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Abstract

Diversity, the ability of a searcher to explore different parts of the search space, and

locality, the ability of a searcher to exploit a specific area of the search space, have long

been seen as crucial properties for the efficiency of Evolutionary Algorithms in general, and

Genetic Programming (GP) in particular. A number of studies investigating the effects of

diversity and locality in GP can be found in the literature. However, most previous work

on diversity, and all on locality, focus solely on syntactic aspects; semantic diversity and

locality of operators have not been thoroughly investigated. This thesis investigates the

role of semantic diversity and semantic locality of operators in GP.

This thesis proposes a novel way to measure semantics in GP by sampling a number

of points from the problem domain. This semantics is called Sampling Semantics. From

that, a semantic distance and two semantic relationships between subtrees are defined.

Based on these metrics, a number of novel semantic based genetic operators (crossovers

and mutations) are introduced. These operators address two main objectives: Promoting

semantic diversity and improving semantic locality. The new semantic based crossovers

and mutations are tested on a number of real valued symbolic regression problems and

the experimental results show the positive impact of promoting semantic diversity and the

greater improvement of enhancing semantic locality.

Since crossover has long been seen as the primary operator in GP, the thesis places

an emphasis on studying semantic based crossovers. These semantic based crossovers

are analysed on some important properties of GP. The results show that semantic based

crossovers achieve greater semantic diversity and higher semantic locality that leads to more

constructive effect (more frequently generate children that are better then their parents)

in comparison with standard crossover. This analysis shed some light on the improved

performance of semantic based crossovers.

Furthermore, a deep analysis of the behaviour of semantic based crossovers are inves-

tigated. Aspects under investigation include the generalisation ability of semantic based

crossover, the comparison between semantic locality and syntactic locality, the ability of
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semantic based crossovers to deal with increasingly difficult problems and their impact

on the fitness landscape. The experimental results show that the generalisation ability of

semantic based crossovers is better than standard crossover, that semantic locality is more

important than syntactic locality in improving GP performance, and the ability of GP

to generalise. They also show that semantic based crossovers deal well with increasingly

difficult problems and that improving semantic locality helps to smooth out the fitness

landscape of a problem.

Finally, the idea of promoting semantic diversity and enhancing semantic locality are

extended to the Boolean domain. For Boolean problems, new semantic based crossovers

are proposed. These crossovers are then tested on some well-known Boolean problems

and the results again show that promoting semantic diversity is important with Boolean

problems and that improving semantic locality even leads to a further improvement of GP

performance.

In summary, this thesis highlights the important role semantics has to play in managing

diversity and locality in GP.
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Chapter 1

Introduction

Evolutionary Algorithms are a class of population based algorithms inspired by Darwin’s

theory of evolution. One of the subsets of evolutionary algorithms is Genetic Program-

ming – a mechanism designed to allow a population of computer programs to be evolved.

In Genetic Programming, three main components that influence its performance are its

representation, operators and a method to determine the ability to solve the problem of

each program (a fitness function). Among them, the operators drive the movement of the

programs in the search space. Since the design of previous operators often lacks semantic

information, it affects the performance of Genetic Programming and limits its ability to

solve problems. This thesis aims to promote the semantics of the operators in Genetic

Programming and examines its impact on the behaviour of Genetic Programming search.

1.1 Motivation

Genetic Programming (GP) is a biologically inspired method of using a computer to evolve

solutions, in the form of computer programs, for a problem [98, 154]. To solve a problem

using a GP system, a population of indiduals is first initialised. Each individual, often

represented in the form of a tree, is a solution to the problem. The population is then

evolved, under fitness based selection, through a number of generations by applying genetic
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operators such as crossover and mutation, where crossover is considered as the primary

operator. The evolutionary process terminates when a desired solution is found or when

the maximum number of generations is exceeded.

Since its introduction, GP has been applied to a large number of fields [154, 100]. So

far, GP research has focused on syntactic aspects of GP representation, which has brought

valuable insights and contributions to the sucess of GP [98, 156, 108, 150, 79]. How-

ever, from a normal programmer’s perspective, maintaining syntactic correctness is only

one part of program construction: programs must not only be syntactically correct, but

also semantically correct. Thus incorporating semantic awareness in the GP evolutionary

process could potentially improve its performance and extend the applicability of GP to

problems that are difficult to deal with by using purely syntactic approaches.

In the field of Natural Language Processing, Psychology and Computer Science, seman-

tics has been extensively studied [2, 27, 142]. While the definition of semantics changes

from field to field, in Computer Science, semantics is often considered as the application

of mathematical logic or formal semantics of programming languages. In this field, the

semantics of a program or a function reflects the meaning of that program or that func-

tion. As the main aim of GP is to evolve computer programs, it is very interesting and

important to take the idea of semantics from other fields of Computer Science into the GP

evolutionary process.

The idea of incorporating semantics into GP evolutionary process is not entirely new.

Some research has been done in this field recently [82, 83, 11, 13, 123, 103]. However,

an extensive investigation the impact of both semantic diversity and semantic locality of

operators in GP has still not been undertaken. This research is one of the first attempts

to thoroughly examine the effect of semantic diversity and semantic locality of operators

on a number of aspects of GP.
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1.2 Research Aims

The objective of this thesis is to examine the important role of semantic diversity and

semantic locality of operators in GP. In particular, we address the following questions.

1. How to measure semantics, especially for real valued problems, in GP?

2. How to design semantic based operators that promote semantic diversity and seman-

tic locality?

3. How do semantic based crossovers effect some important properties (diversity, local-

ity, constructive effect, code bloat, etc.) of GP?

4. Do semantic based crossovers improve the ability of GP to generalise?

5. Whether syntactic locality or semantic locality is more important?

6. How do semantic based crossovers deal with increasingly difficult problems?

7. Does improving semantic locality of crossover help to smooth out a fitness landscape?

1.3 Contributions

The investigation of semantic diversity and semantic locality of operators in GP has given

rise to a number of contributions which are outlined as follows:

A literature review: This thesis presents a thorough review of previous studies

related to the research in the thesis. They include a survey of previous research on using

semantics in GP, alternative operators (crossovers and mutations), and the previous studies

of diversity and locality in GP.

A novel way to measure semantics in GP: The thesis proposes a novel way to

measure semantics of an individual or a subindividual (subtree) in GP. The semantics can

be determined by sampling a number of points from the problem domain. From that a
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semantic distance and two semantic relationships are defined. These semantic relationships

facilitate the design new semantic based operators.

New semantic based operators: The thesis also proposes a number of novel seman-

tic based operators. These operators address two main objectives: promoting semantic

diversity and improving semantic locality. The new operators are tested on a number of

problems and the results show that they are comparative in comparison with the standard

operators and some similar fitness based operators. Moreover, the superiority of the new

semantic based operators is not only on training data, but also on testing data, and not

only on real valued problems but also on Boolean problems.

New GP representation: A new GP tree-based representation is also introduced.

The new tree-based representation is formed by adding a number of attributes to every node

in the traditional tree-based representation. These attributes are used to store semantics

of each subtrees in a GP individual. This attributes-based representation help to speed up

the semantic checking process and guarantee for executing some semantic-based operators.

A study of the behaviour of GP under semantic based crossovers: The new

semantic based operators are also used to investigate a number aspects of GP. These aspects

include semantic diversity and semantic locality of an operator, the constructive effect of

operators, code bloat effect, the ability of GP to generalise, and the impact of operators to

fitness landscape. These examinations shed light on the superior performance of the new

semantic based crossovers.

1.4 Scope Limitations

Although, semantics has been broadly used in the field of Natural Language Processing,

Psychology and Computer Science [2, 27, 142], this thesis focuses on studying semantics in

the context of GP. There are many good studies regarding semantics in other fields, which

are beyond the scope of this thesis, can be found in the literature.

When running an evolutionary algorithm, there are a number of parameters (initialisa-

tion method, crossover rate, mutation rate, etc.) which need to be considered. This thesis
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in no way can exhaustively study different settings for these parameters. Therefore, typical

settings that have been used in the previous research [98, 67] are used for the experiments

in the thesis.

Over two decades of development, GP has been successfully applied to a wave of prob-

lems [154, 100]. This thesis studies semantic based operators on two popular benchmark

problems. These problems include real valued symbolic regression problems and Boolean

problems. Both of them have been widely used for the experiments in GP [98, 67, 11, 13].

1.5 Thesis Overview

The remainder of this thesis is organised as follows. In Chapter 2, we give a brief introduc-

tion to Evolutionary Algorithms and a more detailed introduction to Genetic Programming.

Chapter 3 gives a review of related work to the research in the thesis. They include

a survey of different ways of using semantics in GP, alternative crossovers and mutations,

and the previous studies of diversity and locality in GP. This chapter is intended to provide

a general understanding of the history of these problems and also indicates that semantic

diversity and semantic locality of an operator in GP are still a rather new area.

Chapter 4 proposes a novel way to measure semantics in GP. The semantics of any sub-

tree (tree) in GP is qualified by sampling a number of points from the problem domain. A

semantic distance and two semantic relationships are defined from the qualified semantics.

Following this, several semantic based crossovers and mutations are introduced. These

operators focus on promoting semantic diversity and improving semantic locality of GP.

This chapter serves as the foundation for the thesis, giving new semantic based operators

that will be further investigated in the following chapters.

The rest of the thesis (excluding the last chapter: Conclusions and Future Work)

can be divided into three parts. The first part includes two chapters (Chapter 5 and

Chapter 6), which examine the performance of semantic based operators compared to

standard operators and several related fitness based methods. The second part, consisting

of four chapters (Chapter 7 to Chapter 10), concentrates on analysing the behaviour of
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GP under the impact of semantic based crossovers. The last part contains two chapters

(Chapter 11 Chapter 12) intending to extend the application of semantic based crossovers

to other problem domains in addition to real-value symbolic regression problems. Each

chapter is discussed in detail in the following paragraphs.

In Chapter 5 we compare the performance of semantic based operators with standard

operators. This comparison includes contrasting Semantic Aware Crossover (SAC), Se-

mantic Similarity based Crossover (SSC) with standard crossover and Semantic Aware

Mutation (SAM), Semantic Similarity based Mutation (SSM) with standard mutation. A

combination of both crossover and mutation for improving semantic locality, SSC and SSM,

is also investigated. Finally, the impact of some parameters on Semantic Similarity based

Crossover and on Semantic Similarity based Mutation is analysed. Since, crossover has

widely been seen as the primary operator in GP, the succeeding chapters only focus on

studying semantic based crossovers.

Chapter 6 proposes some improvements of Semantic Similarity based Crossover. Firstly,

a new way to sample semantics, based on the fitness cases of the problem, is introduced.

Then, a number of attrbutes are added to every node in a GP individuals to store seman-

tic resulting in a new GP system called Attributes Genetic Programming (AGP). These

attributes speed up the semantic checking in SSC. Next, two methods to overcome the

limitation of tuning semantic parameters in SSC are proposed. These methods further

improve GP performance.

Chapter 7 examines a number of basic properties of GP under semantic based crossovers.

These properties consist of the rate of semantically equivelent subtrees exchanged in

crossovers, semantic diversity, semantic locality, the constructive effect of semantic based

crossovers, GP code bloat effect and the semantic distance of subtrees exchanged in these

crossovers. These analyses shed some light on the improvement performance of semantic

based crossovers.

Chapter 8 studies the generalisation ability of semantic based crossovers. The ability of

semantic based crossovers to generalise is compared with standard crossover, a validation

set based method and bloat control methods. The results show the superior performance
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of semantic based crossovers over other methods is not only on training data but also on

unseen data.

Chapter 9 aims to answer the question whether semantic locality or syntactic locality of

crossover is more important. A new crossover for improving syntactic locality is proposed.

The comparison of semantic locality and syntactic locality of crossover is undertaken in

three aspects: GP performance, GP code bloat and the ability to generalise. The results

show the more useful impact of controlling semantic locality.

The last chapter in Part 2, Chapter 10, is dedicated to investigate the relationship

between semantic based operators with problem diffculty and the fitness landscape. Two

questions addressed are how semantic based crossovers deal with increasingly difficult prob-

lems and how semantic similarity based crossovers affect fitness landscape. The experimen-

tal results confirm the superior performance of semantic based crossover when increasing

problem difficulty and show their ability to smooth out the fitness landscape of probelms.

In Part 3, Chapter 11, applies the semantic based crossover to Boolean problems. For

the Boolean domain, some new crossovers that are inspired from SAC and SSC are pro-

posed. The experiments show the better performance of these new crossovers in comparison

with standard crossover and the previous crossovers.

Chapter 12 employs semantic based crossovers to solve time series prediction problems.

Two time series are tested. The first one is an artificial one, Mackey time series and the

second one is a real-world time series, tide series in Venice Lagoon, Italy. The experimental

results show the ability of semantic based crossovers in solving these problems.

In the last chapter – Chapter 13, we sumarise the thesis, review the contributions and

present some future directions drawn from this thesis.
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Chapter 2

Evolutionary Algorithms and Genetic

Programming

This chapter gives an introduction to Evolutionary Algorithms and Genetic Programming.

It starts with a brief introduction to Evolutionary Algorithms (EAs) followed by a more

detailed introduction to Genetic Programming (GP).

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of search techniques that are inspired by biolog-

ical evolution. The resemblance can be seen in the following aspects. EAs solve problems

by presenting the solutions through a population of individuals. These individuals com-

pete with each other based on Darwin’s principle of natural selection to survive and the

evolutionary process is implemented using a number of genetic operators similar to genetic

operators in biological genetics. The basic flowchart of an EA is presented in Figure 2.1.

An EA starts with an initial population of candidate solutions. This population is

often generated at random, perhaps, with some constraints (depending on the problem

requirement and/or the representation of solution). Then, each individual in the population

is evaluated and assigned a fitness value. This fitness value represents the ability of the
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No

Initialise a starting population

Evaluation

Is stopped?

Selection

End

Generate a new population by

Applying several operators

Yes

Fig. 2.1: A basic flowchart of Evolutionary Algorithms.

individual to solve the problem. Stopping criteria is then checked to determine if the

evolutionary process should be stopped. If they are not satisfied, a number of individuals

are selected and added to a mating pool. Next, genetic operators are used to modify the

selected individual to generate a new population. This evolutionary process is repeated

until the stopping criteria is satisfied.

Since pioneering work of Friedberg [50, 51], Fogel [47], Rechenberg [162], and Hol-

land [71], EAs have largely been developed. The development of EAs can be roughly

classified into four main streams.

Evolutionary Programming (EP) was first introduced by Fogel in the 1960s [47]. In

this work, he used finite state machines (FSM) as predictors and evolved them.

Fixed-length strings are used to represent FSMs and mutation was designed as the

main genetic operator.

Evolutionary Strategies (ES) is an optimisation technique based on ideas of adapta-
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tion and evolution proposed by Schwefel in the 1960s and 1970s [162]. ES uses a fixed

vector of numerical values as its representation of solutions. Mutation of solution is

implemented by adding Gaussian noise to the solution. Self-adaption mechanisms

are also used to change the variance of the mutation operator.

Genetic Algorithms (GA) is perhaps the most popular form of EAs. It was first intro-

duced by Holland in the 1970s [71]. In an GA, a population in the form of strings

of numbers, traditionally binary, is initially (randomly) created then evolved. Two

main operators used in GA are crossover and mutation.

Genetic Programming (GP) was popularized by Koza in the 1990s [98]. In GP, solu-

tions of problems are represented in the form of variable shape and size parse trees.

Both the structure and the contents of the solution are evolved. This allows computer

programs to be encoded and evolved.

In the remainder of this chapter, we only focus on Genetic Programming as it is the

algorithm which is the primary focus of this thesis.

2.2 Genetic Programming

Genetic Programming is an evolutionary paradigm that is inspired by biological evolution

to find the solutions, in the form of computer programs, for a problem. It can also be seen

as a machine learning method to optimize a population of computer programs to perform

a given computational task. GP has been recognised by a number of researchers and

practitioners as the successor of GA as it inherits a number of important characteristics

from GA. While the distinction between GP and GA is philosophical. It is generally agreed

that their objective is different: While GA is mostly used for the task of optimisation, GP

systems are often used for learning. In GAs, the definition and function is given, the GA

systems are used to optimise the parameters of that function. Conversely, GP might be

used to learn the definition of the function itself from sampled data. In other words, GA
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is usually used to find the optimal parameters of the solution for a problem when the

structure of the solution is fixed and known in advance, while GP is preferred if the task

is to seek both content and structure of solutions.

The early dawn of computer program evolution can at least be traced back to the 50s

of the last century in that Friedberg used computers to learn programs for itself [50, 51].

Later Fogel et al. applied evolutionary algorithms to the problem of discovering finite-

state machines, which are in turn simple forms of computer programs [47]. The idea of

using chromosome (solution) representation with variable size was probably first proposed

by Smith in [176], where the author used individuals of variant size to evolve classifier

systems. Cramer [33] introduced more features that are similar to the GP we know today,

in which procedural languages are represented in tree-based structures and operated on by

suitably defined GA-operators. This work was then greatly expanded by John R. Koza,

who has pioneered the application of GP in various complex optimization, learning, and

search problems [98, 99, 101].

In the 1990s, GP was mainly tested on relatively simple problems. The reason was that

GP was rather computationally intensive. However, due to the recent improvements in GP

technology and the exponential growth in Central Processing Unit (CPU) power, GP has

been applied to solve many real-world problems. The application of GP includes quantum

computing, electronic design, game playing, sorting, to name but a few. In [8, 154, 100],

the authors presented a vast range of real-world problems that has been solved by using

GP.

Since GP can be seen as an evolutionary algorithm, it shares a number of common

characteristics with other EAs. In order to apply GP to solve a problem, The following

steps need to be processed [14]:

1. Select a representation, a set of functions and terminals, and a fitness function for

the problem.

2. Initialise a population of individuals.

3. Evaluate the fitness of the individuals in the population.
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4. If the termination conditions have been reached, exit. Otherwise, go to step 5.

5. Choose a number of individuals (candidate solutions) using a certain selection method.

6. Apply a number of genetic operators on the selected solutions to generate a new

population.

7. Repeat from step 3 to step 6.

To start using GP in solving a problem, GP practitioners need to select an appropriate

representation format. While tree-based representation is the most popular form, other

representations such as linear representation [46, 144], grammar-based representation [191,

122], and graph-based representation [124] can also be used. After that, a set of functions

F and terminals T are chosen. The function set F = {f1, f2, ..., fn} includes a number

of functions with arity (number of children or arguments) greater than 0, whereas the

terminal set T = {t1, t2, ..., tm} contains 0-arity functions or constants.

The first step in running a GP system is to create an initial population of candidate

solutions. This population is usually randomly generated with respect to some constraints

in terms of syntax (max depth of trees or max size of chromosomes). This population

is served as the starting point of a GP algorithm. The fitness function is then called to

measure the fitness value for each individual in the population. The GP process is finished

when the termination condition in step 4 is true. The termination condition is assigned a

true value when either the perfect (full score) solution is found or the algorithm exceeds a

number of fitness evaluations.

Based on a fitness measure, the fitter solutions (the better solutions to the problem)

are selected using a selection method. Next, a new population is generated by applying

a number of genetic operators to the chosen individuals. The main operators include

crossover, mutation and reproduction. The reproduction operation simply copies a selected

individual to the next generation. The mutation operator adds new genetic material to the

population by modifying the individual while the crossover operation generates two new
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Fig. 2.2: A set of individuals that are constructed from F = (+,−, ∗, /, sin, cos, log, exp)
and T = (X, 1).

individuals by combining two old individuals. These operations will be further described

in the following sections.

2.2.1 Representation of Candidate Solutions

Although, there are a number of ways to represent candidate solutions in a GP system, a

tree-based representation is still the most popular form [14]. For this reason, this thesis

mainly focuses on tree-based representation. Tree-based representation for an individual of

an evolutionary algorithm was first proposed by Cramer [33] and then intensively advocated

by Koza [98]. To generate a population of individuals, a GP practitioner must first select

a function set F = {f1, f2, ..., fn} and a terminal set T = {t1, t2, ..., tm}. The function

set might include arithmetic operations (+, - , *, /), mathematical functions (such as sin,

cos, log, exp), boolean operations (AND, OR, XOR, NOT), conditional operations (such

as IF-THEN-ELSE) and other functions that can be defined for a specific problem. Each

function in the function set has a fixed number of arguments, that is considered as its arity.

For example, function + has 2-arity, while function sin has 1-arity. The terminal set often

consists of a number variables and several constants. All terminals have an arity of zero.

When the function and the terminal sets have been decided, a GP individual is built

up recursively from these sets. Figure 2.2 shows some individuals that are generated from

the function set of F = (+,−, ∗, /, sin, cos, log, exp) and the terminal set of T = (X, 1).

It is essential that selected function and terminal sets satisfy the closure and sufficiency

13
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properties [8]. The closure property requires that each function in the function set must

gracefully handle every possible input it might receive. In other words, every function

must be well defined for any combination of arguments that it may encounter. The reason

for this property is that every candidate solution must successfully be executed to have

a fitness value. An example of valid function and terminal sets are the function set of

F = {+,−} and the terminal set of T = {X, 0} and an example of invalid sets include the

function of F = {∗, /} and the terminal set of T = {X, 0}.
The sufficiency property requires that the set of functions and the set of terminals must

have enough expressive power to represent the solution for the problem. For example, the

function set F = (+,−, ∗, /, sin, cos, log, exp), and the terminal set T = (X, 1) satisfy the

sufficiency property in learning real-valued functions. It, however, does not satisfy this

property if the learning function is Boolean.

2.2.2 Initialising a Starting Population

Initialisation of the population is the first step of the evolutionary process. It is used to

generate a population of tree structure programs that will be evolved in the later steps.

There are three main approaches for creating a population of a tree-based GP system: the

grow method, the full method and the ramped half-and-half method [98].

The grow initialisation of an individual starts by randomly selecting a function fi in the

function set F . This function becomes the root node of the tree. Let n be the arity of the

selected function, then n nodes are randomly chosen from the set of F ∪ T as the children

of the root node. If a terminal is chosen, this branch of the tree is terminated. If a function

is selected, the process is recursively applied for that function. The maximal depth of tree

is usually used to limit the size of the initial individual. The grow initialisation of the

population uses the grow intialisation for all individuals in the population.

In full initialisation, instead of selecting nodes from F ∪ T , when constructing a tree

only functions from F are chosen until it reaches the maximal depth. At this depth only

primitives from T are chosen.

14
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Ramped half-and-half initialisation is the most popular method that is widely used by

GP practitioners nowadays. The motivation for it is to avoid the situation of similar trees

which can be generated in the two above approaches. This leads to the increase of the

syntactical diversity of the GP population [154]. The ramped half-and-half initialisation

of the population is in fact the combination of the grow and full initialisation in which a

half of the population is created by the grow method and the remaining half is generated

by the full method.

2.2.3 Fitness Evaluation

Each individual in the population is assigned a numerical value called fitness. The fitness

of an individual presents its ability to solve the problem. This value is calculated based on

some well-defined procedures. There are two fitness measures that are popularly used in

GP, namely raw and standardised fitness. They are detailed as follows.

Raw fitness can be seen as the most simple form of fitness that reflects the ability of

an individual to solve the problem. For example, if the problem is to evolve a classifier of

a number of objects, the raw fitness could be defined as the number of objects that are

correctly classified. Raw fitness is often evaluated based on a test set of the problem called

fitness cases. The fitness cases are usually presented in the form a set of input-output

values of the problem. Assume that the fitness cases of a problem consist of N pairs

{(x1, y1), (x2, y2), ..., (xN , yN)}, then the raw fitness of an individual i, fR(i) can be define

as follows:

fR(i) =

N
∑

j=1

(g(xj) − yj) (2.1)

where g(xj) is the output of the individual with the input is xj .

Standardised fitness is calculated based on raw fitness so that the smaller (for minimiz-

ing problems) is the better. If the raw fitness already has this property the standardised
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fitness is the same as the raw fitness. In many situations, it is often convenient that the

full score individual has the stardardised fitness of zero.

2.2.4 Selection Operator

Each individual in the population that has been assigned a fitness value has an opportunity

to be selected to participate in the breeding of the new population. Over the years, several

selection methods have been developed. In this section the three most popular form of

selection operations will be described. These selection methods include tournament, fitness

proportionate and ranked selection.

Perhaps, tournament selection is the most popular form of the three selection mecha-

nisms. The initial study of tournament selection can be traced back to the early 1980s [17].

In tournament selection, a number of individuals (tournament size) are randomly selected

from the population. These individuals are compared with each other and the winner (in

terms of better fitness) is selected to go to the mating pool. This process is then repeated

N times where N is the population size. The advantage of tournament selection is that

it allows the adjustment of the selection pressure by tuning the tournament size. A small

tournament size leads to a low selection pressure while a large one results in a high selection

pressure. Moreover, this method does not require a comparison of the fitness between all

individuals. This may help to save a large amount of processing time and provides an easy

way to parallelise the algorithms.

The second common form of selection mechanism is fitness proportionate selection [71,

98]. In fitness proportionate selection, each individual is assigned a probability to be

selected for the mating pool. Let N be the population size, and {f1, f2, ..., fN} be the set

of the fitness of individuals in the population, then the probability pi of individual i to be

selected is calculated by the following equation.

pi =
fi

∑N

j=1 fj

(2.2)
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This selection mechanism, although has widely been used in GP and GA, has a drawback:

Its behaviour strongly depends on the difference between fitnesses of the individuals [15].

If the difference between the fitness of good and bad individuals is high, then it is likely

that only the good ones will be chosen, thus decreasing the diversity of the population.

Conversely, if the difference of the fitness between them is too small, then this selection

method works mostly similar to random selection since the probabilities to be selected of

all individuals are almost the same.

The third common form of selection is ranking selection. Ranking selection was first

proposed in [58] to soften the potentially dominating impacts of high fitness individuals

in the fitness proportionate selection. In ranking selection, all individuals in the popula-

tion are sorted based on their fitness. The selection probability is then assigned to each

individual based on its order in the population. There are two main methods to index

individuals in the rank: linear and exponential ranking. Although, this selection technique

helps to reduce the weakness of fitness proportionate selection, it has a drawback: in some

cases, especially in exponential ranking, it increases the difference between closed fitness

individuals so that the better one can be selected more frequently [193].

2.2.5 Crossover

It is well-known that crossover (sexual recombination) is the primary operator for GP [98].

Crossover creates variation in the population by generating new children that consist of

parts taken from each parent. Since, there are various representations of GP, crossover

for each representation is different from one representation to another. This section only

describes the crossover operator for tree-based GP.

In standard crossover (SC), [98], two parents are selected by using a selection method,

then one subtree is randomly selected in each parent. A procedure is called to check if

these two subtrees are legal for crossover (syntactic closure properties, depth of resulting

children,. . . ). If so, the crossover is executed by simply swapping the two chosen subtrees,

and the resultant offspring are added to the next generation. Figure 2.3 shows how SC
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Fig. 2.3: Standard Crossover: parents (top) and their resulting offspring after applying
crossover (bottom).

works.

One of the first modifications to the crossover process was proposed by Koza [98], in

which the nodes chosen for crossing over is 90% biased to function (internal node) and 10%

biased to leaves (terminal nodes). Although this method encourages the exchange of more

genetic material (bigger subtrees) between the two participating individuals, it risks exac-

erbating bloat and thus making it more difficult to refine solutions in later generations [11].

Other improvements of crossover include height-fair crossover of Oppacher [150], one-point

and uniform crossover of Poli and Langdon [156, 108], to name but a few. A more detailed

review of alternative crossovers in GP will be given in Chapter 3.

2.2.6 Mutation

Mutation can be seen as the secondary operator in GP. While crossover is a sexual recom-

bination, mutation is an asexual operator, meaning that it operates on only one parent. In
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Fig. 2.4: Standard Mutation: parent (left) and its resulting offspring after applying muta-
tion (right).

Standard Mutation (SM) [98], often called subtree mutation, a point is randomly chosen,

with uniform probability, within the selected individual. This point is called mutation

point. Then the subtree rooted at the mutation point is deleted and a newly generated

subtree is added at that point. Figure 2.4 presents how SM works.

Although, Koza introduced mutation as the secondary operator after crossover, the

comparative importance of GP crossover and mutation operators is still the subject of

much debate. An early argument of this debate was given by Luke and Spector [112] when

the authors did an exclusive comparison between crossover and mutation and found that

there was very little different performance between these two operators. In a more recent

work, White and Poulding [192] conducted an experiment to compare the crossover and

mutation in GP with the optimal conditions of the experimental settings for each operator.

Their results showed that on only 2 out of the 6 problems examined that GP with crossover

was better than GP with mutation. These findings suggest that the mutation operator is

also important in GP and any improvement of the mutation operator could potentially

lead to the improvement of GP performance. A more detailed review of mutation in GP

will be presented in Chapter 3.

2.2.7 GP parameters

Before running a GP system to solve a problem, GP designers need to setup a number of

parameters that characterise the evolution. The list of main parameters is the following
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one:

• Population size.

• The maximal number of generations.

• The maximal depth of tree in the initial population.

• The maximal depth of tree for the whole evolutionary process.

• Method used to generate the initial population.

• Selection algorithm.

• Crossover type and its probability.

• Mutation type and its probability.

• The maximal depth of tree in the mutation.

• The probability of reproduction.

From the early day, a number of improvements have been introduced to GP. These

improvements include elitism selection [37, 158], steady state selection [189] and the use of

Automatic Define Functions (ADFs) [99, 45]. Consequently, a number of other parameters

are added to a GP system. These parameters comprise the presence or absence of steady

state, the number of ADFs and number of each ADF’s parameters, the use or not use of

elitism. The setting of these parameter impacts to the ability to learn of the GP system.

The decision to choose these parameters often depends on the experiments and based on

the experience of GP practitioners.

Recently, GP has broadly extended. These extensions comprise alternative operators,

grammatical, developmental, and graph tree-based GP, Multi-objective GP. A more de-

tailed discussion of these extensions can be found in [154]. GP has also been applied to

solve various problems, and in many situations GP produced competitive results with hu-

man [100]. However, a number of problems are still open with GP researchers [147]. These

open issues orient future research in GP.

20



2.3. CONCLUSION

2.3 Conclusion

This chapter presented an introduction to Evolutionary Algorithms and Genetic Program-

ming. It gave a brief introduction to Evolutionary Algorithms, a class of algorithms that

are inspired by biological evolution. A more detailed introduction to Genetic Programming

was given after that. The discussion of Genetic Programming includes GP initialisation,

fitness evaluation, GP operators, and GP parameters. The next chapter will present a

review of the related work to the research in this thesis.
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Chapter 3

A Review of Related Work

This chapter presents a survey of the related work to research in the thesis. We first

review the work on the use of semantic information in Genetic Programming, which is

divided into three main strands: Using grammars, using formal methods, and based on tree-

based representation. Next, we review the research on alternative operators in GP. These

operators include crossover and mutation. Finally, we briefly survey work on diversity and

locality in GP.

3.1 Semantics in Genetic Programming

Since Genetic Programming (GP) was born, it has been seen as a potentially powerful

method for automated synthesis of computer programs by evolutionary means. The evo-

lutionary process in GP starts with a randomly generated population of programs (indi-

viduals). These individuals are then evaluated to calculate their fitness. The fitness of an

individual is usually measured by its ability to solve the problem. Next, these individuals

are evolved by applying some genetic operators. The operators are designed so that the

resulting children are syntactically valid individuals. However, from the perspective of a

programmer, this is unusual. Computer programs are not only constrained by syntax but

also by semantics. Therefore, a number of researchers have tried to use semantics to aug-
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ment GP in solving problems. From our perspective, these attempts can be classified into

three categories: using grammars, using formal methods, and using semantics based on

GP representation. These methods will be discussed in detail in the following subsections.

3.1.1 Grammars in Genetic Programming

Perhaps, Whigham is one of the first authors who used grammars in GP [151, 152, 153].

The resulting system is called Grammar Guided Genetic Programming (GGGP). In his

system, each individual is represented as a derivation tree of a context-free grammar.

The use of context-free grammars results in some modifications to traditional GP. These

modifications are in population initialization and genetic operators. While the initialization

in the traditional GP is done almost randomly, in GGGP it is done in a more strict manner

so that any generated individual is always a derivation tree of the defining grammar. In

addition, crossover in GGGP can only swap two subtrees, of which the roots are labeled

with the same non-terminal symbol. More details about the differences between GP and

GGGP can be found in [152].

Using grammars in GP produces many benefits. First, it helps to ensure the property

of closure [152]. Also, the use of grammars helps to encode domain knowledge on the

syntactical structure of programs. Additionally, by using grammars, it is convenient to

re-bias the syntactical structure of programs by changing grammars. More details about

these benefits of using grammars in GP can be found in [67].

Despite a number of benefits, using context-free grammars does not help to incorpo-

rate semantic information into GP. Thus, some researchers have attempted to go beyond

context-free formalisms to achieve this goal. These grammars include attribute grammars,

logic grammars and some others. They are briefly discussed as follows.

Attribute Grammars in GP

Attribute grammars were first defined by Donald Knuth in 1968 as means for formalizing

semantics of context-free languages [97]. An attribute grammar may be considered as an

extension of a context-free grammar using a set of attributes to provide context sensitivity.
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<expr>::=<expr> + <expr>
| <expr> − <expr>
| <expr> ∗ <expr>
|(<expr>)
| <pre op> (<expr>)
| <var>

<pre op>::=sin
|cos
|exp
|log

<var>::=x

Fig. 3.1: The context-free grammar.

Each distinct symbol in an attribute grammar may have a finite, possibly empty a set of

attributes. Each attribute has a domain of values. The evaluation rules and the conditions

may be associated with each symbol to change value of its attributes or to check if the

derivation tree is a valid tree or not [97].

Perhaps, using attribute grammars as a way to add semantics into GP only started

recently, although Talib S. Hussain and Roger A. Browse have used an attribute grammar

to represent a neural network to evolve a neural network [74, 75, 76]. A study which shows

a comprehensive comparison between a GP system with and without semantics information

by using attribute grammars was done by Echeanda and his colleagues [35]. In this paper,

the authors compared the performance of a GP system, namely Grammatical Evolution

(GE) [144, 145], when semantic information is used and not used. By using an attribute

grammar, they could check if individuals generated by GE’s genotype-phenotype mapping

are valid both in terms of syntax and semantics. The work showed that using semantic

information could improve the performance of GE on a symbolic regression problem. The

target function chosen in [35] was f(x) = x4 + x3 + x2 + x. The context-free and attribute

grammars used in their work are shown in Figure 3.1 and Figure 3.2.

The attribute grammar in Figure 3.2 is very similar to the context-free grammar in

Figure 3.1. The main difference is the existence of 21 attributes (vi, i=0,...,20) to record

the value of the expression on each control point. The semantic information is used in
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<expr>::= <expr>1+<expr>2 < expr > .vi =< expr >1 .vi+ < expr >2 .vi

| <expr>1-<expr>2 < expr > .vi =< expr >1 .vi− < expr >2 .vi

| <expr>1*<expr>2 < expr > .vi =< expr >1 .vi∗ < expr >2 .vi

|(<expr>1) < expr > .vi =< expr >1 .vi

| <pre op>(<expr>1) < expr > .vi =< pre op > .f(< expr >1 .vi)
| <var> < expr > .vi =< var > .vi

<pre op>::=sin < pre op > .f = sin
|cos < pre op > .f = cos
|exp < pre op > .f = exp
|log < pre op > .f = log

<var>::=x < var > .v0 = −1
< var > .v1 = −0.9
< var > .v2 = −0.8
...
< var > .v20 = 1

Fig. 3.2: The attribute grammar.

this problem to check if an individual exactly fits the target function on some sample

points (three points, -1, 0, 1 are checked in the experiment in the paper). If an individual

does not fit the target function on these points, it will be removed from the population

or has a very bad fitness value. By adding this semantic information, the authors showed

that it can improve the performance of GE. The paper also pointed out that adding too

much semantic information (checking in too many points of sample points), can cause

bad performance. This way of using semantics is straight forward and easy to implement

although this information is quite similar to fitness information.

