problems exist in using these techniques when we want



Chapter 2 Optimization in Aircraft Design 11

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
x

f(
x)

(a) A single trough of f(x).

0 0.2 0.4 0.6 0.8 1
x

f(
x)

(b) A multimodal objective function containing
multiple minima.

Figure 2.2: An objective function landscape for a one variable problem at different
variable ranges.

to search a predefined range of inputs, where the objective function landscape may have
multiple local minima. This inability is depicted in Figure 2.2; if we restrict the search
to be between x = 0.25 and x = 0.65, as in Figure 2.2(a), a local search will be very
effective in finding the optimal value. However, if we increase the range of our search,
shown in Figure 2.2(b), a local search will likely become stuck in one of the local optima,
with the performance of a local search being dependent on its start position. Of course
we can use a sampling algorithm to give multiple starting points and run local searches
at each point, but this may not be the most efficient technique. The performance of
many local searches is also dependent on the step sizes they make between iterations:
too large and the optimizer may jump over the minimal point into another minimum;
too small, and the efficiency of the search decreases and we may get stuck in a minimal
trough caused by noisy data.

2.3 Global Optimization

Due to the limitations of local searches on multi-modal optimization problems, we must
look to use a different set of optimization techniques – ones that are specifically designed
to search a global input space (Figure 2.2(b)). Global optimization techniques generally
involve a stochastic approach, where the random nature of the algorithms can lead to
different optimal solutions for different runs on the same problem. Conversely, the local
methods discussed earlier usually have a deterministic nature and always give the same
solution when using the same set of initial inputs.

Two of the most popular stochastic techniques, Simulated Annealing (SA) and Genetic
Algorithms (GA), involve populating the input space with a collection of different vari-
able sets, or designs, and using the sets that perform well to direct the search further. A
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new collection of variable sets are produced that have been generated from information
gathered from the previous sets. This process is iterated over until the convergence
criteria are met. In comparison to local searches, global techniques have the ability to
leave local minima in search of the global minimum. However, the precision of the final
solution can be low along with the convergence rate of the solution.

The disadvantages of a global stochastic method can be combated by a hybrid global-
local search process; initially a stochastic method is used to find a set of minima, then
a local search is used to home in on the exact minimum of each set. This increases
precision and the convergence rate increases as we only require the global search to find
minimal regions, and not the exact solution.

2.3.1 Genetic Algorithms (GAs)

GA’s take their inspiration from the Darwinian theory of natural selection. That is,
genetic information is passed on from parents to child, with the parents chosen in terms
of “survival of the fittest”; an instance (or a design in our case) in a population is more
likely to contribute to the next generation if it has good fitness, where the fitness is
usually given by some scaled version of the objective function. An instance with a poor
fitness is still given a chance to contribute, as it may have some underlying information
that we may lose if we discount it. Using this process the new instances, or children,
in a population are likely to attain characteristics similar to its parents. Thus, by
encouraging the process to pick parents with characteristics that provide good fitness,
the offspring should possess an overall better fitness than their parents.

A common and simple method for parent selection is the idea of a roulette wheel, whereby
the selection is random but the largest area on the roulette is taken by the parent with
the highest fitness. This leads to a prospective parent having a greater chance of being
selected if it has a good fitness. Another method of selection is to create a tournament;
a random set of potential parents are chosen from the current population and they
compete with each other, with the winner being the one with the best fitness.

Once the parents are selected a procedure called cross-over is carried out. This is the
mating stage, where genetic information is passed from parents to offspring. That is,
the list of inputs of each parent is cut at a specific point. Then the left side of the first
parent is attached to the right side of the second parent, and vice versa, creating two
offspring to be assessed in the next generation.

Other evolutionary features may also be included in a GA:

• Mutation, whereby we randomly modify a small part of the design so that all
regions in the design space can be reached. This has a specific probability of
occurring on the offspring.
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• Elitism, where the best design is guaranteed to survive.

GAs have a number of parameters that can have a significant effect on the final solution:
the size of the population, the maximum number of generations, the probability of cross-
over, and the probability of mutation all have to be carefully selected. It is difficult to
make these selections a priori, and so a GA may be required to be run numerous times
to ensure the solution found is indeed the optimal one. The GA used in this thesis is
the so-called canonical implementation, due to Goldberg [1989].

2.4 Machine learning and Surrogate Modelling

Global optimization schemes are known to give satisfactory results but may do so by
requiring a large number of objective function evaluations. They are therefore utilised
when we have available a quick analytical procedure to analyse the performance of the
designs. However, if each function evaluation involves using an analysis tool such as CFD
or FEA, which could take hours or days to complete, the optimization process could take
an inordinate amount of time to complete. One technique that requires fewer objective
function evaluations, but still allows us to search globally, is surrogate modelling (also
called meta-modelling).
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Figure 2.3: A simple example of a surrogate model generated using 36 training points
in a two-dimensional input space.

The optimization strategies that have already been discussed concentrate their efforts
primarily on finding the optimal solution. Surrogate modelling is a representative model
of the whole search space that can be effectively searched by an optimization process. For
example, Figure 2.3 shows a surrogate model that has been fitted to the responses of 36



14 Chapter 2 Optimization in Aircraft Design

(x1, x2) combinations. It is essentially a mathematical formulation designed to enable the
learning of some response (objective function in our case) to a set of inputs. Surrogates
belong to the machine learning family of algorithms. Mitchell [1997] describes machine
learning as “any computer program that improves its performance at some task from
experience”. Surrogates, after the initial model has been built, are often assessed through
using update designs, which are also often used to improve the surrogate approximation.
Any method that does slightly better than random guessing can be classed as a learning
technique, albeit a weakly learnable strategy [Schapire, 1990]. The approach described
here, that of guiding a learning process using the output variables of a system, is known
as supervised learning [Hastie et al., 2009]. More specifically, surrogates use inductive
inference, whereby any hypothesis found to approximate well over a large data set will
also generalize well over the whole search space, including unobserved data; this is a
main requirement of all surrogate models.

Figure 2.4: Flowchart, edited from Keane and Nair [2005], of a surrogate modelling
approach.

The surrogate modelling procedure is shown in Figure 2.4. We first select a set of initial
designs, with the aid of a Design of Experiment (DoE) technique, discussed in Section
2.5. In the formulation of a surrogate model we only need to analyse the performance
of the initial population. A single evaluation of the surrogate takes a fraction of the
time of a CFD or FEA computation, thus running the optimization process on the
surrogate drastically reduces the time to find a solution. Once we have completed the
expensive computations used to find the objective function of each design we fit the
surrogate model. We must remember that a surrogate model is only an approximation
to the objective function landscape, and the quality of the optimization procedure will
be highly dependent upon the accuracy of the surrogate. Therefore, the optimum of the
surrogate may not be the true optimum to the problem. To improve upon the accuracy
of the surrogate we can perform an update or refinement procedure. We may wish to
further explore the model to improve its global accuracy, or to concentrate on improving
the accuracy in the region of the predicted optimum. Either way, the quality of the
model can be evaluated by comparing the true solutions of newly chosen points to the
approximation given by the model. If poor accuracy is met, the new points can be used
to update the model. The positions of these update points can be intelligently placed
using update strategies based on the prediction of the objective function, the probability
of improvement, or the expected improvement over the function landscape. This process
of choosing new points to evaluate, comparing with the current surrogate model, and
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then updating the model, can be iterated until a convergence (termination) criteria of
the accuracy is met.

The choice of model used to fit the objective function points can be a difficult task.
Keane and Nair [2005] list a number of models, including polynomial regression, Splines,
Kriging, and Genetic Programming. All of the models need to be tuned to accurately
model the data, whether it is the coefficients of the terms in a quadratic equation, or
the hyper-parameters in the Kriging model. This tuning can be a simple task when
using a quadratic as we may use a least squares solution on the problem. However,
a quadratic may not be able to accurately describe complex surfaces, in which case a
Spline or Kriging technique, known to perform better over multi-modal landscapes, may
be more appropriate. We follow this description of surrogate modelling by describing
three of the techniques: Polynomial Modelling, Kriging, and Genetic Programming. A
selected class of machine learning techniques is that of classifiers. We shall use one such
model in this thesis – its description is included in this chapter.

2.4.1 Polynomial Modelling and Least Squares

To construct a response surface through a set of data points, we can use a linear set of
any specified functions of the inputs x. For example, a linear combination of 1, x2, and
sin(x) is

y(x) = c1 + c2x
2 + c3 sin(x), (2.3)

where c1, c2 and c3 are coefficients or weights of each function. We can produce a
general form of this model, where X is the set of fixed functions of x, m is the number
of functions, and ck are the respective weights of each of these so called basis functions:

y(x) =
m∑

k=1

ckXk(x) (2.4)

A set of equations that can be represented in this form are polynomial equations. Con-
sider a problem where we have two input variables, x1 and x2 that are stored in vector
x, resulting in one output function y(x). If we sample the input space to generate a
training dataset, where {x(i), y(i), i = 1, 2, . . . , n}, we can fit a polynomial response sur-
face through these points to come up with an approximation ŷ to the output y. Keane
and Nair [2005] write a quadratic response surface as

ŷ = c0 +
∑

1≤j≤p

cjxj +
∑

1≤j≤p,k>j

cp−1+j+kxjxk (2.5)

c0, cj and cp−1+j+k are the coefficients we are trying to find to best fit the quadratic to
the training data. Incorporating the training data, we are left with n equations to solve
to find the coefficients c = [c0, c1, . . . , cm−1]. These can then be used to construct our
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response surface approximations ŷ over the entire search space. We can write this series
of equations in matrix form Ac = y where y = [y(1), y(2), . . . , y(n)]T , and

A =




1 x
(1)
1 x

(1)
2 . . . (x(1)

p )2

. . . . . . .

. . . . . . .

1 x
(n)
1 x

(n)
2 . . . (x(n)

p )2




. (2.6)

If we now multiply each side by the transpose of A to obtain the normal equations

ATAc = ATy. (2.7)

we can find the solution for the set of basis coefficients c by using a least-squares method.
For example, the Moore-Penrose pseudo-inverse of A, A+ (A+ = (ATA)−1AT ):

c = A+y (2.8)

We can use the newly found polynomial coefficients with Equation 2.5 to plot our re-
sponse of the model.

A requirement of the least squares approach is that more training points exist than
coefficients in the model, n > m.

2.4.2 Kriging

Polynomial modelling is a very popular method used to model the response to a set
of inputs, due to it being simple to understand and quick to implement. What it
lacks is the flexibility and accuracy of other models in dealing with multimodal terrain.
Polynomials are notoriously unwieldy surrogates of landscapes with multiple basins of
attraction. Kriging (also known as Gaussian Process modelling) is a popular, highly
flexible alternative for engineering design problems. It also enables accurate control of
the amount of regression required. 1

Consider the set of inputs X = {x1,x2, . . .xn}T , each of which has a corresponding
objective function output y = {y1, y2, . . . , yn}T . In the Kriging procedure we assume
the funtion values to be the observed values of a stochastic process, which are normally
distributed with a mean µ and variance σ2. For any two input values, xi and xj , we can
assume that their corresponding performance, y(xi) and y(xj), will be close together
in value if the “distance” between the inputs |xi − xj | is small. Of course this is also
assuming that the function is continuous. The correlation between the y values of any
two random inputs is assumed to be of the form

1 The interested reader is invited to read Forrester et al. [2008] for a more detailed description of the
Kriging technique.
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Corr[y(xi), y(xj)] = exp

(
−

d∑

l=1

εl|xil − xjl
|ql

)
(2.9)

where d is the number of control variables, εl determines the rate of correlation decay,
and ql the smoothness of the fit as we move in the lth coordinate direction. If xi = xj

then the correlation equals one, and if |xi − xj | → ∞ then the correlation equals zero.
The correlations between all the inputs X are stored in the correlation matrix

R =




Corr[y(x1), y(x1)] · · · Corr[y(x1), y(xn)]
...

. . .
...

Corr[y(xn), y(x1)] · · · Corr[y(xn), y(xn)]


 . (2.10)

The values of ε and q are chosen in order to maximise the likelihood of the data having
resulted from the postulated model Ŷ . This is achieved by using the likelihood function
in logarithmic form,

ln(L) = −n

2
ln(σ2)− 1

2
ln(|(R + λrI)|)− (y − 1µ)T (R + λI)−1(y − 1µ)

2σ2
. (2.11)

We have included a regression constant, λr, to the diagonal of the correlation matrix, R

to account for ‘experimental error’ associated with the performance y values. We must
find values of λr, µ, σ, q, and εεε to maximise the likelihood function in Equation 2.11.
The optimal values of the mean µ and variance σ2 can be made to be dependent upon
the ε and q unknowns in the matrix R, and λr, by taking derivatives of Equation 2.11
and setting them to zero. The result is:

µ̂ =
1T (R + λrI)−1y
1T (R + λrI)−11

(2.12)

σ̂2 =
1
40

(y − 1µ̂)TR−1(y − 1µ̂) (2.13)

where 1 is an n × 1 column vector of ones. By substituting these optimal values back
into Equation 2.11 to obtain the concentrated log-likelihood function

ln(L) ≈ −40
2

ln(σ̂2)− 1
2

ln(|(R + λrI)|) (2.14)

the likelihood is now only dependent on the regression constant λr and the correlation
matrix R, which itself is dependent on the hyperparameters ε, q, from the correlation
basis function in Equation 2.9. To find these parameters we must perform an optimiza-
tion procedure to maximise Equation 2.14. Forrester et al. [2008] suggest the use of a
global method, as the concentrated likelihood function is very quick to compute and it
often features multiple local optima. Here we use a Genetic Algorithm.
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Once we have found our optimal values of λr, ε and q from our optimization we can
predict the value of y for any set of inputs x, given by;

Ŷ (x) = µ̂ + rT (R + λrI)−1(y − 1µ̂). (2.15)

The vector r contains the correlations of point x and the points used to produce the
Kriging model using Equation 2.9.

2.4.3 Cross-Validation of a Surrogate Model

There are many ways to assess the accuracy of a surrogate model. Accuracy cannot
be assessed solely by the error between the points fitted, as the purpose of a surrogate
model is to generalise well over the whole search space. One technique is to not include
a set of design points in the creation of the surrogate, then to use this set and compare
their outputs to those given by the surrogate. However, surrogates are used where the
objective function is expensive to compute, and so the set of design points tested will
usually be small and so we would want to use all the results to generate the surrogate.
Cross-validation uses only the design points that were used in the construction of the
surrogate model. This involves splitting the design points into q usually equal subsets,
then removing one of the subsets in turn and fitting the model to those subsets that
remain. A loss function Lf can then be computed, defined as the root mean squared
error (RMSE) between the predictor f̂q and the points in the subset left out of the model
fitting yq:

Lf =

√∑q
i=1[yq − f̂q]2

q
. (2.16)

To compare the accuracy of surrogate models from different experiments the responses
are usually normalised (converted so that they range from [0, 1]) before cross-validation
is performed. A special case of cross-validation is the leave-one-out cross-validation,
where the number of subsets q equals the number of design points. This is a popular
choice for assessing surrogate models, due to the limited number of design points used
to create the models.

2.4.4 Genetic Programming

Genetic programming (GP) [Koza, 1992] uses the same mind-set as genetic algorithms.
That is, a population is evolved using the Darwinian model of non-random survival
of randomly varying replicators. They differ in the fact that a GP’s genetic material
encodes programs, rather than vectors of numbers. For the purpose of our explanation
these programs are symbolic expressions representing a curve fit between data points.
In other words, genetic algorithms modify the coefficients of a known function. In GP,
the analytical form of the function is not known a priori and thus must be found along
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with the coefficients. GP-evolved symbolic algebra has previously been used for function
approximation [Alvarez et al., 2001] and as a partial differential equation solver [Sóbester
et al., 2008].

The implementation of a GA, where we create an initial population, evaluating each
point, and generate a new population using cross-over, mutation and reproduction (see
Section 2.3.1) is identical to the process used in GP. Added factors are required in GP
to find the symbolic expressions; we can define the starting expression length, and the
maximum length that we allow the expressions to become.

An important aspect of the genetic programming environment is the method used to
create the initial population of random programs (in our case the programs are symbolic
expressions). The traditional method uses a tree description, an example of which is
shown in Figure 2.5. An expression is made up of two types of components: operators
(the arithmetic operations and mathematical functions), and terminals (the variables
and coefficients in the expressions). Note that terminal nodes, such as b, 2, a in Figure
2.5, can be classed as the leaves of the tree, as no branches emanate off them. We start
at the root node of the tree with a mathematical operator, randomly selecting operators
and terminals for the nodes at the end of each branch. The branches are grown until
terminated using a terminal node. In the creation of expressions using this method,
we can produce illegal instances that cannot be evaluated. In this case we regenerate
the expression until we achieve a valid expression. Using grammars [O’Neill and Ryan,
2001] instead of the tree approach ensures within the construction of the expressions that
each will be syntactically correct, although the increased computational time from using
variable length binary strings, converting them into integers, and then converting into
the expression structure makes the method less attractive. The operators and terminals
are then included after the expression structure has been created, meaning the binary
string can be over double the size of the string used in the tree method.

Another important issue with GP is in the robustness of the symbolic expressions in
accepting the input data: we must ensure that any argument in the expression returns
real values. This involves, for example, using a special division operator that can accept
0 in the denominator and an operator that accepts negative arguments in square root
terms.

If we have any prior knowledge about the type of symbolic expressions we are looking
for, we can restrict the list of operators so we have a better chance of finding such an
expression. For instance, if we know we are looking for a second order polynomial, we
may include a square term in our list of operators and omit trigonometric operators. We
must be careful however in deciding which operators to include and omit, as omitting
useful operators may cause us to never find a good solution, and including less useful
operators increases the size of the search space and thus could increase the time taken
to find a solution.
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Figure 2.5: The symbolic expression b(2 + a) depicted in tree form.

The main advantage of genetic programming over many other curve fitting methods,
such as Kriging and polynomials, is that the GP result can give some insight into the
underlying physics of the system, and so can be used for scientific exploration. For
example, a portion of a sine wave can be modelled using a polynomial function. However,
the sinusoidal nature of this system is lost by modelling it using this method. A GP
search has the ability to identify the sinusoidal nature, as long as a sinusoidal term is
present within the list of operators. The downside to GPs is that the discovery of an
accurate regression curve is slow, and it is difficult to trade off good solutions with the
complexity of the model.

2.4.5 Support Vector Classification

For some problems we do not require to model the objective function landscape, rather
we only require to model the boundaries between different sets of data that are classified
in a specific way. A typical example in the engineering community is that of determining
the boundary between infeasible and feasible solutions (see Chapter 7). If the boundary
between the two classes is seen to be linear we can often use a linear classifier, also
called an optimal separating hyperplane. If a non-linear pattern is observed then we
can use Kernel functions to map the problem to a feature space, where the problem can
be separated using a hyperplane. Our discussion here gives only a brief overview of the
method, with further details can be found in texts by Hastie et al. [2009] and Cristianni
[2000]

Consider a training data set X = {x1,x2, . . .xn}, each belonging to one of two sets of
classes y = {y1, y2, . . . , yn}, y ∈ {−1, 1}. Support Vector classifiers (SVC) use support
vectors in such a way so that two different classes are separated via a region rather
than just a hyperplane. By viewing Figure 2.6 we can see that any point lying on the
hyperplane between the two classes will satisfy w.x + b = 0, where w is the normal to
the hyperplane and b/|x| is the perpendicular distance of the hyperplane to the origin.
The hyperplane is said to be optimal when it separates the two sets of data without
error and the distance between the hyperplane and the closest members of each class
is maximal. We can define the distance between the two hyperplanes that define the
margin between the two sets of data (w.x + b = 1 and w.x + b = −1) as 2/‖w‖, and
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so we wish to maximise this value. For mathematical convenience, we substitute 1
2‖w‖2

for 2/‖w‖ and in turn make this into a minimisation problem in what follows.

Margin

w

w.x+
b=−1w.x+

b=0
w.x+

b=1

Figure 2.6: A separable problem of two classes (shown by 2 and # ), showing the
two support vectors (the dotted lines) and the boundary hyperplane (solid line).

To find the optimal separating hyperplane we must solve the following optimization
problem

min 1
2‖w‖2 + C

n∑

i=1

ξi

subject to yi(w, xi) ≥ 1− ξi for i = 1, . . . , n

(2.17)

where C is a constant that penalises for non-zero ξi, or the slack variables used to measure
the degree of miss-classification. The slack variables become active when the training
data is not linearly separated by the hyperplane. The solution to this optimization
problem can be given by the saddle point of the Lagrangian functional. This leads to
the creation of the dual problem:

min
α

1
2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi,xj)−
n∑

i=1

αi

subject to 0 ≤ αi ≤ C for i = 1, . . . , n;
n∑

j=1

αjyj = 0

(2.18)

where α are the Lagrange multipliers and K(xi,xj) is the kernel function: a non-linear
mapping of the input space to a high dimensional feature space, chosen apriori by the
user – when a linear boundary is unable to classify between the two sets of data we can
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use a kernel function to map the input space into a higher dimensional feature space
where a hyperplane can separate the two classes. There are many different types of
kernel that can be used, many of which are similar to the geometry parameterization
methods we discuss in Chapter 3 and used to generate surrogate models: polynomials,
Gaussian Radial Basis Functions, and many different types of Splines can be used as
Kernel functions. The value of C is now the upper bound of the Lagrangian multipliers,
and is essentially chosen to reflect the noise in the data.

We can solve this optimization problem by using a quadratic programming method, for
example, an interior-point solver [Vanderbei et al., 1997].

2.5 Design of Experiments for Computer Simulations

In general, the optimization process requires that we have some sort of initial guess of
the solution to begin the optimization loop with. The local searches described earlier
start from a single such point. However, many other methods require the performance
information of a set of initial designs that are enclosed within the area bounded by
the variable limits; the design space. The performance of the optimizers can be highly
dependent upon the positions of the initial set of designs in the design space, and so
random positioning of the initial design variable sets is ill-advised. Also important is
the size of the design set; to densely fill the design space with different designs nulli-
fies the use of the elegant optimizers under consideration. Moreover, it will lead to a
disproportionate amount of time to find a solution. However, not sampling the design
space enough can cause poor convergence rates, and poor accuracy in initial surrogate
models. To aid us in positioning the initial set of designs we can make use of sampling
plan techniques.

Two key attributes of sampling plan layouts (sometimes termed DoEs – short for Design
of Experiment) are a) the uniformity with which the data points fill the design space
and b) its stratification, which refers to the uniformity of the projections of the data
points onto the design variable axes. To create an efficient optimization process we
must also seek to limit the size of the initial set without jeopardising the quality of
the optimization search. A large influence to the size of the sampling plan, if using a
computational procedure to analyse the designs, is the computational resources available;
we may be able to run all designs within the design set in parallel, and so the limitation
would be how many parallel runs we are able to make. We may also be able to use
multiple processor cores to speed up a single simulation. Also note that for algorithms,
such as GAs, the size of the design set is evaluated for every generation and so n × g

computations have to be completed, where n is the size of the design set and g is the
number of generations. All of these requirements are unlikely to be achieved using a
randomly generated set of designs, and so specific sampling plans exist for us to exploit.
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Figure 2.7: A variety of sampling plans that can be used in a DoE.

Typical sampling plans include the Central Composite, Latin Hypercube, and Full Fac-
torial methods (see Figure 2.7). The full factorial design shown in Figure 2.7(a) shows
a two level plan, where the experiment points are positioned on the upper and lower
bounds of the design space. This may be the simplest form of sampling plan, but is
widely used for problems where discrete designs or operating conditions are available,
or if we know beforehand that the response to the design changes will be linear. For a
higher order quadratic response a sampling plan like the central composite design would
be more appropriate (Figure 2.7(b)). With this plan four extra designs populate outside
the bounds of the full factorial design, plus one in the middle. The outside points allow
for curvature to be modelled in the response. The analysis of the middle design is often
replicated in order to measure the experimental error.

