
ISSN: 2229-6956(ONLINE)

DOI: 10.21917/ijsc.2013.0070
 ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2013, VOLUME: 03, ISSUE: 02

467

A NEW MUTATION OPERATOR IN GENETIC PROGRAMMING

Anuradha Purohit
1
, Narendra S. Choudhari

2
 and Aruna Tiwari

3

1
Department of Computer Technology and Applications, Shri Govindram Seksaria Institute of Technology and Science, India

E-mail: anuradhapurohit@rediffmail.com
2, 3

Department of Computer Engineering, Indian Institute of Technology Indore, India

E-mail:
2
nsc183@gmail.com and

3
aruna_tiwari@rediffmail.com

Abstract

This paper proposes a new type of mutation operator, FEDS (Fitness,

Elitism, Depth, and Size) mutation in genetic programming. The

concept behind the new mutation operator is inspired from already

introduced FEDS crossover operator to handle the problem of code

bloating. FEDS mutation operates by using local elitism replacement

in combination with depth limit and size of the trees to reduce bloat

with a subsequent improvement in the performance of trees (program

structures). We have designed a multiclass classifier for some

benchmark datasets to test the performance of proposed mutation.

The results show that when the initial run uses FEDS crossover and

the concluding run uses FEDS mutation, then not only is the final

result significantly improved but there is reduction in bloat also.

Keywords:

Bloat, Crossover, Elitism, Fitness, Mutation, Reproduction

1. INTRODUCTION

Genetic Programming (GP) [1] is an evolutionary technique

used for generating computer programs based on a high level

description of the problem to be solved. This innovative flexible

and interesting technique has been applied to solve numerous

interesting problems. Classification is one of the ways to model

the problems of face recognition, speech recognition, fraud

detection and knowledge extraction from databases. GP has

emerged as a powerful tool for classifier evolution.

Classification is a common real world activity. It is used to put

entities or patterns into predefined classes. To date, many

variations of GP have been introduced to handle the

classification, this includes Linear GP, Grammar based GP,

Graph based GP and Tree based GP. These variations differ in

representations of solutions.

GP works by evolving a population of randomly created

initial programs/chromosomes using a fitness measure. It selects

fitter ones to take part in the evolution to efficiently search for

desired efficient solution. The basic GP algorithm is similar to

any evolutionary algorithms. GP chromosomes are usually trees

which are manipulated by using some specific genetic operators.

These are reproduction, crossover and mutation. Crossover and

mutation are considered to be the main GP operators [2].

A lot of discussion has been done in GP about its operators.

Some researches debate the usefulness of the crossover operator,

and importance of mutation operator has been suggested. In

general, GP systems use a high level of crossover, and lower

levels of mutation and reproduction operators to get new

solution programs of next generation. Each operator has its own

importance in finding solutions for a problem using GP. These

solutions or program structures are in the form of variable length

strings called trees.

During the evolution of solutions/trees using GP operators,

there is generally an increase in average tree size without a

corresponding increase in fitness. This phenomenon is

commonly referred to as bloat and hampers the performance of

trees [12]. It is the uncontrolled growth of program size that may

occur in GP when relying on a variable length representation.

This has been identified as a key problem in GP for which there

have been several empirical studies.

Mutation is an important operator for genetic programming

that introduces diversity in the building blocks created during

evolution and is also among the factors causing bloat in GP.

Therefore it is important to study the effects of mutation on the

evolutionary process. Various authors have worked on the GP

operators (crossover and mutation) to handle the problem of

code bloating and improving the performance of classifiers

designed for different applications [3], [4], [5]-[9].

In this paper we present a special mutation operator called

FEDS mutation to reduce the problem of bloat in GP and to

improve the performance of program structures obtained after. In

FEDS mutation, we are applying the fitness, elitism, depth limit

and size on every criteria on every individual generated during

mutation operation and checked whether it is capable of going to

the next generation or not. We are also applying the FEDS

crossover operation previously suggested to control bloat.

The paper is structured as follows: Section 2 describes the

background of work already done in the field of proposed work,

section 3 describes the theoretical concept of proposed FEDS

mutation, and its algorithm, section 4 contains experimental

results defining the datasets used, values taken for various GP

parameters and results obtained by designing classifiers using

proposed mutation.