At the same time as [35], Robert Cleary and his collaborators proposed the use of

attribute grammars to help GE in solving 0/1 multi-constrained knapsack problem [146, 26,

25]. In this work, they used attribute grammars in two ways. Firstly, attribute grammars

were used to overcome the limitation of a context-free grammar in decoding solutions for

this problem. By adding attributes to a context-free grammar to provide the system with

context sensitive capacity, they could avoid the duplication of items in the phenotype

for this problem. Secondly, their attribute grammar was also used to check semantic

information during the process of the genotype–phenotype mapping. In this case, an

attribute called overweight was used to govern the total weight in the knapsack. The
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experiment results showed that the GE coupled with an attribute grammar, outperforms

the traditional version (using context free grammars) and some other methods such as

Genetic Algorithm and Hybrid Genetic Algorithm [93, 30] on the problem.

An extension of attribute grammars is Christiansen grammars. In fact, a Christiansen

grammar is an attribute grammar where the first attribute associated to every symbol

is also a Christiansen grammar. Christiansen grammars are adaptable grammars in that

its rule set can change during the derivation process. More detail about Christiansen

grammars can be found in [24, 173].

Rosal et al. [166] used a Christiansen grammar to add semantics to GE (the system was

called Christiansen Grammatical Evolution - CGE) to solve some Boolean problems. The

semantic information stored in the attributes of the grammar is used to change the rules of

the grammar during the derivation process. The results from the experiments showed that

CGE outperforms traditional grammatical evolution especially on some problems which

are difficult with GE using a context-free grammar.

Logic Grammars in GP

Apart from attribute grammars, logic grammars have also been used as a way to incorporate

semantics into GP. A logic grammar, also called a definite clause grammar, is a context-free

grammar decorated with context sensitive capacity. Logic grammars are rather similar to

attribute grammars except in their notation. In logic grammars, each symbol, including

both terminal and non-terminal may have arguments [128]. The arguments can be a

logical variable, a function or a constant. These variables, functions and constants are

called terms. A variable has the form of a question mark ? followed by a string of letters

and/or digits. For example ?x is a variable of the grammar in Figure 3.3. A function is

represented by a symbol followed by a bracketed n-tuple of terms. A constant is simply a

0-arity function. Arguments can be used in a logic grammar to enforce context-dependency

or to construct representation “meaning” in the parsing tree. The grammar in Figure 3.3

shows an example of a logic grammar. This grammar is a reduced version of the grammar

in [194], where we remove some unnecessary rules for the purpose of simplification.

As the decorated arguments in logic grammers play a similar role to attributes in at-
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1: start::= member(?x,[X, Y]), [(*], exp-1(?x), exp-1(?x), [)].
2: start::=member(?x,[X, Y]), [(/], exp-1(?x), exp-1(?x), [)].
3: exp-1(?x)::=random(0,1,?y), [(+ ?x ?y)].
4: exp-1(?x)::=random(0,1,?y), [(- ?x ?y)].
5: exp-1(?x)::= [(+ (- Y 11) 12)].

Fig. 3.3: A logic grammar.

tribute grammars, they can be used to add semantic information into genetic programming.

Man Leung Wong et al. [197, 196, 194, 195, 198] proposed a new version of GP by com-

bining logic grammars with GP, the system is called LOGENPRO (The Logic Grammars

Based Genetic Programming System). In this system, a logic grammar is used to deter-

mine if individuals generated during initialization or through the application of genetic

operators are valid in terms of semantics.

The LOGENPRO system was then applied to a number of problems including learning

functional programs [194], learning logic programs [195], learning logic programs from

imperfect data [196]. In each problem, the semantic information was used to check if

an individual created from the initialisation step or from executing genetic operators is

valid under the conditions of the respective grammar. The result from the experiments

showed that by using logic grammars to check semantic information, the performance of

LOGENPRO is superior than traditional GP.

Overall, there is a common theme in using grammars, regardless of attribute grammars

or logic grammars, as a way to incorporate semantic information into genetic programming

is that attributes are employed to encode semantics into the formalisms. However, what

are the kinds of attributes and how they are encoded into the grammars depend on the

type of semantic information that are useful for the target problem.

3.1.2 Formal Methods in Genetic Programming

The use grammars in GP has been extensively studied, while the use formal methods as a

way to incorporate semantics in GP has only been raised recently. Formal methods are a

class of mathematically based techniques for the specification, development and verification
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of software and hardware systems [66]. By using formal methods, ones can gather internal

information (in mathematical forms) about the systems. This information is useful for the

system design and verification.

Perhaps the first researcher who pioneered this area of research for GP is Colin Johnson.

In a series of work, Johnson has advocated for the use of formal methods in the evolutionary

process of GP [82, 83, 84, 85]. In [84], Johnson elaborated some directions in which formal

methods can be used to improve the performance of GP. His argument was that almost

every formal technique can be used to enhance the ability of GP in solving problems. These

techniques include: static analysis, model checking, program transformation, and partial

evaluation, to name but a few. However, there are only two kinds of techniques that have

been used in GP, abstract interpretation and model checking.

Abstract Interpretation with GP

Abstract interpretation is a class of techniques for gathering approximate semantic infor-

mation of a program [129, 141, 31, 32]. It is one of the main streams of static analysis [16]

differing from others, such as data-flow analysis, in that abstract interpretation is con-

ducted not on concrete data of a system, but on an abstract version of this data. In

abstract interpretation, the data processed by a program and various operators are ab-

stracted into a set of properties of interest. The analysis of a program consists of checking

if these properties are held at some particular points of the program or through the whole

program.

Using abstract interpretation, we can deduce information about some interesting prop-

erties of a program. This information can be used in different ways in GP. One way is to

use this information as a measure of the fitness as in [82, 83]. In this work, Johnson used

an interval analysis technique to solve some problems. An interval analysis technique is a

kind of abstract interpretation, which is used to infer the extreme values of the variables

of a program. A short example, if x belongs a interval [a,b], y belongs a interval [c,d], then

the value of z after excusing the statement z=x+y will belong the interval [a+c, b+d].

More details about interval analysis can be found in [161].

Johnson [82] used an interval analysis technique to induce the programs to solve a
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placement problem. The aim was to find a placement of a number of rectangles on a

region so that they satisfy some desired relations between them. An example relation is

Rectangle A must be always on the left of Rectangle B. With this kind of problem, it is

very difficult to use traditional fitness measures that are based on a set of sample cases.

Firstly, generating a set of sample cases is not easy in this situation. Secondly, even if a

set of sample cases can be created, we can not guarantee that the desired constraints will

always be satisfied as the list of sample cases can not cover all situation. Thus, the fitness

function in [82] is based on interval analysis.

The system starts from a randomly generated population of programs [82]. These

programs are evolved through a number of generations. At each generation, an interval

analysis technique is used to track the extreme values of the variables. These extreme

values are then compared with the required constraint values to see how many desired

constraints are satisfied. If a program satisfies more conditions it is assigned a better

fitness value, therefore, it has a greater chance of entering to the next generation.

Johnson [83] used an interval analysis technique to solve a problem of controlling the

movement of a robot. The objective was to evolve a computer program to control the

movement of a robot so that it is as close as possible to another robot (called the target

robot) and it is always on the right of a barrier. In this experiment, the fitness function

includes two components: one is based on test cases (as close as possible to the target

robot) and another is based on a constraint condition (always on the right of the barrier).

At each generation during the evolutionary process, the program is analysed, by using an

interval analysis technique, to determine if it is satisfied by the constraint condition (the

robot is always on the right of the barrier). If it is, the fitness of that program based on

training data is multiplied three. In this way, the satisfied programs have a greater chance

of being selected.

The work of Johnson demonstrated how interval analysis can be used as a way of

measuring fitness [82] or in combining with a traditional fitness measure [83]. However,

the experiments in these work are relatively simple and no comparison of these systems

with other GP systems has been provided.
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While Jonhson used interval analysis as a way to measure the fitness of individuals in

GP, Keijzer has used interval analysis in a different way. Keijzer [92] used interval analysis

to check if an individual can be undefined in the whole range of input values. For example,

if an individual contains function log(x) and by using interval analysis, one can infer that

the interval of variable x can contain negative values, this individual will be considered as

an undefined individual. If this case happens, the individual will be assigned the worst

fitness or simply be deleted from the population. By doing that, Keijzer argued that GP

can avoid the disruption of using protected operators. This technique was then used in

combination with linear scaling (a technique that is used for smoothing out the fitness

function on data training [78]). The system was applied to a class of symbolic regression

problems and the experiment results showed that the system could find the solutions that

are not only good on training but also on test data (i.e better generalization capacity) [92].

Model Checking in GP

Model checking [39, 7] is a class of techniques for checking if some properties of a system

are held. The properties, which need to be checked are presented in the form of temporal

logic formulas [44]. These formulas state how variables and states in the systems change

with time. There are three steps in performing model checking: modeling, specification,

and verification. Modeling is transferring the system into a formalism. The formal model

often used is a transition system (TS). Specification involves expressing the properties of

interest into temporal logic formulas [44]. Verification is done by using an algorithm to

check if a given transition system satisfy a temporal logic formula.

Model checking has also been used as a way of measuring the fitness of systems in

GP. Johnson [85] used model checking in cooperation with GP to evolve coffee vending

machines. The machine is specified by a number of computation tree logic formulas. The

GP system is started by randomly generating a number of machines (individuals). A

model checking is then used to check if these machines satisfy the above temporal logic

formulas. The fitness function is measured by counting the number of satisfied formulas.

If an individual satisfies more propositions, it has a greater fitness value and hence has

a greater probability to be selected. Obviously, in this problem, it is very difficult to
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apply traditional fitness measures. Therefore, using model checking to measure fitness is

reasonable. However, the drawback of this work is that the fitness function does not to be

smooth. The reason is that a formula, which is nearly satisfied, will be considered as an

absolutely unsatisfied formula. This weakness will be considered by some later research.

Following Johnson’s work, Katz and his colleagues [89, 90] used GP with model checking

to generate algorithms for a mutual exclusion problem [106]. The work of Katz et al. is

different from that of Johnson in two ways. First, Katz and his colleagues used a linear

temporal logic for the system specification instead of using a computation tree logic. Hence,

the model checking algorithm, which is used for verifying the system, is also different. In

these works, the algorithm checked if a path in the graph that represents the behavior of

the checked system, is satisfied by the formula. Second, the fitness function did not simply

count on how many formulas are satisfied but it was based on a lower level. The scores

that are given to a checked formula was divided into 4 levels. Level 0 was allocated when

there is no satisfied path in the graph. Level 1 was assigned when there are some satisfied

paths and the program can reach a state from which the formula is not satisfied. Level 3

was when all paths are satisfied and the program can only reach the unsatisfied state when

there is an infinite hostile scheduler (which is used in these works). Level 4 was assigned

when the formula is always satisfied. The fitness value was calculated by summing up

value of all assigned scores in the above step. Besides, they also prioritize the properties.

Some more important properties are checked first. If these properties are not satisfied,

then all properties left will be assigned to level 0. By making a smoother fitness function,

the authors claimed that it could provide a higher probability of convergence.

We conclude this section by highlighting some advantages and disadvantages of using

formal methods in GP. The advantage of formal methods lies in their rigorous mathematical

foundations, potentially helping GP to evolve computer programs. However they are high

in complexity and difficult to implement, possibly explaining the limited number of related

publications since the advocacy of Johnson [83]. Their main applications to date has mainly

been in evolving control strategies.
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3.1.3 Semantic Based on Tree Representation

Apart from the approaches based on grammars and formal methods, semantics can also

be directly calculated/extracted on/from the tree-based representation of GP. The way in

which semantics can be extracted from tree-based representation depends on the problem.

In Boolean problems, semantics can be accurately calculated in different ways. Beadle and

Johnson [11] calculated the semantic information on Boolean trees by firstly reducing the

trees using ordered binary decision diagrams (ROBDDs) [18]. A ordered binary decision

diagram is a binary decision diagram in which the order of the label between the nodes is

respected. It means that the label of a node is always greater than the label of its children.

A binary decision diagram is a directed acyclic tree, also called a dag, which is obtained

by applying some reduction rules on a binary decision tree. Two reduction rules are [174]:

• Elimination of redundant nodes: if there exists a node n such that the left subtree

and the right subtree of n are the same, then remove this note and replace it by their

left or right subtree.

• Merging isomorphic subtrees. If two subtrees rooted at two different nodes n1, n2

are isomorphic, then merge them into one, i.e., remove the subtree rooted at n2 and

redirect all angles to n2 by angles to n1.