The full factorial and central composite methods are popularly used for linear and
quadratic problems respectively. However, for many engineering design problems the
characteristics of the response are not known a priori, with many being found to be
highly multimodal, as shown previously in Figure 2.2(b). We can increase the number
of levels within the design space, but by doing so we increase the number of samples
for the full factorial design to lk, where l is the number of levels and k is the number
of variables. Using large values of k is a very inefficient way to sample the search space
[Alam et al., 2004] and thus a costly optimization process.

Sampling plans that fall into the class of Latin Hypercubes [McKay, 1992] have excellent
stratification properties: in an attempt to limit the number of design points, the Latin
hypercube methods require that there is only one sample in each row and each column
within an n× n grid of the design space (Figure 2.7(c)). The positions of these sample
points can be optimised, as done by Morris and Mitchell [1995], where the minimum
distance between any two points is maximised within the design space, and so filling the
design space well. Uniformity is maximised (as measured by the Morris and Mitchell
[1995] criterion) only for when we have a square number of points.
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2.6 Optimizer Selection

The type of optimizer we should use is highly dependent upon the problem at hand. Most
notably, the time taken to find a solution is dependent on the optimization process; local
optimizers are often quicker than global ones in finding a solution, with surrogate models
used to speed up the global optimization process when it is computationally expensive
to find the objective function values. This may force us to use local optimizers, but
we must remember that they only search the space near the initial starting point in a
multi-modal search space. If known to be multi-modal it would be more appropriate
to use a global search, with or without a surrogate attached. Again, a surrogate may
accelerate the process, but as it is an approximation to the real objective surface, our
solution may not be as accurate when using a global model on its own.

Global optimizers are generally good at exploring the design space, finding the optimal
regions. What they lack is the ability to exploit these regions and find the exact optimum
within each region. This has led to researchers developing hybrid global/local optimizers;
the global search is used to explore the search space, and the optimal regions found are
searched by local optimizers to return a highly accurate optimal solution. Within the
topic of hybrid searches is the choice of defining an instance and its performance; we
can define an instance as the result of the global search, with its fitness being updated
to the local search result, or define it as a result and fitness of the local search. We
may initially think that this does not matter, as a deterministic local search will always
find the same solution from the same starting point. It becomes more obvious when we
consider the global optimizer, in that the next generation of instances in a population
are dependent on the current generation. We may find that if we update the current
instance with the result from the local search that we restrict our exploration of the
search space, as many may be forced into the same optimal region, therefore obtaining
the same solution. However, this result may make the solution converge faster than not
updating the instance.

The process whereby we update the variables within the instances from the local im-
provement to be put back into the global search is referred as Lamarkian learning ;
characteristics acquired during the lifetime of the instance can be inherited. This type
of learning goes against the Darwinian idea that is the basis of genetic algorithms. An
alternative to Lamarkian learning is Baldwinian learning, named after the work of Bald-
win [1896]; traits of the parents are inherited by the offspring, and not features generated
from the environment. In our current setting this is equivalent to not updating the vari-
ables of the current instance by the results of the local search, but assigning them the ’as
optimized’ objective value. Once again, the type chosen for a study is highly dependent
on the problem; if we have a computationally expensive function, we may see the throw-
ing away of computational results from the local search as wasteful, and so a Lamarkian
process may be used. Some see Lamarkian learning as unnatural and, to keep within
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the same mind-set as evolutionary theory, a Baldwinian approach must be used. Houck
et al. [1996] gives a comparison of using these two different learning strategies using a
GA/local hybrid, noting that a Lamarkian learning strategy led to a faster convergence
rate. However, Whitley et al. [1994] found that, in his studies, the Lamarkian learning
strategy converged to a local optimum, whereas the Baldwinian cases found the global
optimum. A more detailed account of hybrid optimization is given by Sóbester [2003],
where he delves more into the search time between the exploration of the global model
and the exploitation given by the local improvement.

2.7 Objectives and Constraints

The type of optimization algorithm has been presented to be an important factor in
the setup of an optimization study. Equally important is the definition of the inputs,
objective function(s), and the constraints that need to be applied to find a valid solution.
The inputs are generated from the parameterisation process, which is to be discussed
in section 3, and so we will not focus on this here. We concentrate our attention to the
importance of defining the objectives and constraints within an optimization process,
giving examples for each.

The choice of objective function is decided directly from the aim of the optimization
procedure. A general optimization strategy, in a design sense, is to use a performance
metric as the objective function - the drag of an aircraft, for example. In some problems,
we may not have such a single valued objective. Typical examples are minimizing the
difference between pressure profiles in an inverse design case, or obtaining the input
parameters to best fit a set of points in a curve fitting process. In these cases we must
find a way to model the objective as a single value.

Consider an airfoil in an inverse design problem, where we are modifying the shape
to match a predefined pressure profile. At first glance a reasonable definition of the
objective function could be the summation of the difference between the target profile
pressure coefficient c

(t)
p with the airfoil profile pressure coefficient cp at n points along

the chord:

f(x) =
n∑

i

[
cp,i − c

(t)
p,i

]
. (2.19)

However, the summation of cp,i− c
(t)
p,i may not be a robust objective, as the value can be

positive or negative: a positive difference between the cp distributions in the summation
can be negated by a negative difference at some other position on the airfoil. To alleviate
this issue we use the sum of the squares of the difference between the pressure profiles:

f(x) =
n∑

i

[
cp,i − c

(t)
p,i

]2
. (2.20)
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This method gives us an overall statistic at how well the pressure profiles match. What
we do not gain is an insight into the actual shapes and whether they are similar. For
instance, we might generally match the pressure profiles well, but a sharp peak may
exist that does not follow the target profile. This result may not be noticeable from
Equation (2.20) as the other input points may be defined well enough to cover the poor
residual of this point. To counter this we can use a penalty term P that adds a factor
a to the objective function every time an instance in the sum of our objective is larger
than an amount g:

P =

{
a if max

(
cp,i − c

(t)
p,i

)
> g

0 otherwise
(2.21)

The size of a and g can be constant (for instance within a certain tolerance), or it can
be a certain percentage from the average of the other instances in the sum.

Consider the example of attempting to define a circular object. The difference of the
y coordinates at the corresponding x coordinates between the target and our approx-
imation would be a poor choice of objective function; the gradients at corresponding
x-positions vary between zero and infinity, leading to different objective function sen-
sitivities across the coordinate points. A more suitable objective would be to use the
difference between the radius at pre-specified angles; the sensitivities at all angles will
be similar, leading to an objective that is easier to optimize

‘Real-world’ problems often feature constraints, which restrict the search to parts of the
design space. A simple constraint may be the upper and lower bounds of the input vari-
ables. However, constraints may also involve more complex relationships; for example,
when optimizing an airfoil, we need to maintain a specific thickness value where the
spars will be placed. The shape of the airfoil will generally be approximated by one
of the parameterization methods to be discussed in Section 3, the inputs of which are
unlikely to be directly linked to the thickness of the airfoil. If equality constraints exist
(h(x) = c) we must attempt to eliminate them by restructuring the optimization prob-
lem. In situations where this cannot be done, equality constraints can be transformed
to a pair of opposed inequality constraints, h(x) ≤ c, h(x) ≥ c.

One of the many methods that we can use to invoke constraints into our formulation
of a problem is to add a penalty function, such as the one in Equation 2.21. This
penalty function is only applied if the search passes a constraint boundary and enters
an infeasible region. Careful consideration must be made when formulating a penalty
function. Inserting a single value to become active when a constraint is violated causes
a severe cliff in the objective function landscape. Any solution on or near the constraint
boundary can therefore be difficult to find. Moreover, if a search finds itself within
the infeasible region, the contours of the objective function landscape may be in such a
position to force the search away from the feasible region for where we want the solution
to lie. Both of these issues are inherent to gradient-based optimization methods, with
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zeroth-order methods performing a little better. Sometimes it is appropriate to use
a function, such as a linear penalty function, dependent upon the degree of violation,
which may allow for the search to drop back into the feasible search space.

2.8 Multidisciplinary Design Optimization

For nearly all ‘real’ design problems a product must perform well over multiple disci-
plines for it to be regarded as a well posed solution. For example, for an aircraft, we do
not only require that the aircraft has a high lift-to-drag ratio, but also that the airframe
can withstand the loads acting upon it, as well as reducing the costs in manufacturing.
Sobieszczanski-Sobieski and Haftka [1997] define Multidisciplinary Design Optimization
(MDO) as the “methodology for the design of systems in which strong interaction be-
tween disciplines motivates designers to simultaneously manipulate variables in several
disciplines”. By simultaneously optimizing the different disciplines we can achieve a
significantly better solution, as well as decreasing the time required to find a solution.

Historically, industry is very reluctant to utilise optimization processes because they do
not integrate readily into legacy design processes. Many companies have groups that
specialise in a single discipline, and so devising an automated process within an MDO
environment is a difficult task in itself. The process is made easier by packages such as
Isight and SIMULIA [2011] that can be used to couple analysis tools of different disci-
plines within a workflow. The development of these organisational and computational
tools is an active area of research, a review of which is given in Sobieszczanski-Sobieski
and Haftka [1997], with many example applications in Kodiyalam [1998] and Kodiyalam
and Yuan [2000].

Each discipline within the MDO process may generate its own objective function. In
some situations we may be able to develop an overall objective function. For example,
we can use the Breguet range equation to combine the aerodynamic efficiency, L

D , and
specific fuel consumption, SFC;

R =
L

D

V

SFC
ln

(
We + Wf

We

)
(2.22)

where R is the range of the aircraft, V the cruise velocity, We the empty weight of the
aircraft, and We the weight of the fuel. However, these relationships do not occur often.
If we are lucky the objectives of all the disciplines will converge on the same optimal
solution, but often the optimal solutions for the individual disciplines are competing
against each other. If this is the case then we require a Multiobjective Optimization
(MO) strategy.
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2.8.1 Multiobjective Optimization (MO)

There are many different techniques we can use within the field of MO to find a single,
optimal solution. In situations where we can assign weighting factors to the relative
importance of each objective, we can effectively run an optimization algorithm on a
global objective function that is a function of the single objectives multiplied by their
respective weightings. However, it is likely that we have no indication to the importance
of either objective in relation to each other. Multiobjective weight assignment techniques
can be used, that attempt to define the weightings in a repeatable and justifiable manner,
but there is no scientific reasoning behind these techniques. A more in depth discussion
of these methods is given by Keane and Nair [2005].

When we are unable to combine the multiple objectives into a single function, we have
to identify a Pareto set of designs; in a Pareto set each member is non-dominated, which
means that no other design has better performance on all objectives. The simplest way
to generate a Pareto set is to do direct searches on the sum of the objectives, changing
their respective weights each time. This may be inefficient as this process may have to
be repeated many times to build the full Pareto set. A more efficient procedure uses
a multiobjective evolutionary algorithm (MOEA), one of which is the non-dominated
sorting genetic algorithm (NSGA-II), developed by Deb et al. [2002]. The non-dominated
solutions at each generation of a GA are given a rank of one and the rest are given ranks
of two or higher (with rank two designs being non-dominated if we were to remove the
rank one set, and so on). The GA is then guided to explore through the design space
by rewarding or penalising each individual in the population, based on its distance from
the Pareto front (encouraging Pareto optimality) and other members (encouraging a
uniform spacing of designs along the Pareto front).

We can visualise the Pareto set by plotting the designs against each objective function,
as in Figure 2.8. In this example the aim is to minimise both objectives. We have also
included the objective function results of numerous other designs that reside within the
design space, as an intuitive illustration of the fact that all designs within the Pareto
set are indeed optimal in some way. From the individuals belonging to the Pareto
set, designers can actively seek a single solution that may stand out from the others - a
Pareto-optimal design may possess a counterintuitive solution that may lead to a radical
rethink in a design. Designers may also want to perform more analyses to the Pareto
set of designs, and pick an optimal solution with regards to another objective.

2.9 Summary

A brief introduction to the optimization methods popular in design optimization has
been presented in this chapter, where we have introduced a few of the different types,
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Figure 2.8: Two objective functions plotted against each other for numerous designs
(the black stars), and the respective Pareto front (the line in the bottom left corner)

generated using NSGA-II.

giving examples. More importantly, we have described the advantages and disadvantages
of each type that is deemed critical for designers to know and understand when planning
the optimization procedure. We have also shown how an optimization process can be
converted to include multiple objectives, producing a number of optimal solutions within
a Pareto set of designs.

Although the choice of optimization strategy is critical to the solution, also important
are the other steps along the optimization cycle. We must incorporate constraints ap-
propriately, either by redefinition of the problem statement or by altering the objective
function in some way. The objective function must accurately define the performance of
all designs within the design space, and be sensitive to changes in the input parameters.
As important to the steps already discussed is the definition of the inputs, known as
parameterization of the model. This is discussed in Chapter 3 within the realm of shape
design optimization, where we describe its importance to the optimization procedure as
well as the techniques already in existence.





Chapter 3

Geometry Parameterization

Methods

In Chapter 2 we briefly discussed the role of the parameterization model in the opti-
mization process. We mentioned that it is the formulation of the set of inputs that
characterises the design to be optimized. The values of these input variables are unique
for each design, and thus a change of any of the values causes a physical change in
the design. For some geometries the input set is obvious (for example, the number of
cross plys in a composite material, or the length and width of a beam). Providing a set
of inputs that describe more elegant shapes, which can also be modified to provide an
almost unlimited number of diverse shapes and thus designs, is not so intuitive. Many
researchers have concentrated their efforts into this area, creating the field of geome-
try parameterization. In the context of this thesis, we define the shape of an object
as the surface that encompasses that object. In 2D terms we can describe the surface
as a curve, and we will see that we can define these curves using similar curve fitting
techniques to those used in surrogate modelling methods discussed in Section 2.4.

In this chapter we firstly discuss the attributes a geometry parameterization model
must possess if it is to be useful in an optimization procedure. We then describe some
of the more popular models used in aircraft design. We finish by discussing the results
published in the literature that compare some of the different techniques.

3.1 Parameterization Model Attributes

We have already mentioned a few of the attributes we require a parameterization model
to possess:

• it must describe the shapes already used by existing designs for the application
under consideration so that they can be considered in the optimization process;

31
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• a single set of the input variables generated from the parameterisation model must
be unique to that design, thereby any modification of the input values must lead
to a physical alteration of the previous design.

However, other attributes also exist that go a long way to ensure the success of an
efficient optimization procedure. Geometric robustness is a term given to the ability to
repeatedly create “real” designs in regard to the application. The term “real” is given,
in a geometry context, to any design that has finite volume and thickness everywhere,
and is within specific constraints set by the user. Geometric robustness ensures that
the designs being considered can also be easily manufactured and are valid within the
constraints given by the designer. An example that ensures real designs is the control
polygon of the Bezier and B-Spline methods; the curve of such a method is always within
the control polygon of its control points.

When we discussed the selection of optimization method in Section 2.6, we stated that
the computational time is an important consideration to the choice of the method. Due
to their numerical formulations and the codes used to evaluate the designs, optimization
procedures are notoriously slow at finding solutions, and so any advancements found
to speed up the process are often seen as a good one. The parameterization model
can aid in the efficiency of the optimization process by reducing the size of input set.
However, we must be careful when doing this not to consequently diminish the ability
to define an almost infinite number of different shapes. The significance of this can be
seen in Figure 3.1, where the computational time increases exponentially with number
of input dimensions; consider searching a single input d times. If we were to sample
n different inputs to the same level of detail, we would have to evaluate dn different
input sets. This is known as the curse of dimensionality. It has a more significant effect
than, say, the number of generations g in a genetic algorithm, which only increases the
number of simulations by p × g, where p is the population size. Unfortunately, many
parameterisation techniques generate variables in the order of tens for a simple 2D airfoil
problem and so by only reducing the input set by one will significantly speed up the
optimization process.

The requirement “that any modification of the input values must lead to a physical
alteration of the previous design” leads to the importance of the geometric sensitivity,
defined by Samareh [2001] as “the partial derivative of a response with respect to a
design variable”. More simply it is the amount a geometry changes its shape with a
small change to the input set. The ideal would be a proportionally small change to the
shape with a small change of the parameter values. For example, a Lagrange polynomial
is very poor at maintaining its structure when its control parameters are modified slightly
(see Cottrell et al. [2009]), whereas a Bernstein polynomial maintains its general shape
when a control point is perturbed (described later).



Chapter 3 Geometry Parameterization Methods 33

1 2 3 4 5 6 7 8
No. Inputs

C
om

pu
ta

tio
na

l T
im

e

Figure 3.1: Dependence of computational time with number of variables.

We must also consider the sensitivity of the performance values, generated by some anal-
ysis code or experiment, to changes in the input set. For a computational fluid dynamics
solution, we are not just concerned with the geometric sensitivity, as we approximate the
shape using a grid of points called a mesh, as well as using a numerical procedure to find
the flow characteristics. Therefore, the aerodynamic sensitivity is effectively the product
of the geometric sensitivity, grid sensitivity to the geometry, and the aerodynamic sen-
sitivity to the grid (see Samareh [2001]). Again, from an optimization point of view, it
is important that only a proportionally small change in the aerodynamic characteristic
occurs with a small change in the design variables, otherwise we may never find the most
suitable design for our objective; a small change in the parametric variable leading to a
drastic change in the aerodynamic characteristics results in us missing the aerodynamic
relationship between this region, which may lead to missed local minima or constraint
boundaries. When the design analysis procedure requires discretizing the physical space
in or around the designs, we must take into account the grid or mesh approximation
to the surface – the accuracy of this approximation is, of course, a function of mesh
density. A similar reasoning can be employed when we export a CAD model - we can
use a variety of export formats to do this, but many work on the assumption that the
surfaces are linear interpolations between points on the surface, just like the assumption
made by many grid generation codes. The transfer of geometric data from CAD to the
discretization process is itself a topic of research within the field of isogeometric analysis(
see Cottrell et al. [2009]).

We have listed many of the attributes we require of a parameterization model, however
we may have other requirements that we may wish the parameterization to possess.
Many design engineers work with the aid of Computational Engineering Design (CAD)
systems, and generally wish to view the products they are designing rather than to trust
a set of numbers. Shape parameterization is also used in the gaming and animation
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industries, where it allows fine detail and movement with minimal computational re-
strictions. The ability to use these techniques within a CAD environment has therefore
become an important aspect. Many techniques that have not possessed this ability are
therefore not favoured in industry. Splines are an example that have been incorporated
within CAD models, as they can be manipulated using affine transformations so the ge-
ometry can be rotated, translated, and scaled. This ability has led to Splines becoming
very popular within the design community.

As designers model more complex geometries, restrictions due to computer performance
become common. If we were to define geometries in a CAD model as interpolations
between points on the surfaces, we would require a large number of points to gain an
accurate representation. For relatively large or complex geometries we may find that
the number of points required exceed the amount that can be stored by the computer.
In optimization simulations, it is too computationally expensive to describe a complex
object by large numbers of discrete points, as it would take lifetimes to find the ideal
solution. This is why original CAD systems used polygonal methods, as objects were
essentially a collection of simple shapes that were easy to compute. We must be careful
when developing such a geometric method, as simplifying a method to increase com-
putational efficiency could in fact reduce the flexibility of the model itself. The use
of discrete points and polygonal methods, as well as the Constructive Solid Geometry
(CSG) technique that most CAD systems are now built on, are not described here, but
the interested reader can find further information in Mortenson [2006]. We concentrate
our discussion here on techniques widely used in the aircraft design domain to optimize
aircraft and their components. We discuss a variety of techniques to give a flavour of
those available to a designer, but it must be stressed that this is not an exhaustive list.
A more definitive collection is given by Samareh [2001].

3.2 Parametric Shape Modelling

Suppose we wanted to approximate our geometry using a polynomial model. When
discussing surrogate modelling in Section 2.4, we used a polynomial in its explicit form
(y = f(x)) and found the coefficients using the least squares method. Defining the equa-
tion explicitly in Euclidean space brings a number of drawbacks, as stated by Mortenson
[2006]:

• The points defining the shape are dependent on the coordinate system, when we
are concerned with their dependence upon each other.

• Tangent lines may become parallel to principal axes, which may result in values
of infinity, leading to undefinable curves.
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• Non-planar and bounded curves are not easily represented by ordinary nonpara-
metric functions.

This has led to the preferred way to represent geometric shapes using parametric equa-
tions; we split our explicit function y = f(x) into two functions x = x(u) and y = y(u),
both of which are dependent on a new parameter u. It must be stressed that we use the
word ‘parametric’ here with its mathematical meaning, and not that of parameterization
in geometric modelling. Usually we normalise the parameter space by setting u ∈ [0, 1],
so that the curve is bounded as it has two definite end points. In reference to a 3D case,
we have the natural vector representation,

c(u) = [x(u) y(u) z(u)] (3.1)

We can represent the components of c(u) as any mathematical function. For example,
we can define each component ci(u) as a set of basis functions:

ci(u) =
n∑

j

Ai,jθj(u) (3.2)

where θ(u) is a n sized vector of fixed functions of u, and A is a n×3 matrix comprising
of the coefficients of θ(u) for each parametric component ci(u). We can then modify the
coefficients of A to create our required curve.

Mortenson [2006] gives a list of advantages of parametric equations:

• They allow separation of variables and direct computation of point coordinates

• Easy to express as vectors

• Each variable is treated alike

• More degrees of freedom to control curve shape.

• Transformations may be performed directly on them

• They accommodate all slopes without computational breakdown

• Extension or contraction into higher or lower dimensions is direct and easy without
affecting the initial representation

• The curves they define are inherently bounded when the parameter is constrained
to a specific finite value. This allows us to create a piecewise representation of a
curve.

• The same curve can often be represented by many different parameterizations.
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Parametric methods appear to be the ideal modelling techniques for all cases, but they
do have their own set of drawbacks. For example, Du and Qin [2007] indicate that
parametric techniques have trouble with shape bending and collision detection. Their
disadvantages are thought to be outweighed by their advantages, which is evident from
their popularity within the design community.

We describe here some of the most popular parametric methods used by the design
community. We begin with the most simple polynomial methods and then evolve the
process to create Bézier, B-Splines and finally NURBS curves. We only consider here
these methods in their simplest form. More advanced routines, as well as the definition
of surfaces, is given by Piegl and Tiller [1997].

3.2.1 Polynomial Approaches

Using polynomials to describe curves gives a large amount of flexibility in the curve
definition, with using only a few design parameters. These are easily and efficiently
computed, as they require little storage space and are robust to floating point and
round-off errors. The simplicity of polynomial curves leads to their inability to represent
all curves. We can combat this disadvantage by representing curves as a system of
polynomials; an nth-degree power basis representation is given by

c(u) =
n∑

i=0

aiu
i 0 ≤ u ≤ 1 (3.3)

where ai = (xi, yi, zi) are the coefficient vectors of the power bases ui. It can be seen
that if n = 1 then c(u) = a0 + a1u, which is a straight line, and if n = 2 then c(u) =
a0 + a1u + a2u

2, which is a parabolic arc. We can compute the points on the curve c(u)
by using Horner’s method, which finds the coordinates using only n multiplications and
n additions. For example, the polynomial

c(u) = a3u
3 + a2u

2 + a1u + a0 (3.4)

is computed in the form c(u) = [(a3u + a2)u + a1]u + a0.

This approach is the very basic form of curve generation using polynomials. The coef-
ficients a3,a2,a1,a0 do not give any insight into the curve that is to be generated, and
the method itself is prone to round-off errors. To achieve a greater intuitiveness of the
curve structure we can define these coefficients in terms of the end points c(0) and c(1)
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and their tangent vectors:

c(0) = a0

c(1) = a3 + a2 + a1 + a0

cu(0) = a1

cu(1) = 3a3 + 2a2 + a1

(3.5)

where cu defines the derivative of c with respect to u. Simultaneously solving this set
of equations gives the coefficients:

a3 = 2c(0)− 2c(1) + cu(0) + cu(1)
a2 = −3c(0) + 3c(1)− 2cu(0)− cu(1)
a1 = cu(0)
a0 = c(0)

(3.6)

Substituting these values into Equation 3.4 gives

c(u) = F1(u)c(0) + F2(u)c(1) + F3(u)cu(0) + F4(u)cu(1) (3.7)

where
F1(u) = 2u3 − 3u2 + 1
F2(u) = −2u3 + 3u2

F3(u) = u3 − 2u2 + u

F4(u) = u3 − u2.

