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    Abstract- The concept of “bloat” in Genetic Programming is a 

well-established phenomenon characterized by variable-length 

genomes gradually increasing in size during evolution [1]. Bloat 

hampers the efficiency and ability of genetic programming for 

solving problems. A range of explanations have been proposed 

for the problem of bloat, including destructive crossover and 

mutation operators, selection pressure and individual 

representation. Different methods to avoid bloat and to control 

bloat have been proposed by researchers. This paper proposes a 

theoretical analysis of code bloating problem and the discussion 

on the work already done by various authors to handle bloat in 

genetic programming. 

 

    Index Terms- Bloat, Double Tournament, Elitism, Genetic 

Programming, Spatial Structure. 

 

I.    INTRODUCTION 

uring the evolution of solutions using Genetic 

Programming (GP) there is generally an increase in 

average tree size and depth without a corresponding increase in 

fitness—a phenomenon commonly referred to as bloat [1]. Bloat 

is a well-known phenomenon in Genetic Programming.  An 

individual program in GP could be of any size. Such flexibility in 

representation provides more freedom in searching solutions, but 

at the same time it causes the bloat problem, individuals growing 

unnecessarily large. Apparently big individuals are 

computationally more expensive to evaluate during evolution. If 

they are final solutions, then their execution time in applications 

would increase accordingly. That would not be desirable for 

situations where speed is a requirement such as in real-time 

systems. Furthermore bloat makes these evolved programs even 

more difficult to comprehend [17].  

 Code bloating presents a serious problem in scaling GP to 

larger and more difficult problems. First, bloat consumes 

computing resources, making the search process slower and 

slower, and eventually forcing it to stop when all available 

resources have been exhausted. Second, bloated candidate 

solutions are often more difficult to modify in meaningful ways, 

hampering the ability of GP to breed and discover better 

solutions. Third, bloating can slow the grade-assessment process. 

In a very real sense, bloating makes genetic programming a race 

against time, to find the best solution possible before bloat puts 

an effective stop to the search [29]. 

Three main methods for controlling bloat are commonly 

proposed: set an upper bound to the complexity of individuals in 

the population; introduce an explicit fitness penalty (parsimony 

measure) that biases against larger individuals [10]; and apply 

genetic operators designed to target redundant code or the bias 

against offspring size increases [12]. Many authors have shown a 

number of theoretical advances in understanding bloat [3],     

[9]–[12]. Poli [9] reduced bloat by a stochastic approach to 

setting the fitness of above average-sized individuals to zero. 

Stringer and Wu [10], [11] showed that a shrinking effect on 

genome length occurred for a chunking GA once the population 

had essentially converged and selection had become random. 

Skinner et al. [12] provided a theoretical argument for this 

observed tendency of variable length genomes to shrink when 

selection is not considered (i.e., under the process of genetic 

drift). The paper implied that the presence of a lower absorbing 

boundary (a genome size that once reached cannot be reduced 

further), combined with no upper bound, results in a reduction of 

the average size of a population under drift. Although this 

theoretical model contributes to an understanding of individual 

size dynamics, the concept has not at present formed the basis for 

new bloat control methods. Related to these results other research 

[13] has shown that for large, discrete programs, fitness 

convergence of the population is possible and has been used to 

explain sub quadratic growth of program size. 

 In this paper, we have analyzed and presented the problem 

of code bloat in GP, its types and variants and the effective 

measures taken by various authors to prevent or control bloat. 

The rest of the paper is organized as follows: section II contains 

the description of the code bloat problem, section III discuss the 

work done by various authors to prevent bloat and section IV 

presents different methods present in the literature to avoid code 

bloating in GP. 

 

II. CODE BLOAT IN GENETIC PROGRAMMING 

  

 “In a very real sense, bloating makes genetic programming a 

race against time, to find the best solution possible before bloat 

puts an effective stop to the search”. While bloat is well-defined 

and can be identified, there are currently no consensual 

explanations on why it occurs. Authors have presented different 

explanations regarding bloat. Three popular theories can be 

found in the literature to explain it [36]: 

 

 – The introns theory states that bloat acts as a protective 

mechanism in order to avoid the destructive effects of operator’s 

once relevant solutions have been found. Introns are pieces of 

code that have no influence on the fitness: either sub-programs 

that are never executed, or sub-programs which have no effect; 

 

– The fitness causes bloat theory relies on the assumption that 

there is a greater probability to find a bigger program with the 

D 



International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013      2 

ISSN 2250-3153  

www.ijsrp.org 

same behavior (i.e. semantically equivalent) than to find a shorter 

one. Thus, once a good solution is found, programs naturally 

tend to grow because of fitness pressure. This theory states that 

code bloat is operator-independent and may happen for any 

variable length representation-based algorithm. As a 

consequence, code bloat is not to be limited to population-based 

stochastic algorithm (such as GP), but may be extended to many 

algorithms using variable length representation. 

 

– The removal bias theory states that removing longer sub-

programs is more dangerous to do than removing shorter ones 

(because of possible destructive consequence), so there is a 

natural bias that benefit to the preservation of longer programs. 

While it is now considered that each of these theories somewhat 

capture part of the problem there has not been any definitive 

global explanation of the bloat phenomenon. At the same time, 

no definitive practical solution has been proposed that would 

avoid the drawbacks of bloat (i.e. increasing evaluation time of 

largetrees) while maintaining the good performances of GP on 

difficult problems. Some common solutions rely either on 

specific operators e.g. size-fair crossover or different fair 

mutation on some parsimony-based penalization of the fitness  or 

on abrupt limitation of the program size such as the one 

originally used by Koza. Also, some multi-objective approaches 

have been proposed. Some other more particular solutions have 

been proposed but are not widely used yet.  

Authors have distinguished bloat into two main types: 

structural bloat and functional bloat [32]: 

 

A. Structural Bloat 

 

The structural bloat is defined as the code bloat that 

necessarily takes place when no optimal solution can be 

approximated by a set of programs with bounded length. In such 

a situation, optimal solutions of increasing accuracy will also 

exhibit an increasing complexity (larger programs), as larger and 

larger code will be generated in order to better approximate the 

target function.  

 

B. Functional Bloat 

 

 Another form of bloat is the functional bloat, which takes 

place when program length keeps on growing even though an 

optimal solution (of known complexity) does lie in the search 

space. Most of the works cited earlier are in fact concerned with 

functional bloat which is the most surprising, and the most 

disappointing kind of bloat. There are various levels of functional 

bloat: cases where the length of programs found by GP runs to 

infinity as the number of test cases run to infinity whereas a 

bounded-length solution exists, and also cases where large 

programs are found with high probability by GP where as a small 

program is optimal. 

 

III. PREVIOUS WORK DONE 

  

 Liu, Cai, Ying, and Le in [29] stated that GP using a size or 

depth limit (LGP) is a common approach to battle bloat, but LGP 

is not ideal in size control and searching efficiency. In their 

paper, besides extended the concept of bloated individual in 

LGP, and the concept of Candidate Crossover Points Set is 

presented. A new variants of LGP, named RLGP, which adds 

some restrictions in genetic operations (crossover, swap, and 

mutation), is proposed. RLGP introduces Candidate Crossover 

Points Set (CCPS) into crossover operations. Finally, in even 3, 

4, and 5-parity problem, strongly positive results are reported 

regarding both size control and searching efficiency.  

 Thomas Helmuth, Lee Spector and Brian Martin [30], 

introduced a new node selection method that selects nodes based 

on a tournament, from which the largest participating sub-tree is 

selected. Size-based tournaments differentiate between internal 

nodes of different sizes, whereas Koza 90/10 treats all internal 

nodes equally. This method of size-based tournaments improves 

performance on three standard test problems with no increases in 

code bloat as compared to unbiased and Koza 90/10 selection 

methods. 

 Whigham [1], has presented an implicit model of bloat 

control based on a spatially structured population with local 

elitism; referred to as SS+E. Regular spatial structures (such as a 

ring or torus) maintain diversity and slow bloat by effectively 

reducing the population size. In addition, elitism reduces the 

growth of introns, especially once the population has largely 

converged and cannot easily find fitness improvements. Previous 

panmictic models with elitism found that this resulted in 

crossover largely becoming a copying operator, resulting in 

convergence to non optimal solutions. Most bloat control 

methods tradeoff controlling size and fitness, however SS+E 

appear to balance this tradeoff without compromising overall 

fitness.  

 Langdon and Poli [2] have described a way to control bloat 

using a fix size or depth limit (LGP) in which the bloat is 

controlled by applying the limit to the allowed individual size or 

depth simply. Individuals exceeding the limits are removed from 

the population. Because individual size or depth is calculated 

easily during evaluation, this approach only requires relatively 

little additional computation. 

 Stringer [4], has handled bloat by explicitly setting an upper 

bound on the depth of evolved trees or by incorporating a 

parsimony pressure that adjusts the fitness of individuals by a 

tradeoff between performance and size. 

Bleuler, Brack, Thiele, and Zitzler [15] proposed a 

nonparametric method, Double Tournament, this method is 

similar to a multi objective approach to bloat, however the 

objectives of fitness and size are treated separately. Hence, there 

are two tournaments: one based on parsimony, which produces 

an initial set of winners, and a subsequent tournament that selects 

a subset of those winners based on fitness. 

 Sara Silva and Ernesto Costa [31] presented two important 

variations on a recently successful bloat control technique, 

Dynamic Maximum Tree Depth, intended at further improving 

the results and extending the idea to non tree-based GP. Dynamic 

Maximum Tree Depth introduces a dynamic limit on the depth of 

the trees allowed into the population, initially set with a low 

value but increased whenever needed to accommodate a new best 

individual that would otherwise break the limit. The first 

variation to this idea is the Heavy Dynamic Limit that, unlike the 

original one, may fall again to a lower value after it has been 

raised, in case the new best individual allows it. The second 
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variation is the Dynamic Size Limit, where size is the number of 

nodes, instead and regardless of depth. The variations were tested 

in two problems, Symbolic Regression and Parity, and the results 

show that the heavy limit performs generally better than the 

original technique, but the dynamic limit on size fails in the 

Parity problem. The possible reasons for success and failure are 

discussed. 

 Soule and Foster [32], introduced the concept of removal 

bias, arguing that neutral branches of code (i.e., introns) are 

likely to be small, however their replacement with crossover does 

not have this restriction. Hence, the children produced from 

neutral crossover events are likely on average to increase in size. 

In this paper they described that the initial population are likely 

to be small but introns grows on increasing in size after crossover 

operation and the size of the individual can be very large so to 

restrict the size of the individual two forms of nondestructive 

crossover (NDC) were presented: a child would replace a parent 

if it was at least as fit as the parent, or in the strict version the 

child had to exceed the parent’s fitness. These methods were 

tested with a maze navigation problem and a parity problem, 

with both examples showing a reduction in bloat and an 

improvement in convergence to fit solutions. However, since 

crossover is often destructive, strict elitism can reduce the 

effectiveness of crossover as a search mechanism, especially 

once the population has begun to converge.  

 A review and comparison of the most common methods is 

given in Luke and Panait [18], while discussion on the causes of 

bloat maybe found in Soule and Heckendorn and the Field Guide 

to Genetic Programming [25].These previous methods generally 

take into account individual size to control bloat. However, a 

number of researchers have also considered methods that do not 

explicitly consider the size of individuals and therefore bloat 

reduction results as a side effect. 