Figure 3.4(e) is an example of a binary decision diagram that is obtained by applying

the two above reduction rules on the binary decision tree on Figure 3.4(a). In this example,

Figure (b) is obtained from (a) by merging the subtrees rooted at r. Figure (c) is obtained

by removing a redundant node on r from (b). Figure (d) is obtained from (c) by merging

isomorphic subtrees rooted at p. Finally, Figure (e) is obtained by removing a redundant

node rooted at p from (d).

After reducing from Boolean trees using ROBDDs, the equivalence in term of semantics

of the two trees are compared [11]. This semantic equivalence checking is then used to

determine which generated individuals are copied to the next generation. If the offspring are

semantically equivalent to their parents, they are discarded and the crossover is restarted.
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Fig. 3.4: Transformation of a binary decision tree into a BDD.

This process is repeated until semantically new children are found. The authors argued that

this results in increased semantic diversity in the evolving population, and a consequent

improvement in GP performance. This method of semantic equivalence checking is also

applied to drive mutation [12] and to guide the initialisation phase of GP [13], where the

authors show that it benefits for GP in both phases.

While Beadle and Johnson compared semantics of two Boolean tree expressions through

ROBDDs, McPhee et al. extracted semantic information from Boolean expression trees by

enumerating all possible inputs of each individual [123]. In this method, they considered

semantics of two components in each tree: subtrees and contexts. A context is the remain-

der of a tree after removing a subtree at one point in that tree. While the semantics of a

subtree can easily be computed by enumerating all possible input values, the semantics of

a context as in Figure 3.5 depends on three components:

• The operator g immediately above the insertion point.

• The semantics of the context obtained by removing the subtree rooted at g (the

Parent semantics).
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• The subtree semantics of the other argument(x) of the operator g.

semantics

g

x

Parent
semantics

Arg

Fig. 3.5: A context which is obtained by removing a subtree rooted at node c.

By considering both of these semantics, McPhee at el. conducted experiments to test

the change of these semantic components during the evolutionary process of GP. The result

from their experiment showed that there are a large number of fixed semantic subtrees when

the size of trees is increased during the search process. Here, a subtree is called a fixed

semantic subtree if the semantics of the tree does not change when this subtree is replaced

by any other subtrees. They hypothesized that it is very difficult to change the semantics

of trees when the size of these trees is increased. Therefore, genetic operators including

crossover and mutation have a very small effect in this situation [123].

A similar method was also used as a way of measuring fitness of an individual [102]. In

this work, by considering the semantics of context, one can know how the children will be

if the crossover is executed on the point where this subtree is removed. This information

will be used as a fitness measure. This is called the potential fitness function [102]. The

method was applied to a class of Boolean problems and the result from the experiment

showed that it helps to improve the performance of GP in comparison with the traditional

fitness measure.

For real valued function regression problems, calculating the exact semantics is infea-

sible. Thus, approximate semantics must be used instead. One method for measuring
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approximate semantics in this problem is proposed in [127]. In this paper, the equivalent

semantics of two individuals (two trees) is decided by comparing their outputs on a number

of random sampled points in the domain. Two trees are equivalent if the mean square error

of them on a number of random sampled points is less than a small value. This equivalence

was then used to simplify the trees during the evolutionary process. The result from the

experimented shows that this semantic information is useful for simplifying GP individual

for the tested problems [127].

Recently, Krawiec and Lichocki proposed a way to measure the semantics of an indi-

vidual based on fitness cases [103]. In this work, the semantics of an individual is defined

as a vector of which each element is the output of the individual at the corresponding

input fitness case. This semantics was used to guide crossover in a method similar to Soft

Brood Selection SBS [3], known as Approximating Geometric Crossover (AGC). In AGC,

a number of children are generated by a crossover operation, the children that are most

similar to their parents – in terms of semantics – being added to the next generation. The

experiments were conducted on both real valued and boolean regression problems and the

results showed that AGC is no better than SC on real valued problems, and only slightly

superior to SC on Boolean ones [104]. The same kind of semantics was then used to build

functional modulation for GP, for which the experimental results showed that it may be

useful in characterising the compositionality and difficulty of a problem, potentially leading

to performance improvements for GP [104].

3.2 Alternative Operators in Genetic Programming

This section presents an overview of alternative crossovers and mutation in GP.

3.2.1 Alternative Crossovers in Genetic Programming

It is well-known that crossover is the primary operator for GP [98]. In the standard

(original) crossover (SC) [98], two parents are selected, and then one subtree is randomly
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selected in each parent. A procedure is called to check if these two subtrees are legal for

crossover (syntactic closure property, depth of resulting children,. . . ). If so, the crossover

is executed by simply swapping the two chosen subtrees, and the resultant offspring are

added to the next generation.

Much research has concentrated on the efficiency of crossover, resulting in new and

improved operators which might be classified into three categories as follows:

1. crossovers based on syntax (structure)

2. crossovers based on context

3. crossovers based on semantics

Most of the early modifications to SC were based on syntax [98, 156, 108, 150, 79].

Koza [98] proposed a crossover that is 90% biased to function nodes and 10% biased to

terminal nodes as crossover points. Although this method encourages the exchange of more

genetic material (bigger subtrees) between the two participating individuals, it risks exac-

erbating bloat and thus making it more difficult to refine solutions in later generations [11].

O’Reilly and Oppacher [150] introduced a height-fair crossover, in which all subtree heights

in the two parents are recorded, and one subtree height is randomly selected. The crossover

sites in both parents are then restricted to that particular height. Ito et al. [79] presented

a similar depth-dependent crossover, aiming to preserve building blocks. In this method,

the probability of selecting a node is biased towards the root – nodes that are near the root

have a greater probability to be selected for crossover operation. The bias of the selection

probability is set by the user, and it is left unchanged during the search process. However

it is not robust: if it is not carefully set for a particular problem, the performance can be

very poor [80]. Poli and Langdon [156, 108] introduced one-point crossover and uniform

crossover. In these methods, when two parents are selected for crossover, they are aligned

based on their shapes. By aligning two parents, the common shape of these parents (start-

ing from the roots) can be determined. The crossover points are then randomly selected

from the nodes that lie in the common shape region. This kind of crossover has been shown

36



3.2. ALTERNATIVE OPERATORS IN GENETIC PROGRAMMING

especially effective on Boolean problems as it causes a bigger genetic material exchange in

earlier generations (in these generations the common shape is often very small) and yet can

tune the solutions in later generations (when the common shapes are bigger) [156, 108].

More recently, context has been used as extra information for the selection of crossover

points [3, 180, 179, 64, 116]. This class of crossover operators is perhaps closest to semantic

based crossovers. Altenberg [3] proposed a new crossover inspired by the observation that

in most animal species, breeding occurs more often than the number of surviving offsprings

might suggest. In other words, viable offspring are not always produced as a consequence

of breeding. This crossover is called a Soft Brood Selection (SBS). Two parents are selected

for crossover, then N random crossover operations are performed to generate a Brood of 2N

children. The children are evaluated and then sorted based on their fitness. The two best

children are copied to the next generation, the rest are discarded. This crossover was then

developed by Tackett [180, 179] by using a subset of fitness cases to figure out which children

in the Brood are added to the next generation. Hengpraprohm and Chongstitvatana [64]

proposed Selective Crossover, in which each subtree is assigned an impact value, reflecting

how well (or badly) the subtree affects the containing tree. The impact of a subtree is

determined by removing that subtree and replacing it with a random terminal node. The

change in fitness of the resultant individual is the impact value. The crossover operator is

performed by replacing the worst subtree of one parent with the best subtree of the other.

Majeed and Ryan [116] proposed Context Aware Crossover (CAC). In CAC, after the two

parents have been selected for crossover operation, one subtree is randomly chosen in the

first. This subtree is then crossed over into all possible locations in the second, then all

generated children are evaluated. The best child (based on fitness) is selected as the result,

and copied to the next generation. This process is then repeated for the second parent.

The advantage of this context-based crossover is the increased probability of producing

better children. On the other hand, it can be very time consuming to evaluate the context

of each subtree.

To the best of our knowledge, the only previous use of semantics in crossover are those

previously discussed in Section 3.1. They include Beadle and Johnson’s [11] Semantics
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Driven Crossover for Boolean problems, Krawiec and Lichocki’s [103] Approximating Ge-

ometric Crossover.

3.2.2 Alternative Mutations in Genetic Programming

Mutation is often seen as the secondary operator in GP. In Standard Mutation (SM) [98]

(called subtree mutation), an individual is selected by applying one of the selection operator.

A random subtree is then chosen in this selected individual (the root of this subtree is called

mutation point). After that, the chosen subtree is removed from the individual and a new

subtree is generated. This new subtree is then adjoined to the mutation point and the

individual is added to the next generation.

Although, Koza introduced mutation as the secondary operator after crossover, the

relative importance of GP crossover and mutation operators is still the subject of much

dispute [112, 192]. A number of studies compare the roles of crossover and mutation in

GP [112, 6, 113, 192]. This work suggests that the mutation operator is also important

for GP search and any improvement of the mutation operator could potentially lead to the

improvement of GP performance. Therefore, a number of variants of mutations have been

proposed. Like crossovers, these mutations can also be classified into three categories.

1. Syntax (structure) based mutations.

2. Context based mutations.

3. Semantic based mutations.

Most of the early modifications to standard subtree mutation was purely based on

syntax with an aim to reduce code bloat. An example of such modifications is to restrict

the standard subtree mutation so that the increase of the program/tree depth after being

mutated is no more than 15% of its current depth [94], or must be size-fair [107]. Another

mutation to reduce program size is the shrink mutation [5]. In this mutation, a random

selected subtree is replaced by a terminal. Angeline [5] used this mutation operator to help

38



3.2. ALTERNATIVE OPERATORS IN GENETIC PROGRAMMING

his examination into the sensitivity of the frequency of leaf selection in GP and he showed

that it also reduce individual size.

Further modifications of mutation on a syntax level include point mutation and hoist

mutation. In point mutation, a node is randomly selected and replaced by another node

which has the same number of children (the equivalent arity) [120]. This mutation is

inspired by a single bit flit mutation in Genetic Algorithms. This kind of mutation has

been used with different success when solving problems [98, 119]. In hoist mutation, a

subtree is randomly selected from an individual and this subtree is used to replace the

individual from which the subtree is copied [96]. However, this kind of mutation can

be highly destructive because of the loss of root functionality, so it could decrease the

performance of GP.

In terms of using context as extra information for doing mutation, Majeed and Ryan [117]

proposed Context Aware Mutation. This mutation is inspired from their previous work

on Context Aware Crossover [116]. In this mutation, a repository of potentially useful

subtrees is generated and stored. The mutation is done by randomly choosing a subtree

from the repository. This subtree is then used to replace for all possible subtrees in an

selected individuals. All generated children are fitness evaluated and the best child (based

on fitness) is copied to the next generation. The advantage of this mutation is that it in-

creases the constructive rate of mutation. However, it is very time consuming to evaluate

the context of all subtrees in an individual.

Using semantics to guide mutation has only recently been paid attention to. Beadle

and Johnson [12] proposed Semantically Driven Mutation (SDM), which is inspired from

their previous work in Semantically Driven Crossover [11]. SDM works by checking if the

semantics of the generated child is equivalent with its parent. If a repetition happens, the

mutation is repeated by randomly generating a new subtree and selecting a new mutation

point. SDM has been applied to Boolean and Articial Ant problems and the experimental

results showed it helps to improve GP performance.
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3.3 Diversity in Genetic Programming

It is widely admitted that maintaining high population diversity is very important in the

field of GP [60]. A higher diversity maintaining system often finds new solutions more

easily than one with lower diversity. The quick loss of diversity was suggested to mark the

premature beginning of a local search phase in GP [53, 157]. GP systems could be trapped

into local optima because of premature loss of diversity. When considering the diversity

in GP populations, two types of diversity should be distinguished [13]. The first type

is syntactic or genotypic diversity, that is, programs in the population being different in

terms of syntax. The second type is behavioural or phenotypic diversity, that is, diversity

of the behaviour with respect to a set of input-output values. In this thesis, we will regard

the second type as semantic diversity. We argues that the second type of diversity is at a

more general level than the first one as we will see in Chapter 4 that two programs that

are syntactically different, yet they can have identical semantics.