(3.8)

are the Hermite basis functions. It is convenient to have shape controlling variables at
the end points of the curve as, we will see when discussing B-Splines, it makes it easier
to join curves together.

3.2.2 Bézier Curves

The power basis method and Hermite form give very little geometric insight into the
shape of a curve. It is more desirable to have a method that can control a curve’s shape
in a predictable way using only a few parameters. One method that achieves this was
developed by Pierre Bézier; a Bézier curve is defined as:

c(u) =
n∑

i=0

Bi,npi 0 ≤ u ≤ 1 (3.9)

where pi are the control points that are interpolated to create a control polygon and
Bi,n are the nth-degree Bernstein polynomials, defined as:

Bi,n(u) =
n!

i!(n− i)!
ui(1− u)n−i (3.10)
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Figure 3.2: Bernstein polynomial representation pyramid reproduced from. Kulfan
and Bussoletti [2006]

Figure 3.2 shows clearly the patterns of the Bernstein polynomials as the degree n is
increased. The properties of these basis functions, stated by Piegl and Tiller [1997], are:

1. Nonnegativity: Bi,n ≥ 0 for all i, n and 0 ≤ u ≤ 1

2. Partition of unity
∑n

i=0 Bi,n(u) = 1 for all 0 ≤ u ≤ 1

3. B0,n(0) = Bn,n(1) = 1

4. Bi,n(u) attains exactly one maximum on the interval [0,1] at u = i/n

5. For any n, the set of polynomials {Bi,n(u)} is symmetric with respect to u = 1/2

6. Recursive definition: Bi,n(u) = (1 − u)Bi,n−1(u) + uBi−1,n−1(u), where we define
Bi,n(u) ≡ 0 if i < 0 or i > n

7. Derivatives:

B′
i,n(u) =

dBi,n(u)
du

= n(Bi−1,n−1(u)−Bi,n−1(u))

with B−1,n−1(u) ≡ Bn,n−1u ≡ 0

These properties allow for the polynomials to be calculated simply, and for the easy
differentiation of the curves at their end points, which are symmetric with each other.

Bézier curves are more geometric than power basis curves in the fact that due to a
variation diminishing property (if we were to draw a straight line across a Bézier curve
the line will not intersect the curve more times than it intersects the control polygon)
the control polygon (area encompassed by the control points) approximates the shape
of the curve. Together with the convex hull property (curves are contained within the
outermost lines connecting the control points, p), we have a more intuitive understanding
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to the characteristics of the curve and so the user can be more interactive. It is also less
prone to round off error due to the deCasteljau algorithm being a repeated interpolation
from the control points to find any point u along the length of the curve;

C(u) = pk,i(u0) = (1− u0)pk−1,i(u0) + u0pk−1,i+1(u0) for

{
k = 1, . . . , n

i = 0, . . . , n− k

(3.11)
for an nth-degree Bezier curve at point u0. This method is depicted in Figure 3.3, with
the white point on the curve found through using the deCasteljau algorithm (repeated
interpolation of the control points, shown by the small black dots). This figure also
shows the intuitiveness between the control points and the resulting curve shape. A more
detailed explanation is given in Piegl and Tiller [1997]. Bézier methods are invariant
under affine transformation, making them attractive in both CAD and optimization
communities.

P 1

P 2 P 3

P 4

Figure 3.3: Repeated linear interpolations have been utilised by deCasteljau to find
any point on a Bézier curve.

Using simple Bézier curves, it is difficult to represent curves such as circles, spheres,
cylinders, cones etc. Rational functions - functions that are the ratio of two polynomials-
alleviate this restriction; a rational Bézier curve can be defined as:

c(u) =
∑n

i=0 Bi,nwipi∑n
i=0 Bi,nwi

0 ≤ u ≤ 1 (3.12)

where wi are scalars, called the weights. A rational Bézier curve is invariant under
perspective transformation, which is not true for non-rational Bézier curves.

3.2.3 B-Splines

Another drawback of Bézier curves is the fact that a n−1 degree Bézier curve is needed
to pass through n data points, which at high n is very inefficient and can be numerically
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unstable. With this in mind it is also difficult to accurately define some complex shapes
using Bézier curves, and they are difficult to control as they do not allow a lot of local
control. To remedy these drawbacks curves and surfaces can be defined as piecewise
polynomial, that is, consisting of several polynomial segments.

This is not as easy as adding multiple Bézier curves together, as the whole curve would
not necessarily have the properties listed of Bézier curves, i.e. convex hull, variation
diminishing, etc. Therefore the whole curve has to be represented as

c(u) =
n∑

i=0

fi(u)pi (3.13)

where fi(u) are piecewise polynomial functions. As each function fi(u) is multiplied by
its relative control point pi then moving pi only affects the curve shape where fi(u) is
nonzero, giving local adaption of the curve only.

We would like to have a piecewise set of curves that have individual basis functions.
We can do this by using a set of knot values. Assume that U = uo, ..., um is a knot
vector, which is a non-decreasing sequence of real numbers, where ui are called knots.
The B-Spline basis function of degree p (order p + 1) is defined as

Ni,0(u) =

{
1 if ui ≤ u ≤ ui+1

0 otherwise

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (3.14)

It is clear to see that the zeroth degree basis functions are only involved in their left-open
intervals uε[ui, ui+1) (u cannot take a value less than the current u), with the others being
a linear combination of two (p-1) degree basis functions. The basis functions Ni,p(u) are
piecewise polynomials, and the knots may take the same value as its adjacent knot, so
long that ui ≤ ui+1. If a knot span is defined as

U = {0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}

then the basis functions become Bernstein polynomials and thus the curve is a Bézier
curve. Duplicating values in a knot sequence increases its multiplicity at that knot
position. The multiplicity of a knot determines the number of times a basis function
is continuously differentiable and thus the continuity of the base functions - Ni,p(u) is
p− k times continuously differentiable, where k is the multiplicity of the knot. Multiple
knots also reduce the span or number of intervals in which a basis function is non-zero
– A zero basis function leads to a discontinuity in the curve.
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The overall definition of a B-spline is

c(u) =
n∑

i=0

Ni,p(u)pi (3.15)

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1 b, . . . , b︸ ︷︷ ︸
p+1

}

where the degree p, number of control points, n + 1, and number of knots, m + 1 are
related by

m = n + p + 1.

Figure 3.4 shows a set of B-Splines of different degree, and Figure 3.5 shows a Bézier
curve with a B-Spline.

P 1

P 2 P 3

P 4 P 5

P 6

P 7

p=3

p=2

p=4

Figure 3.4: B-spline curves of different degree

3.2.4 NURBS

NURBS, or Non Uniform Rational B-Splines, are an amalgamation of the theory already
discussed in this section. It is easy to see this when viewing the definition of a NURBS
curve:

C(u) =
∑n

i=0 Ni,p(u)wiPi∑n
i=0 Ni,p(u)wi

(3.16)

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1 b, . . . , b︸ ︷︷ ︸
p+1

}.

It can be said that NURBS are the rationalisation of B-Splines by using a ratio of two
polynomials, hence the name. This allows us to define complex curves like conics, and
cylinders using B-Splines, allowing better control and flexibility than the rational Bézier
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B−Spline, p=2

Bezier curve

Figure 3.5: Bézier curve and a B-Spline curve.

curves. With the use of control point movement and weight modification we can modify
the local shape and thus have a more interactive method to design shapes.

Polynomial techniques have been shown to be adequate when it comes to defining two-
dimensional 2D curves. However, it must be noted that each control point has a com-
bination of variables ( x, y in 2D, x, y, z in three-dimensional 3D Cartesian coordinate
system), increasing the number of input variables to the optimization process. Also,
surfaces are defined by a multitude of curves and as such require a large amount of
control points, that can result in solutions from an optimization possessing irregular or
wavy geometries [Samareh, 2001].

3.3 Aero-Specific Modelling Techniques

The methods already described can be used for almost any application, and as such are
available in most CAD software. Many other techniques exist that have been used or
developed specifically for aerospace applications. Even though some of the methods de-
scribed here may also be used in a more general setting, we only discuss the techniques
when being used in an aero-specific capacity. The main application used in the literature
to assess these methods is airfoil case studies, as the 2D characteristic enables simplicity
in defining performance metrics, can be easily visualized, and the airfoil represents the
cross-section of many external components on aircraft – if a method can accurately ap-
proximate an airfoil, likelihood is that it can be used for most external shape definitions
of aircraft components. We first discuss the NACA series airfoils, which were initially
characterised through a set of empirical equations (z=f(x)). We move on to parameter-
ization techniques that can be used to accurately approximate many airfoil variants –
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useful for when incorporated into an optimization procedure. Specifically, we describe
the Hicks-Henne bump functions, the PARSEC method, and Kulfan’s class/shape trans-
formations. All these methods use, as inputs, the x-coordinates that span between the
leading and trailing edges of the wing, normalised with the airfoil chord (x ∈ [0, 1]).

3.3.1 NACA Series Airfoils

In the 1930’s the National Advisory Committee for Aeronautics (NACA)1 developed a
set of airfoils that were identified using a simple denotion, describing their shape: the
first digit signified the maximum camber as a percentage of chord (100m); the second
digit the distance of maximum camber from the leading edge (10p); the last two digits
being the maximum thickness of airfoil as a percentage of chord (100t). This four digit
identification led to the set of airfoils being defined as the NACA four-digit airfoils. The
descriptive digits are inputs to a set of equations that generate the coordinate points for
each airfoil:

1. The thickness distribution:

z =
t

0.2
(
0.2969

√
x− 0.126x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
(3.17)

provided that the position along the chord x ∈ [0, 1].

2. The leading edge radius of the airfoil:

rt = 1.1019t2 (3.18)

3. The mean camber line:

zc =

{
mx

p (2p− x) if 0 ≤ x ≤ p

m 1−x
(1−p)2

(1 + x− 2p) if p ≤ x ≤ 1
(3.19)

4. Finally, the coordinates of the NACA four digit airfoils are given by

xu = x− z sin θ , zu = zc + z cos θ

xl = x + z sin θ , zl = zc − z cos θ
(3.20)

where θ = arctan
(

dzc
dx

)
.

The five-digit airfoils are derived in a similar way, except the first digit, when multiplied
by 0.15, gives the design lift coefficient cl, the second and third digits give 2p, and
the fourth and fifth digits give 100t. The six-series airfoils were based on the one-
series aifoils, but were derived numerically from flow data rather than created then

1NACA was incorporated into the National Aeronautics and Space Administration (NASA) in 1958.
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assigned their aerodynamic characteristics from analysis. The six-series were therefore
characterised by their aerodynamic characteristics as well as their maximum thickness,
and so no analytical expression was used to create them. A more detailed explanation
of these airfoils, and other work of NACA on wing sections is given by Abbott and von
Doenhoff [1959].

3.3.2 Hicks-Henne Bump Functions

As we delve further into the methods used to define airfoils, we will notice similarities in
their definitions, with many using a basic airfoil shape as a starting point to be modified
by a set of mathematical functions. A well-known analytical approach that does this is
that of Hicks and Henne [1978] that was initially used to optimize a wing, modifying
the airfoil sections at the root and at the mid-span. A baseline model zbasic is perturbed
using a set of shape functions bi which are controlled by participation coefficients,Ai:

z = zbasic +
n∑

i=1

bi (3.21)

where n is the number of shape functions. The ith shape function is defined by Sobester
and Keane [2002] as:

bi(x) = Ai

[
sin

(
πx

− ln 2
ln xp,i

)]ti

, x ∈ [0, 1] (3.22)

where xp is the location of the peak of the bump and t is a parameter that controls the
width of the bump (a large t value corresponds to sharp bumps). The participation coef-
ficients are the design variables, that are initially set to zero to obtain the characteristics
of the original structure, but are then modified to improve the chosen characteristics.

The Hicks-Henne functions have been popular in the academic community [Kim et al.,
2000], [Wu et al., 2003], [Castonguay and Nadarajah, 2007], as they allow local smooth
modifications to a geometry that is difficult to achieve using methods such as the discrete
point method.

3.3.3 Orthogonal Basis Functions

A method that follows a similar approach to Hicks-Henne functions is the orthogonal
basis function representation presented by Robinson and Keane [2001]. Here, once an
initial approximation to NASA’s SC(2) airfoil family was created by a least squares
fitting, airfoil basis functions were derived from the residuals of the preceding fit. It was
noted that acceptable accuracy was gained by only using four base functions. Chang
et al. [1995] and Catalano et al. [2008] have also used orthogonal basis functions to model
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airfoils. Suppose we had a set of functions (f). Two functions are said to be orthogonal
if their inner product equals zero, where the inner product is defined as

(fi, fj) =
∫ 1

0
fi(x)fj(x)dx for i 6= j (3.23)

and (fi, fi) 6= 0. We can create a set of orthogonal basis functions (h(x)) using the
Gram-Schmidt orthogonalization process, as we know that the functions are linearly
independent:

hi(x) =

{
f1 if i = 1
fi(x)−∑i−1

j=1 aijhj(x) otherwise
(3.24)

where aij = (fi, hj)/(hj , hj) is the projection of fi in the direction of hj . We now
normalize the function set h(x) to find the the orthanormal set g(x):

gi(x) = hi(x)/(hi, hi) (3.25)

Orthogonal basis functions have been used to reduce the number of parameters to im-
prove the efficiency of an optimization process. Chang et al. [1995] managed to define
the transonic Korn airfoil using ten shape functions, with the maximum residual being
5.7× 10−4. A subsonic NACA airfoil was modelled with a maximum error of 1.8× 10−5

using only four shape functions. Robinson and Keane [2001] showed that only three base
functions are needed to accurately model 9 of NASA’s SC(2) supercritical airfoils. Cata-
lano et al. [2008] undertook a gradient based search using four base functions, showing
that the computational time is 6-10 times lower than a similar search using a Bézier
curve representation.

3.3.4 PARSEC Method

Orthogonal methods may well reduce the number of parameters that need optimizing,
but these parameters do not give us an intuitive understanding of the physical charac-
teristics of the airfoils. Sobieczky [1998] defined a parameterization method using 11
parameters that were physical characteristics of the airfoil:

• Leading edge radius (rle)

• Upper crest position (xup, zup)

• Upper crest curvature (zxxup)

• Lower crest position (xlo, zlo)

• Lower crest curvature (zxxlo
)

• Trailing edge direction (αte)
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Figure 3.6: Variables used in the PARSEC method [Sobieczky, 1998].

• Trailing edge wedge angle (βte)

• Trailing edge offset (zte)

• Trailing edge thickness ((∆zte)

These parameters, included within the vector e, are included into the airfoil definition
via a sixth order polynomial that independently defines the upper and lower surfaces:

z =
6∑

i=1

bi(e)xi− 1
2 (3.26)

where bi coefficients depend on the 11 parameters above.

The generation of this technique was from the knowledge and experience of its creator,
and is restricted by some of the assumptions it uses so that an airfoil can be defined via its
physical characteristics. For example, any shape that does not have a round leading edge
cannot be modelled using the PARSEC method. This is a severe limitation, especially
when applied to a global optimization strategy. The curvature of the leading edge can
easily be modified by alteration of the leading edge exponent, as we will experience in
the next technique that we discuss.

3.3.5 Kulfan’s Class/Shape Transformation Method

Using the PARSEC method it is difficult to define an airfoil that has a shape significantly
different to convention. For example, the parameter that defines the curvature at the
leading edge brings difficulty in modelling airfoils that do not have a smooth gradient
at the leading edge, such as NASA’s supercritical and Natural Laminar Flow (NLF)
airfoils. Kulfan [2008] has proposed that a baseline airfoil shape, defined by a simple
analytic function called a class function, can be modified using a specific shape function
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(a) N1=0.5,N2=0.5 (b) N1=0.001, N2=0.001 (c) N1=0.5, N2=1

Figure 3.7: The exponents to the class function (N1, N2) must agree with the shape
being modelled.

to gain the airfoil’s “uniqueness”. The class function is defined as

CN1
N2 (x) = xN1[1− x]N2 (3.27)

where N1 and N2 are exponents that determine the basic shape. For a round nose
and sharp trailing edge, characteristic of an airfoil, we define N1 and N2 as 0.5 and
1 respectively. Modifying the values of N1 and N2 allows for the production of other
basic shapes, giving us a very simple and flexible method to define geometry (see Figure
3.7).

The purpose of the shape function is to model the quotient between the target airfoil
zt(x) and the class function:

S(x) =
zt(x)

xN1[1− x]N2
(3.28)

This can be approximated, by a limited number of parameters, using Bernstein polyno-
mials (Equation 3.10). The overall approximation is

z(x) = CN1
N2 (x)S(x) = xN1[1− x]N2S(x). (3.29)

We can then use the least squares solution for the coefficients of the Bernstein polyno-
mials to obtain z(x).

3.4 Modifying Existing Geometry

Once we have successfully modelled a design we may wish to edit the shape, for example
to either create an animation or to obtain finer control over the surface. These methods
enable us to make changes in the shape without having to recreate the object, which
may be time consuming and often difficult to perform.
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We may require a local refinement within a region of a surface, or we may need a global
deformation to change the whole characteristic of the object. Here we summarise two of
the methods, one that can be used to refine, and the other used to fully deform a solid
structure.

3.4.1 Hierarchical B-Spline Refinement

Due to the global influence of control points to each piecewise polynomial in a parametric
curve it becomes difficult to perform local refinement within a piecewise curve. We must
attempt to find a mapping of this region to a curve defined by many more control points
that produces an exact re-representation of the curve. The increased number of control
points will give us greater local control in this local region.

Forsey and Bartels [1988] developed a method whereby a surface patch is split into
multiple patches. This, however, can only be performed if the original surface used basis
functions that “can be re-expressed as a linear combination of one or more smaller basis
functions” [Forsey and Bartels, 1988], i.e.

S(u, v) =
n∑

i=0

m∑

i=0

Bi,n(u)Bj,m(v)Pi,j (3.30)

with the basis functions Bi(u), Bj(v) defined using a number of smaller basis functions:

Bi,n(u) =
∑

r

αi,n(r)Nr,n(u)

(3.31)

Bj,m(u) =
∑

s

αj,m(s)Ns,m(v)

The new surface patches do not replace the original surface, as the original surface
is created with fewer control points. The replacement vertices saved are those that
are used in the modification of the patch, and not all that were used to define that
patch. In a bicubic B-Spline representation, once we have refined a surface patch into
a representation having 16 patches, if we only modify the central vertex we localize
the editing to this one patch, as the derivatives of the boundaries between the original
patches remain unchanged. This one patch representation is known as an overlay. This
method has been given the name Hierarchical B-Spline Refinement as the process can
be iterated applying the technique to refined patches to further increase the resolution
of the refinement.
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3.4.2 Free-Form Deformation

The words “free-form” suggests a surface can be shaped like a piece of clay in a sculptor’s
hands, and therefore planes, quadrics and tori are generally not considered to be free-
from [Sederberg and Parry, 1986]. The clay metaphor suggests that this technique is for
solids, but it is also applicable to surfaces. Many CAD models define shapes through
planar surfaces and therefore are not free-form.

Barr [1984] presented an R3 → R3 mapping, showing a useful way of bending, twisting
and tapering solid objects. He used tangent and normal vectors; tangent vectors to
construct the local geometry, and normal vectors to obtain surface orientation. However,
this was not classed as a free-form technique.

FFD was initially described by Sederberg and Parry [1986], where they explain that it
can sculpt solids bounded by any analytical surface. It can also be applied locally or
globally to an object, and can have constraints to control the degree of volume changes.
Sederberg and Parry [1986] define FFD by assuming a number of objects are contained
in a cubic shape (parallelepiped). The cubic can be discretized by points in the different
coordinate directions. Then a deformation function defined by trivariate tensor product
Bernstein polynomials can be used to deform the cube:

x̂ =
l∑

i=0

m∑

j=0

n∑

k=0

Bl
i(u)Bm

j (v)Bn
k (w)pijk (3.32)

where x̂ is the new position of the nodes, and pijk are the grid point positions (control
points):

pijk = x0 +
i

l
S +

j

m
T +

k

n
U (3.33)

l, m, n are the number of grid points in the S, T, U directions respectively, with 0 ≤ i ≤ l,
0 ≤ j ≤ m, 0 ≤ k ≤ n. x0 is the starting point of the coordinate system. When the
cube is deformed the objects inside the cube deform with it, as shown in Figure 3.8(b)
where the cylinder is deformed from its original shape shown in Figure 3.8(a).

Figure 3.8(b) also shows the control points, which are actually the coefficients of the
Bernstein polynomials, with the edges of the parallelepiped defined as Bezier curves
controlled by the points that initially were positioned on the edges. According to Lam-
ousin and Waggenspack Jr. [1994] there are four main stages in performing FFD:

1. Construct a parametric solid; the objects to be deformed must be enclosed by the
parallelepiped with control points and corresponding basis functions. Each point
within the solid can be mapped to a parametric grid (u, v, w)

2. Embed the object within the solid. The parametric coordinates are determined
for each point (x, y, z) describing the object.
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(a) A parallelepiped encompassing a cylinder before
deformation.

(b) The parallelepiped and cylinder after deforma-
tion.

Figure 3.8: An example of free form deformation.

3. Deform the parametric solid by displacing the vertices of the parallelepiped or
lattice.

4. Evaluate the effect of the deformation on the embedded object. The parametric
coordinates found in Step 2 are used with the deformed lattice control points
to evaluate the new positions of the embedded point set and the topology, or
connectivity, of the original object is used to reconstruct the object.

In the example in Figure 3.8 a parallelepiped is used to give a basic understanding of
the method, as is the uniformly spaced gridding. Bernstein approximations also give a
simplified feel to the method as other, more advanced methods can be used. Lamousin
and Waggenspack Jr. [1994] used NURBS based FFDs to model a leg, in which control
points were concentrated in areas of high detail.

3.5 Comparison of the Different Techniques

There have been a variety of reports that have studied various parametric techniques
to be used in aerospace applications. Wu et al. [2003] compared the ability of the
PARSEC method, Hicks-Henne bump functions, and the mesh point method to be used
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in inverse design problem applied to three different turbomachinery cross-sections. The
PARSEC method was found not to be suitable for turbine blade optimization, as in
some cases it produced unphysical shapes. This is not surprising as its formulation is
based on conventional airfoils. The Hicks-Henne method reached an optimum faster,
but the mesh-point method reached a higher accuracy, due to its higher order of design
variables.

Song and Keane [2004] compared the Robinson and Keane [2001] Orthogonal Basis
Function method with the B-Spline method for three different airfoils. Not surprisingly,
the orthogonal method could not accurately find the leading and trailing edge shapes, as
the basis functions were derived using the NASA family of supercritical airfoils, which
have special characteristics in these regions (see section 4.1.1). The B-Spline method
was more accurate in its definition, but still had trouble in approximating the leading
edge. This may have been improved if an analytical term, similar to the leading term of
the Kulfan [2008] class function, had been used.

Castonguay and Nadarajah [2007] compared four techniques: Hicks-Henne bump func-
tions, B-Spline curves, mesh-point, and the PARSEC method. This was done in the
context of an adjoint based shape optimization. Again, the PARSEC method was not
suitable in inverse design problems as, although the shock moved to a similar position
to the target pressure distribution, the leading edge was not modified to obtain the ex-
act pressure distribution. The accuracy of the Hicks-Henne method was lower than the
B-Spline and mesh point methods, but produced similar results to the B-Spline method
in drag minimization. Mousavi et al. [2007], reported the results of a similar study. This
time they compared the Kulfan [2008] transformation with mesh point and B-Spline
methods. In the conclusions they report that Kulfan’s transformation could model an
ONERA M6 airfoil but to a lower level of accuracy, and that it failed to attain the
same level of accuracy as the B-Spline method in a 3D drag minimization. It is difficult
to understand from this paper if the Kulfan transformation can be regarded as having
poorer accuracy, as the accuracy is dependent on the shape function used, in this case
the Bernstein polynomials. They conclude that higher orders of polynomial developed
high frequency, lower amplitude oscillations. This may have been remedied by using a
similar method as was done for Bézier curves in Section 3.2.2; that is, to represent it as
piecewise polynomial. This may allow greater accuracy in the initial definition as well
as a higher order to be used in the optimization algorithm, which should help in the
optimization to reduce drag. This idea has been presented by Straathof et al. [2008],
however no detailed comparisons between using different shape functions were made.
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3.6 Summary

In this chapter we have discussed the many attributes we require from a shape param-
eterization model for it to be used effectively in an optimization procedure. We have
introduced a few of the many techniques available, highlighting their strengths and weak-
nesses. These were emphasised by the review of articles that compare the performances
of some of the techniques.

We have now given an overview of all the stages within an optimization procedure,
introducing a variety of different methods that can be used at each stage. To cement
the main processes involved in planning a design optimization study, we present a simple
example in the next chapter. Note that we are only concerned in the next chapter with
the setup of the optimization problem, and so little discussion is given to the optimal
solution found in the study.



Chapter 4

Application - Optimization of a

NASA SC(2) Airfoil

In chapters 2 and 3 we have given an overview of the main aspects in an optimization
procedure, giving advantages and disadvantages of many of the techniques used at dif-
ferent stages along the optimization process. We now present an application of these
methods on a simple 2D airfoil problem that underpins the basic design optimization
process. More specifically, we optimize the shape of an airfoil belonging to NASA’s su-
percritical family, for a target lift coefficient cl and thickness-to-chord ratio t/c different
to that airfoil’s design specification. The aim of the optimization procedure is to also
highlight the applications of the parameterization procedure developed by Sóbester and
Powell [2012] that maps the design identifiers of NASA’s supercritical family (design cl

and thickness-to-chord ratio t/c) to the parametric values of the Kulfan [2008] transfor-
mation, allowing the generation of an airfoil with any set of cl, t/c combinations within
a specific range.

Of course, the first task before we even begin to plan the optimization process is to under-
stand the problem we are attempting to solve: we initially give an overview of NASA’s
Supercritical airfoil family, describing the design philosophy as well as the probable
design methodology, something of which is not obvious from the available literature.
Accurately describing the design methodology is essential, and so we go on to verify this
process using CFD analysis on airfoils generated by the Sóbester and Powell [2012] re-
parameterization, mentioned above. After verification of the design process, we give a full
description of the optimization problem and procedure, including the parameterization
of the model, choice of objective function (including penalties), and the convergence cri-
teria. After presenting the optimization results we only briefly compare the aerodynamic
differences between the performance of the optimization solution and the performance of
an airfoil generated by the Sóbester and Powell [2012] re-parameterization, as the main
focus here is on the optimization process, and not on the results.

53
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4.1 NASA’s Supercritical Airfoils

The SC(2) Family of Supercritical Airfoils is the result of research conducted by NASA
starting in the 1960s aimed at the development of “practical airfoils with two-dimensional
transonic turbulent flow and improved drag divergence Mach numbers while retaining
acceptable low-speed maximum lift and stall characteristics” [Harris, 1990]. They trace
their lineage back to the work of Whitcomb and Clark [1965], who noted that a three
quarter chord slot between the upper and lower surfaces of a NACA 64A series airfoil
gave it the ability to operate efficiently at Mach numbers greater than its original critical
Mach number - hence the term ‘supercritical’, or ‘SC’ for short. Critical Mach number
is defined as the free stream Mach number where local sonic velocities develop around
the airfoil. Therefore this type of airfoil was extremely useful in conditions of transonic
flow, reducing the drag experienced at these speeds.

The development of these airfoils continued into the 1970s and 1980s resulting in three
phases of designs. A variety of experiments were performed with these airfoils in the
Advanced Technology Airfoil tests (ATAT) [Ladson and Ray, 1981] where a number of
airfoil concepts were tested over a wide range of Reynolds numbers. They are identified
using the designation ’SC’ followed by the development phase for which that particular
airfoil was developed, in brackets. It is proceeded by two characteristics of the airfoil;
the design lift coefficient (multiplied by ten), and the maximum thickness to chord
ratio (as a percentage). Thus, the SC(2)-0410 indicates a second series airfoil with a
thickness-to-chord ratio of 10% that has been designed for a lift coefficient of 0.4.

4.1.1 Design Philosophy

The design philosophy of the supercritical airfoils was initially described by Whitcomb
[1974] in 1974. A more complete account was given by Harris [1990], many years after
their conception. The airfoils were designed to improve supercritical flow, whilst main-
taining a design lift coefficient cl. This was achieved by delaying the drag rise on the
upper surface through a reduction in the severity of the airfoil curvature in the middle
region, reducing the flow acceleration and thus the local Mach number. This, in turn,
reduces the severity of the adverse pressure gradient there and thus the associated shock
is moved rearward with reduced strength.

The region of the flow above the airfoil can be modelled by a set of expansion waves
(characteristic lines) emanating from the leading edge. These waves reflect back off the
sonic line (a line that separates the sonic flow from the subsonic flow) as compression
waves onto the airfoil surface, where they again reflect in the form of expansion waves.
Expansion waves have the effect of increasing the velocity of the flow, whilst compres-
sion waves decrease the velocity. The design goal in the generation of these airfoils
was to balance out these competing waves so that a flat top pressure distribution was
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(a) RAE2822 airfoil (b) SC(2)-0612 airfoil

Figure 4.1: The SC(2) airfoils have a number of characteristics different to other
airfoils, notably the leading edge curvature and the cusp of the aft lower surface.

achieved forward of the shock position, that helps to stabilize the boundary layer so it
does not separate through the shock. Geometrically, this was achieved through a large
leading edge curvature (creates strong expansion waves), and by the flat mid-chord re-
gion (reduces the accelerations that would have needed to be overcome by the reflected
compression waves) [Whitcomb and Clark, 1965].

Theory suggests that the pressure coefficient should return to stagnation conditions at
the trailing edge, but at this point the boundary layer separates and the pressure rise is
less. It was noted that, in boundary layer theory, if the pressures had to rise from the
levels before the shock to the usual positive pressures at the trailing edge, separation
would occur. Therefore, to make the pressure at the trailing edge only slightly positive,
and thus reduce the pressure recovery, the lower surface has the same slope at the trailing
edge as the upper surface, making the trailing edge finite. The thick finite trailing edge
increases the amount of lift with very little increase in the subsonic drag.

The discussed characteristics reduce the circulation on the airfoil, which results in a loss
of lift. To remedy this, the rear portion of the lower surface was curved in such a way
to increase the circulation there and thus maintain the lift generated. A consequence of
this is an aft loaded pressure distribution, which has the effect of reducing the angle of
attack required to achieve the design lift coefficient.

The physical features discussed were, at the time of creation, unique to these airfoils
and not apparent in any other airfoil. The RAE2822, shown in Figure 4.1(a), is an
example of a transonic airfoil used at this time. Compared to the SC(2)-0612 airfoil in
Figure 4.1(b), we can easily see that the leading edge radii are dissimilar, as well as the
curvature on the lower surfaces and the thickness of the trailing edges.

4.1.2 Design Process

Although the design philosophy is discussed by Whitcomb [1974], no indication was
given as to the procedure used to design the airfoils for a specific design lift coefficient.
The design criteria were discussed in Harris [1975a] and Harris [1975b], in the form of
three principal guidelines:

• Off-design sonic plateau criterion; at some incremental normal-force coefficient
below the design normal-force coefficient the pressure distribution on the upper
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(a) Pressure profile of a NACA64-A airfoil.
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(b) Pressure profile of a Supercritical airfoil.

Figure 4.2: The typical pressure coefficient plots for a NACA64-A series airfoil and
for the Supercritical airfoils [Harris, 1990].

and lower surfaces is to be flat with the upper surface pressures just below the
sonic value.

• The gradient of the aft pressure recovery is to be gradual enough to avoid separa-
tion problems for lift coefficients and Mach numbers up to the design values.

• The airfoil must have sufficient aft camber so that at design conditions the angle
of attack (α) should be about zero.

None of the guidelines listed above suggest any flow conditions at which the airfoils were
designed, apart from the vague description that at design conditions α ≈ 0. Whitcomb
[1974] noted that due to the concavity on the lower surface, which provides the circulation
needed to maintain lift, the α required to achieve the design lift coefficient is a slightly
negative value of around −0.5o. However, this paper was presented before the second
phase of airfoils were developed.

Harris [1990] reported that initially the airfoils were designed using experimental meth-
ods, with the first series of integral airfoils being defined empirically by several equations
(These equations were never published due to the airfoils still being in their develop-
ment stage). From around 1975 a “viscous airfoil analysis program” developed by Bauer
et al. [1975] was utilised that designed airfoils by solving an inverse design problem –
the program attempts to find the body which generates a set of pre-specified flow char-
acteristics. The computer program uses “the hodograph transformation and analytic
continuation into the complex domain” [Bauer et al., 1975]. This analysis program is
a modified version of that described by Bauer et al. [1972], which was the basis for the
potential flow program, VGK [ESDU96028, 2004]. According to Harris [1990], during
the design of the supercritical airfoils using this method, the Mach number was allowed
to float to achieve the generalized pressure distributions at the design conditions seen in
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Re 30× 106

M float
α ≈ 0

dcd/dMdd 0.1

Table 4.1: Airfoil Design Conditions.

Figure 4.2 and at the sonic plateau. The Reynolds number (Re) for design conditions
were suggested to be 30 × 106 for airfoils with a thickness-to-chord ratio of .06 and
above, with Re = 10 × 106 for ratios below this value. This is contradicted in a paper
by Jenkins [1989], that used Re = 40× 106 for the design conditions of the SC(2)-0714
airfoil. It is not clear if the drag divergence Mach number (Mdd), defined as the Mach
number where the gradient of drag coefficient with respect to M equals 0.1, is part of
the design conditions as it is only given a mention by Harris [1990].

In summary, the literature indicates that NASA’s SC(2) airfoils were created by iter-
atively modifying the surface nodes in the potential flow code created by Bauer et al.
[1972] to gain a target pressure distribution. No definitive design procedure for the
creation of these airfoils has been found, but from the evidence we have discussed, we
can assume the airfoils were designed to meet a specified target cl, where M was left
to float until the drag divergence Mach number Mdd was found. If the airfoil achieved
a pressure profile dissimilar to that shown in Figure 4.2(b) the angle of attack α was
perturbed and a new search for the Mdd at that angle was performed. This procedure
continued until the pressure profile agreed with Figure 4.2(b). The design conditions
are summarised in Table 4.1.

4.2 Design Space Dimensionality Reduction through Physics-

based Geometry Re-Parameterization

As an example of applying low dimensionality design parameterization in a design con-
text, we briefly outline here an algorithm described by Sóbester and Powell [2012]. The
algorithm uses the Kulfan transformation shape parameterization technique discussed in
Section 3.3.5, applied to the SC(2) airfoils, and re-parameterizes it terms of the design
features used to identify these airfoils: that is, thickness-to-chord ratio (t/c) and design
lift coefficient (cl). This “re-parameterization” allowed for the creation of an infinite
number of airfoils that could be said to belong to the SC(2) family (they have the same
design features) with all having different combinations of cl and t/c 1.

This parameter reduction was achieved by noticing that the half-thickness distributions
of the SC(2) airfoils are identical for family members with the same maximum thickness.

1Of course the range of these design designations were restricted by the range of the training examples
used to generate the models.
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The camber was found to vary with both the design lift coefficient and thickness, and
so a Kriging model was used to map cl to the Kulfan transformation variables and thus
completing the mapping

(t/c, cl) → [z(x)].

Once this mapping was achieved it allowed for other airfoils to be defined that fell
between those in the Supercritical family.

4.3 Verifying the Design Process of the SC(2) Airfoils

The newly defined airfoils from the work above were used to verify our interpretation of
the aerodynamic design procedure, by proving that these airfoils do indeed possess the
same aerodynamic features at design conditions as those for the SC(2) family as well as
agree with their design cl for which we use for their identification (t/c is a geometrical
feature and so is of no concern in this aerodynamic procedure). We applied a Reynolds-
Averaged Navier-Stokes (RANS) approach, using a density-based implicit solver and
k− ε turbulence model in the CFD package FLUENT. This setup had been validated to
accurately model experimental data from the ATAT program [Ladson and Ray, 1981],
with the results discussed in Appendix A.

As mentioned in Section 4.1.2, from what we understand, the design conditions for the
SC(2) airfoils are found by allowing M and α to float whilst finding the drag divergence
Mach number(Mdd) and a flat upper surface pressure plateau at the design cl, as shown
in Figure 4.2. We obtained an intial estimate of Mdd from the Korn Equation [Mason,
2009]:

Mdd,K +
cl

10
+

t

c
= 0.95 (4.1)

By viewing the relationship of drag variation with M at transonic speeds in a book by
Anderson [2001] we approximated the region encompassing drag divergence as a second
order polynomial function, by computing CFD runs at three Mach numbers; Mdd,K ,
Mdd,K + 0.001, Mdd,K − 0.001 . Differentiation of the resulting polynomial yielded the
drag divergence Mach number (where dcd/dM = 0.1).

The flow field was then solved at this new condition, with the result added to the
existing solutions and a polynomial fitted once more. This pattern was continued until
the position of the drag divergence Mach number remained constant over consecutive
iterations. If this was not achieved after three iterations a local search was used. A
summary of the method is shown below:

1. Using the Korn Equation find the initial Mach number Mdd,K and run a CFD
simulation at this Mach number.

2. Run a further two CFD simulations at Mdd,K + 0.001, Mdd,K − 0.001.
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Figure 4.3: Actual cl at design conditions versus ‘cl’ design variable for 20 airfoils
created using the method of Sóbester and Powell [2012].

3. Fit a polynomial curve to the cd/M relationship, differentiate the polynomial, and
find the Mach number when dcd/dM = 0.1. Run a CFD simulation at this Mach
number.

4. Fit another polynomial using the three closest values to Mdd, found by using linear
gradients between points.

5. Repeat the previous step.

6. Do a local search until the gradient cd/M equals 0.1

The resultant pressure coefficient graph at this position was compared to the ideal graph
of Figure 4.2, with the above heuristic repeated at a new α if the graphs were dissimilar.

Using the methodology above we found the design conditions for 20 airfoils created using
the re-parameterization [Sóbester and Powell, 2012] . The strong correlation in Figure
4.3 indicates that the generated airfoils do indeed reflect the design trends of the SC(2)
airfoils, although the linear relationship has a slightly lower gradient than the desirable
denoted values, indicated by the straight line.
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Figure 4.4: The pressure pattern around the SC(2)s − 0511 airfoil generated by the
Sóbester and Powell [2012] mapping.

4.4 Optimization of the SC(2)-0412 airfoil

Consider a situation where we require an airfoil, with the supercritical characteristics of
the SC(2) airfoils, but for a design cl of 0.5 and t/c of 11%, which are not possessed by
any airfoil belonging to the SC(2) family. Of course, we can now exploit the Sóbester
and Powell [2012] re-parameterization for such a problem: we have generated an SC(2)
type airfoil with a design cl of 0.5 and a thickness-to-chord ratio of 11%. We have given
this airfoil the designation SC(2)s-0511, following the system used for the original SC(2)
airfoils, where the subscript s indicates it was generated by the Sóbester and Powell
[2012] re-parameterization. Using the method in Section 4.3, the SC(2)s-0511 design
conditions were found:

• angle of attack, α = 0.3

• Mach number, M = 0.7732

• Reynolds number, Re = 30× 106.

The resulting drag coefficient cd of the SC(2)s-0511 was 0.00129. Figure 4.4 shows the
pressure contours around the SC(2)s-0511 airfoil, which provides an excellent illustration
of the flow regimes inherent to all the SC(2) airfoils; a shock present on the upper surface
aft of the mid-chord region, and the increased circulation generated by the lower surface
cusp near the trailing edge that recovers the lift lost by the reduced curvature of the
upper surface.
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However, prior to the technique described by Sóbester and Powell [2012], a natural
solution would have been to optimize the shape of an SC(2) close to the specified char-
acteristics. In the optimization procedure presented here we did just that: we optimized
the shape of the SC(2)-0412 airfoil at the design conditions of the SC(2)s − 0511, in an
attempt to find an airfoil that has a cd ≤ 0.00129 at a cl of 0.5. The t/c was allowed
to reduce to a limit of 11%. This airfoil was chosen, not only because it is one of the
existing airfoils that closely matches the requirements, but also as it allowed the opti-
mization to begin within a feasible region (t/c > t/cSC(2)s−0511), and was able to reach
an α that gave a cl of 0.5 at the flow conditions of this study, without any instabilities in
the CFD simulation. We knew that by using an optimization procedure the time spent
on finding a similar airfoil will be significantly longer and so the aim of this exercise was
to find the time-savings afforded by the re-parameterization approach.

Below we give a rationale into the choices we made for each stage in the optimization
process, and present the results of the optimization process.

4.4.1 The Optimization Procedure

To assess the performance of each airfoil generated by the optimizer we use the same
FLUENT setup as in Section 4.3, the formulation of which is detailed in Appendix A.
This method frequently took up to three hours to find the performance of a single airfoil,
as the angle of attack of each airfoil had to be perturbed to meet the target cl value
of 0.5. Such a burden to the computational efficiency would be unsuitable in a global
optimization procedure, as the cost of running multiple Fluent calculations, and the
limited computational resources we had at the time, would have led to an unsatisfactory
lapse to achieve the final solution. Only having one design to initialise the optimization
process also led to us having to use a local search, even though we were unsure of the
modality of the solution.

To ensure we could compare the results here with those of the SC(2)s − 0511 airfoil,
it was critical to use the same parameterization technique; the Kulfan transformation
used by Sóbester and Powell [2012] had 16 variables that defined the upper and lower
surfaces, trailing edge thickness, and a leading edge parameter of an airfoil.

It was necessary to constrain the maximum thickness of the airfoils created within the
optimization process, as we knew that the profile drag desires a low frontal area, and
thus thin airfoils. This constraint was adopted into the optimization process via a step
penalty function incorporated into the objective function. The objective function was
therefore:

f(x) = cd + P (4.2)
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where

P =

{
1 for t/c < t/cmax

0 otherwise
(4.3)

Using this step function would make it difficult for a gradient method to find solutions
close to the constraint boundary, and so a zeroth order method was used here: the
Nelder and Mead [1965] simplex search (see Section 2.2.1). Finally, we used the cd value
of the SC(2)s − 0511 airfoil as the termination criteria, and limited the search to 50
objective function evaluations, as the aim of this work was to assess the time-savings
of using the re-parameterization of Sóbester and Powell [2012] rather than to do such
an optimization study presented here. 50 function evaluations equated to over 6 days
computational time – a significant amount of time compared to the seconds it takes to
generate the re-parameterization airfoil.

4.4.2 Results

The history of the Simplex search is shown in Table 4.2. Iteration zero is the evaluation
of the starting design, i.e. the SC(2)-0412 airfoil. Intuitively we would assume that this
airfoil returned a significantly larger objective function value than the cd value found for
the SC(2)s − 0511 airfoil (cd =0.0129), as the starting airfoil was designed for a lower
cl and had a larger maximum thickness (the profile drag would be greater). Remember
from Section 2.2.1 the algorithm has to first rank the vertices, or variables, to decide
the best move to make for the search. This is shown here by the 16 function evaluations
made in the first iteration. After the first iteration the search only improved upon the
current best four more times until the maximum number of iterations was reached, where
it did not find an airfoil that improved upon the SC(2)s-0511 characteristics. Figure 4.5
shows that the best airfoil from the optimization process produced a shock at the same
position as for the SC(2)-0511 airfoil. However, the low pressure region that occurs
mid-chord on the lower surface reduces the cl of the airfoil, and had to be recovered via
the leading edge of the upper surface by increasing α. This effect can also be described
by comparing the pressure contours in Figures 4.4 and 4.6, where the lower pressure
region on the lower surface in Figure 4.6 (depicted as shades of blue) is not present in
Figure 4.4.

Note in Table 4.2 that a total of 50 function evaluations were made, and so reached
the maximum number of function evaluations. This total elapsed time for optimization
process was over six days. Moreover, the optimization failed to find an airfoil that
improves upon the characteristics of the SC(2)s-0511. If we alternatively deployed the
SC(2)s-0511 as the starting airfoil in the same optimization problem, that is, improve
drag at a cl of 0.5 constrained by t/c ≥ 11%, then we can effectively save at least 6 days
of computational time.



Chapter 4 Application - Optimization of a NASA SC(2) Airfoil 63

Iterations Function count min f(x)
0 1 0.0155923
1 17 0.0150771
2 18 0.0150771
3 20 0.0140839
4 21 0.0140839
5 22 0.0140839
6 23 0.0140839
7 24 0.0140839
8 25 0.0140839
9 26 0.0140839
10 27 0.0140839
11 29 0.013633
12 30 0.013633
13 31 0.013633
14 33 0.0135157
15 34 0.0135157
16 35 0.0135157
17 36 0.0135157
18 37 0.0135157
19 38 0.0135157
20 39 0.0135157
21 40 0.0135157
22 41 0.0135157
23 42 0.0135157
24 43 0.0135157
25 45 0.0134534
26 46 0.0134534
27 47 0.0134534
28 48 0.0134534
29 49 0.0134534
30 50 0.0134534

Table 4.2: Simplex performance history of the search to find an optimal shape for a
11% thick airfoil with a design cl of 0.5. The starting airfoil was a SC(2)-0412.

4.5 Summary

The purpose of this chapter was to present an optimization procedure on a simple 2D
airfoil problem. We have described the rationale for the decisions used to setup the
optimization procedure, and presented the results of the Nelder and Mead [1965] search.

We have also presented here a process that finds the design conditions of NASA’s SC(2)
airfoils, and have used this to determine if the airfoils generated by the Sóbester and
Powell [2012] re-parameterization technique agree with their designations.

Now that we have given an overview of aircraft design optimization theory, and applied
it to a simple problem, the reader should be sufficiently prepared to not only follow the
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Figure 4.5: The cp profiles around 1) the airfoil generated by the Sóbester and Powell
[2012] mapping and 2) the resulting airfoil from the local optimization process starting

from the SC(2)-0412 airfoil.

Figure 4.6: The pressure pattern around the airfoil generated by the optimization
process.

work in the next chapters, but to also understand the reasoning behind the research and
where it can be applied. In the next chapter we modify the Kulfan parameterization
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technique used here. Although we know that the Kulfan technique can provide appro-
priate accuracy when modelling the SC(2) airfoils, it does so with a significantly large
number of variables (we used 16 variables in the case in this chapter). What we present
in the next chapter is a modification that allows us to describe the SC(2) airfoils with a
smaller number of variables without inhibiting the accuracy, in an effort to reduce the
curse of dimensionality and thus allow for a more efficient optimization procedure.





Chapter 5

Application-Specific Class

Functions for The Kulfan

Transformation of Airfoils

In Chapter 3 we described the difficult task of choosing a geometry representation tech-
nique for design optimization. This difficulty is emphasised for geometries such as airfoils
where a vast array of techniques exist. We expressed the importance of the selected tech-
nique to possess a number of attributes. The curse of dimensionality is a problem that
significantly affects the optimization search, as increasing the number of variables expo-
nentially increases the size of the design space. Having a large variable set can also lead
to a high proportion of physically unrealistic designs, making the search highly time
intensive. We can combat the creation of these designs by restricting the ranges of the
variables but, due to the highly complex nature of the interaction between variables,
this may not be effective. Conversely, reducing the number of variables in a parametric
technique often tends to restrict the range of valid designs that can be created. We must
choose a geometry representation technique that minimizes the number of variables and
allows flexibility in the shapes it can create whilst maintaining geometric robustness
(generating a high proportion of physically viable shapes).