2. BACKGROUND

Mutation is a mechanism to inject new genetic material into a

population of solutions. It promotes diversity and improve the

algorithm’s ability to exploit different regions of the search

space. It is applied probabilistically to the offspring generated

during the crossover operation or randomly selected from the

population. Mutation introduces diversity in the building blocks

created during evolution by replacing subtree of an individual by

an entirely new one. There are three mutational probabilities to

consider when evolving decision trees using GP: firstly, the

probability that a tree will be selected for mutation, secondly, the

probability that a specific mutational operator will be applied to

the selected tree and lastly, the probability for each node in the

tree to mutate [13].

Mutation used in GP is of three types and each type is

selected according to the requirement. These are as follows,

ANURADHA PUROHIT et. al.: A NEW MUTATION OPERATOR IN GENETIC PROGRAMMING

468

1) Point Mutation: a single node in parent tree is selected

and replaced with a random node of same type. E.g. a

function node is replaced by a function node of same

arity and a terminal node is replaced by a randomly

selected terminal node.

2) Shrink Mutation: selects a node randomly and the subtree

rooted at that node is replaced by a single terminal node.

3) Grow Mutation: selects a random node and a randomly

generated subtree replaces the subtree rooted at that node.

Also called as Gaussian mutation or subtree mutation.

Mutation plays a very important role in getting diverse

solutions for various applications. A less amount of work has

been done as compared to crossover operator to apply changes in

standard mutation operator to get improved mutation operator.

Majeed and Ryan [9] introduced a new type of mutation,

Context-Aware Mutation, which is inspired by their context-

aware crossover. Context-Aware mutation operates by replacing

existing sub-trees with modules from a previously constructed

repository of possibly useful subtrees.

Muntean, Diosan, and [6] investigated a new variant where

the best subtree is chosen to provide the solution of the problem.

The other nodes (not belonging to the best subtree) are deleted.

This will reduce the size of the chromosome in those cases

where its best subtree is different from the entire tree. They have

tested this strategy on a wide range of regression and

classification problems.

 R. Poli and N. F. McPheea [14] presented a new general GP

schema theory for headless chicken crossover and subtree

mutation. The theory gives an exact formulation for the expected

number of instances of a schema at the next generation either in

terms of microscopic quantities or in terms of macroscopic ones.

The paper gives examples which show how the theory can be

specialised to specific operators.

Alan and Terence [7], in their paper studied three structure

altering mutation techniques using parametric analysis on a

problem with scalable complexity. They highlighted through

parameter analysis that two of the three mutation types tested

exhibit nonlinear behaviour. Higher mutation rates cause a larger

degree of nonlinear behaviour as measured by fitness and

computational effort. Characterization of the mutation

techniques using parametric analysis confirms the nonlinear

behaviour. In addition, they proposed an extension to the

existing parameter setting taxonomy to include commonly used

structure altering mutation attributes. They showed that the

proportion of mutations applied to internal nodes, instead of leaf

nodes, has a significant effect on the performance.

Badran and Rockett [8] observed that genetic programming

populations can collapse to all single node trees when a

parsimony measure (tree node count) is used in a multiobjective

setting. They investigated the circumstances under which this

can occur for both the 6-parity boolean learning task and a range

of benchmark machine learning problems. They concluded that

mutation is an important operator and believed in a hitherto

unrecognized factor in preventing population collapse in

multiobjective genetic programming; without mutation any one

can routinely observe population collapse. From systematic

variation of the mutation operator, they concluded that a

necessary condition to avoid collapse is that mutation produces,

on average, an increase in tree sizes (bloating) at each generation

which is then counterbalanced by the parsimony pressure

applied during selection. The use of a genotype diversity

preserving mechanism is ineffective at preventing population

collapse.

Muni, Pal, and Das [10] proposed a new approach for

designing classifiers for a c-class problem using genetic

programming (GP). The proposed approach takes an integrated

view of all classes when the GP evolves. A multitree

representation of chromosomes is used. In this context, they

proposed a modified crossover operation and a new mutation

operation that reduces the destructive nature of conventional

genetic operations. They used a new concept of unfitness of a

tree to select trees for genetic operations. This gives more

opportunity to unfit trees to become fit.