Controlling diversity syntactically has been considered since the early days of GP.

Much earlier work focused on the initialisation phase of GP. Koza [98] introduced the well-

known Ramped-Half-and-Half technique for creating the initial GP population to reduce

the occurrence of duplicated trees. O’Reilly and Oppacher [150] and Poli and Langdon [157]

tested various crossover operators to study their impact on syntactic diversity. They showed

that standard crossover often leads to loss of diversity, hence is not an ideal operator.

Quite early, Rosca [167] proposed measuring semantic diversity using phenotype en-

tropy. Langdon [107] used (explicit) fitness sharing to preserve diversity. It clusters the

population into a number of groups, based on their similarity with respect to a fitness-based

metric. Members of the same group are penalized by having to share fitness, while isolated

individuals retain the full reward. McKay [121] used implicit fitness sharing, in which the

reward for each fitness case is shared by all individuals that give the same output.

Recently, semantic diversity has received more attention from GP researchers. Burke et

al. [20] conducted an analysis of different diversity measures to fitness. The experimental

results showed that there is a strong correlation of entropy and edit distance with the change
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of fitness. Gustafson et al. [60] examined the ability of sampling both unique structures

and behaviours in GP. The behaviour sampling results helped to explain previous diversity

research and suggested new ways to improve search. Similarly, Looks [111] proposed a

new method for sampling semantic-unique individuals in GP. The idea is to generate a

number of unique minimal programs, and the population is then generated combining

several random programs to these minimal programs. The author argued that it helps to

increase the behavioral diversity of the population and leads to significant improvements

in the GP performance. The idea of sampling semantically unique individuals in the

initialisation phase was then enforced by Beadle and Johnson [13]. Here, the authors

used the Ramped-Half-and-Half technique coupled with a semantic equivalent checking

procedure using ROBDDs. An individual generated by a Ramped-Half-and-Half technique

is semantically compared to all generated individuals. If it is equivalent with one of the

previously generated individuals, the individual is discarded from the population. This

process is repeated until there is enough desired individuals in the population.

With respect to the semantic diversity of crossover operators, Gustafson et al. [62]

proposed a new scheme for selecting parents in crossover that is called No Same Mate

(NSM) selection. The idea behinds NSM selection is to prevent the crossing-over of two

individuals with the same fitness. It was inspired from the author’s observation that two

individuals with identical fitness likely generate two children with unchanged fitness. The

experimental results on the symbolic regression problems were positive. Besides, there are

only those discussed in the previous section. They include Beadle and Johnson’s [11] Se-

mantics Driven Crossover for Boolean problems, and their [12] Semantic Driven Mutation

for Boolean and Santa Fe Ant problems. Overall, promoting diversity especially seman-

tic diversity is important and often leads to the benefit results. It should, however, be

noted that, in some problems, maintaining high diversity may not be enough to guarantee

improvements in GP performance [19].
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3.4 Locality in Genetic Programming

In the field of GP in particular and Evolutionary Computation (EC) in general, locality

(small change in genotype corresponding to small change in phenotype) plays a crucial

role in the efficiency of an algorithm [57, 69, 169, 171]. Intuitively, maintaining diversity

should be accompanied with improving locality. However, it should be noted that most of

the previous work on locality in GP (such as [69]) only focused on the syntactic aspect of

GP genotype-phenotype mapping. Semantic locality has hardly been investigated.

Rothlauf is one of the early advocators for locality in representation for Evolutionary

Algorithms (EAs) [171]. To determine the degree of locality of a genoptype-phenotype map-

ping, two metrics defined on both genotypic and phenotypic spaces are needed. Rothlauf

distinguished two types of locality of a representation: low and high locality. A repre-

sentation is of high locality if a small change in genotype corresponds to a small change

in phenotype. Conversely, the representation is of low locality. The author also men-

tioned that a representation that has high locality is necessary for an efficient evolutionary

search [171].

Although, a representation with high locality is strongly desirable for the search ability

of the algorithms, often, designing such a representation is not a trivial task. Most of

current GP representations are of low locality, meaning that a small syntactic change can

cause a big or even uncontrollable change in phenotypes. For instance, Rothlauf and Oet-

zel [170] showed that a GP system with genotype-to-phenotype mapping as Grammatical

Evolution (GE) [144] could have low locality. To the best of our knowledge, there has only

been a GP representation given in [69] which was formally proven to be of a high locality

but just in terms of syntax. In this thesis, we extend the concept of locality of a repre-

sentation of Rothlauf in [171] to the locality of a genetic search operator. We consider the

locality in terms of semantic locality rather than syntactic locality as in the previous work

in the literature. Moreover, instead of using two discrete values for measuring low and high

locality [171], semantic locality in this thesis has a continuous domain of values. We also

demonstrate that by using a semantic-tree based representation, the design of crossover
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operators that achieve higher semantic locality than standard crossover is possible and this

leads to an overall improvement in GP performance.

3.5 Conclusion

This chapter has presented a review of related work to the research in this thesis. Firstly,

the methods in which semantics has been used in GP is surveyed. These methods can

be divided into three categories: Using grammars, using formal methods and extracting

semantics based on GP tree based representation. Then, different operators in GP were

discussed. These operators (crossovers and mutations) are grouped into three strands:

operators based on syntax, operators based on context, and operators based on semantics.

Last, the state of art of diversity and locality research in GP is highlighted. The next

chapter will present novel methods that promote semantic diversity and semantic locality

of operators.
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Chapter 4

Methods

This chapter presents the foundation of the thesis, proposing a novel way to measure

semantics of a subtree by sampling a number of points from a problem domain. A semantic

distance and two semantic relationships are defined based on this notion of semantics. Last,

a number of operators to promote semantic diversity and operators to improve semantic

locality are presented. All will be detailed in the following sections.

4.1 Measuring Semantics

This section proposes a new way to measure the semantics of a subtree. This semantics

is called Sampling Semantics. Sampling Semantics of a subtree is estimated based on

sampling a number of points from the problem domain. Following this, a semantic distance

between two subtrees and two semantic relationships are defined.

4.1.1 Sampling Semantics

Semantics is a broad concept that has been studied in a number of different fields including

Natural Language [2], Psychology [27] and Computer Science [142] among others. While

the precise meaning varies from field to field, semantics is generally contrasted with syntax:

syntax refers to the surface form of an expression, while the semantics refers to its deeper
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meaning in an external World. In computer science, this external World is generally

provided by the computational model.

In Computer Science, semantics can be informally defined as the meaning of syntacti-

cally correct programs or computable functions. As a simple example, consider two tiny

program fragments shown in Equations 4.1 and 4.2. Syntactically, the first statement of

each is identical, but the second statements differ. Semantically, however, they are identi-

cal: both programs compute the same result, i.e. have the same semantics.

x = 1; y = x+ x; (4.1)

x = 1; y = 2 ∗ x; (4.2)

Although, the exact definition of semantics for GP is far from obvious, the semantics

of an individual is often understood as the behavior of that individual with respect to

a set of input values. However the possibilities for computing such semantics depends

on the domain. For real valued problems, both canonical-form methods corresponding to

Beadle and Johnson’s [11] Boolean ROBDDs, and complete enumeration as in McPhee’s

approach [123], are infeasible. Instead, we propose a simple way to estimate the semantics

of subtrees, in which the semantics is approximated by evaluating the subtree on a pre-

specified set of points in the problem domain. We call this Sampling Semantics. Formally,

the Sampling Semantics of any tree (subtree) is defined as follows:

Definition 1 Let F be a function expressed by a tree (subtree) T on a domain D. Let P

be a set of points from domain D, P = {p1, p2, ...pN}. Then the Sampling Semantics of T

on P in domain D is the set S = {s1, s2, ..., sN} where si = F (pi), i = 1, 2, .., N . 2

For example, suppose that we are considering the interval [0,1] and using a set of three

points, P = {0, 0.5, 1}, for evaluating semantics. Then, the Sampling Semantics of subtree

St in Figure 4.1 on P is the set of three values SS = {sin(1) − 0, sin(1) − 0.5, sin(1) −
1}={0.84, 0.34,−0.16}.
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Fig. 4.1: Tree with subtree (for illustrating Sampling Semantics).

The value of N depends on the problem. If it is too small, the approximate semantics

might be too coarse-grained and not sufficiently accurate. If N is too big, the approximate

semantics might be more accurate, but more time consuming to measure. The choice of

P is also important. If the members of P are too closely related to the GP function set

(for example, π for trigonometric functions, or e for exponential/logarithmic functions),

then the semantics might be misleading. For this reason, choosing them randomly may be

the best solution. In this thesis, the number of points for evaluating Sampling Semantics

is often set as the number of fitness cases for the problem, and in the next chapter, we

choose the set of points P uniformly randomly from the problem domain. It should be

noted that since Sampling Semantics is defined for any subtree, it can be used in particular

to estimate the semantics of the whole tree. We will use it in this way in the examples in

later sections.

4.1.2 Semantic Distance

Based on the Sampling Semantics (SS), we define a Sampling Semantics Distance between

two subtrees. In our earlier work [130], we defined the Sampling Semantics Distance as

the sum of the absolute differences for all values of SS. That is, let P = {p1, p2, ..., pN}
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and Q = {q1, q2, ..., qN} be the SS of Subtree1(St1) and Subtree2(St2) on the same set

of sample points, then the Sampling Semantics Distance (SSD) between St1 and St2 was

defined as:

SSD(St1, St2) = |p1 − q1| + |p2 − q2| + .... + |pN − qN | (4.3)

While the experiments in [130] showed that this SSD is beneficial, it has the undoubted

weakness that the value of the SSD depends on the number of SS points (N). To reduce this

drawback, we now use the mean of the absolute differences as the SSD between subtrees.

In other word, the SSD between St1 and St2 is defined as:

SSD(St1, St2) =
|p1 − q1| + |p2 − q2| + .... + |pN − qN |

N
(4.4)

4.1.3 Semantic Relationships

Based on Sampling Semantics Distance, we can define two semantic relationships between

subtrees. The first semantic relationship is Semantic Equivalence (SE). Two subtrees are

Semantically Equivalent on a domain if their SSD on the same sample set of points is

sufficiently similar (subject to a parameter called semantic sensitivity) – formally:

SE(St1, St2) = if SSD(St1, St2) < ǫ then true

else false

ǫ is the predefined semantic sensitivity. This subtree semantic relationship is similar to

the metric we used in [130], and was inspired by the work of Mori et al. [127] on GP

simplification. The experimental results show that this semantic relationship benefits the

GP search process [130, 127].
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The second relationship is known as Semantic Similarity.1 The intuition behind seman-

tic similarity is that exchange of subtrees is most likely to be beneficial if the two subtrees

are not semantically identical, but also not too semantically dissimilar. Two subtrees St1

and St2 are semantically similar on a domain if their SSD on the same sample set lies

within a positive interval – formally:

SSi(St1, St2) = if α < SSD(St1, St2) < β then true

else false

here α and β are two predefined constants, known as the lower and the upper bounds

of semantic sensitivity, respectively. Conceivably, the best values for the lower and the

upper bound of semantic sensitivity might be problem dependent. However we suspect

that for most symbolic regression problems, there is a wide range of appropriate values

(see Chapter 5, where we study various ranges of both the lower and the upper bound of

semantic sensitivity).

We note that there is some biological motivation for this approach. In mammals, the

Major Histocompatibility Complex (MHC) genes (on chromosome 6 in humans) play a

major role in the immune response, and thus are a key part of our defences against disease,

and subject to strong and rapidly-changing evolutionary pressures. However they also play

an important role both in mate selection (partners in the same species, but with dissimilar

MHC genes, are preferred) [21], and in speciation, because differences in MHC that are

too big may cause an immune response from the mother to the foetus [43]. Thus in this

case at least, biology also appears to favour crossovers with semantic similarity lying in a

specific range.