We presented in Section 3.3.5 the Kulfan [2008] transformation technique that achieves
a certain measure of geometric robustness by initially classifying a component using an
analytical equation1. This maintains the underlying geometric shape of the component
whilst allowing local adjustments using the coefficients of a parameterized model, the
so-called shape function. Kulfan uses Bernstein polynomials for the shape function as,
for any order, their sum is equal to one. Any alteration in the Bernstein coefficient values
from one alters the shape from the class function. Note that increasing the polynomial

1Less fortunate choices of shape function coefficients can still yield ‘unphysical’ shapes

67
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order by one adds an extra parameter to be searched and thus exponentially increases
the design space via the curse of dimensionality, as discussed previously.

Since its introduction, the Kulfan transformation approach has been thoroughly exam-
ined due to its simple yet powerful ability to produce accurate shapes using a limited
number of parameters. Specific characteristics of the method have been discussed by
Ceze et al. [2009] whilst comparisons with other methods in MDO have been studied
by Mousavi et al. [2007]. More recently, Lane and Marshall [2009] applied the Kulfan
transformation to optimize components that incorporated discontinuous surfaces by us-
ing a new surface parameterization when noticing a disproportionate change in surface
curvature. The method has also been reviewed by Bogue and Crist [2008] for use in 2D
and 3D transonic optimization.

For subsonic airfoils Kulfan and Bussoletti [2006] found that the Kulfan transformation
could represent the NACA0012 airfoil to within wind tunnel tolerances using a fourth
order Bernstein polynomial as the shape function for both the upper and lower airfoil
surfaces. However, similar accuracy was not achieved for the transonic RAE2822 and
NASA’s SC(2)-0714 airfoils. The difficulty lay at the leading edge, where, as discussed
in Section 4.1.1, these supercritical (SC) airfoils are heavily modified from the uniform
curvature of the subsonic airfoils to produce strong expansion waves to be reflected back
at the sonic line as compression waves [Harris, 1990], and to reduce curvature in the
mid-chord region to prevent premature shocks forming. Increased polynomial orders
were needed to accurately define the leading edge for both supercritical airfoils, which
is undesirable for optimization purposes. Bogue and Crist [2008] had similar difficulty
when optimizing the RAE 2822 airfoil, with the optimal solution being achieved using
a polynomial order of six for upper and lower surfaces. Higher polynomial orders only
improved the solution by one drag count, which was not considered optimal due to the
minimal benefit being achieved with increased dimensionality of the search.

To allow the Kulfan transformation to be used in transonic airfoil design using a similar
number of parameters to the subsonic case we can attempt to find a new class function
to better represent the family of supercritical airfoils, or pre-modify the airfoil curvature
so that it fits the class function better; this modification must then be put back after
the Kulfan transformation has been performed. The latter of the two has already been
considered (see, for example, Sóbester [2009]), through using an additional leading edge
term, and the former has been studied by Lane and Marshall [2009], but with the
class function only being modified by the choice of exponents used for the original class
function.

If we use the approach of Lane and Marshall [2009] that attempted to find optimized
values of the exponents, we end up with a different class function for each airfoil. This
may be useful in proving that the general class function can be modified to produce
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accurate results with a low number of parameters but it does not give us a universal
method to describe the supercritical family.

With this in mind we present a method of finding a new class function to be used in the
Kulfan transformation to approximate the SC(2) family of airfoils. We require the new
class function to be simple in terms of the number of unary operators (sin, cos, exp) and
the length of the expression. This is so that we have some intuitive feel for the shape of
the object being designed and to maintain the advantages of using an analytical class
function as opposed to defining one that is an interpolation of an array of coordinates.
Once we show the aspects that make it difficult for SC(2) airfoils to be represented by
the Kulfan transformation, we compare two methods for finding an appropriate class
function for a single member of the SC(2) supercritical airfoil family; by using standard
Genetic Programming(GP), discussed in Section 2.4.4, and by using GP combined with a
local search. We then use GP to find a class function that accurately describes a selection
of SC(2) supercritical airfoils, specifically those designed for civil transports and business
jets. We assess the practicality of using such a class function in an optimization context
by applying it to an airfoil optimization problem, and comparing the results to that of
using the general airfoil class function.

5.1 Kulfan Transformation Performance in Describing Su-

percritical Airfoils

The Kulfan transformation attempts to approximate 2D and 3D arbitrary shapes by
defining the geometry within a specific class. The general class function as defined by
Kulfan [2008] is

C(x) = xN1(1− x)N2 , x ∈ [0, 1]. (5.1)

For the case study in Chapter 4 of a supercritical airfoil we used the exponents N1 and
N2 associated with Kulfan’s airfoil class, that is 0.5 and 1 respectively as we discussed
in Section 3.3.5. This yields a round leading edge and a sharp trailing edge. The class
function is chosen to give the general shape of an airfoil, with the unique characteristics
of the airfoil being modelled using a parametric representation called the shape function.

Figure 5.1 shows the respective shape functions for the upper surfaces of the subsonic
NACA0012 airfoil and the transonic SC(2)-0714 airfoil when using the class function in
Equation (3.27). Figure 5.1(a) shows the complex curvature of the subsonic airfoil has
been significantly simplified by the class function. However, Figure 5.1(b) shows no real
reduction in curve complexity when the class function is applied to the transonic airfoil,
suggesting we will have difficulty in finding an accurate approximation to the shape
function. This is corroborated by the poorer error residuals of the SC(2)-0714 airfoil to
the NACA0012 airfoil found by Kulfan and Bussoletti [2006]. We may, therefore, require
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Figure 5.1: Graphical representation of the shape functions of the upper surfaces for
a subsonic and transonic airfoil.

a different class function from that of Equation (3.27) to define NASA’s Supercritical
airfoils to the same degree of accuracy as the subsonic airfoils. A method of finding such
a class function is presented in the following sections.

5.2 Using Genetic Programming to Evolve a New Class

Function

To produce a new class function we use a process that can modify the terms in an
analytical equation as well as the coefficients that weight each term. For example, we
have previously optimized the coefficients of a set of basis functions in Chapter 4. Here,
we would also alter the basis functions themselves.

We can evolve a set of class functions by using the genetic programming method dis-
cussed in Section 2.4.4. Remember that this method does not only modify a set of
numbers to obtain an optimal solution, but also the terms within symbolic expressions.
The modifications of the GP method described in this section are based on the ob-
servation that the fitness of a symbolic expression may be highly dependent upon its
constants, where the constants are numerical terminals in the symbolic expressions (for
example, the terminal 2 in Figure 2.5). If we assume otherwise we could dismiss an
expression as being inappropriate for the problem when, to the contrary, it could be the
best solution given the correct constant values.

Koza [1992] suggested the use of an ephemeral random constant to be included in the
terminal set that randomly generated a constant in the initial generation of the symbolic
expressions. New constants could then only be created using combinations of these
constants with arithmetic operators and other constant values included in the list of
terminals. Many variations of this method have been devised and are discussed by
Dempsey et al. [2007]. They also discuss the use of concatenation constant creation,
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whereby a list of digits are randomly put together with an option of including a decimal
point.

The constant creation methods discussed so far do not take any account of the fitness
function. A more useful method for our study is to optimize the fitness function subject
to the coefficients of each expression in the population using a local simplex search,
so the ability of the structure of each expression to produce good results is assessed.
This is a type of Baldwinian learning (see Section 2.6), whereby each individual has to
learn from a given situation; that is, we use ephemeral random constants in the initial
generation of the expressions and append the fitness solution of the expression that has
been locally optimized2. Thus we judge an expression by its potential ability to find a
good solution to our problem. A similar approach has been used by Topchy and Punch
[2001], although they used a gradient descent method and only run the local optimizer
for a few iterations. Here the local search is run to convergence.

Within our local search GP method we include a few further alterations from the stan-
dard GP search. We ensure that if any two expressions within a population have the
same structure their coefficients are different. We therefore give the local search several
starting points within the population to find the best solution. We also ensure that each
term in the expressions includes a coefficient that can be used in the optimization.

5.3 Applying the Fitness Function to GP

Once we have created our initial population of random symbolic expressions we must
assess their suitability to being class functions for the Kulfan transformation. To do
this we can compare their ability, when incorporated into the Kulfan transformation, to
approximate existing airfoil designs. For example, if we choose an airfoil with coordinates
(xt, zt) as our target airfoil to be approximated, and we replace the general class function
(Equation 3.27) with a symbolic expression generated by the GP algorithm, we can then
use the Kulfan transformation described in Section 3.3.5 to approximate the target
airfoil, finding the approximated z coordinates za at the same x positions as the zt

coordinates. Now, if we define the difference of the z coordinates as the error of our
approximation, we can state our fitness function as being the sum of the squares of the
error:

F =
∑n

i=1(za(i)− zt(i))2

n
(5.2)

where n is the total number of coordinate points. Our aim is to find a class function that
returns the lowest fitness value F possible, i.e. the class function that gives the lowest
error. We can help the GP in finding valid solutions by noticing that any class function
will have to go through the points (0,0) and (1,0). We therefore multiply each symbolic

2We do not insert the optimized constants back into the expression as each expression learns different
optimal constants.
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expression candidate by x(1 − x) to ensure that the proposed class function does go
through these points. We also note from experience that the Kulfan transformation
can find it difficult to accurately approximate regions around the leading and trailing
edges of airfoils. We counter this problem by giving extra weighting of the accuracy
of the approximation at the ten points nearest to the leading and trailing edges when
computing the fitness function:

F =
∑n

i=1(za(i)− zt(i))2

n
+

∑10
i=1(za(i)− zt(i))2

10
+

∑n
i=n−9(za(i)− zt(i))2

10
(5.3)

5.4 Applying the GP Method to Find a New Class Func-

tion

The Kulfan transformation can approximate the upper or lower surface of subsonic
airfoils to within machine tolerances using a shape function polynomial of order 4 [Kulfan
and Bussoletti, 2006]. We now attempt to define a NASA SC(2) supercritical airfoil using
the same shape function characteristics by creating a new class function. We conduct
two GP searches to find the most appropriate class function for the upper surface of the
SC(2)-0612 airfoil: a canonical GP search, and a GP using a local search to assess each
equation’s potential ability to find an accurate solution. We include the general class
function of Equation (3.27) in the initial population to give the GP the opportunity
to build upon it. We use different starting lengths of the symbolic expressions for the
initial population and run the GP algorithms ten times at each starting length. We
restrict the maximum length of the expressions to 15 characters, not including the size
of the constants. The results shown in Table 5.1 are for a population size of 500 for the
traditional GP and 100 for the GP combined with a local search.

The GP with a local search of the constants outperforms the canonical GP as, even
though the canonical GP code has a much larger population size to work with, it produces
a best fitness value that is ten times greater than the worst achieved using a GP search
combined with a local search. From studying the results in Table 5.1(b) we see that we
produce similar expressions when using starting lengths of 4 and 6. We can choose either
solution for our class function as, although the best solution is found using a starting
expression length of 8, the expression is considered too complex for such a small gain in
accuracy. Reducing the size of the constants without a large change in fitness, our class
function for the upper surface of the SC(2)-0612 airfoil becomes:

x(1− x)[3.1xcos(1.9x−8.396) − 0.68] (5.4)

The lower surface of the SC(2) airfoils have a shape reminiscent of a sine wave aft
of the midpoint. In Section 4.1.1, we explain that this exists to improve circulation
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(a) GP (Population: 500)

Eqn
length fitness (×10−7) x(1− x)∗Expression

4 9.286
√

5/x

6 7.896 2−
√

7/x
8 0.3757 4/((

√
x + x) + x)

10 0.3685 (
√

(7)/x)
√

7

12 0.326
√

6
(xx)x

(b) GP with local search (Population: 100)

Eqn
length Fitness (×10−7) x(1− x)∗Expression
3 0.3568 1.7244x−2.6412

4 0.0335 1.1266xsin(1.9061x−0.54194) − 0.24814
6 0.0335 3.095xcos(1.9061x−8.3959) − 0.68194
8 0.0295 0.47273x + 1.3498x4.9726x+1.2588 cos(8.2779+2.7833x)

Table 5.1: Results for the upper surface of the SC(2)-0612 airfoil using the canon-
ical GP search and the GP search with local optimization of the constants after 20

generations.

around the trailing edge so that the lift lost due to the flattening of the upper surface
can be recovered [Harris, 1990]. If we use Equation 5.4 as our class function to find
the Kulfan transformation of the lower surface, we do not make any improvement from
using the general class function, implying another class function needs to be developed
for the lower surface. If we take the same approach to find the class function for the
lower surface we find the GP search produces large and complicated expressions with
fitness values that are twice as large as those for the upper surface. If we compare
the expressions in Table 5.2(a) to those in Table 5.1(b) we see that xtrigonometric term is
common in the best results, and so we may be able to use the newly found class function
for the upper surface in the solution to finding the class function for the lower surface.

A method we can use to incorporate the class function of the upper surface to define
the lower surface class function is gradient boosting. Gradient boosting in GP involves
fitting a model to the data, then fitting another model to the residuals of the first model,
and so on, with the final model made up of the sum of these partial models [Sóbester
et al., 2008]. Table 5.2(b) shows that the boosting strategy halves the size of the fitness
values whilst building more concise and intuitive equations. The final class function for
the lower surface of the SC(2)-0612 airfoil is:

x(1− x)[3.1xcos(1.9x−8.396) − 0.014 sin(16x + 8.5) + 0.76x− 0.7025] (5.5)
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The graphical representation of the class functions for the upper and lower surfaces of
the SC(2)-0612 airfoil are shown in Fig. 5.2(a). The shapes of the evolved class functions
are significantly different from the general class function, but the accuracy depicted by
the residuals in Fig. 5.2(b) proves their greater capability in defining the SC(2)-0612
airfoil.

5.5 Finding a Universal Class Function for the Supercrit-

ical Airfoils

We have shown that the GP/Simplex combination works successfully in finding a class
function that can be used in the Kulfan transformation to accurately approximate the
SC(2)-0612 airfoil using only 4 parameters. To find an expression for the class function
that can be used to describe all civil transport members of the SC(2) airfoils we must
define a fitness function based on several of the SC(2) airfoils. We have chosen 6 out of
the 21 members of NASA’s supercritical family to be included in the fitness function:
SC(2)-0410, SC(2)-0610, SC(2)-0710, SC(2)-0412, SC(2)-0612, SC(2)-0712. These are a
sample of the SC(2) airfoils designed for civil transports and business jets. To assess
the quality of each individual in our population of candidate class functions we could
use the fitness function of Equation (5.3) and apply it to each airfoil in our set, then
divide by the number of airfoils tested. This may give the best average value but there
could exist an unacceptable fitness result for one of the airfoils that is not expressed in
the average, as the fitness values of the other airfoils may cancel out the influence of the
poor result.

It is apparent that we must reduce the error over all airfoils, and not only the average of
all the objectives. A solution is to give the worst approximated airfoil an extra weighting
in the average of the airfoil fitness values. For example we can increase the influence of
an outlier by adding an extra instance that has the same value as that outlier. In our
case we add an extra ‘imaginary’ airfoil that has the same fitness value as the airfoil
approximation with the worst fitness. Now the influence of the worst approximated
airfoil dramatically increases the fitness value the further it is from the real average.
We have also added a linear penalty function in an attempt to maintain similar error
residual across the entire chord. This penalty function is effective for error residuals
between the wind tunnel tolerance at the leading edge (3× 10−4) and (8× 10−4), which
is slightly larger than the wind tunnel tolerance for the rest of the airfoil approximation.
If the worst error residual across the airfoil chord is within this range then the penalty
function is activated. If the largest error residual is larger than 8×10−4 then the penalty
function is its value at 8× 10−4, which is 0.43. Our penalty function is mathematically
described as

3 This value was used as it is approximately double the fitness value corresponding to being within
the wind tunnel tolerances at the leading edge.
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(b) Error Residuals between the target airfoil and the Kulfan trans-
formation approximations using different class functions. The hor-
izontal lines show the typical wind tunnel tolerances, with tighter
tolerance within 20% of the leading edge.

Figure 5.2: Graphical comparisons between the general class function and the evolved
class function for the SC(2)-0612 airfoil.

Pi =





800[max(zi − zt)− 3× 10−4] if 3× 10−4 < max(zi − zt) < 8× 10−4

0.4 if max(zi − zt) > 8× 10−4

0 otherwise

where zt is the vector containing the target z coordinates and zi is the vector containing
the target z coordinates of the Kulfan transformation approximation.
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Our new fitness function is now:

F =
∑m

i f + max(f)
m + 1

+
m∑

i

Pi (5.6)

where f is the vector of the individual fitness values for each airfoil i calculated by
Equation (5.3), m is the number of real airfoils chosen for our search

Using this method maintains the order of the individual fitness values so that we can
still compare them with the results in Section 5.4.

The aim of our investigation is to find simple and intuitive symbolic expressions to
be used as class functions in the Kulfan transformation technique. We define simple
expressions as being under a certain length and having a limited number of repeated
single branch operators within a term (for instance sin(cos(exp(...)))). We can force the
GP to only find expressions with a single branch operator in each term, and limit the
maximum expression length as we have done in the previous experiments.

We follow the same approach as when finding the class function for the SC(2)-0612
airfoil; that is, we find the class function for the upper surface, then use the upper
surface class function in the boosting strategy to find the class function for the lower
surface.

Table 5.3(a) shows the fitness values being approximately 10 times those for a single
airfoil shown in Table 5.1(b). This was expected, with the GP having to find a general
solution for all airfoils. It is interesting to note that the solution starting with an
expression length of 3 is similar to that starting with a length of 8, and that neither
includes a trigonometric operator like the solution for the SC(2)-0612 airfoil in Equation
(5.4) did. The solutions starting with expression lengths of 4 and 6 do include the
trigonometric term, but are more complex than the other solutions with no overall
improvement in fitness. Due to these comments we have chosen the class function for
the upper surface of SC(2) airfoils to be:

x(1− x)[1.265x− 1.4x1.28x−0.533]. (5.7)

Using this equation in the boosting strategy for the lower surface produces the results in
Table 5.3(b). The best result, from starting with an expression length of 8, is considered
too large to be used as a class function. However, using a starting length of 6 introduces
2 extra terms to the upper class function as the x term in the solution is combined with
the x term for the upper surface. Our class function for the lower surface of the SC(2)
airfoils is:

x(1− x)(−1.4x1.28x−0.533 − 11.335x + 0.0399 sin(18.8x + 1.3)− 1.2) (5.8)
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Figure 5.3: Graphical comparison between the general class function and the evolved
class functions for supercritical airfoils designed for civil transports and business jets.

The graphical representation of the class function in Figure 5.3 suggests an unintuitive
shape for the class function. However, we note that from Figure 5.4(b) the general class
function finds it difficult to describe the leading edge, and so the evolved class function
shows significant modification in this region. Also we note that the general class function
in the Kulfan transformation finds it difficult to cope with the sinusoidal cusp associated
with the lower surface of the supercritical airfoils. The evolved lower surface class
function attempts to negate the influence of the cusp by modelling it using a sinusoidal
function. The residuals in Figure 5.4(b) prove that the evolved class functions give a
better approximation to the supercritical airfoils that were designed for civil transports
and business jets. The lower surface is not as well approximated as the upper, mainly
due to the cusp being characteristically different for each airfoil.

5.6 2D Airfoil Optimization

The advantages of modifying the class function can be assessed by applying it to a
design optimization problem. We have set up a local optimization to modify the shape
of the SC(2)-0610 airfoil to reduce the drag at constant lift. From studying the design
requirements from Harris [1990] we find that, when using the potential flow solver VGK
[ESDU96028, 2004], the SC(2)-0610 airfoil produces the design pressure distribution at
M = 0.7728, Re = 30 × 106, and angle of attack= −0.43. This gives a cd of 0.0077
and a design cl of 0.63, which we keep constant for every instance in the optimization
process by altering the angle of attack, α. We use the Nelder and Mead [1965] Simplex
search to reduce the drag at these design conditions, with spar thickness constraints
of 0.095c and 0.0739c at 25% and 65% chord respectively, where c is the length of the
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(a) Evolved supercritical class functions.
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(b) General class function.

Figure 5.4: Error residuals using the evolved supercritical class functions and the
general class function for the SC(2)-0410, SC(2)-0610, SC(2)-0710, SC(2)-0412, SC(2)-

0612, SC(2)-0712, SC(2)-0414, SC(2)-0614, SC(2)-0714 airfoils.

chord4. We also constrain the trailing edge to be finite. We use the coefficients of the
Bernstein polynomials as our variables to be optimized, and obtain flow characteristics
using VGK. The results using the general class function and the evolved class functions
with different orders of Bernstein polynomials are shown in Figure 5.5(a).

We find that we improve upon the drag of the SC(2)-0610 airfoil for every class function
and polynomial order, even though we know that when using the general class function
the SC(2)-0610 airfoil is not very well approximated using low Bernstein polynomial or-
ders. When using the evolved class functions there is no dependence on Bernstein poly-
nomial order, and performance at minimising drag is better than when using the general

4These values were taken from the SC(2)-0610 geometry.
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class function in the Kulfan transformation. When using the general class function, the
Kulfan transformation attains improved performance with increasing polynomial order
up to a polynomial order of 7. Figure 5.5(b) shows the inability of the Kulfan trans-
formation to accurately approximate the leading edge curvature when using the general
class function, as the pressure coefficient (cp) is significantly different at the leading edge
for the optimised SC(2)-0610 airfoil. This displacement is less significant when using the
evolved class functions. Figure 5.5(b) does indicate that when using either the general
or the evolved class functions the reduction in drag is found by losing the shock on the
upper surface. The cp of the lower surface when using the general class function is much
more perturbed from the original compared to using the evolved class functions, which
is again likely to be due to the poor approximation of the SC(2)-0610 airfoil as a starting
point.

5.7 Summary

Using a GP algorithm along with a local search of the constants in the symbolic ex-
pressions, we have found an alternative class function for the Kulfan transformation
technique to be used in approximating the SC(2) class of airfoils, specifically those
designed for civil transports and business jets. The evolved class functions model the
unique characteristics of the SC(2) airfoils better than the general class function, thereby
reducing the complexity of the resulting shape function to be modelled using Bernstein
polynomials. The use of a specific class function can be advantageous in reducing the
dimensionality of an optimization search, as shown by the 2D optimization presented,
but care must be taken as over specific class functions can lead to restricting the de-
sign space making it impossible to find the optimal solution. The ability to find new
class functions is not limited to airfoil geometries; the same method can be applied to
find other class functions where perhaps the Kulfan class function cannot produce an
accurate approximation within a required design space size, or in a three-dimensional
application. There is also potential to use this method to find other baseline shapes to
be used by other geometry representation techniques. The experiments presented here
could be repeated with the leading edge shaping term used by Sóbester [2009] included
in both the original and GP based formulation. It is expected that such an investigation
would yield a different class function.
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(a) Drag improvement with shape function polynomial order for the
SC(2)-0610 airfoil using the general class function and the evolved
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(b) Pressure coefficient plots of the SC(2)-0610 airfoil and the opti-
mized airfoils using the general class function and evolved supercrit-
ical class functions in the Kulfan transformation with fourth order
Bernstein polynomials.

Figure 5.5: Results of the Simplex optimization for the SC(2)-0610 airfoil using the
general class function and the evolved supercritical class functions in the Kulfan trans-

formation.



Chapter 6

The Over-Wing Engine

Configuration: Using Surrogates

to Understand Noise Shielding

Performance

The optimization procedure used in Chapter 4, and that to assess the quality of the
application-specific class functions in Chapter 5, involved a local search of the para-
metric variables. The choice of a local search was motivated by the time associated in
finding an optimum solution, even though we expected the optimization landscape to
be multimodal in both cases. Now consider a problem where there are only two design
variables: the curse of dimensionality is not as paramount as it was previously, and so
the computational expense to search the design space is substantially reduced, allowing
us to consider a global optimization strategy.

Also consider the situation where a numerical performance evaluation procedure is either
not available, or is available but does not provide a high degree of accuracy. In such
a case a physical experiment has to be devised where specialist equipment may be
highly expensive and only be available for a limited period. Moreover, the setup of
the experimental procedure may inhibit the ability to perform, say, an accurate set of
experiments on newly generated designs from an optimization process. It would therefore
be impossible to use a standard global procedure like a Genetic Algorithm. However, if
the initial set of experiments densely fills all regions of the design space equally, we may
be able to use a surrogate modelling process based on an experimental plan derived to
ensure uniform sampling of the design space.

