Skip to main content

Evolving Spatiotemporal Coordination in a Modular Robotic System

  • Conference paper
Book cover From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

In this paper we present a novel information-theoretic measure of spatiotemporal coordination in a modular robotic system, and use it as a fitness function in evolving the system. This approach exemplifies a new methodology formalizing co-evolution in multi-agent adaptive systems: information-driven evolutionary design. The methodology attempts to link together different aspects of information transfer involved in adaptive systems, and suggests to approximate direct task-specific fitness functions with intrinsic selection pressures. In particular, the information-theoretic measure of coordination employed in this work estimates the generalized correlation entropy K 2 and the generalized excess entropy E 2 computed over a multivariate time series of actuators’ states. The simulated modular robotic system evolved according to the new measure exhibits regular locomotion and performs well in challenging terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldassarre, G., Parisi, D., Nolfi, S.: Measuring coordination as entropy decrease in groups of linked simulated robots (preprint, 2005)

    Google Scholar 

  2. Boffetta, G., Cencini, M., Falcioni, M., Vulpiani, A.: Predictability: a way to characterize complexity. Physics Reports 356, 367–474 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bojinov, H., Casal, A., Hogg, T.: Multiagent control of self-reconfigurable robots. Artificial Intelligence 142, 99–120 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carretero-González, R., Ørstavik, S., Stark, J.: Quasidiagonal approach to the estimation of lyapunov spectra for spatiotemporal systems from multivariate time series. Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5), 6429–6439 (2000)

    Article  Google Scholar 

  5. Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: The entropy convergence hierarchy. Chaos 15, 25–54 (2003)

    Article  MathSciNet  Google Scholar 

  6. Der, R., Steinmetz, U., Pasemann, F.: Homeokinesis - a new principle to back up evolution with learning. In: Computat. Intelligence for Modelling, Control, and Automation. Concurrent Systems Engineering Series, vol. 55, pp. 43–47 (1999)

    Google Scholar 

  7. Dorigo, M.: Swarm-bot: An experiment in swarm robotics. In: Arabshahi, P., Martinoli, A. (eds.) Proceedings of SIS 2005 – 2005 IEEE Swarm Intelligence Symposium, pp. 192–200. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  8. Feldman, D.P., Crutchfield, J.P.: Structural information in two-dimensional patterns: Entropy convergence and excess entropy. Physical Review E. 67, 051104 (2003)

    Article  MathSciNet  Google Scholar 

  9. Foreman, M., Prokopenko, M., Wang, P.: Phase Transitions in Self-Organising Sensor Networks. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 781–791. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Grassberger, P., Procaccia, I.: Estimation of the kolmogorov entropy from a chaotic signal. Phys. Review A. 28(4), 2591 (1983)

    Article  Google Scholar 

  11. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Organization of the information flow in the perception-action loop of evolved agents. In: Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, pp. 177–180. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  12. Klyubin, A.S., Polani, D., Nehaniv, C.L.: All Else Being Equal Be Empowered. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 744–753. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Kolmogorov, A.N.: Entropy per unit time as a metric invariant of automorphisms. Doklady Akademii Nauk SSSR 124, 754–755 (1959)

    MATH  MathSciNet  Google Scholar 

  14. Prokopenko, M., Gerasimov, G., Tanev, I.: Measuring spatiotemporal coordination in a modular robotic system. In: Rocha, L.M., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A., Yaeger, L. (eds.) Proceedings of Artificial Life X (in press, 2006)

    Google Scholar 

  15. Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D., Poulton, G.: On connectivity of reconfigurable impact networks in ageless aerospace vehicles. Robotics and Autonomous Systems 53, 36–58 (2005)

    Article  Google Scholar 

  16. Prokopenko, M., Wang, P., Price, D.: Complexity metrics for self-monitoring impact sensing networks. In: Lohn, J., Gwaltney, D., Hornby, G., Zebulum, R., Keymeulen, D., Stoica, A. (eds.) Proceedings of 2005 NASA/DoD Conference on Evolvable Hardware (EH 2005), pp. 239–246. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  17. Prokopenko, M., Wang, P., Valencia, P., Price, D., Foreman, M., Farmer, A.: Self-organizing hierarchies in sensor and communication networks. Artificial Life 11, 407–426 (2005)

    Article  Google Scholar 

  18. Rényi, A.: Probability theory. North-Holland, Amsterdam (1970)

    Google Scholar 

  19. Solé, R.V., Valverde, S.: Information theory of complex networks: On evolution and architectural constraints. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Lecture Notes in Physics, vol. 650, pp. 189–210. Springer, Heidelberg (2004)

    Google Scholar 

  20. Takens, F.: Detecting strange attractors in turbulence. Dynamical systems and turbulence 898, 366 (1981)

    Article  MathSciNet  Google Scholar 

  21. Tanev, I.: Learned mutation strategies in genetic programming for evolution and adaptation of simulated snakebot. In: Genetic Evolutionary Computation - Gecco 2005, Proc., pp. 687–694 (2005)

    Google Scholar 

  22. Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Transactions On Robotics 21, 632–645 (2005)

    Article  Google Scholar 

  23. Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Physical Review A. 34(3), 2427–2432 (1986)

    Article  Google Scholar 

  24. Wang, P., Prokopenko, M.: Evolvable recovery membranes in self-monitoring aerospace vehicles. In: Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J., Meyer, J.-A. (eds.) From Animals to Animats VIII - Proceedings of the 8th International Conference on the Simulation of Adaptive Behaviour, Los Angeles, pp. 509–518. A Bradford Book/MIT Press (2004)

    Google Scholar 

  25. Wuensche, A.: Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the z parameter. Complexity 4(3), 47–66 (1999)

    Article  MathSciNet  Google Scholar 

  26. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.: Modular reconfigurable robots in space applications. Autonomous Robots 14, 225–237 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prokopenko, M., Gerasimov, V., Tanev, I. (2006). Evolving Spatiotemporal Coordination in a Modular Robotic System. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_46

Download citation

  • DOI: https://doi.org/10.1007/11840541_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics