Skip to main content
Log in

Evolutionary robotics—A review

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to solve this problem. This paper provides a survey on some of these important studies carried out in the recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baluja S 1996 Evolution of an artificial neural network based autonomous land vehicle controller.IEEE Trans. Syst., Man Cybern. B26: 450–63

    Google Scholar 

  • Beer R D, Gallagher J C 1992 Evolving dynamic neural networks for adaptive behaviour.Adaptive Behav. 1: 91–122

    Article  Google Scholar 

  • Brooks R A 1986 A robust layered control system for a mobile robot.IEEE J. Robot. Autom. 2: 14–23

    MathSciNet  Google Scholar 

  • Colombetti M, Dorigo M 1993 Learning to control an autonomous robot by distributed genetic algorithms. InProc. of the Second International Conference on Simulation of Adaptive behaviour: From Animals to Animats 2, (eds) J Meyer, Roitblat, S W Wilson (Cambridge, MA: MIT Press/Bradford)

    Google Scholar 

  • Dorigo M 1993 Genetic and non-genetic operators in ALECSYS.Evolut. Comput. 1: 151–164

    Google Scholar 

  • Floreano D, Mondada F 1994 Automatic creation of an autonomous agent: Genetic evolution of a neural network driven robot. InFrom Animals to Animats 3: Proceedings of Third Conference on Simulation of Adaptive behaviour, (eds) D Cliff, P Husbands, J Meyer, S W Wilson (Cambridge, MA: MIT Press/Bradford)

    Google Scholar 

  • Floreano D, Mondada F 1996 Evolution of homing navigation in a real mobile robot.IEEE Trans. Syst. Man, Cybern., 26: 396–07

    Article  Google Scholar 

  • Galt S, Luk B L, Collie A A 1997 Evolution of smooth and efficient walking motions for an 8-legged robot.Proc. of the Sixth European Workshop on Learning Robots, Brighton, UK

  • Goldberg D E 1989Genetic algorithms in search, optimization and machine learning. (Reading, MA: Addison-Wesley)

    MATH  Google Scholar 

  • Gomi T, Ide K 1997 Emergence of gaits of a legged robot by collaboration through evolution.Proc. of the International Symposium on Artificial Life and Robotics (Springer Verlag)

  • Grefenstette J, Cobb H C 1991 User’s guide for SAMUEL (NRL Memorandum Report 6820). Washington, DC: Naval Research Laboratory, USA

    Google Scholar 

  • Grefenstette J, Schultz A 1994 An evolutionary approach to learning in robots.Proc. of the Machine Learning Workshop on Robot Learning, New Brunswick, NJ

  • Gruau F, Quatramaran K 1997 Cellular encoding for interactive evolutionary robotics. InProc. of Fourth European Conference on Artificial Life, (eds) P Husbands, I Harvey (Cambridge, MA: MIT Press/Bradford)

    Google Scholar 

  • Harvey I 1992 Species adaptation genetic algorithms: The basis for a continuing SAGA. InProc. of the First European Conference on Artificial Life, (eds) F Varela, P Bourgine (Cambridge, MA: MIT Press/Bradford) pp 346–354

    Google Scholar 

  • Harvey I, Husbands P, Cliff D 1994 Seeing the light: Artificial evolution, real vision. InProc. of the Third International Conference on Simulation of Adaptive behaviour: From Animals to Animats 3, (eds) D Cliff, P Husbands, J Meyer, S W Wilson (Cambridge, MA: MIT Press/Bradford)

    Google Scholar 

  • Harvey I, Husbands P, Cliff D, Thompson A, Jakobi N 1997 Evolutionary robotics: The Sussex approach.Robotics Autonomous Syst. 20: 205–224

    Article  Google Scholar 

  • Holland J H 1975Adaptation in natural and artificial systems (Ann Arbor, MI: University of Michigan Press)

    Google Scholar 

  • Husbands P, Harvey I, Cliff D, Miller G 1997 Artificial evolution: A new path for AI?Brain Cogn. 34: 130–159

    Article  Google Scholar 

  • Jakobi N 1997a Half-baked, ad-hoc and noisy: Minimal simulations for evolutionary robotics. InProc. 4th Eur. Conf. on Artificial Life (eds) P Husbands, I Harvey (Cambridge, MA: MIT Press/Bradford Books)

    Google Scholar 

  • Jakobi N 1997b Evolutionary robotics and the radical envelope of noise hypothesis.Adaptive Behav. 6: 131–174

    Article  Google Scholar 

  • Jeong I K, Lee J J 1997 Evolving cooperative mobile robots using a modified genetic algorithm.Robotics Autonomous Syst. 21: 197–205

    Article  Google Scholar 

  • Kosko B 1994Neural networks and fuzzy systems (New Delhi: Prentice-Hall)

    Google Scholar 

  • Koza J 1992Genetic programming (Cambridge MA: MIT Press)

    MATH  Google Scholar 

  • Lee W P, Hallam J, Lund H H 1997a Applying genetic programming to evolve behaviour primitives and arbitrators for mobile robots.Proc. of IEEE 4th Int. Conf. on Evolutionary Computation (Piscataway, NJ)