In this chapter we present a solution to a problem similar to the scenario above, by using
surrogate modelling, without updates, on a set of designs selected in such a way that

83
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they suitably fill the design space. Before presenting this method we discuss the problem
at hand: that of designing aircraft to reduce their noise impact on the communities that
surround airports. We suggest a possible solution whereby the engines of civil transports
are installed in a position above their respective wings where the airframe can deflect the
noise generated by the engines in such a way that it is not incident to the ground. We
set up an optimization procedure to explore the potential of this aircraft configuration
in achieving this objective.

6.1 Tackling Aircraft Noise

Since the advent of the civil jet airliner, aircraft noise has been a significant issue,
especially for those living in the close proximity of airports. Although measures such as
land planning restrictions have been applied to reduce the impact of noise, the rise in air
traffic, as well as public awareness, has increased the importance of designing aircraft
that reduce the noise experienced by on-the-ground observers. Figure 6.1 shows that
the perceived noise level (PNL) has been declining with time, but the improvements
made due to the high bypass ratios of the second generation turbofans seem to have
reached their limit [Crichton et al., 2007]. The ACARE2020 [2001] noise target aimed
at reducing the average perceived noise by one half is looking increasingly unlikely to be
achieved using current aircraft configurations and engine technology.
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Figure 6.1: Reduction of perceived noise level corrected for thrust over time (graph
reproduced from Crichton et al. [2007]).

New aircraft concepts designed with the potential to drastically reduce aircraft environ-
mental noise, amongst other environmental design factors, have yet to become reality.
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The radical difference in layout from conventional aircraft, apparent with many of these
designs, may lead to anxiety amongst the travelling public. Moreover, the large devel-
opment costs incorporated with such unconventional designs, combined with the risk of
failure, mean airframe manufacturers are unlikely to pursue such ambitious projects. To
alleviate these pressures, NASA have begun a research effort with the goal of developing
three designs (denoted N+1, N+2, N+3 ), each to be operational at different periods
from between 2012 and 2035, that gradually evolve away from the current aircraft con-
figurations (denoted as N ) we see today. The N+1 design is to be similar to current
‘tube and wing’ aircraft, using new technologies that are at a high technology readiness
level, leading up to a drastic change for the N+3 aircraft. An example of the latter is the
Blended Wing Body (BWB), which promises to greatly improve aerodynamic efficiency
as well as noise reduction compared to current configurations [Hileman et al.]. However,
due to the aircraft being constrained to remain conventional, the N+1 configuration
concentrates on the powerplant and its placement with respect to the wing [Berton
et al., 2009], in order to alleviate the aforementioned problems of public acceptability
and development costs.

Increased efficiency and reduced noise can be achieved through increased powerplant
diameter, allowing for higher by-pass ratios, and the use of geared fan drives. However,
on conventional under-the-wing installations the size of the engine is constrained by
ground and taxiway light clearance requirements. Issues such as landing gear failure
and foreign object ingestion from runways have to also be taken into account.

6.1.1 The Over-Wing Configuration

All of the issues listed above are eliminated by installing the engines above the wing,
allowing for higher turbofan bypass ratios without affecting the ground clearance of the
aircraft, its roll clearance and the location of passenger escape zones [Berry, 1994]. Above
the wing, engine size will only be limited by structural and attachment fitting limitations
[Berry, 1994]. Kinney and Hahn [1997] noted that the absence of engine exhaust below
the wing would eliminate the need for thrust gates between the flaps, allowing for a
single flap that would reduce noise created by the tip vortices and give larger effective
flap area. There may also be an exhaust interaction with the wing upper surface, delaying
separation due to the Coanda affect. Further, with the height of the aircraft from the
ground independent of the engines, the size of the landing gear only depends on tail
scrape angle and the magnitude of rotation at take-off. Other advantages that Kinney
and Hahn [1997] identified with over-wing engines are the increased flexibility of landing
gear placement on the wing, greater safety in water ditching and wheels-up landing
scenarios, and, of most interest to us here, the benefit of reduced noise due to shielding
of the wing.
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The disadvantages of an over-wing configuration include maintenance issues (the engine
not being accessible from the ground) and a possible increase in cabin noise[Berton,
2000, Ronzheimer et al., 1996]. A wholesale re-design of the wing structure may be
necessary, incurring significant development costs (though, of course, not as significant
as those of the blended wing-body configuration). From an aerodynamic standpoint,
altering the upper surface of the wing may incur a decrease in the lift to drag ratio,
and may also cause issues with trim drag and stability, depending on the position of the
engine on the wing.

6.1.2 Acoustic Benefits

Installing an engine above the wing gives us the opportunity to use the airframe to shield
engine noise from observers on the ground. NASA began investigating the advantages of
over-wing mounted engines in the early 1970s, in order to reduce aircraft noise affecting
communities near airports[Reshotko and Olsen, 1972]. This work was published after
the first prototype of the Fokker VFW 614 aircraft took to the air on its maiden flight
in 1971 [Jordan, 2010], the only civil jet airliner to have over-wing mounted engines.
The main considerations that led to this design were: maximizing payload flexibility,
minimizing foreign object matter ingestion, and satisfying fuselage ground clearance
requirements. Noise shielding (leading to a 4 EPNdB noise reduction at approach) and
undivided landing flaps were not amongst the main considerations for this design, rather
they were serendipitous effects of the over-wing configuration. Noise shielding was not a
primary consideration three decades later for the Honda Business Jet either; the engines
were located above the wing, as the alternative was to install them on the rear fuselage,
which would have reduced the cabin volume due to the structural supports[Fujino and
Kawamura, 2003].

Studies by Agarwal and Dowling [2007] and Agarwal et al. [2007] have highlighted the
noise reducing potential of using parts of the airframe as a shield, albeit applied to
a blended wing body aircraft design. Berton [2000] analysed the potential of over-
wing engines on a large, long haul, four engine airliner. He reported that aircraft noise
experienced by local communities can be reduced by up to 34.5 cumulative EPNdB using
the wing planform as a shield, and that the 95EPNdB noise footprint can be reduced
from 0.96 to 0.57 square miles. Core and fan discharge noise were the noise components
that saw significant reductions, with no effect on fan inlet noise as the engine was forward
of the leading edge of the wing.

NASA’s Leavitt and Smith [2010] also agree that an over-wing engine configuration
looks promising, and is an area that they intend to explore further. However, NASA
is currently concentrating on investigating the aft radiated noise of a hybrid wing body
(HWB) configuration [Thomas et al., 2010], and on the noise generated by new en-
gine concepts [Van Zante and Breeze-Stringfellow, 2010]. Another study on installation
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affects is an on-going project considering open rotor noise on both a HWB and a con-
ventional configuration (see Thomas et al. [2010]).

In terms of the streamwise positioning of over-wing engines on jet aircraft a clear dis-
tinction can be made between nacelles positioned forward or aft of the leading edge. The
Honda business jet, the VFW 614, and the Be-200 have their engines located on the aft
portion of the wing, whereas the aforementioned noise shielding studies of Reshotko and
Olsen [1972] and Berton [2000] had the engine located forward of the leading edge in an
attempt to shield ground-based observers from the jet and core noise. In the aft posi-
tion there is the potential to significantly reduce the fan inlet noise that propagates to
the ground, a contribution to the total engine noise of which Berton’s forward mounted
over-wing engine was not able to reduce [Berton, 2000].

In the remainder of this chapter we investigate the broadband noise, generated by inter-
action of the blade tip with the casing boundary layer, rotor-wake-turbulence [Groenweg
et al., 1995], and rotor-self noise. An experiment was performed whereby a broadband
noise source was used to simulate the fan inlet noise, suspended above a scaled aircraft
model. The degree of noise shielding was then measured using an array of microphones
positioned below the aircraft model. The experimental setup allowed for the vertical
movement of the airframe and the chordwise movement of the ‘engine’, permitting nu-
merous combinations of chordwise and vertical nacelle positions to be tested with respect
to the wing. 40 tests were performed, corresponding to different nacelle positions. Sta-
tistical analysis tools were used to find the optimal position of the nacelle in terms of
noise shielding performance. The results were also compared to half-plane diffraction
theory in order to better understand the measured behaviour.

6.2 Experimental Setup

The main objective of this study is to investigate the variation of the spatially averaged
noise diffracted below a wing due to variations in position of the nacelle inlet above it.
In this investigation the relative location of the nacelle was varied in both the chordwise
x direction from the wing leading edge and in the vertical z direction above the wing
(see Figure 6.2). The nacelle, represented by a long duct, was kept fixed in the spanwise
y direction. One end was fitted with an inlet model and was directed into the anechoic
chamber (see Figure 6.3). The other end was situated within the adjacent reverberation
chamber, which was excited by a loudspeaker driven by incoherent white noise signals
(see Figure 6.4). The noise propagating along the duct and radiating from the inlet
was therefore broadband and multimodal with well-defined characteristics, as discussed
below.
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Figure 6.2: Diagram of the wing/pylon/nacelle cross sections at their intersections, x
and z being the design variables of the study described.

6.2.1 Description of the Aircraft Model

Figure 6.3: Setup of our DLR-F6 aircraft half model in the University of Southamp-
ton’s ISVR Large Anechoic Chamber.

The starboard half of a 12.2% scale-model, representative of the DLR-F6 aircraft model
used in the American Institute of Aeronautics and Astronautics (AIAA) drag prediction
workshops [Laflin et al., 2005], was installed in the University of Southampton’s Large
Anechoic Chamber (see Figure 6.3)1. The fuselage structure was made of plywood.
Model-quality foam was used for the wing with aluminium sheeting wrapped around it
to ensure that the noise reflectivity at the surface was more representative of a passenger
airliner. Since we were interested in the fan inlet noise radiation from the front portion of
the wing, the trailing edge of the wing was modified so that it could be positioned flush
to the back wall of the anechoic chamber to prevent trailing edge noise from reaching
the microphones.

1The dimensions of the chamber are 7.33× 7.33× 5.5m3
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Figure 6.4: The reverberation chamber, with the nacelle duct leading into the Uni-
versity of Southampton’s ISVR Large Anechoic Chamber.

The fuselage model extended 0.9m beyond the root of the leading edge and spanned the
whole of the root chord. Due to manufacturing constraints, the leading edge sweep was
slightly reduced from 27.1o on the DLR-F6 wing to 25o in the scale model. The nacelle
was constructed from a 0.193m internal diameter aluminium pipe. At the end of the pipe,
located in the anechoic chamber, was attached a nacelle inlet model constructed from
ABS plastic (via a stereolithography process), with the leading edge portion of the pylon
attached to the bottom surface made from the same material. The other side of the duct
was located within the adjacent reverberation chamber, where a loudspeaker driven by
a broadband white noise signal up to 20kHz (i.e., at 1.25kHz at full scale) provided the
acoustical excitation. This upper frequency corresponds to a non-dimensional frequency
ka of approximately 38 (i.e. between the 1st and 2nd blade passing frequencies for a
modern turbofan engine), where k is the free space wave number, and a is the duct radius.
Note that the resulting spectrum of the noise radiated from the engine duct, as shown
in Figure 6.6, is a property of the radiation characteristics of the loud speaker and of the
end of the pipe and is therefore not representative of the noise spectrum of the broadband
noise due to the various turbulence sources listed in Section 6.1.2. Diffuse field excitation
of the pipe within the reverberation chamber ensured mutually incoherent modes within
the duct, whose amplitudes are such that the total acoustic energy is shared equally
amongst the modes. The far field directivity due to this distribution of modes has been
investigated by Joseph and Morfey [1999] and shown to provide a distribution of mean
square pressure in the forward arc given by p̄2 ∝ cos θ , where θ is the polar angle
measured from the duct axis. For values of θ greater than π/2, i.e., in the rear arc, the
redirected pressure was found to decay substantially with increasing θ.

The noise diffracted around the wing leading edge to below the wing was measured by
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an array of 20 microphones distributed on the anechoic wedges on the floor. The mi-
crophone outputs were acquired simultaneously using a National Instruments PXI-1042
data acquisition system at a sampling frequency of 50kHz in each channel and fed into a
computer for post-processing. The time histories were then converted to Power Spectral
Densities (PSD), with each signal being corrected for variations in their distances from
the centre of the duct, assuming the inverse square law for spherical spreading. Here,
the window length was 0.02048s and the total measurement time was 28.67s. In order
to quantify the effect of shielding by the wing the noise at the microphone array was
measured with and without the wing present, denoted by s and c respectively (‘shielded’
and ‘control’, respectively). The differences in these measurements were then used to
compute a shielding metric, in decibels

∆ = 10 log10

[∑
θ,φ p̄2

c(θ, φ)
∑

θ,φ p̄2
s(θ, φ)

]
, (dB) (6.1)

where p̄2(θ, φ) is the mean pressure and (φ, θ) is the angular position of the microphones
(shown in Figure 6.7) with respect to the centre of the duct. The variation of ∆ in 1/3
octave bands was investigated for the different nacelle positions relative to the wing.

6.2.2 Experiment Plan

The position of the front of the nacelle was varied between the leading edge of the wing
at x = 0 to x = 0.7cy, where cy is the wing chord length measured at the pylon position.
The vertical displacement of the nacelle z was varied within 1.5h, where h was the
diameter of the nacelle, measured from the leading edge point of the wing to the nacelle
centre line (see Figure 6.2). In total, the noise from 40 nacelle positions was measured
relative to the leading edge of the wing at the spanwise position of the engine.

In order to accurately find the optimal position of the engine for maximum noise shield-
ing the 40 nacelle positions were carefully chosen within the range of x and z stated
above. As the optimal position of the engine is unlikely to be one of the 40 tested, a
surrogate model (see Section 2.4) was developed to relate the noise shielding ∆ to any
arbitrary vertical and chordwise engine position x and z. Of the variety of available
surrogate modelling formulations, here we use Kriging (also known as Gaussian Pro-
cess modelling), chiefly because it enables accurate tuning and control of the amount of
regression required and experience shows it to be well suited to this class of objectives.

The accuracy of surrogate models is highly dependent upon the positions of the “train-
ing data”, i.e. of the 40 tested nacelle positions. We stated in Section 2.5 that sampling
plans are traditionally used: the primary aim of designing such training data layouts is to
ensure that the surrogate model will be accurate at predicting the performance metric ∆
at untested nacelle positions. Sampling plans that fall into the class of Latin Hypercubes
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[McKay, 1992] have excellent stratification properties, but they only maximize unifor-
mity (as measured by the Morris and Mitchell [1995] criterion ) for square numbers of
points. To satisfy these criteria in our experiment we have chosen an Orthogonal Array
Latin Hypercube [Tang, 1993] sampling plan, comprising 36 points, with four additional
points testing the vertices of the design space. Figure 6.5 shows the resulting pattern of
nacelle position, which has the serendipitous advantage of facilitating the re-positioning
of the rig between consecutive experiments, due to the appropriate ordering of its values
along the z axis.
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Figure 6.5: The tested nacelle positions in the investigations, with their associated
experiment number.

6.3 Results

Prior to the experiments designed to measure the shielding properties of the wing a
control experiment was performed where measurements were made of the noise emanat-
ing from the intake, in the absence of the wing and fuselage. Figure 6.6 shows typical
one-third octave sound pressure levels (SPL), with the aircraft present and absent, at
two microphones when the nacelle is at the position x = 0.28x/cy, z = 1.85z/h (Exper-
iment 26 in Figure 6.5). The SPL in Figure 6.6(a) is that recorded by microphone 10,
positioned directly in front of the nacelle with direct ray path between the duct and the
microphones (i.e., in the ‘light zone’). Microphone 7 was positioned directly beneath
the wing, the SPL of which is shown in Figure 6.6(b), and is therefore in the shadow
zone of the wing. Figure 6.6(b) shows that the sound attenuation of 6 dB is significantly
higher in this region. In the illuminated zone, little, if any, benefit was present in the
SPL below 500Hz, where the background noise dominates.
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Figure 6.6: SPLs recorded from two different microphones for the nacelle position
x = 0.28m, z = 1.85z/h (Experiment 26 in Figure 6.5).
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Figure 6.7: Differences of the SPL for when the aircraft is, and is not, present for
each microphone, shown in their respective positions on the floor, for when the nacelle
is at x = 0.28x/cy, z = 1.85z/h (Experiment 26 in Figure 6.5). The thick line indicates
the aircraft model outline, with the thick dashed-line indicating the shadow outline of

the wing leading edge on the floor.

Figure 6.7 shows the differences in the noise spectrum at each of the 20 microphones
for the case of the nacelle positioned at x = 0.28x/cy, z = 1.85z/h. Also shown is
the projection of the wing and the nacelle on the floor, in relation to the microphones.
To assist in the explanation of the results we have also projected the outline of the
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aircraft model onto the floor, as seen from a point source at the centre of the duct.
This helps in determining which microphones are in the shadow zone, and which are
in the light zone. In the shadow region the noise reductions are significantly higher
compared with those in the light zone. Note that the noise reduction in the shadow
zone generally increases linearly with the logarithm of frequency, suggesting that the
reduction in mean square pressure follows a frequency power law. This is consistent
with classical diffraction theory, discussed in greater detail in Section 6.4.1. Outside of
the shadow zone, where the duct is in direct line of sight of the microphones, the SPLs
indicate very little noise attenuation, suggesting that noise shielding is confined to the
shadow zone at high frequencies.

Using the results recorded at the 40 nacelle positions, and the Kriging model fitted
to these, a surrogate contour map was obtained (Figure 6.8) showing the dependence
of the performance metric ∆ on streamwise (x) and vertical (z) nacelle displacement.
The white dots indicate actual nacelle positions as part of the Orthogonal Array Latin
Hypercube (see Section 6.2.1), as well as the four vertices in our variable range. The
stars denote experiment positions that are also part of the Latin Hypercube, but their
readings were not included in the surrogate generation, due to higher than background
microphone pressures in the results between 0-500Hz. As expected, Figure 6.8 shows
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Figure 6.8: A Kriging surrogate model of the overall sound shielding metric ∆ with
the control variables. The white circles indicate the nacelle positions used to create
the model, with the stars being nacelle positions that were tested but their results
had to be discarded. The ‘+’ indicates the maximum shielding position.The surrogate

leave-one-out cross-validation RMSE yields 0.026.

that, in general, the further back the engine is positioned from the leading edge, the
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greater the shielding. Note that, for streamwise positions forward of the mid-chord,
greater noise reductions are obtained when positioned vertically closer to the wing.
However the greatest shielding is achieved when the nacelle is in the fully aft position
and 1.5 nacelle diameters above the wing.

6.4 Analysis of Results
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Figure 6.9: Kriging surrogate models of the noise shielding metric ∆(fc) for each
one-third octave band.

For a more detailed analysis of the variation of ∆ with x and z in Figure 6.8, we applied
the Kriging procedure to the frequency dependent shielding metric:

∆(fc) = 10 log10

(∑
θ,φ p̄2

c(fc, θ, φ)
∑

θ,φ p̄2
s(fc, θ, φ)

)
(6.2)

where p̄2(fc, θ, φ) is the 1/3 octave band mean square pressure. This process was per-
formed for each octave band, generating the 16 contour plots shown in Figure 6.9. In
general, ∆(fc) increases as the engine is moved further aft of the wing, and increases as
z decreases at frequency bands below 2.5kHz. Note, however, that at and above 2.5kHz
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an optimal vertical position generally exists near 1.5 z/h, resembling the optimum na-
celle position found for the overall sound shielding metric ∆ in Figure 6.8. To further
understand this relationship of maximum shielding position we performed the Kriging
procedure on the shielding metric dependent on each octave and microphone position:

∆(fc, θ, φ) = 10 log10

(
p̄2

c(fc, θ, φ)
p̄2

s(fc, θ, φ)

)
. (6.3)

The contour plots in Figure 6.10 show the surrogate models of Equation 6.3 for four
microphones at the high frequency of 16 kHz (see Figure 6.7 for the microphone positions
respective to the aircraft model). Microphone 7, positioned directly underneath the wing,
shows little dependence of ∆(fc, θ, φ) on vertical position, with the shielding linearly
increasing the further back the nacelle is placed across the whole plot. Microphones
8, 14, and 20, all positioned forward of the leading edge, are ordered according to
their distances away from the leading edge of the wing, with microphone 8 being the
closest. All of these plots show an irregular pattern when the nacelle is placed at its
furthest aft position. As indicated by the behaviour of the frequency dependent shielding
metric (Figure 6.9), and with the evidence from Figure 6.10 , the nacelle position that
achieves maximum shielding varies with frequency at all microphones positioned ahead
of the leading edge of the wing for frequencies at and above 2.5kHz. The corresponding
wavelength is 0.136m, which approximately coincides with the radius of curvature of the
wing leading edge at the spanwise station of the engine. This indicates that the thickness
of the blunt leading edge may have a role to play here, though further experiments would
be needed to establish a definite link.

x/c
y

z/
h

Mic= 7

 

 

0 0.3 0.7
1

1.5

2

2.5

5

10

Mic= 8

 

 

0 0.3 0.7
1

1.5

2

2.5

2
4
6
8
10
12
14

Mic=14

 

 

0 0.3 0.7
1

1.5

2

2.5

0

5

10

Mic=20

 

 

0 0.3 0.7
1

1.5

2

2.5

0

5

10

Figure 6.10: Kriging surrogate models of the sound shielding metric ∆(fc, θ, φ) for
four microphones at a centre frequency of 16 kHz.

6.4.1 Diffraction Theory

Further insights into the shielding performance of the various designs can be gained
by considering the diffraction of the engine noise around the wing by comparison with
simple empirical half-plane diffraction theory, as described by Maekawa [1968]. Maekawa
showed that the level of noise reduction obtained by diffraction around an infinite half
plane can be predicted solely from the Fresnel Number, N . With reference to Figure
6.11(a), the Fresnel number is defined as the difference between the shortest path around
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Figure 6.11: Variables used in the calculation of the Fresnel number and its relation-
ship with noise attenuation.

the barrier from the source to the receiver (lengths A and B) and the geometric shortest
distance from source to receiver (length d), compared to the acoustic wave length

N = (2/λ)(A + B − d). (6.4)

Maekawa found that the rate of attenuation, defined as the sound pressure level dif-
ference with and without the acoustic barrier present, increases linearly with log10(N)
above N = 1. This relationship can be seen in Figure 6.11(b), reproduced from Koyasu
and Yamashita [1973]. Contours of Fresnel number under the wing for each design (an
example is shown in Figure 6.12) can be computed for any arbitrary nacelle position.
Comparing the contours of log10(N) with contours of ∆(fc, φ, θ) at a third octave fre-
quency we find that, close to the leading edge region, both experimental and analytical
contours follow the projection of the leading edge. However, there are obvious differences
between the theoretical and experimental results.

To further explore the relationship between half-plane diffraction theory and our mea-
surements of ∆, for any experiment and microphone, ∆(fc, φ, θ) can be plotted against
N in order to establish a relationship between them. In Figure 6.13 we show these
plots for three nacelle positions at three microphone positions. To aid us in the dis-
cussion, we use negative N values to indicate the results for when a microphone is in
direct sight of the source, with the positive N values indicating a microphone situated
in the shadow zone where diffraction theory is expected to apply. Indeed, the plots
show that ∆(fc, φ, θ) is negligible when in the light zone, and in some cases there is
even a small increase in noise. As we move into the shadow zone we begin to see that
∆(fc, φ, θ) increases almost linearly with log10(N). In the shadow region, Figure 6.13(a)
shows a gradual increase in the gradients of the linear regression lines. Close to, and
above a Fresnel number of 1, the results show strong agreement between ∆(fc, φ, θ)
and 10 log(N). We found insignificant differences in the trends between spanwise and
streamwise microphone positions.
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Figure 6.12: Fresnel Number and shielding metric ∆(fc, φ, θ) contours across the
angular range of the microphones at a frequency band of 6300Hz for Experiment 10
(see Figure 6.5). The source is located at angle (0,0) and the + indicates the angular

position of the leading edge.