3. PROPOSED WORK

The conventional GP mutation produces the variation and

diversity in tree sizes because in conventional mutation we

replace the subtree of selected parent with the randomly

generated subtree. Removing a smaller subtree from a tree and

adding a larger subtree during mutation may create a tree of

larger size, depth and having less fitness. In this way the mutated

tree increases the average program size and leads to code bloat.

Thus, the only way the average program size can increase during

a GP run is if larger offspring are preferentially chosen during

selection. Thus, the problem of bloat basically occurs due to the

crossover and mutation operations. Point mutation can be used

to control growth of programs during mutation but to get

diversity; subtree mutation is used in GP.

We have proposed a new mutation operation which selects

an individual from the population; a new subtree is generated

and placed at four different positions in the selected individual.

In this way, four individuals are generated from a single

individual. Then we calculate the fitness, elitism, depth limit and

size of the generated trees and the one having best results is

transferred to the next generation. If the new trees do not have

better fitness than the parent tree, then the parent/child tree will

be retained to the next generation with 0.5 probability. Hence,

we also give chance to the individuals which have lower fitness

in mutation operation. So, by applying the proposed modified

mutation, we can check the average tree size by applying all the

four parameters [FEDS] on the generated individuals which

helps in reducing the bloat and improving the performance of the

classifier designed. Initially we have used conventional mutation

operation to get variety and randomness in programs and then

after some generation we have used FEDS mutation.

The Fig.1 shows the operation of new mutation. Shaded

nodes from 1-8 are the possible nodes where newly generated

subtree can be placed. Four new individuals are created using

new mutation and the one having higher fitness, lower depth and

minimum size is selected for new generation. Here in example,

Tree1, Tree2, Tree3 and Tree4 are created using new mutation

and Tree3 having good performance in terms of fitness, size and

depth is taken to new generation.

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2013, VOLUME: 03, ISSUE: 02

469

Fig.1. Proposed Mutation

Along with new mutation we have also utilized FEDS

crossover [4] to improve the performance of classifier designed

and to reduce the problem of code bloating that occurs during

crossover and mutation operations. The algorithm of proposed

mutation and the main GP algorithm utilizing proposed mutation

are discussed in next section.

3.1 ALGORITHM FOR FEDS MUTATION

The steps involved in using the proposed mutation are

described as follows.

Algorithm:

1) Randomly select individual from the population for

mutation operation.

2) Randomly generate the subtree and place it at four

different positions in the selected individual. So the total

number of generated children is four.

3) Check the FEDS (Fitness, Elitism, Depth limit, Size) of

all the children and the one with the greater FEDS is

transferred to the next generation population.

4) If the FEDS of the generated children is less than the

parent, than with the probability of 0.5 a parent or child

can be retained to the next generation.

3.2 GP ALGORITHM WITH FEDS MUTATION

The complete GP algorithm with proposed mutation for

designing any GP based classifier is described as follows.

Algorithm:

1) GP begins with a randomly generated population of

solutions of size N.

2) A fitness value is assigned to each solution of the

population.

3) A genetic operator is selected probabilistically.

(i) If it the reproduction operator, then an individual

is selected (we use fitness proportion based

selection) from the current population and it is

copied into the new population. Reproduction

replicates the principle of natural selection and

survival of the fittest.

(ii) If it is the crossover operator, then we apply the

FEDS crossover.

(iii) If the selected operator is mutation, we apply

conventional mutation for 50% generations and

then FEDS mutation for concluding 50%

generations.

4) Continue step 3, until the new population gets

solutions. This completes one generation.

5) Steps 2 to 4 are repeated till a desired solution is

achieved. Otherwise, terminate the GP operation after a

predefined number of generations.

4. EXPERIMENTAL WORK

We have designed a MultiClass Classifier as an application

to demonstrate the results obtained by using our new mutation

operator. We have used Java 6.0 as a front end tool and MySql

as a back end tool to develop our system. We have used six real

data sets for training and validating our methodology. These are

IRIS, WBC, BUPA, Vehicle, WDBC and Wine dataset. These

datasets contains small, medium and large dimensional data.

