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Abstract 

This paper proposes a new type of mutation operator, FEDS (Fitness, 

Elitism, Depth, and Size) mutation in genetic programming. The 

concept behind the new mutation operator is inspired from already 

introduced FEDS crossover operator to handle the problem of code 

bloating. FEDS mutation operates by using local elitism replacement 

in combination with depth limit and size of the trees to reduce bloat 

with a subsequent improvement in the performance of trees (program 

structures). We have designed a multiclass classifier for some 

benchmark datasets to test the performance of proposed mutation. 

The results show that when the initial run uses FEDS crossover and 

the concluding run uses FEDS mutation, then not only is the final 

result significantly improved but there is reduction in bloat also. 
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1. INTRODUCTION

Genetic Programming (GP) [1] is an evolutionary technique 

used for generating computer programs based on a high level 

description of the problem to be solved. This innovative flexible 

and interesting technique has been applied to solve numerous 

interesting problems. Classification is one of the ways to model 

the problems of face recognition, speech recognition, fraud 

detection and knowledge extraction from databases. GP has 

emerged as a powerful tool for classifier evolution. 

Classification is a common real world activity. It is used to put 

entities or patterns into predefined classes. To date, many 

variations of GP have been introduced to handle the 

classification, this includes Linear GP, Grammar based GP, 

Graph based GP and Tree based GP. These variations differ in 

representations of solutions. 

GP works by evolving a population of randomly created 

initial programs/chromosomes using a fitness measure. It selects 

fitter ones to take part in the evolution to efficiently search for 

desired efficient solution. The basic GP algorithm is similar to 

any evolutionary algorithms. GP chromosomes are usually trees 

which are manipulated by using some specific genetic operators. 

These are reproduction, crossover and mutation. Crossover and 

mutation are considered to be the main GP operators [2].  

A lot of discussion has been done in GP about its operators. 

Some researches debate the usefulness of the crossover operator, 

and importance of mutation operator has been suggested. In 

general, GP systems use a high level of crossover, and lower 

levels of mutation and reproduction operators to get new 

solution programs of next generation. Each operator has its own 

importance in finding solutions for a problem using GP. These 

solutions or program structures are in the form of variable length 

strings called trees. 

During the evolution of solutions/trees using GP operators, 

there is generally an increase in average tree size without a 

corresponding increase in fitness. This phenomenon is 

commonly referred to as bloat and hampers the performance of 

trees [12]. It is the uncontrolled growth of program size that may 

occur in GP when relying on a variable length representation. 

This has been identified as a key problem in GP for which there 

have been several empirical studies.  

Mutation is an important operator for genetic programming 

that introduces diversity in the building blocks created during 

evolution and is also among the factors causing bloat in GP. 

Therefore it is important to study the effects of mutation on the 

evolutionary process. Various authors have worked on the GP 

operators (crossover and mutation) to handle the problem of 

code bloating and improving the performance of classifiers 

designed for different applications [3], [4], [5]-[9]. 

In this paper we present a special mutation operator called 

FEDS mutation to reduce the problem of bloat in GP and to 

improve the performance of program structures obtained after. In 

FEDS mutation, we are applying the fitness, elitism, depth limit 

and size on every criteria on every individual generated during 

mutation operation and checked whether it is capable of going to 

the next generation or not. We are also applying the FEDS 

crossover operation previously suggested to control bloat. 

The paper is structured as follows: Section 2 describes the 

background of work already done in the field of proposed work, 

section 3 describes the theoretical concept of proposed FEDS 

mutation, and its algorithm, section 4 contains experimental 

results defining the datasets used, values taken for various GP 

parameters and results obtained by designing classifiers using 

proposed mutation. 

2. BACKGROUND

Mutation is a mechanism to inject new genetic material into a 

population of solutions.  It promotes diversity and improve the 

algorithm’s ability to exploit different regions of the search 

space. It is applied probabilistically to the offspring generated 

during the crossover operation or randomly selected from the 

population. Mutation introduces diversity in the building blocks 

created during evolution by replacing subtree of an individual by 

an entirely new one. There are three mutational probabilities to 

consider when evolving decision trees using GP: firstly, the 

probability that a tree will be selected for mutation, secondly, the 

probability that a specific mutational operator will be applied to 

the selected tree and lastly, the probability for each node in the 

tree to mutate [13].  