  • Lee W P, Hallam J, Lund H H 1997b Learning complex robot behaviours by evolutionary approaches.Proc. of the Sixth European Workshop on Learning Robots, (Heidelberg: Springer Verlag)

    Google Scholar 

  • Lund H H, Miglino O 1996 From simulated to real robots.Proc. of the Third IEEE International Conference on Evolutionary Computation (IEEE Computer Society Press)

  • Meeden L A 1996 An incremental approach to developing intelligent neural network controllers for robots.IEEE Trans. Syst., Man Cyber. B26: 474–485

    Article  Google Scholar 

  • Miglino O, Nafasi K, Taylor C 1994 Selection for wandering behaviour in a small robot. Technical Report: UCLA-CRSP-94-01, Department of Cognitive Science, University of California, Los Angeles, CA

    Google Scholar 

  • Miglino O, Lund H H, Nolfi S 1995 Evolving mobile robots in simulated and real environments.Artif. Life 2: 417–434

    Article  Google Scholar 

  • Mondada F, Franzi E, Ienne P 1993 Mobile robot miniaturization: A tool for investigation in control algorithms.Proc. 3rd Int. Symp. on Experimental Robotics, Kyoto, Japan

  • Nolfi S 1996 Evolving non-trivial behaviours on real robots: a garbage collecting robot. Technical Report, Institute of Psychology, CNR, Rome

    Google Scholar 

  • Nolfi S 1997a Using emergent modularity to develop control systems for mobile robots.Adaptive Behav. 5: 343–363

    Article  Google Scholar 

  • Nolfi S 1997b Evolving non-trivial behaviour on autonomous robots: Adaptation is more powerful than decomposition and integration. InEvolutionary robotics: From intelligent robots to artificial life (ER’97) (ed.) T Gomi (AAI Books)

  • Nolfi S 1997c Evolving non-trivial behaviours on real robots: A garbage collecting robot.Robotics Autonomous Syst. 22: 187–198

    Article  Google Scholar 

  • Nolfi S, Parisi D 1995 Evolving non-trivial behaviours on real robots: an autonomous robot that picks up objects. InProc. 4th Congress of the Italian Association for Artificial Intelligence (eds) Gori, Soda (Springer)

  • Nolfi S, Miglino O, Parisi D 1994 Phenotypic plasticity in evolving neural networks: Evolving the control system for an autonomous agent. Technical Report: PCIA-94-04, Institute of Psychology, CNR, Rome

    Google Scholar 

  • Nordin P, Banzhaf W 1996 An on-line method to evolve behaviour and to control a miniature robot in real time with genetic programming.Adaptive Behav. 5: 107–140

    Article  Google Scholar 

  • Pratihar D K, Deb K, Ghosh A 1999a A genetic-fuzzy approach for mobile robot navigation among moving obstacles.Int. J. Approximate Reasoning 20: 145–172

    Article  MATH  Google Scholar 

  • Pratihar D K, Deb K, Ghosh A 1999b Design of a genetic-fuzzy system for planning crab gaits of a six-legged robot.J. Comput. Info. Technol. (special issue on Evolutionary Computation) 7: 93–101

    Google Scholar 

  • Pratihar D K, Deb K, Ghosh A 2000 Optimal turning gait of a six-legged robot using a GA-fuzzy approach.Artificial intelligence for engineering design, analysis and manufacturing — AIEDAM 14: 207–219

    Google Scholar 

  • Pratihar D K, Hayashida N, Takagi H 2001 Comparison of mapping methods to visualize the EC landscape.Proc. of the Fifth Int. Conf. on knowledge-based intelligent information engineering systems & allied technologies, KES’2001, Nara, Japan, pp 223–227

  • Ram A, Arkin R, Boone G, Pearce M 1994 Using genetic algorithms to learn reactive control parameters for autonomous robot navigation.Adaptive Behav. 2: 277–305

    Article  Google Scholar 

  • Reynolds C 1993 An evolved, vision-based model of obstacle avoidance behaviour. InArtificial Life III, Santa Fe Institute Studies in the Sciences of Complexity, Proceedings (ed.) C Langton (Reading, MA: Addison Wesley) vol. 16

    Google Scholar 

  • Schwefel H P 1995Evolution and optimum seeking (New York: Wiley)

    Google Scholar 

  • Salomon R 1996 Increasing adaptivity through evolution strategies. Maes, InProc. 4th Int. Conf. on Simulation of Adaptive behaviour: From Animals to Animats 4 (eds) P Maes, M J Mataric, J A Meyer, J Pollack, S W Wilson (Cambridge, MA: MIT Press/Bradford Books)

    Google Scholar 

  • Smith T 1997Adding vision to Khepera: An autonomous robot footballer. Master’s thesis, School of Cognitive and Computing Sciences, University of Sussex

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratihar, D.K. Evolutionary robotics—A review. Sadhana 28, 999–1009 (2003). https://doi.org/10.1007/BF02703810

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703810

Keywords

Navigation