Figure 6.14 provides an alternative perspective on the relationship between Fresnel num-
ber and the measurements of ∆; we plot the results for every tested nacelle position
against N at microphone 8 and at specific one-third octaves. This figure shows that in
a single frequency band, the variation of log10(N) against ∆(fc, φ, θ) is fairly flat until
near N = 1, where ∆(fc, φ, θ) follows the 10 log(N) relationship . The example results
from microphone 8 (Figure 6.14) show that for N ≥ 1 the designs follow the 10 log10(N)
relationship. For N < 1, ∆(fc, φ, θ) deviates from this relationship and at low frequen-
cies tends to zero. At higher frequencies there is also some shielding when microphone
8 is in the direct line-of-sight of the nacelle.

6.5 A Possible Analytical Model to Assess Noise Shielding

We have compared in the previous section the experimental results to half-plane barrier
theory, showing in Figure 6.13 that ∆(fc, θ, φ) is proportional to 10 log10(N);

10 log10

[
p̄2

c(fc, θ, φ)
p̄2

s(fc, θ, φ)

]
∝ 10 log10(N(fc, θ, φ)) (6.5)

for N > 1. If we assume

p̄2
c(fc, θ, φ)

p̄2
s(fc, θ, φ)

=

{
N(fc, θ, φ) for N(fc, θ, φ) ≥ 1

1 for N(fc, θ, φ) < 1
(6.6)

a model of total noise shielding ∆ can be obtained that is dependent only on N(fc, θ, φ);

∆̂N = 10 log10

[∑
fc

∑
θ,φ p̄2

c(fc, θ, φ)N(fc, θ, φ)∆f (fc)∑
fc

∑
θ,φ p̄2

c(fc, θ, φ)∆f (fc)

]
(6.7)
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Figure 6.13: ∆(fc, φ, θ) against Fresnel Number N for experiments 9 (x=0.62x/cy,
z=2.245z/h), 19 (x=0.42x/cy, z=1.645z/h), 37 (x=0.06x/cy, z=1.515z/h) at micro-

phones 8, 9, and 10, with their respective linear regression lines.

where ∆f (fc) is the band width of the one-third octave fc. Contours of ∆̂N computed
from Equation 6.7 are shown in Figure 6.15. Close to the leading edge of the wing
the contours of ∆̂N are similar to the overall shielding ∆ contours shown in Figure
6.8. However, non-linearity at aft nacelle positions, leading to the maximum shielding
position around 1.56z/h above the wing, is not captured by the Fresnel model.

Simple diffraction theory is therefore useful as a first order (conceptual) design tool but
detailed design requires experimental studies or more sophisticated prediction schemes.
Possible reasons for the discrepancy between the measured values of ∆ and those pre-
dicted by classical half-plane diffraction theory are:
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Figure 6.14: ∆(fc, φ, θ) against Fresnel Number N plotted at various frequencies at
microphone 8 with all designs plotted, with their linear regression lines.

• Duct sound directivity - The distribution of mean square pressure in the forward
arc is given by p̄2 ∝ cos θ, where θ is the polar angle measured from the duct
axis[Joseph and Morfey, 1999]. The half-plane diffraction theory assumes a point
source.

• Curvature of wing leading edge - The Fresnel model assumes a flat plate with
a sharp edge; the actual wing has a smooth, round leading edge, the radius of
curvature of which reduces linearly along the span.

• Influence of the fuselage - The Fresnel model does not take into account the
influence of the fuselage.

• Assuming N = 1 for N < 1 - For the Fresnel model used to find ∆̂N , the
assumption was made that as N is not proportional to ∆ below N = 1, and the
attenuation at these positions are comparably small to those above N = 1, it was
thought not to alter the contours of Figure 6.15 considerably.



100
Chapter 6 The Over-Wing Engine Configuration: Using Surrogates to Understand

Noise Shielding Performance

Chordwise Displacement, x/c
y

V
er

tic
al

 D
is

pl
ac

em
en

t, 
z 

/h

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.5

2

2.5

0

1

2

3

4

5

6

7

8

9

∆
N

Figure 6.15: Contour plot of the sound shielding metric ∆N .

6.6 Summary

The study described here was motivated by the strict community noise targets facing
the airline industry and encouraged by earlier experimental indications (Such as Berton
[2000]) that smart design can use the airframe of an aircraft as a shield against broadband
noise emanating from the inlet. We have conducted a series of noise shielding experi-
ments on a configuration that requires the smallest departure from existing designs: a
conventional tube-and-wing airliner with over-the-wing engines.

The analysis presented here highlights the potential of this layout to create a noise
shadow zone under a climbing airliner passing over communities near an airport. Our
parametric study has also shown that, while basic diffraction theory can provide a first
order estimate of the shielding performance for a given design, the phenomena involved
are sufficiently subtle to warrant a more sophisticated experiment, such as the one
presented here. Finally, we have demonstrated the viability for airframe acoustic design
of modern surrogate modelling techniques as parametric design investigation tools, which
are particularly useful in cases where measuring the performance of a design is costly
and therefore limits the size of the design space.

Noise is, of course, just one of the engineering constraints that drive the design of
a modern airliner and it is therefore clear that further analysis of the configuration
discussed here is necessary. We take a step in this direction in the next chapter where
we present an aerodynamic study on the same over-wing engine installation. More
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specifically, we consider the following question: how does the relative position of the
engine with respect to the airframe influence the overall drag of the aircraft, as well as
the characteristics of the flow entering the engine?





Chapter 7

The Over-Wing Engine

Configuration: An MDO

Approach

We presented in Chapter 4 an optimization procedure that finds the optimal solution
with respect to a single objective. We used a similar single objective study to assess the
quality of the application-specific class functions in Chapter 5. However, we discussed
in Chapter 2 that, in general, complex engineering design problems include multiple
performance requirements from a range of disciplines. One such problem is that of the
over-wing engine installation, considered in Chapter 6.

We consider here the effect of engine placement on the over-wing engine installation to
the aerodynamic performance of the aircraft. To evaluate the aerodynamic performance
we conducted steady state RANS simulations using the Fluent [2011] flow solver at
cruise flight conditions, from which we obtained an overall drag coefficient value CD.
In order to assess the installation effects on the engine itself, for each nacelle position,
we extracted total pressure values at the fan face, enabling us to compute a fan face
pressure distortion criterion [Seddon and Goldsmith, 1999]. We performed these analyses
on the 40 designs tested in the noise study, presented in Chapter 6, generating surrogate
models from the performance values, as we did with the noise shielding. We use these
surrogate models to find the non-dominated set of designs that comprise the so-called
Pareto surface of these three objectives.

103
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7.1 Aerodynamic Studies on the Over-Wing Engine Con-

figuration

The aerodynamic performance implications of installing the engines above the wing
have been studied, but the trade-offs between noise generation and aerodynamic perfor-
mance are less well understood. This is the motivation behind the work presented here,
where we consider aircraft configurations that use a pylon to attach the engines to the
wing, and exclude those that incorporate the nacelle within the wing geometry (as in
Kinney and Hahn [1997] and Hill et al. [2009]). Ronzheimer et al. [1996] investigated
the aerodynamic characteristics of the Fokker VFW 614 aircraft, using an Euler code.
They found that the flow inboard of the pylon was characteristically different from the
outboard section of the wing, due to the channel created by the fuselage, wing, pylon
and nacelle. Fujino and Kawamura [2003] comment that over-wing engines may cause a
strong shock wave to occur that reduces drag divergence Mach number. However, they
used the interaction of the wing with the nacelle and pylon to create a design that has
better drag-rise characteristics compared to that of the clean wing configuration. Yoneta
et al. [2010] conducted a similar study, showing that the performance of an over-wing
engine configuration is highly dependent on the placement of the engines with respect
to the wing surface. Both of these studies idealize the engines as flow through nacelles,
as Fujino and Kawamura [2003] report insignificant differences to the wave drag when
modelling the jet from the engine. No indication was given to the quality of flow entering
the engine.

7.2 Aerodynamic Investigation

To determine how variations in nacelle position affect the aerodynamic efficiency of both
the engine and the whole aircraft the flow around the 40 designs of the Latin Hypercube
was analysed using the Reynolds Averaged Navier-Stokes (RANS) solver Fluent [2011].
The geometry was, once again, that of the DLR-F6 research aircraft model that was also
used in the American Institute of Aeronautics and Astronautics (AIAA) drag prediction
workshops [Brodersen and Sturmer, 2001], with its FX2B fairing around the connection
between the wing and the fuselage. The engine characteristics were modelled assuming
a CFM-56 type engine was installed, with flow characteristics found using analytical
equations from basic engine parametric cycle analysis [Mattingly, 1996] and assuming a
capture area ε of 0.75 enters the engine:

ε =
A∞
Af

(7.1)

A∞ is the area of the streamtube entering the engine at a position far upstream of the
engine, and Af is the fan area.
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The same flight conditions were used as defined in the third AIAA drag prediction
workshop [Laflin et al., 2005]: namely, Mach number M = 0.75 and Reynolds number
Re = 5× 106. The angle of attack was continually altered to obtain a target CL of 0.5.
The pylon cross section was the symmetrical SC(2)-0012 airfoil. The sweep angle of the
pylon for each design was determined by a mutual connection point of the pylon leading
edge on the wing and nacelle surfaces for each design1.

7.2.1 Description of the CFD Setup

Figure 7.1: Diagram of the DLR-F6 research model presented in Rossow and
Ronzheimer [1992], and Brodersen and Sturmer [2001] (with dimensions in mm). Cour-

tesy of DLR.

The geometry used in this investigation had the dimensions of the DLR-F6 wind tunnel
model [Rossow and Ronzheimer, 1992, Brodersen and Sturmer, 2001], as shown in Figure
7.1. To generate the meshes for the CFD analysis we used the octree mesher Harpoon
[2011]. The geometry of the fuselage and wing was split into sections using CATIA,
allowing each section to have a unique mesh size. A similar process was achieved with
the pylon and nacelle, but these geometries were generated in MATLAB to provide
automatic redefinition of nacelle position and pylon curvature integration with the wing
and the nacelle. Stereolithography (STL) files were generated whereby the end points of
the pylon STL file were integrated with the wing STL file that was created in CATIA.

1The trailing edge connection with the nacelle was allowed to float so that we obtained the same
gradient on the leading and trailing edges of the pylon. This did result in the pylon trailing edge
finishing aft of the nacelle outlet for some nacelle positions.
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(a) x = 0x/cy , z = 1z/h, Unconverged solu-
tion.

(b) x = 0.51x/cy , z = 1.93z/h, Fully con-
verged solution.

Figure 7.2: Streamlines, coloured by pressure, of the flow entering the engine. Pres-
sure values are in Pascals.

This improves Harpoon’s ability to produce an accurate mesh of this junction. The
meshes comprised of between 7-8 million cells for each model. The RANS equations were
solved in Fluent [2011] using the density based implicit solver and the Spalart-Allmaras
turbulence model. This setup was validated against the results from the AIAA drag
prediction workshop [Vassberg et al., 2007] for the DLR-F6 aircraft model. The CFD
simulations were run on the University of Southampton’s Iridis 3 supercomputer, which
has 1,008 Intel Nehalem compute nodes, with each having 22 GB of RAM. Each run
used 8 nodes and was run for around 6,000 iterations, taking just under 28 hours to
complete. A more detailed description of the CFD process is given in Appendix B.

To define the aerodynamic efficiency of the aircraft we used the total CD calculated via
the RANS solve. As a measure of engine performance, we used the distortion coefficient
at the fan face [Seddon and Goldsmith, 1999], based on a 60o sector angle:

DC(60) =
Pt,f − Pt,60

Pt,f
(7.2)

where Pt,f is the mean total pressure on the fan face, and Pt,60 is the mean total pressure
in the sector of the fan face that provides the lowest pressure.

7.2.2 Inlet Efficiency Results

For a subset of engine positions a separation bubble emerged on the lower part of the
nacelle inlet (see Figure 7.2(a)). These designs were clustered in a single region of the
design space: at forward and low nacelle positions, where the oncoming flow is highly
deviated due to its interaction with the wing leading edge. For the purposes of this
study we have simply postulated these designs to be infeasible.

To determine the boundary of the infeasible region in the design space we performed a
classification learning procedure. Here, all tested feasible designs were allocated a value
of one, with infeasible designs receiving a value of minus one. We performed a Support
Vector Classification process [Gunn, 1998], where a quadratic programming method was
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Figure 7.3: Surrogate plot of the pressure distortion at the fan face, with the white
dots indicating the values of the tested designs. The surrogate leave-one-out cross-

validation RMSE yields 0.071.

used to maximise the margin of the closest points either side of the feasible boundary,
where each point on the feasible boundary had a value of zero. This usually involves
fitting a hyperplane through the two sets of values. However, it was uncertain if our
classification boundary would be linear. We therefore used a linear Spline kernel to map
the input space to a higher-dimensional feature space, where we fitted a hyperplane
through the two sets. This resulted in the infeasible design region shown by the white
space in Figure 7.3.

The Kriging model shown in Figure 7.3 was generated using the feasible tested designs
only. As expected, when the nacelle is positioned close to the feasible/infeasible bound-
ary, we obtain high pressure distortion. The lowest pressure distortion is obtained for
when the engine is positioned high and aft of the wing, i.e. furthest away from any
deviation of the freestream flow.

7.2.3 Aerodynamic Efficiency Results

Figure 7.4 shows contours of the Kriging model fitted to the CD values for each nacelle
position. Again, the white dots indicate the nacelle positions that were tested. Minimal
drag was achieved at the most aft and lowest engine position. Maximum drag was
found for engine positions around x/cy = 0.15, with the drag generally lower for further
forward engine positions.
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Figure 7.4: Surrogate plot of the drag objective, with the white dots indicating the
values of the tested designs. The surrogate leave-one-out cross-validation RMSE yields

0.040.

To further study the effect of the pylon and nacelle on the aerodynamic efficiency, and
to find the causes of the behaviour in Figure 7.4, the drag from the individual compo-
nents was identified. Figure 7.5 shows contours of the Kriging models fitted to the CD

contributions of the different parts of the aircraft: the wing and fuselage, the nacelle,
and the pylon. The relationship of total drag with nacelle position is dominated by
the pressure drag, with the viscous drag only contributing little in comparison. Thus
the trends shown in Figure 7.5 can be taken to be due to differences in pressure on the
aircraft geometry. Pressure contours for a low drag and a high drag nacelle position are
shown in Figures 7.6(a) and 7.6(b), respectively. In both figures we see the presence of
two shocks, either side of the pylon. In the high drag case the outboard shock spans the
pylon, aft of the pylon mid-chord. The inboard shock emanates from the interconnection
of the nacelle and the pylon, close to the pylon leading edge, and meets the intercon-
nection between the pylon and wing at the pylon mid-chord. This is similar to the low
drag case. However, the outboard shock follows the same relationship to the inboard
case, unlike the outboard shock in the high drag case. This difference can be attributed
to the deflection of the flow direction as a consequence of the sweep on the wing leading
edge, which returns to be tangential to the freestream flow at the trailing edge.

Using the information from the pylon pressure contours with the surrogate model in
Figure 7.5(c), we can determine that the large outboard shock causes a significant drag
increase on the pylon, which is increased due to the height of the pylon. Low drag on
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Objective x/cy z/h Optimal Value
∆ 0.7 1.55 9.9 dB
CD 0.7 1 0.038

DC(60) 0.7 2.5 0.0016

Table 7.1: The optimal position of the engine for each performance objective.

the pylon is found when the shock is close to the pylon leading edge, and where its
propagation distance is low.

Figure 7.5(a) shows the maximum drag on the wing/fuselage to be for a nacelle posi-
tion near the maximum thickness of the wing, and at the maximum vertical position,
where the shock on the pylon can propagate further along the wing (see Figure 7.6(b)).
Minimum drag on the wing corresponds to the furthest aft position of the engine, close
to the wing, where the pylon shock propagates across the aft portion of the wing, as
shown in Figure 7.6(a). A higher angle of attack (α ≈ 0.5 − 2o) is needed to meet the
design CL compared to the clean wing (α ≈ −0.4o), due to the reduced lift-producing
surface area of the wing and due to the area of high pressure where the pylon leading
edge meets the wing. The long spanning shocks created by the powerplant geometry at
high nacelle positions help to reduce this effect, but consequently cause a drag increase
that is greater than the induced drag caused by changing the angle of attack at other
nacelle positions.

Maximum nacelle drag, as seen in Figure 7.5(b), is generated at a forward nacelle po-
sition, where the pylon is heavily unswept, allowing a strong shock to form at the
nacelle-pylon intersection. Minimum nacelle drag occurs at the lowest and aft nacelle
position, at maximum sweep. The negative drag value at this and the surrounding na-
celle positions is due to the high pressure field generated by the forward thrust at the
engine exhaust interacting with the rear wall of the nacelle, causing the pressure integral
aft of the nacelle to be greater than at the front.

7.3 Trade-Off Study

We have presented here and in Chapter 6 the results of the noise and CFD experiments,
producing surrogate models of the three performance objectives. The optimal position
of the engines for each objective is shown in Table 7.1. These optimum positions, and
the relationships seen in the plots of the surrogate models shown in Figures 6.8, 7.4
and 7.3, indicate that the best streamwise position for the engine is in an aft position
on the wing. Vertically however, each objective requires a different engine position for
optimal performance. This leads to a very difficult yet common conundrum in design
engineering, where the multi-objective analysis yields several different solutions across
the search space.
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Figure 7.5: Contour plots of the Krig models fitted to the CD contributions of different
aircraft parts. Pressure values in Pascals.

The surrogate models of the performance metrics allow us to find an approximation to
the performance of any nacelle position within the design space. To find relationships
between the different performance objectives we have re-sampled the feasible region of
the design space at the nodes of a uniform grid of 2474 points and plotted the corre-
sponding objective values against the three objectives in Figure 7.7. An optimal solution
would feature minimum DC(60) and CD, with maximum ∆ (i.e. the nearest and lowest
point in Figures 7.7(b) and 7.7(a)). From the performance of the engine positions that
form the convex curvature in this optimum region, we can conclude that no single nacelle
position exists that is optimal for all objectives. These engine positions that make up
the curve in the optimum region are likely to be optimal in some way, with any im-
provement in one objective reducing the performance of either of the other objectives. If
this is true, these engine positions are classed as being non-dominated, and collectively
comprise the Pareto set of solutions.

In the absence of a practical means of establishing the relative importance of each
objective, such Pareto surfaces can be used to highlight non-dominated designs. For
an even more accurate identification of the Pareto front we also ran a multi-objective
Genetic Algorithm on the three surrogates.
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(a) x = 0.7x/cy , z = 1z/h, (Low drag case)

(b) x = 0.12x/cymm, z = 2.33z/h, (High drag case)

Figure 7.6: Pressure contours on the surface the DLR-F6 at two different nacelle
positions. Pressure units are in Pascals.
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Figure 7.7: 2474 designs plotted against all objectives, with the objective values taken
from the each performance metric’s surrogate model.

Specifically, we used the Non-dominated Sorting Genetic Algorithm (NSGA) II [Deb
et al., 2002]. This uses a genetic algorithm (GA) to search for the non-dominated
designs, by allocating the non-dominated solutions a rank of one, with the rest given
ranks of two or higher (with rank two designs being non-dominated if we were to remove
the rank one set, and so on). The GA is then guided through its exploration of the
design space by the ranking system and rewarding or penalising each individual in the
population, based on its distance from the Pareto front (encouraging Pareto optimality)
and other members (encouraging a uniform spacing of designs along the Pareto front).

Figure 7.8 shows the Pareto set found using NSGA-II for each performance metric plotted
against each other. Figures 7.8(a) and 7.8(b) are similar in that they show a plateau
point; part of the Pareto front (above the plateau in the both figures) both performance
metrics improve. On the other side of the plateau, the metrics conflict, where any
improvement in CD or DC(60) will be detrimental to the noise shielding ∆. Figure
7.8(c) shows that DC(60) always conflicts with CD. The nacelle positions (x/cy, z/h) of
the Pareto set, shown in Figure 7.8(d), show that the optimal nacelle position is indeed at
the aft end of the chordwise position range. The optimal vertical position is less evident;
the purpose of the Pareto analysis here is to inform a wider analysis process, where other
factors (e.g. structural weight) might be included within the design selection.

We have also conducted a CFD simulation for the case of a conventional design, where
the engine is located underneath the wing in a position typical of airliners belonging to
this class forward of the wing leading edge (see Figure 7.9). For this case we obtained a
distortion coefficient of 0.0014 and a drag coefficient of 0.036. Note from Table 7.1 that
the optimal positions for the over-wing case, although worse compared to the underwing
design, are relatively close to those results. However, these optimal values represent three
different designs, and so the chosen optimal compromise will be even poorer compared
to the underwing case. If we consider the underwing case to give 0dB noise shielding
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Figure 7.8: The NSGA II found Pareto set created using the Kriging models shown
in Figures 6.8, 7.4 and 7.3.

(no aircraft structure is present to act as a barrier to the engine noise), we find that for
slightly poorer aerodynamic efficiency and engine airflow quality we can gain significant
noise reductions experienced by near airport communities.

7.4 Summary

In this chapter we have presented two single objective optimization investigations aimed
at finding the ideal nacelle position in terms of overall airframe aerodynamic efficiency
and pressure distortion at the engine fan face. The optimal nacelle position was found
to be different for each performance metric, including the noise shielding presented in
Chapter 6, and so a Pareto set of optimal nacelle positions was generated using the
NSGA II algorithm on the surrogate models for each performance metric. The most
appropriate position for the nacelle was found to be as far aft of the leading edge of the
wing as possible. However, the Pareto set spanned most of the vertical design space,
creating a difficult dilemma for choice of this design variable.



114 Chapter 7 The Over-Wing Engine Configuration: An MDO Approach

Figure 7.9: Pressure contours, in Pascals, for a design where the engines are located
underneath the wing.

It must be noted that the three performance metrics chosen in this study are not the
only ones to be considered to assess the over-wing aircraft configuration. Moreover,
they may not be the most important. Flight dynamics and structural considerations
may play a very important role too. Future studies should assess aircraft stability,
structural supports, and flutter. The flexibility of the geometry could be increased too,
so that the shape of the pylon and its interconnections can be optimized, which will have
a significant effect on the shocks generated in the CFD computations and thus alter the
CD contours in Figure 7.4.



Chapter 8

Conclusions and

Recommendations for Further

Work

8.1 Conclusions

It is becoming standard practice to use optimization methods within an aircraft design
context. This is evident by reading recent aviation journal publications, where it is
rare to find the word ‘design’ without ‘optimization’ or ‘optimal’ in the article titles.
The design community has also realised that the optimization process must consider all
performance factors, whether it involves including a set of constraints to the problem,
or some sort of multidisciplinary optimization process. In many published articles de-
sign optimization is deliberately restricted to a single performance objective when, in
reality, the design is dependent upon many more. Another feature in the recent design
literature is the bias in favour of improving the efficiency of the optimization heuristics,
as opposed to making the problems themselves more tractable by improving their pa-
rameterization.We have discussed in this thesis the massive impact the parameterization
procedure can have on the computational burden of the optimization process, with the
parameterization of a full aircraft geometry for an aerodynamic optimization study still
being some way away, mainly because the number of parameters would be in the hun-
dreds. Granted, the recent advancements by the surrogate modelling community allow
for more efficient global optimization, but design parameterization still has a major role
to play in improving optimization efficiency.

We noted in Chapter 3, which is devoted to the parameterization stage of the optimiza-
tion process, that the Kulfan transformation uses an analytical class function to model
the general shape of an object, then uses a parameterized shape function to achieve an
accurate model. In Chapter 5 we stated that, for some applications, the class function
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suggested by Kulfan does not suitably simplify the problem. For example, for the SC(2)
airfoils, we showed that the resulting shape function is not significantly simplified by
the airfoil class function. This was mainly due to the physical features of the SC(2)
airfoils, namely the high gradient of curvature of the leading edge, and the lower surface
cusp, being characteristically different to other airfoils. We developed a procedure to
generate a new class function using genetic programming, together with a local search of
the constants for each member of the population along the evolutionary process, within
a Baldwinian learning procedure. By restricting the growth of the members, we found
suitably sized class functions specific to a collection of the SC(2) airfoils. These new class
functions (one for the upper surface, and one for the lower surface) were then compared
to Kulfan’s airfoil class function, via deploying them in an optimization procedure, with
the results indicating the Kulfan transformation performs significantly better using the
newly found class functions. Moreover, the results when using the new class functions
were independent of Bernstein polynomial orders above four, indicating that by reducing
the number of parameters we have not inadvertently reduced the flexibility of the model.