We conclude this section by highlighting some important differences between our se-

1We are using similarity here in its ordinary English meaning, where A is similar to B implies that
A is not the same as B, as opposed to a common mathematical convention in which similarity includes
equivalence.
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Algorithm 1: Semantic Aware Crossover

select Parent 1 P1;
select Parent 2 P2;
choose at random crossover points at Subtree1 in P1;
choose at random crossover points at Subtree2 in P2;
generate a number of random points (P ) on the problem domain;
calculate the SSD between Subtree1 and Subtree2 on P
if Subtree1 is not semantically equivalent with Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
choose at random crossover points at Subtree1 in P1;
choose at random crossover points at Subtree2 in P2;
execute crossover;
return true;

mantic relations and fitness. First, for fitness calculation we need to know the fitness cases,

and fitness reflects how good (close to the target function) an individual is. In measuring

SS, we do not need to know the fitness cases (of course semantics can be measured using

the fitness cases, but different cases can also be used). Second, fitness is measured for the

whole individual, while SS is mainly used to encapsulate the semantics of subtrees. The

last and most important difference is the objective: fitness is used for individual selection

while SS is used to guide operator.

It is also noted that the semantic definition in Krawiec and Lichocki [103] is a particular

case of Sampling Semantics, in which the set of sample points is the same as the set of

fitness cases, and the semantics of the whole tree (a particular subtree) is used in crossover.

4.2 Semantic based Crossovers

Given our new definition of semantics and measures to compare semantics of subtrees, in

this section we present novel semantic based crossovers. These crossovers address two main

objectives: promoting semantic diversity and improving semantic locality.
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4.2.1 Crossover for Promoting Semantic Diversity

As discussed in the previous chapter, promoting semantic diversity plays an important

role in the efficiency of the GP search. However, most of the previous work only focused

on the GP initialisation phase except two semantic based crossover approaches: Semantic

Driven Crossover [86] and No Same Mate selection [62]. In this subsection we give a brief

overview of our novel crossover operator for promoting semantic diversity called Semantic

Aware Crossover (SAC) [130].

SAC is motivated by the observation that GP crossover may exchange semantically

equivalent subtrees, resulting in children that are identical to their parents. Consider

two selected parents P1 and P2 shown at the top of Figure 4.2. P1 has the semantics
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4.2. SEMANTIC BASED CROSSOVERS

Algorithm 2: Semantic Similarity based Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
generate a number of random points (P ) on the problem domain;
calculate the SSD between Subtree1 and Subtree2 on P
if Subtree1 is semantically similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

of sin(X) + 3X and P2 has the semantics of 4X. Subtree1 of P1 and Subtree2 of P2 are

semantically equivalent subtrees, both having semantics of 2X, even though their structures

are totally different. When these two subtrees are selected for crossover, the children are

as shown in Figure 4.3. Obviously, these two children have different syntax (structure)

from, but identical semantics to their parents. C1 has semantics of sin(X) + 3X and C2

has semantics of 4X. This leaves the fitness of the children unchanged after crossover.

SAC prevents the swapping of semantically equivalent subtrees in crossover. In other

words, each time two subtrees are chosen for crossover, a semantic check (using Semantic

Equivalence) is performed to determine if they are equivalent. If they are, the crossover

is aborted and instead performed on two other randomly chosen subtrees. The details of

SAC’s algorithm is given in Algorithm 1.
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4.2. SEMANTIC BASED CROSSOVERS

4.2.2 Crossover for Improving Semantic Locality

Previous research [69, 171] showed the crucial role of locality (of representation and oper-

ators) in the field of EC in general and GP in particular. However, they purely focused

on the locality in terms of the syntactical aspect of representations and operators. In this

subsection, we introduce a new crossover, Semantic Similarity based Crossover (SSC), that

achieves higher locality in terms of semantics than standard crossover.

The semantic based crossover to improve semantic locality, SSC, is an extension of SAC

in two ways. First, when two subtrees are selected for crossover, their semantic similarity,

rather than semantic equivalence, is checked. Since semantic similarity is usually more

difficult to satisfy than semantic equivalence, repeated failures may occur. Therefore, SSC

uses multiple trials to find semantically similar pairs, only reverting to random selection

after passing a bound on the number of trials. The number of trials to find a semantically

similar pair is called Max Trial (MT). Algorithm 2 shows how SSC works in detail.

In our experiments, we set MT to several different values to see how these values affect

SSC. The motivation for SSC is to encourage exchange of semantically different, but not

substantially different, subtrees. In other word, while forcing a change in the semantics of

the individuals in the population, we want to keep this change bounded and small. We

anticipate that a smoother change in semantics of the individuals will result, and might

lead to a smoother change in fitness of the individuals after crossover.

For instance, consider two parents selected for crossover in Figure 4.4. Assume that we

measure the SS of a tree on 10 points, P = {1, 2, ..., 10}. Then the SS of parents P1, P2

and of Subtree1 (St1), Subtree2 (St2), and Subtree3 (St3) are as shown in Table 4.1 and

Table 4.2. It can be seen from these tables that St1 and St2 are semantically similar (using

α=10−3, β=0.4) as their SSD is 0.09 and St1 and St3 are semantically dissimilar since the

SSD is 4.5. If crossover is performed by swapping two semantically similar subtrees (St1

and St2), the generated children are show in Figure 4.5. The SS of the two children (C1,

C2) are shown in Table 4.1. We can also measure the SSD between C1 and P1 and between

C2 and P2 (as shown in columns C1 −P1 and C2 −P2 in Table 4.1). Evidently, the change
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Tab. 4.1: Sampling semantics of parents, subtrees and children when swapping two similar
subtrees.

Points P1 P2 St1 St2 St1-St2 C1 C2 C1-P1 C2-P2

1 4 6.3 2 2.1 0.1 4.2 6 0.2 0.3
2 12 18.6 3 3.1 0.1 12.4 18 0.4 0.6
3 24 36.9 4 4.1 0.1 24.6 36 0.6 0.9
4 40 61.2 5 5.1 0.1 40.8 61 0.8 1.2
5 60 91.5 6 6.1 0.1 61.0 91 1.0 1.5
6 84 127.8 7 7.1 0.1 85.2 127 1.2 1.8
7 112 170.1 8 8.1 0.1 113.4 170 1.4 2.1
8 144 218.4 9 9.1 0.1 145.6 218 1.6 2.4
9 180 272.7 10 10.1 0.1 181.8 272 1.8 2.7
10 220 333.0 11 11.1 0.1 222.0 333 2.0 3.0

SSD 0.09 1.1 1.65

Tab. 4.2: Sampling semantics of parents, subtrees and children when swapping two dis-
similar subtrees.

Points P1 P2 St1 St3 St1-St3 C3 C4 C3-P1 C4-P2

1 4 6.3 2 2 0 6 4.2 2 2.1
2 12 18.6 3 4 1 24 9.3 12 9.3
3 24 36.9 4 6 2 54 16.4 30 20.5
4 40 61.2 5 8 3 96 25.5 56 35.7
5 60 91.5 6 10 4 150 36.6 90 54.9
6 84 127.8 7 12 5 216 49.7 132 78.1
7 112 170.1 8 14 6 294 64.8 182 105.3
8 144 218.4 9 16 7 384 81.8 240 136.5
9 180 272.7 10 18 8 486 101.0 306 171.7
10 220 333.0 11 20 9 600 122.1 380 201.0

TSD 4.5 143 82.5

54



4.3. SEMANTIC BASED MUTATIONS

Algorithm 3: Semantic Aware Mutation

select Parent 1 P ;
choose at random mutation points at Subtree1 in P ;
generate at random a subtree Subtree2;
generate a number of random points (Q) on the problem domain;
calculate the SSD between Subtree1 and Subtree2 on Q
if Subtree1 is not semantically equivalent with Subtree2 then

execute mutation by replacing Subtree1 with Subtree2;
add the child to the new population;
return true;

else
choose at random mutation points at Subtree1 in P ;
generate at random a subtree Subtree2;
execute mutation by replacing Subtree1 with Subtree2;
add the child to the new population;
return true;

of semantics through crossover is quite small (1.1 with C1 and 1.65 with C2). This, we

hope, will help to make a smoother change of fitness.

By contrast, if crossover is conducted by swapping two dissimilar subtrees (St1 and

St3), the children are shown in Figure 4.6. The results of the calculation of the SS of

the two children (C3 and C4) and the semantic distances between these children and their

parents are shown in Table 4.2. It can be seen from this table that the change in semantics

between parents and children is rather large (143 and 82.5 for C3 and C4, respectively).

This, we anticipate, will lead to an abrupt change in fitness after crossover.

4.3 Semantic based Mutations

This section presents two new semantic based mutations. These mutations also address

two main objectives: promoting semantic diversity and improving semantic locality.
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Algorithm 4: Semantic Similarity based Mutation

select a ParentP ;
Count=0;
while Count<Max Trial do

choose a random mutation point Subtree1 in P ;
generate at random a subtree Subtree2;
generate a number of random points (Q) on the problem domain;
calculate the SSD between Subtree1 and Subtree2 on Q
if Subtree1 is semantically similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

choose a random mutation point Subtree1 in P ;
generate at random a subtree Subtree2;
execute crossover;
return true;

4.3.1 Mutation for Promoting Semantic Diversity

The mutation for promoting semantic diversity is inspired from the crossover for promoting

semantic diversity, SAC. This mutation is called Semantic Aware Mutation (SAM). SAM is

performed in a similar way with SAC, but adapted to constrain the semantics in mutation

rather than in crossover. In other words, a parent is selected for mutation by applying

one of the selection approaches. A mutation point is randomly chosen in the parent and

a new subtree is stochastically generated. Then the semantic equivalence is checked to

determine if these two subtrees (replaced and replacing subtrees in the mutation operation)

are equivalent. If they are not semantically equivalent, the mutation is performed by simply

replacing the subtree at the mutation point with the new generated subtree. On the other

hand, if they are equivalent then, the mutation is redone by randomly selecting another

mutation point and stochastically generating a new subtree. Algorithm 3 shows how SAM

works in detail.
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4.3.2 Mutation for Improving Semantic Locality

The mutation for improving semantic locality is inspired from the crossover for improving

semantic locality, SSC. This mutation is called Semantic Similarity-based Mutation (SSM).

SSM is implemented in the similar to SSC, but adapted to constrain the semantics in

mutation rather than in crossover. Similar to SAM, a parent is selected for mutation

by applying one of the selection approaches. A mutation point is randomly chosen in

the parent and a new subtree is stochastically generated. Then the semantic similarity is

checked to determine if these two subtrees (replaced and replacing subtrees in the mutation

operation) are semantically similar. If they are similar, mutation is performed by simply

replacing the subtree at the mutation point with the new generated subtree. If they are

not semantically similar, SSM repeats randomly selecting another mutation point and

stochastically generating a new subtree. This process is continued until we can find a

semantically similar subtree pair or pass a number of trials. In this cases, SSM is executed

by reverting to standard mutation. Algorithm 4 shows how SSM works in detail.

4.4 Conclusion

This chapter presented the foundation for the thesis. A method that measured the se-

mantics of a subtree in GP was proposed. This semantics of a subtree is called Sampling

Semantics. Sampling Semantics of a subtree is measured by evaluating the subtree on a

number of points sampled from a problem domain. From this, a semantic distance and

two semantic relationships are defined. Next, a number of semantic based operators were

introduced. These operators includes crossover for promoting semantic diversity, crossover

for improving semantic locality, mutation to promote semantic diversity and mutation to

improve semantic locality. The impact of these semantic based operators on GP behaviour

will be investigated in the following chapter.
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Chapter 5

Semantic based Operators:

Comparative Results

The previous chapter proposed some novel semantic based operators. This chapter presents

comparative results of semantic based operators and standard operators. The experiment

settings are described first. After that, the detailed experimental results of the semantic

based crossovers and standard crossover are given. Next are the comparison between

semantic based mutations and standard mutation. Then, we combine both semantic based

crossover and semantic based mutation and contrast them with a GP system using standard

crossover and standard mutation. Finally, an analysis of the sensitivity of the parameters

of these semantic based operators is discussed. The results in this chapter have been

published in [130, 132, 131, 140].

5.1 Experimental Settings

This section presents a family of problems that will be used for testing the semantic based

operators proposed in the previous chapter. The parameter settings for the GP systems in

our experiments are also given.
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Tab. 5.1: Symbolic Regression Functions.