Table.1 shows number of classes and number of features present

in each dataset.

Table.1. Datasets

Name of the

Dataset

Number of

Classes

Number of

Features

Size of the

Dataset

IRIS 3 4 150

WBC 2 9 683

BUPA 2 6 345

VEHICLE 4 18 846

WDBC 2 30 569

WINE 3 13 178

4.1 DATASETS

Following is the brief description of the datasets used for

testing the methodology:

1) IRIS: This is the well-known Anderson’s Iris data set. It

contains a set of 150 measurements in four dimensions

taken on Iris flowers of three different species or classes.

The four features are sepal length, sepal width, petal

length, and petal width. The data set contains 50 instances

of each of the three classes.

2) Wisconsin Breast Cancer (WBC): This data set consists

of 699 samples in 9-dimension distributed in two classes

(malignant and benign).

3) BUPA Liver Disorders (BUPA): It consists of 345 data

points in six dimensions distributed into two classes on

liver disorders.

ANURADHA PUROHIT et. al.: A NEW MUTATION OPERATOR IN GENETIC PROGRAMMING

470

4) Vehicle: This data was originally gathered at the TI in

1986-87 by JP Siebert. It was partially financed by Barr

and Stroud Ltd. The purpose is to classify a given

silhouette as one of four types of vehicle, using a set of

features extracted from the silhouette. The vehicle may be

viewed from one of many different angles. This data set

has 846 data points distributed in four classes. The

classes are OPEL, SAAB, BUS and VAN. Each data

point is represented by 18 attributes.

5) WDBC: This dataset contains observations on 569

patients with either Malignant or Benign breast tumor.

Each data point consists of 30 features. Out of 569

samples, 357 belong to malignant class and remaining

212 samples belong to benign class.

6) Wine: Wine data set consists of 178 points in 13-

dimension distributed in three classes. These data are the

results of chemical analysis of wines grown in a

particular region of Italy but derived from three different

cultivators. The analysis determined the quantities of 13

constituents found in each of the three types of wine.

4.2 GP PARAMETERS

The GP parameters which we have used and are common for

all the data sets are given in Table.2. These parameters are

required for any GP based classifier design. To control the size

of the trees during evolution, we have taken 6 as the maximum

height of the tree while initialization of population. We have

considered larger populations for higher dimensional data since

use of a large population helps GP to evolve to a good solution

without using many generations. Hence we have kept population

size varying from 100-600 and number of generations varying

from 2-100.

4.3 RESULTS AND DISCUSSION

We have randomly divided the samples into training set and

testing set and then run GP algorithm to perform our

experiments. We have repeated the experiment by changing

population size, training set, testing set and keeping all other

parameters constant. We have then compared the training

accuracy and generalization accuracy of the classifiers obtained

by using conventional crossover and mutation and FEDS

mutation and crossover. The performance evaluation (average

classification accuracy in %) on the test data for six data sets is

summarized in Table.3. The training and generalization results

show that the classifier designed using FEDS mutation

outperforms the performance of conventional mutation for the

datasets.

Table.2. Common Parameters for all Datasets

Parameters Values

Probability of crossover operation, pc 0.80

Probability of reproduction operation, pr 0.05

Probability of mutation operation, pm 0.15

Total number of generations the GP

evolved, M
2-100

Maximum height of a tree 6

Minimum height of a tree 2

Population Size 100-600

Table.3. Performance Evaluation of Datasets

Dataset
Conventional

Mutation
FEDS Mutation

Training

Accuracy

(%)

Generaliz

ation

Accuracy

(%)

Training

Accuracy

(%)

Generaliza

tion

Accuracy

(%)

IRIS 89.00 87.64 94.42 93.26

WBC 85.66 83.64 95.60 94.08

BUPA 68.76 64.93 68.21 66.13

VEHICLE 58.91 56.65 68.36 68.54

WDBC 90.16 89.23 95.18 94.45

WINE 85.04 83.67 87.89 86.34

5. CONCLUSION

In this paper, we have proposed a new modified mutation

operator called FEDS mutation to control the problem of bloat

and to enhance the performance of classifiers designed using

GP. FEDS mutation combines the concept of fitness, elitism,

depth limit and tree size for generating the next generation

individuals through mutation operation. To impart good effect

on performance of classifiers, we have also utilized FEDS

crossover operator. To demonstrate and validate our approach

we have designed a multiclass classifier and presented the results

on six different real datasets. To describe the usefulness of our

approach, we have compared our method with the conventional

method which is not considering different parameters as

presented and obtained satisfactory results in terms of

accuracies.