Mutation used in GP is of three types and each type is 

selected according to the requirement. These are as follows, 
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1) Point Mutation: a single node in parent tree is selected 

and replaced with a random node of same type. E.g. a 

function node is replaced by a function node of same 

arity and a terminal node is replaced by a randomly 

selected terminal node. 

2) Shrink Mutation: selects a node randomly and the subtree 

rooted at that node is replaced by a single terminal node. 

3) Grow Mutation: selects a random node and a randomly 

generated subtree replaces the subtree rooted at that node. 

Also called as Gaussian mutation or subtree mutation. 

Mutation plays a very important role in getting diverse 

solutions for various applications. A less amount of work has 

been done as compared to crossover operator to apply changes in 

standard mutation operator to get improved mutation operator. 

Majeed and Ryan [9] introduced a new type of mutation, 

Context-Aware Mutation, which is inspired by their context-

aware crossover. Context-Aware mutation operates by replacing 

existing sub-trees with modules from a previously constructed 

repository of possibly useful subtrees. 

Muntean, Diosan, and [6] investigated a new variant where 

the best subtree is chosen to provide the solution of the problem. 

The other nodes (not belonging to the best subtree) are deleted. 

This will reduce the size of the chromosome in those cases 

where its best subtree is different from the entire tree. They have 

tested this strategy on a wide range of regression and 

classification problems.  

 R. Poli and N. F. McPheea [14] presented a new general GP 

schema theory for headless chicken crossover and subtree 

mutation. The theory gives an exact formulation for the expected 

number of instances of a schema at the next generation either in 

terms of microscopic quantities or in terms of macroscopic ones. 

The paper gives examples which show how the theory can be 

specialised to specific operators. 

Alan and Terence [7], in their paper studied three structure 

altering mutation techniques using parametric analysis on a 

problem with scalable complexity. They highlighted through 

parameter analysis that two of the three mutation types tested 

exhibit nonlinear behaviour. Higher mutation rates cause a larger 

degree of nonlinear behaviour as measured by fitness and 

computational effort. Characterization of the mutation 

techniques using parametric analysis confirms the nonlinear 

behaviour. In addition, they proposed an extension to the 

existing parameter setting taxonomy to include commonly used 

structure altering mutation attributes. They showed that the 

proportion of mutations applied to internal nodes, instead of leaf 

nodes, has a significant effect on the performance. 

Badran and Rockett [8] observed that genetic programming 

populations can collapse to all single node trees when a 

parsimony measure (tree node count) is used in a multiobjective 

setting. They investigated the circumstances under which this 

can occur for both the 6-parity boolean learning task and a range 

of benchmark machine learning problems. They concluded that 

mutation is an important operator and believed in a hitherto 

unrecognized factor in preventing population collapse in 

multiobjective genetic programming; without mutation any one 

can routinely observe population collapse. From systematic 

variation of the mutation operator, they concluded that a 

necessary condition to avoid collapse is that mutation produces, 

on average, an increase in tree sizes (bloating) at each generation 

which is then counterbalanced by the parsimony pressure 

applied during selection. The use of a genotype diversity 

preserving mechanism is ineffective at preventing population 

collapse. 

Muni, Pal, and Das [10] proposed a new approach for 

designing classifiers for a c-class problem using genetic 

programming (GP). The proposed approach takes an integrated 

view of all classes when the GP evolves. A multitree 

representation of chromosomes is used. In this context, they 

proposed a modified crossover operation and a new mutation 

operation that reduces the destructive nature of conventional 

genetic operations. They used a new concept of unfitness of a 

tree to select trees for genetic operations. This gives more 

opportunity to unfit trees to become fit. 

3. PROPOSED WORK 

The conventional GP mutation produces the variation and 

diversity in tree sizes because in conventional mutation we 

replace the subtree of selected parent with the randomly 

generated subtree. Removing a smaller subtree from a tree and 

adding a larger subtree during mutation may create a tree of 

larger size, depth and having less fitness. In this way the mutated 

tree increases the average program size and leads to code bloat. 

Thus, the only way the average program size can increase during 

a GP run is if larger offspring are preferentially chosen during 

selection. Thus, the problem of bloat basically occurs due to the 

crossover and mutation operations. Point mutation can be used 

to control growth of programs during mutation but to get 

diversity; subtree mutation is used in GP.  