While most design optimization work to date is underpinned almost exclusively by com-
putational analysis, this should not necessarily be the case. We have shown that physical
experimentation can also be integrated into the process. We performed an experiment
in the University of Southampton’s Large Anechoic Chamber designed to determine the
potential of over-wing engines in reducing the perceived noise to ground observers. Forty
combinations of streamwise and vertical positions of the engine with respect to the wing
were tested, whilst keeping the spanwise position of the engine constant. In this thesis
we have presented the results of this study and compared them to simple half-plane noise
barrier theory, showing that this analytical theory can be used as a first order approxi-
mation to the noise shielding performance of any over-wing engine position. Moreover,
by using a surrogate modelling strategy, the optimal position of the engine was found
that maximised the noise shielding potential.

We explained in Chapter 7 that the performance of the over-wing configuration cannot
be solely quantified by its noise shielding potential, as installing the engine above rather
than below the wing has an influence on other performance metrics. With this in mind,
we performed a CFD study on the engine positions that were tested in the noise study,
extracting the drag at the design cL, as well as the total pressure values at the fan face.
Using the same surrogate modelling strategy as in the noise study, we were able to model
the objective function landscapes of the aerodynamic efficiency (the drag at design cL)
and the quality of airflow entering the engine (pressure distortion at the fan face), thus
finding the optimal position of the engine in respect to each single performance metric.
It was found that the optimal engine position for each performance metric was different,
and so a Pareto set of solutions was found using the NSGA II algorithm.

To summarise, the major contributions of this thesis are listed below.
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• A strategy to find the design conditions of NASA’s SC(2) airfoils has been de-
veloped, whilst verifying that the airfoils generated using the re-parameterization
method of Sóbester and Powell [2012] do indeed follow the SC(2) design charac-
teristics.

• The time-savings of using the Sóbester and Powell [2012] re-parameterization
model to generate an SC(2) airfoil with specific cl and t/c requirements have been
investigated, by performing an optimization procedure.

• A class function generation procedure has been developed for the Kulfan Trans-
formation that improves the parameterization for specific applications.

• An experiment was conducted in the University of Southampton’s Large Anechoic
Chamber, to determine the potential of the over-wing engine installation in shield-
ing engine inlet noise to people situated at ground level. The results of this were
found to agree with simple half-plane barrier theory that can now be used as a
first order model for the amount of noise shielding at a specific engine position.

• Using Surrogate models the optimal position of an engine above the wing of a civil
aircraft has been found, in terms of:

– Engine inlet noise shielding to observers situated on the ground;

– Drag at cruise cL;

– Pressure distortion at the fan face, also finding a feasible/infeasible boundary
using Support Vector Classifiers;

• A Pareto set of designs for engine placement above an aircraft wing that are non-
dominated by either, noise shielding, aerodynamic efficiency, or quality of airflow
entering the engine has been found.

8.2 Further Work

8.2.1 A Set of Class Functions for Specific Applications

The work presented in Chapter 5 concentrated on generating specific class functions for
the SC(2) airfoils following from Kulfan’s difficulty in accurately modelling these shapes
with the Kulfan transformation. It is highly likely that the Kulfan transformation would
have similar difficulties with other aircraft geometries that are characteristically different
to a standard airfoil. For example, fan blade cross sections or the stators used to direct
the flow between the different fan stages in an engine. Using the method described in
Chapter 5 we can find sets of class functions that can be used for the specific application.
Of course, we also need to find a set of examples from each application to form a training
dataset, which can be a difficult task in itself with many of these geometries being
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propriety property of the respective companies, and thus few are available for such a
study.

8.2.2 New Shape Function Techniques for the Kulfan Transformation

In the Kulfan Transformation shape parameterization technique, the class function can
be regarded as the starting design that is to be modified by the shape function. In her
introductory paper on this technique, Kulfan [2008] only suggests the use of Bernstein
polynomials to be used as the shape function, with there being little restrictions to the
method we can use. Granted, the coefficients of the Bernstein polynomials are quickly
found using a least squares approach, but the high frequency oscillations reported by
Mousavi et al. [2007] restrict the quality at higher dimensions, if we dare perform an
optimization with such a large parameter set. In Chapter 3 we stated that Bernstein
polynomials, used by Kulfan as the shape function, are also the bases of Bézier curves.
Due to their multimodal behaviour at high dimensions B-Spline methods were developed
and so a similar process may alleviate the problem here. An approach similar to this one
has been considered by Straathof et al. [2008], but no performance comparisons were
made. We also presented in Chapter 3 the Free Form Deformation technique that has
the ability to change the shapes of existing objects. It would be interesting to assess
the performance of FFD in modifying the class function, however this would not be
classed to be within the framework of the Kulfan transformation, as FFD would not
be applied in the same way as a shape function. Performing a comparison study using
different techniques for the shape function, along with the FFD method just discussed,
may give further insights into the ability of this method, and we may find an increase
in performance.

8.2.3 Increase the Number of Objectives for the Over-Wing Engine

Installation Case Study

In Chapter 7 we state that we must consider a variety of design factors when optimizing
the over-wing engine position, as optimizing for a single objective (noise shielding, for
example) may lead to unacceptable performance in a different discipline. To address this
issue we found the aerodynamic performance of the over-wing configuration, generating
a Pareto set that comprises of a set of optimal designs in terms of noise shielding, drag,
and airflow quality into the engine inlet. However, other major performance metrics
exist that need to be accounted for in this design problem: the stability of the aircraft
may be influenced by the engine position, and the structural integrity of the support
struts in the pylon may have a significant effect. Without studying these performance
metrics we cannot fully evaluate the over-wing configuration as a viable option for future
aircraft.
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(a) From a VFW-614 aicraft (over-wing engine con-
figuration)

(b) From a DLR-F6 aircraft (under-wing engine
configuration)

Figure 8.1: Sketches of two pylon cross-section profiles.

8.2.4 A More Detailed Parameterization of the Over-Wing Engine In-

stallation Case Study

To simplify the noise shielding study presented in Chapter 6 of this thesis we only
considered two parametric variables; streamwise and vertical position of the engine.
This was an acceptable simplification in the noise study, as the shielding performance
was unlikely to be affected by the outer curvature of the pylon or nacelle. However,
the shape of the pylon and the curvature of the nacelle was found by Yoneta et al.
[2010] to be highly influential to the aerodynamic efficiency of the aircraft. Lynch and
Intemann [1994] stated that the wing has to be “designed accounting for the presence
of the engine/nacelle/pylon installation and the nacelle/pylon is designed accounting
for the presence of the wing”. Therefore, the SC(2)-0012 airfoil section used as the
pylon cross-section, and the CFM56 engine nacelle, must be parameterized and included
within the optimization process to determine the full aerodynamic potential.

The difference in the flow conditions above and below the wing is apparent from com-
paring the respective shapes of the pylon geometry. Figure 8.1(b) shows that a typical
underwing pylon has a round leading edge, and tapers from approximately three-quarters
of the pylon chord to the tip. Figure 8.1(a), a sketch of the Fokker VFW 614 pylon, is
characteristically different with regards to the pointed leading edge and highly curved
mid-chord region. If we return to using the Kulfan Transformation, both of these geome-
tries can be considered in an optimization process by including the first class function
exponent N1 as a parameter. If we decide to include the structural factors into this
optimization procedure, as discussed in Section 8.2.3, a closely coupled system between
the aerodynamic and structural modules would have to be achieved as the pylon outer
surface must incorporate the pylon struts.





Appendix A

CFD Replication of Results from

the ATAT Program

In what follows we discuss CFD experiments aimed at replicating the results obtained by
Jenkins and Hill [1988] on the SC(2)-0714 airfoil. The purpose of the work discussed here
was to ensure we had an accurate process to be able to replicate the design conditions and
thus determine the ‘real’ characteristics of each NASA supercritical airfoil. However, we
first had to modify the results obtained from Jenkins and Hill [1988] of the SC(2)-0714
airfoil so that they could be compared with the results of the CFD simulations.

The NASA SC(2)-0714 airfoil was tested by Jenkins and Hill [1988] at a variety of Mach
numbers , Reynolds numbers and angles of attack. Only one data set was taken here for
comparison: Reynolds number and Mach number remained constant at 40 million and
0.6 respectively, and angle of attack was varied between -1.98 and 5 degrees. A problem
with using the data from Jenkins and Hill [1988] was that no correction of the data
was made for three-dimensional (3D) or blockage effects in the windtunnel. Blockage
correction tables in Jenkins and Adcock [1986] suggest that the effective Mach number
for an initial flow at M=0.6 is M=0.587, and that a correction factor of 1.015 must
be multiplied to the force and moment coefficients. However the 3D flow effects in the
windtunnel also demand that an upwash correction is applied to the angle of attack,
which was not available. Barnwell [1978] gives an angle of attack correction procedure
where the amount of upwash correction is a function of the lift coefficient:

∆α =
−clc

8(1 + j)h
× 180

π
(A.1)

where c is the chord (6 in.), h is the tunnel’s semi-height (12 in.), and j = aK/h (a is
the slot spacing (4 in.) and K is the semiempirical constant (3.2)). Note that Equation
A.1 is only valid for the 0.3m TCT tunnel. After integrating the experimental pressure
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coefficient graphs from Jenkins and Hill [1988] to find the lift coefficient values a table
of the new effective attack angles was produced (See Table A.1).

α Corrected α

-1.98 -2.4724
-0.96 -1.6742
0.01 -0.9168
0.50 -0.5334
1.02 -0.1307
1.54 0.2780
2.00 0.65221
2.49 1.0217
2.99 1.4354
3.98 2.2034
5.00 2.9994

Table A.1: Corrected angles of attack, α due to upwash.

A.1 Method

Using the procedure developed by Kulfan [2008] a geometric approximation was gener-
ated of the SC(2)-0714 airfoil using a Bernstein Polynomial order of eight. The poly-
nomial coefficients were found using the least squares method, with the resulting profile
being accurate to within manufacturing tolerances. The mesh was generated in GAM-
BIT, which was then imported into Fluent to solve the RANS equations. This process
was automated, allowing us to perform multiple CFD computations with varying angles
of attack without any input from the user.

A.1.1 Pre-Processing

We used an unstructured mesh to discretize the external region of the airfoil out to the
farfield. We determined the thickness of the boundary layer ,T , using thin-plate theory
[Schlichting, 1979];

T = 0.37x(
Ux

ν
)−0.2 (A.2)

where U is the freestream velocity, ν is the kinematic viscosity, and x is the distance
from the leading edge. The first cell size within the boundary layer was taken to be

y1 =
y+
1 ν

u0
, (A.3)

where
u0

U
= 0.0296(

Ux

ν
)−0.2. (A.4)
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A near wall model was used in the CFD formulation and so y+
1 ≈ 1. Note that Equation

A.3 only gave an approximation of the y1 required, thus the value was modified within
numerous CFD computations until the appropriate y+ value was achieved.

A ”C” mesh around the airfoil was generated in GAMBIT, with the farfield extended
12.5m upstream, 20m downstream and 12.5m above and below the airfoil. An unstruc-
tured tetrahedral mesh was used (See Figure A.1), as it allowed automated regeneration,
an essential requirement for it to be used in an optimization procedure.

Figure A.1: Near field view of the airfoil mesh.

A.1.2 Solver

In Fluent we used the density based implicit solver with the k−ε turbulence model (initial
results showed insignificant difference in pressure coefficient values when using different
turbulence models). Enhanced wall treatment was selected with pressure gradient wall
functions and the energy equation was selected to be on. The medium was set to
be air with the density given to be an ideal gas and viscosity set to the Sutherland
algorithm[Fluent, 2011], defined as

µ

µ0
=

(
T

T0

)3/2 T0 + 110
T + 110

. (A.5)

To find the pressure at the farfield we used the Mach number

M =
U

k
=

U

(γRT )1/2
(A.6)
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to find the velocity, U∞ and then the Reynolds number

Re =
ρU∞l

µ
(A.7)

to find the density, ρ, with the viscosity µ found using Equation A.5. We then used the
ideal gas law to find the pressure, P ;

P = ρRT. (A.8)

This value of pressure was set in the boundary conditions for the pressure farfield along
with the other initial conditions. Turbulent intensity was set to 4%, turbulent viscosity
ratio to 10, and the temperature to 300K. The operating pressure was set to zero. Initial
Courant number was set to 5, which would be increased to 20 during the simulation. All
discretizations were set to second order with an under-relaxation turbulent kinetic energy
of 0.8. During the solves the mesh would be adapted (refined) using the adaptation
capability in Fluent.

A.2 Discussion

Figure A.4 compares our CFD pressure coefficient results with experimental data found
in Jenkins and Hill [1988] at different angles of attack for the SC(2)-0714 Airfoil. Figure
A.2 compares the lift values obtained from the pressure coefficient plots in Figure A.4.
At angles between −0.5o and 1.5o there is good correlation with the experimental results.
At low angles the CFD solution tends to predict an initial peak forward of that of the
experimental data. The peak is created on the lower surface of the airfoil, which can
be seen in Figure A.3 on the lower surface, near the leading edge. At larger angles of
attack, where a shock develops on the top of the airfoil, the CFD simulation finds it
difficult to accurately predict the position of the shock compared to the experimental
results.
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Figure A.2: Comparison between CFD and experimental cl values with different
angles of attack, α.

Figure A.3: Contours of pressure coefficient around an SC(2)-0714 airfoil at α =
−2.4724o.
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Figure A.4: Pressure coefficient plots of CFD and experimental investigations at
various angles of attack, α.





Appendix B

Overwing Engine Installation –

The CFD Setup

In Chapter 7 we presented the results of a CFD study where the engine was positioned
in different places above the wing to find the optimal position in terms of aerodynamic
efficiency and engine airflow quality. This chapter explains the CFD process of that
study, from the creation of the geometry through to the exportation of the results. The
process is validated against the results gathered from the third AIAA drag prediction
workshop.

B.1 Geometry Generation

As noted in Chapter 7, the DLR F6 aircraft model, presented in Rossow and Ronzheimer
[1992], and Brodersen and Sturmer [2001], was the aircraft under investigation in this
study. The geometry used was obtained from the second American Institute of Aeronau-
tics and Astronautics (AIAA) drag prediction workshop website [Frink, 2009a], which
had nacelles typical to enclose a CFM56 type engine. Included in the model is the
FX2B fairing around the connection between the wing and the fuselage, the geometry
of which was obtained from the third AIAA drag prediction workshop website [Frink,
2009b]. These parts never alter between the different designs. Parts that do change
between each design are the nacelle and pylon. Note that the change in nacelle is a
simple translation above the wing and is therefore generated first. The pylon however
must also be modified to maintain the attachment between the wing and the nacelle.

The nacelle and pylon geometries were created in MATLAB. This allowed quick and
automated generation of each design. The code ensured that the pylon geometry sat
flush against both the wing and the nacelle. This was achieved by first positioning the
SC(2)0012 airfoil, used as the pylon cross section, so that its leading edge point sat
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on the wing surface at a specified position. The cross-section was then extruded to
where the leading edge of the pylon meets the specified position on the nacelle surface.
The cross-sections of the wing and nacelle at these positions were used to give a rough
approximation of the curvature needed on the pylon at the respective connections. Note
that the programme Harpoon [2011] was used to create the mesh of each of the designs.
This required the parts to be exported as stereoligraphy files1, which uses triangular
facets to describe each part. To ensure a flush join between each part, the pylon points
that connect to the wing/nacelle surface must lie within and be planar to the respective
facet on the joining surface. This was achieved by importing the stereoligraphy file of the
upper surface of the wing into MATLAB, and by assuming the pylon was linearly swept
so that the respective joining facet on the surface of the wing/nacelle could be identified
for each pylon connecting point. The quality of the meshes generated by Harpoon is very
dependent on the facets that lie on the surface, especially at the connections between
the different parts. In an effort to improve mesh quality the nodes of the pylon that join
to the respective surface (the wing or the nacelle) were included in the stereoligraphy
file of that surface, by using Delaunay triangulation to re-create all of the facets.

B.2 Pre-Processing

As mentioned, the mesh of each design was created using Harpoon [2011]. This creates
fully automated hex-dominated meshes. A number of refinement regions were inserted
around the geometry and in the wake. These refinement regions were parameterized
with respect to the position of the engine and pylon. To create these regions, as well
as to import the unique parts for each design, the configuration files that contain the
commands to create the meshes were automatically generated from within MATLAB
when the geometry was also created. The refinement regions, as well as the resulting
mesh, of one of the designs can be seen in Figure B.1. The bounding box enclosed a
region that spanned 8m from the centre of the aircraft model in all directions, excluding
the direction normal to the symmetry plane. The initial boundary layer was defined
using Equation A.3, and was then modified to achieve a y-plus between 30 and 100. The
resulting meshes had between 7.8-9.3 million elements.

B.3 Engine Calculations

We created a crude turbofan model in the CFD package by using pressure outlet and inlet
boundary conditions for the fan inlet and low speed, low temperature jet respectively.
We did not include the high temperature core jet. We used the ideal parametric cycle

1 The student version of the meshing programme Harpoon can only import one type of generic file –
Stereoligraphy files.
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Figure B.1: An image of a cut through of the mesh created for when the nacelle is
positioned at x = 0, z = 2.5.

Figure B.2: Nacelle cross-section showing design parameters x and z and the station
numbers i(inlet), f(fan) and e(exit)

analysis of a turbofan given in Mattingly [1996] along with the isentropic flow equations
and perfect gas law to find the initial flow conditions at the fan inlet and low temperature
jet. Table B.1 lists the characteristics of a CFM-56 type engine that we used for our
calculations. The mass flow rate was then modified to ensure a capture area ε of 0.75
enters the engine:

ε =
A∞
Af

(B.1)

A∞ is the area of the streamtube entering the engine at a position far upstream of the
engine, and Af is the fan area.
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B.3.1 Exhaust Conditions

From standard atmospheric tables the temperature, T , at a cruise altitude of 35,000 ft
is 218 K. Our cruise velocity, U∞, at a Mach number of 0.75 is therefore

U∞ = M
√

γRT = 221.97 (B.2)

where γ is the ratio of specific heats (equals 1.7 for air) and R is the universal gas
constant (equals 287 for air). Using the Sutherland law from Appendix A the viscosity
is found to be 1.43×10−5. We can now find the density ρ via the Reynolds number and
characteristic length L = 0.1412

ρ =
Re µ

U∞L
= 1.3682 (B.3)

and thus the pressure, p, from the ideal gas law

p = ρRT = 85600.4 (B.4)

If we assume that the total pressure entering the engine is equal to the total pressure at
the fan then

Pti = Ptf = P∞

(
1 +

γ − 1
2

M2
∞

)γ/(γ−1)

= 124289 (B.5)

The fan pressure ratio, πf is used to calculate the total pressure at the fan exit:

πf =
Pte

Ptf

= 1.7 (B.6)

Therefore, Pte = 1.7 ∗ 124289 = 211291.3, and

Pe = Pte

(
1 +

γ − 1
2

M2
e

)−γ/(γ−1)

= 114238.5571 (B.7)

with the exit Mach number assumed to be Me = 0.98. The total temperature can be
found using the isentropic relation

(
Pe

Pte

) γ−1
γ

=
Te

Tte

= 0.83887 (B.8)

and assuming that for an ideal engine Te = T∞ = 218;

Tte = Te/0.83887 = 259.87. (B.9)
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Full Scale ModelScale
Characteristic Value Characteristic Value
ṁr 310 m/s
Fan Diameter 1.549 m Fan Diameter 0.0542 m
Fan Pressure Ratio 1.7
Cruise altitude 35,000 ft

ρr 0.38 kg/m3 ρ 1.3682 kg/m3

Tr 218 K T 218 K
Mr 0.8 M 0.75

Re 3× 106

Table B.1: Engine information taken from Jackson [2009], Niskode et al. [2011], and
CFM [2011] for the CFM56-7B20 turbofan engine with its cruise conditions, together

with information for our computational model

B.3.2 Inlet conditions

We have found cruise and off-design conditions for the GE-90 engine[Cantwell, 2011],
whose mass flow rate changes from 1350kg/s @ take-off to 576 kg/s @ cruise. Using this
ratio we obtain a cruise mass flow of ṁ∗576/1350 = 132.267kg/s. We can therefore find
the velocity and thus the Mach number entering the engine:

Urf
=

ṁr

ρrArf

=
132.267

0.38 ∗ π(1.549/2)2
= 184.7m/s (B.10)

Mrf
=

Urf

ar
=

184.7√
1.4 ∗ 287 ∗ 218

= 0.6227 (B.11)

Note that these are approximations as we have used the air properties in the freestream
and not those at the fan face. If we use the same temperature as we have previously
(T = 218k) then we can assume Urf

= Uf to determine the mass flow in our scaled
engine, again using the freestream fluid properties:

ṁ = ρ∞AfUf = 1.3682 ∗ π ∗
(

0.054
2

)2

∗ 184.7 = 0.5825kg/s (B.12)

Assuming total pressure is the same as the freestream then Mrf
= Mf and

Pf = Pt∞

(
1 +

γ − 1
2

M2
f

)−γ/(γ−1)

= 95697.4 (B.13)

We can find the temperature by using the compressible equation relations;

(
Pf

Ptf

) γ−1
γ

=
Tf

Ttf

= 0.928 (B.14)

Therefore T = 0.928∗242.4 = 224.95 for the fan inlet. The mass flow rate specified above
is modified to give capture area ε of 0.75. For an isolated engine without any aircraft
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geometry present a CFD simulation achieved this for a mass flow rate of 0.4375kg/s.
This value was then used in all subsequent analyses.

B.4 Solver Setup

FLUENT was used to solve the Reynolds-averaged Navier-Stokes equations. As men-
tioned in Chapter 7, the flight conditions were set to a Mach number of 0.75 and a
Reynolds number of 3 million (calculated using the mean aerodynamic chord of 0.1412m).
The density based implicit solver was selected in FLUENT. The Spalart-Allmaras turbu-
lence model was chosen, as results gathered in the third AIAA drag prediction workshop
[Vassberg et al., 2007] show it to give reasonably accurate results for this case, and it
is quicker to solve than the other popular two equation models. Farfield boundary con-
ditions were assigned to the bounding box. The engine was modelled using a pressure
outlet boundary condition with an associated mass flow rate for the inlet, with the en-
gine exhaust modelled using a pressure inlet (See Section B.3 for the conditions at these
boundaries). The Courant number was initially set to two, and the solver equations set
to first order. During the simulation the equations were changed to second order, with
the Courant number altered to five. The angle of attack was also changed during the
simulation, to achieve the desired CL of 0.5. The simulation was run until the average
pressure at the fan face converged to within 1× 10−4.

B.5 Validation of CFD Setup

The CFD process detailed above was validated against the results obtained from the
third AIAA drag prediction workshop [Vassberg et al., 2007], where the FX2B fairing
was used at a fixed CL of 0.5. The nacelle was not included in this study. The results
using the above procedure gave a CD value of 0.02719 at a CL of 0.5. This is within the
range of the results obtained from Vassberg et al. [2007] (CD = 0.02527− 0.02727), but
higher than the average value of 0.02636. To further validate the setup we can compare
pressure contours of the wing surface. Figure B.3 shows similar contours to those shown
in Vassberg et al. [2007] of the pressure coefficient on the wing surface.

B.6 Summary

The CFD process described here has been validated against the results gathered from
the third AIAA drag prediction workshop. The results from the test indicate that the
setup is suitable and can be used for the over-wing design study detailed in Chapter 7.
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Figure B.3: Pressure contours, in Pascals, on the wing of a ‘clean’ configuration used
in the validation case study
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