REFERENCES

[1] J.R. Koza, “Genetic Programming: On the Programming

of computers by Means of Natural Selection”, A Bradford

Book, MIT Press, 1992.

[2] W. Banzhaf, P. Nordin, R. E. Keller and F.D. Francone,

“Genetic Programming: An Introduction: On the

Automatic Evolution of Computer Programs and its

Application”, Morgan Kaufmann Series in Artificial

Intelligence Series, 1998.

[3] Anuradha Purohit, Arpit Bhardwaj, Aruna Tiwari and

Narendra S. Chaudhari, “Handling the Problem of Code

Bloating to Enhance the Performance of Classifier

Designed Using Genetic Programming”, Proceedings of

the 5
th

 Indian International Conference on Artificial

Intelligence, pp. 333-342, 2011.

[4] Anuradha Purohit, Arpit Bhardwaj, Aruna Tiwari and

Narendra S. Chaudhari, “Removing Code Bloating in

Crossover Operation in Genetic Programming”,

International Conference on Recent Trends in Information

Technology, pp. 1126-1130, 2011.

[5] W. Banzhaf and W. B. Langdon, “Some Considerations on

the Reason for Bloat”, Genetic Programming and

Evolvable Machines, Vol. 3, No. 1, pp. 81–91, 2002.

[6] Oana Muntean, Laura Diosan and Mihai Oltean, “Best

SubTree Genetic Programming”, Proceedings of the 9
th

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2013, VOLUME: 03, ISSUE: 02

471

Annual Conference on Genetic and Evolutionary

Computation, pp. 1667-1673, 2007.

[7] Alan Piszcz and Terence Soule, “Genetic Programming:

Parametric Analysis of Structure Altering Mutation

Techniques”, Genetic and Evolutionary Computation

Conference, pp. 220-227, 2005.

[8] Khaled M S Badran and Peter I Rockett, “The Roles of

Diversity Preservation and Mutation in Preventing

Population Collapse in Multiobjective Genetic

Programming”, Proceedings of the 9
th

 Annual Conference

on Genetic and Evolutionary Computation, pp. 1551-1557,

2007.

[9] Hammad Majeed and Conor Ryan, “Context-Aware

Mutation: A Modular, Context Aware Mutation Operator

for Genetic Programming”, Proceedings of the 9
th

 Annual

Conference on Genetic and Evolutionary Computation, pp.

1651-1658, 2007.

[10] Durga Prasad Muni, Nikhil R. Pal and Jyotirmoy Das, “A

Novel Approach to Design Classifiers Using Genetic

Programming”, IEEE Transactions on Evolutionary

Computation, Vol. 8, No. 2, pp. 183-196, 2004.

[11] N. S. Chaudhari, Anuradha Purohit and Aruna Tiwari, “A

multiclass classifier using Genetic Programming”, 10
th

International Conference on Control, Automation, Robotics

and Vision, pp. 1884-1887, 2008.

[12] R. Poli, “A simple but theoretically- motivated method to

control bloat in genetic programming”, Proceedings of the

6
th

 European Conference on Genetic Programming, Vol.

2610, pp. 204– 217, 2003.

[13] M. Riekert, K.M. Malan and A.P. Engelbrect, “Adaptive

Genetic Programming for Dynamic Classification

Problems”, IEEE Congress on Evolutionary Computation

pp. 674-681, 2009.

[14] R. Poli and N.F. McPhee, “Exact GP Schema Theory for

Headless Chicken Crossover and Subtree Mutation”,

Proceedings of the 2001 Congress on Evolutionary

Computation, Vol. 2, pp. 1062-1069, 2001.