We have proposed a new mutation operation which selects 

an individual from the population; a new subtree is generated 

and placed at four different positions in the selected individual. 

In this way, four individuals are generated from a single 

individual. Then we calculate the fitness, elitism, depth limit and 

size of the generated trees and the one having best results is 

transferred to the next generation. If the new trees do not have 

better fitness than the parent tree, then the parent/child tree will 

be retained to the next generation with 0.5 probability. Hence, 

we also give chance to the individuals which have lower fitness 

in mutation operation. So, by applying the proposed modified 

mutation, we can check the average tree size by applying all the 

four parameters [FEDS] on the generated individuals which 

helps in reducing the bloat and improving the performance of the 

classifier designed. Initially we have used conventional mutation 

operation to get variety and randomness in programs and then 

after some generation we have used FEDS mutation. 

The Fig.1 shows the operation of new mutation. Shaded 

nodes from 1-8 are the possible nodes where newly generated 

subtree can be placed. Four new individuals are created using 

new mutation and the one having higher fitness, lower depth and 

minimum size is selected for new generation. Here in example, 

Tree1, Tree2, Tree3 and Tree4 are created using new mutation 

and Tree3 having good performance in terms of fitness, size and 

depth is taken to new generation. 
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Fig.1. Proposed Mutation 

Along with new mutation we have also utilized FEDS 

crossover [4] to improve the performance of classifier designed 

and to reduce the problem of code bloating that occurs during 

crossover and mutation operations. The algorithm of proposed 

mutation and the main GP algorithm utilizing proposed mutation 

are discussed in next section.  

3.1 ALGORITHM FOR FEDS MUTATION 

The steps involved in using the proposed mutation are 

described as follows. 

Algorithm: 

1) Randomly select individual from the population for 

mutation operation. 

2) Randomly generate the subtree and place it at four 

different positions in the selected individual. So the total 

number of generated children is four. 

3) Check the FEDS (Fitness, Elitism, Depth limit, Size) of 

all the children and the one with the greater FEDS is 

transferred to the next generation population. 

4) If the FEDS of the generated children is less than the 

parent, than with the probability of 0.5 a parent or child 

can be retained to the next generation. 

3.2 GP ALGORITHM WITH FEDS MUTATION 

The complete GP algorithm with proposed mutation for 

designing any GP based classifier is described as follows. 

Algorithm:  

1) GP begins with a randomly generated population of 

solutions of size N. 

2) A fitness value is assigned to each solution of the 

population. 

3) A genetic operator is selected probabilistically. 

(i) If it the reproduction operator, then an   individual 

is selected (we use fitness proportion based 

selection) from the current population and it is 

copied into the new population. Reproduction 

replicates the principle of natural selection and 

survival of the fittest. 

(ii) If it is the crossover operator, then we apply the 

FEDS crossover.  

(iii) If the selected operator is mutation, we apply 

conventional mutation for 50% generations and 

then FEDS mutation for concluding 50% 

generations. 

4) Continue step 3, until the new population gets 

solutions. This completes one generation. 

5) Steps 2 to 4 are repeated till a desired solution is 

achieved. Otherwise, terminate the GP operation after a 

predefined number of generations. 

4. EXPERIMENTAL WORK 

We have designed a MultiClass Classifier as an application 

to demonstrate the results obtained by using our new mutation 

operator. We have used Java 6.0 as a front end tool and MySql 

as a back end tool to develop our system. We have used six real 

data sets for training and validating our methodology. These are 

IRIS, WBC, BUPA, Vehicle, WDBC and Wine dataset. These 

datasets contains small, medium and large dimensional data.  

Table.1 shows number of classes and number of features present 

in each dataset.  

Table.1. Datasets 

Name of the 

Dataset 

Number of  

Classes 

Number of 

Features 

Size of the 

Dataset 

IRIS 3 4 150 

WBC 2 9 683 

BUPA 2 6 345 

VEHICLE 4 18 846 

WDBC 2 30 569 

WINE 3 13 178 

4.1 DATASETS 

Following is the brief description of the datasets used for 

testing the methodology: 

1) IRIS: This is the well-known Anderson’s Iris data set. It 

contains a set of 150 measurements in four dimensions 

taken on Iris flowers of three different species or classes. 