 

Over the years a range of methods have been introduced to 

manage bloat [1]-[33] There are two major approaches to dealing 

with GP tree bloat. First, by improving breeding, selection, and 

tree-generation, GP can be made to search more efficiently to 

find better individuals before bloat sets in. Second, various 

techniques can help GP put off bloat as long as possible, 

lengthening the search interval [4]. Following things are 

considered under these two approaches while handling bloat:  

 

• treating fitness and size as a multiobjective optimization;  

• using disassortative mating based on two species (one 

 selected on fitness, the other on fitness and size);  

• explicitly reducing the fitness of above average-sized 

 individuals (referred to as the Tarpeian method);  

• eliminating programs where the parent and child fitness are 

 similar using a modified tournament selection operator that 

 uses either fitness, depth or an ordered combination of both 

 for selection;  

• placing a form of resource constraint on the population so 

 that larger individuals are discouraged; 

• using a waiting room for individual entry into a population, 

 with time proportional to size; 

• biasing selection for removal from a population based on 

 size;  

• explicitly simplifying individuals after each generation;  

• dynamically extending an initially low maximum tree depth 

 only when a child is produced that is fitter than the best 

 individual and larger then this size limit; 

• viewing size as a resource constraint, that can only be 

 extended by fitness improvements; and 

• applying specific genetic operators to reduce the size of 

 large individuals or maintain the size of children to parents. 

 

IV. METHODS TO AVOID BLOAT 

 

Different methods have been proposed in the literature to 

avoid bloat. Some of them are described as follows: 

 

A. Using a fix size or depth limit (LGP) 

 

The most common way to avoid bloat is to limit the size 

(number of nodes) and depth (height of the tree) of the individual 

[2]. The limitations on size and depth can be considered during 

initialization of population by using suitable algorithm for tree 

generation. Individuals exceeding the limits are removed from 

the population. Because individual size or depth is calculated 

easily during evaluation, this approach only requires relatively 

little additional computation. This method efficiently restricted 

individual from bloating. 

 

B. Parsimony Pressure 

 

Parsimony Pressure is not only another popular bloat 

control technique in GP, but also has been used in a wide variety 

of arbitrary-length representations tended to get out of control. It 

is the second most common method for controlling bloat. This is 

done by adding a tree size penalty as an additional criterion in the 

individual’s fitness assessment. Individual having larger tree size 

is allotted lower fitness. Many researchers till date have used 

parsimony pressure as a method to avoid bloat while using GP 

for problem solving. Such usage is divided into two broad 

categories: parametric parsimony pressure, where size is directly 

defined as a numerical factor in fitness, and pareto parsimony 

pressure, where size is considered as a separate objective in a 

pareto-optimization procedure.  

 

C. Local Elitism Method 

 

While performing crossover or mutation operation, new 

individual or child are generated. The child can only replace the 

parent in new generation if its fitness is better than or equal to the 

parent fitness otherwise it will be retained with some probability 

[34]. In this way better individuals can be taken to the new 

generation.  

D. Using modified genetic operators  

 

The genetic operators, crossover and mutation can be 

modified to avoid the problem of bloat. For example in FEDS 

crossover (Fitness, Elitism, Depth limit & Size), the concept of 

fitness, elitism, depth limit and tree size for generating the next 

generation individuals through crossover operation is proposed to 

handle the problem of code bloating in GP [35]. In [37], authors 
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have used point mutation operation to avoid increase in tree size 

during mutation. 

 

V. CONCLUSION 

 

 In this paper, we have done theoretical study of an important 

issue in Genetic Programming known as code bloating. Bloating 

hampers the performance of program structures designed using 

GP. A lot of research has been done to find the actual cause of 

bloat and methods to avoid and reduce the problem of bloat. For 

this various strategies including modification in genetic operators 

(crossover and mutation) have been presented.  

 

Our contribution in the paper can be summarized as follows: 

1) We have presented the theoretical concept of code 

bloating in GP. 

2) We have identified different types of bloat and their root 

causes. 

3) We have discussed about different methods to avoid and 

control bloat in GP.  
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