The four features are sepal length, sepal width, petal 

length, and petal width. The data set contains 50 instances 

of each of the three classes. 

2) Wisconsin Breast Cancer (WBC): This data set consists 

of 699 samples in 9-dimension distributed in two classes 

(malignant and benign). 

3) BUPA Liver Disorders (BUPA): It consists of 345 data 

points in six dimensions distributed into two classes on 

liver disorders.  
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4) Vehicle: This data was originally gathered at the TI in 

1986-87 by JP Siebert. It was partially financed by Barr 

and Stroud Ltd. The purpose is to classify a given 

silhouette as one of four types of vehicle, using a set of 

features extracted from the silhouette. The vehicle may be 

viewed from one of many different angles. This data set 

has 846 data points distributed in four classes. The 

classes are OPEL, SAAB, BUS and VAN. Each data 

point is represented by 18 attributes. 

5) WDBC: This dataset contains observations on 569 

patients with either Malignant or Benign breast tumor. 

Each data point consists of 30 features. Out of 569 

samples, 357 belong to malignant class and remaining 

212 samples belong to benign class. 

6) Wine: Wine data set consists of 178 points in 13-

dimension distributed in three classes. These data are the 

results of chemical analysis of wines grown in a 

particular region of Italy but derived from three different 

cultivators. The analysis determined the quantities of 13 

constituents found in each of the three types of wine. 

4.2 GP PARAMETERS 

The GP parameters which we have used and are common for 

all the data sets are given in Table.2. These parameters are 

required for any GP based classifier design. To control the size 

of the trees during evolution, we have taken 6 as the maximum 

height of the tree while initialization of population. We have 

considered larger populations for higher dimensional data since 

use of a large population helps GP to evolve to a good solution 

without using many generations. Hence we have kept population 

size varying from 100-600 and number of generations varying 

from 2-100.  

4.3 RESULTS AND DISCUSSION 

We have randomly divided the samples into training set and 

testing set and then run GP algorithm to perform our 

experiments. We have repeated the experiment by changing 

population size, training set, testing set and keeping all other 

parameters constant. We have then compared the training 

accuracy and generalization accuracy of the classifiers obtained 

by using conventional crossover and mutation and FEDS 

mutation and crossover. The performance evaluation (average 

classification accuracy in %) on the test data for six data sets is 

summarized in Table.3. The training and generalization results 

show that the classifier designed using FEDS mutation 

outperforms the performance of conventional mutation for the 

datasets. 

Table.2. Common Parameters for all Datasets 

Parameters Values 

Probability of crossover operation, pc 0.80 

Probability of reproduction operation, pr 0.05 

Probability of mutation operation, pm 0.15 

Total number of generations the GP 

evolved, M 
2-100 

Maximum height of a tree 6 

Minimum height of a tree 2 

Population Size 100-600 

Table.3. Performance Evaluation of Datasets 

Dataset 
Conventional 

Mutation 
FEDS Mutation 

 
Training 

Accuracy 

(%) 

Generaliz

ation 

Accuracy 

(%) 

Training 

Accuracy 

(%) 

Generaliza

tion 

Accuracy 

(%) 

IRIS 89.00 87.64 94.42 93.26 

WBC 85.66 83.64 95.60 94.08 

BUPA 68.76 64.93 68.21 66.13 

VEHICLE 58.91 56.65 68.36 68.54 

WDBC 90.16 89.23 95.18 94.45 

WINE 85.04 83.67 87.89 86.34 

5. CONCLUSION 

In this paper, we have proposed a new modified mutation 

operator called FEDS mutation to control the problem of bloat 

and to enhance the performance of classifiers designed using 

GP. FEDS mutation combines the concept of fitness, elitism, 

depth limit and tree size for generating the next generation 

individuals through mutation operation. To impart good effect 

on performance of classifiers, we have also utilized FEDS 

crossover operator. To demonstrate and validate our approach 

we have designed a multiclass classifier and presented the results 

on six different real datasets. To describe the usefulness of our 

approach, we have compared our method with the conventional 

method which is not considering different parameters as 

presented and obtained satisfactory results in terms of 

accuracies. 
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