Functions Fitcases

F1 = x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F2 = x5 + x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F3 = sin(x2)cos(x) − 1 20 random points ⊆ [-1,1]
F4 = sin(x) + sin(x+ x2) 20 random points ⊆ [-1,1]
F5 = log(x+ 1) + log(x2 + 1) 20 random points ⊆ [0,2]
F6 =

√
x 20 random points ⊆ [0,4]

F7 = sin(x) + sin(y2) 100 random points ⊆ [0,1]x[0,1]
F8 = 2sin(x)cos(y) 100 random points ⊆ [0,1]x[0,1]

5.1.1 Symbolic Regression Problems

To test the performance of semantic based operators in comparison to the standard GP op-

erators, eight real valued symbolic regression problems are employed as a test suite. These

problems are grouped into three categories: learning polynomial functions; trigonometric,

logarithm and square-root functions; and bivariate functions. Most of them are taken from

the works of Hoai et al. [68], Keijzer [92].

The task of training GP to learn a function in symbolic form is to teach GP to search

a solution model that fits a given finite sample of data. This finite sample of data is called

the training set. The training sets of the functions in the test suite include 20 random

points for single variable functions and 100 random points for bivariate functions from the

intervals of interest. These functions and their training sets are shown in Table 5.1

5.1.2 Parameter Settings

In all systems, GP with standard operators and GP with semantic based operators were

tried on the eight real valued symbolic regression problems above. All systems used the

same random number generators with the same set of seeds and were run on an identical

platform. Parameter settings for all systems are typical settings that have been used in

previous work [98, 68]. They are listed as follows: population size - POPSIZE=500, maxi-

mal number of generations - MAXGEN=50, selection mechanism = tournament selection,
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Tab. 5.2: Run and Evolutionary Parameter Values.

Parameters Value

Population size 500
Generation 50
Selection Tournament
Tournament size 3
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected versions),

sin, cos, exp, log (protected versions)
Terminals X, 1 for single variable problems,

and X,Y for bivariable problems
Raw fitness mean of absolute error on all fitness cases
Hit when an individual has an

absolute error < 0.01 on a fitness case
Successful run when an individual scores

hits on all fitness cases
Trials per treatment 100 independent runs for each value

tournament size of selection = 3, the max depth of initial trees - MAXINITDEPTH = 6,

the max depth of trees over the course of evolution - MAXDEPTH = 15, the max depth

of mutation tree - MAXMUTDEPTH = 5. The initialisation method used for GP was

ramped-half-and-half.

The terminal set includes two sets. The first set is {X, 1} for single variable functions

and the second one contains {X, Y} for bivariate functions. The function set are F =

{+,−, ∗, /, sin, cos, exp, log}. The function set can be divided into three groups. The first

group contains arithmetic operators: addition, subtraction, multiplication, and division.

The division operator is protected in the sense that if the denominator is 0, it will return

1. The second group has two base trigonometric functions sine and cosine. The third

group has the two transcendent functions, namely, the exponential function and logarithm

function. The logarithm function is protected by taking logarithm of the absolute value of

the input unless the input value is 0, in which it returns 0.

60



5.2. A COMPARATIVE RESULT OF CROSSOVERS

The raw fitness function is the mean of the absolute error over all fitness cases. A hit

is counted when an individual has an absolute error less than 0.01 on a fitness case and a

run is considered as successful when some individual hits (i.e. absolute error <0.01) every

fitness case. For each set of parameter settings, 100 independent runs were performed. The

basic parameters settings are given in Table 5.2. Notice that the crossover and mutation

rates are not fixed. They will be set up according to the set of experiments.

5.2 A Comparative Result of Crossovers

This section presents the results from a comparison of GP with semantic based crossovers

and standard crossover. The experiment settings for GP systems are given in Table 5.2.

The crossover rate was set at 0.9 and the mutation rate was 0.05. Although these exper-

iments purely concern crossover, we have retained mutation at a low rate with an aim to

study crossover in the context of a normal GP run.

The semantic sensitivities for Semantic Aware Crossover (SAC) were set as 10−X with

X=2, 3, 4. They are values for the good performance of SAC. It forms three tested

configurations of SAC called as SACX with X=2, 3, 4. For Semantic Similarity based

Crossover (SSC), the lower bound of semantic sensitivity is fixed at 10−3, and three values

of the upper bound: 0.2, 0.3, and 0.4 are used. The value of Max Trial of SSC is 12.

This value was calibrated from our experiments as one of the best values for SSC. Three

experiment configurations of SSC will be called SSCX with X = 02, 03, 04 respectively.

5.2.1 Results

For all crossovers, two classic performance metrics, namely mean best fitness and the

number of successful runs are recorded. The results of the number of successful runs (out

of 100 runs) of these crossovers are presented in Table 5.3. Table 5.4 shows the best fitness

found, averaged over all 100 runs of each GP system. We tested the statistical significance

of the results in Table 5.4 using a Wilcoxon signed-rank test with a confidence level of

61



5.2. A COMPARATIVE RESULT OF CROSSOVERS

Tab. 5.3: Number of successful runs out of 100 runs of three crossovers.

Crossovers F1 F2 F3 F4 F5 F6 F7 F8

SC 12 4 40 3 20 17 31 18

SAC2 18 5 42 9 22 18 29 16
SAC3 13 6 45 9 26 19 25 17
SAC4 12 6 46 6 23 19 25 16

SSC02 20 9 84 26 55 34 77 42
SSC03 26 8 83 18 53 40 66 42
SSC04 25 15 71 22 55 50 43 26

Tab. 5.4: Mean best fitness of three crossovers. Note that the values are scaled by 102.

Crossovers F1 F2 F3 F4 F5 F6 F7 F8

SC 1.54 2.06 0.69 1.43 0.86 1.28 1.68 1.21

SAC2 1.32 1.73 0.67 1.41 0.84 1.18 1.66 1.41
SAC3 1.49 1.75 0.66 1.29 0.82 1.24 1.87 1.33
SAC4 1.45 1.74 0.66 1.26 0.83 1.26 1.87 1.35

SSC02 0.95 1.27 0.21 0.74 0.39 0.61 0.43 0.62
SSC03 0.87 1.06 0.19 0.80 0.39 0.66 0.50 0.64
SSC04 0.94 1.05 0.31 0.83 0.35 0.59 0.85 0.80

95%. In Table 5.4, if a run is significantly better than Standard Crossover (SC), its result

is printed bold face.

5.2.2 Discussion of Crossover Results

We first look at the effect of promoting semantic diversity (via comparison between SC

and SAC). Unsurprisingly, promoting semantic diversity brings some positive effects to

the performance of GP. This is confirmed by the results in both Table 5.3 and Table 5.4.

It can be seen from Table 5.3 that the crossover, SAC, that promotes semantic diversity

found solutions more easily on some problems. This is reflected by a greater number of

solutions found by semantic based crossover for enhancing diversity over SC. However it

seems that the positive effects of SAC is not universal. SAC gives no improvement on

bivariate functions (F7 and F8).
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Tab. 5.5: Average time of a run in milliseconds of three crossovers.

Crossovers F1 F2 F3 F4 F5 F6 F7 F8

SC 3042 3092 3112 4022 3428 3646 10180 10128

SAC2 3551 3428 3316 4260 3505 3845 11557 12234
SAC3 3403 3373 3265 4158 3435 3778 11950 11874
SAC4 3526 3483 3374 4165 3474 3665 11399 11936

SSC02 3388 3382 3649 4697 4470 4106 11252 12466
SSC03 3802 3645 3937 4935 4410 4356 12709 12879
SSC04 3899 3964 3713 4668 4690 4542 12621 12775

The mean best fitnesses in Table 5.4 are consistent with this, in that promoting semantic

diversity brings a positive influence to the quality of solutions in some situations. The mean

best fitness of the crossover which promotes semantic diversity is usually smaller than that

of SC. However, a few of the differences are significant. These results are not entirely

surprising as we will see in the latter chapter that even SC can achieve quite high semantic

diversity on these real valued problems. Usually, from 60% to 70% of SC operations actually

change the semantics between parents and children. This is much higher than for Boolean

problems, where 60% to 70% of SC crossovers do not create different semantics in the

children from the parents [123]. Generally, promoting semantic diversity of crossover leads

to a positive effect on the performance of GP. It is generally not, however, a substantial or

consistent contributor to increased performance on real valued problems.

On the other hand, improving semantic locality helps to further enhance the perfor-

mance of GP in comparison with semantic diversity promotion alone. The results in both

tables show how effective the semantic locality of crossover is at contributing to GP per-

formance. It can be observed from Table 5.3 that the version of crossover that keeps a

semantically small change (i.e. SSC) leads to further improvements of the GP system in

comparison with the version that only promotes semantic diversity. In general, SSC is

much better than both SC and the crossover for promoting semantic diversity, SAC, in

terms of finding solutions.

Table 5.4 is consistent with Table 5.3, as it confirms that the performance of GP can be
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enhanced by improving locality in crossover. It can be seen that controlling locality in SSC

leads to a consistently significant improvement over SC in comparison with approaches that

just promote diversity such as SAC. The Wilcoxon signed-rank test results show that only

two cases of the improvement of SAC over SC is significant, by contrast, SSC is always

significantly better than SC on all problems with all tested values of the upper bound of

semantic sensitivity.

However, the advantage of semantic based crossovers comes at a cost, it takes time to

check semantics before crossing over. To estimate the extra time of the semantic checking

of these crossovers, we measured their running time. The average time of a run of these

operators compared to SC is shown in Table 5.5. It can be seen from this table that the

average time of a run of both semantic based crossovers, SAC and SSC, are often higher

than of SC. It is understandable since both these crossovers need extra time to evaluate

semantics of subtrees. However, the overhead for both SAC and SSC is not large. The

table also shows that the average running time of SSC is only slightly higher than that of

SAC although SSC repeats more trial times to select two semantic similar subtrees. The

results in Chapter 7 will show that while promoting semantic diversity of a crossover often

leads to slightly more bloat than standard crossover, improving semantic locality often

helps to reduce code bloat. Therefore, SSC does not run much more slowly than SAC

eventhough it needs more semantic checking. Moreover, the next chapter will propose an

improvement of SSC that helps to speed up semantic checking and it helps SSC to run at

the same speed as SC.

In conclusion, the results in this section demonstrate that promoting semantic diversity

is necessary but improving semantic locality is even more important. It is strongly believed

that enhancing semantical diversity should always be combined with improving semantic

locality to gain further improvements of the performance of GP.
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Tab. 5.6: Number of successful runs out of 100 runs of three mutations.

Mutations F1 F2 F3 F4 F5 F6 F7 F8

SM 3 0 14 2 9 4 9 4

SAM2 5 2 19 5 12 5 9 4
SAM3 2 0 20 2 11 3 7 4
SAM4 0 0 15 2 11 5 8 4

SSM02 5 2 50 9 22 15 49 12
SSM03 9 1 59 9 19 9 49 16
SSM04 10 3 51 5 18 14 41 15

5.3 A Comparative Result of Mutation

The previous section shows that semantic based crossovers, especially SSC, often help to

improve the performance of GP compared to standard crossover. This raises the question

if semantics also plays a similarly important role with mutation. This section presents the

comparative results between semantic based mutations and standard mutation. The basic

experiment settings for GP systems are given in Table 5.2. The crossover rate was set

at 0.05 and the mutation rate was set at 0.9. The configuration and naming convention

for Semantic Aware Mutation (SAM) and Semantic Similarity base Mutation (SSM) are

similar to SAC and SSC in the previous section, respectively.

5.3.1 Results

Similar to crossover, for all mutations, two classic performance metrics, namely mean best

fitness and the number of successful runs are recorded. The results of the number of

successful runs (out of 100 runs) and the average of the best fitness found are shown in

Table 5.6 and Table 5.7, respectively. We also tested the statistical significance of the

results in Table 5.7 using a Wilcoxon signed-rank test with a confidence level of 95% and

if a run is significantly better than SM, its result is printed bold face.
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Tab. 5.7: Mean best fitness of three mutations. Note that the values are scaled by 102.

Mutations F1 F2 F3 F4 F5 F6 F7 F8

SM 2.14 2.50 0.95 1.60 1.06 1.56 2.99 2.07

SAM2 2.20 2.68 0.87 1.59 1.04 1.56 2.93 2.24
SAM3 2.16 2.47 0.88 1.54 1.05 1.56 2.88 2.00
SAM4 2.21 2.68 1.05 1.47 1.04 1.49 2.91 2.05

SSM02 1.37 1.73 0.45 1.07 0.74 1.20 1.30 1.39
SSM03 1.31 1.54 0.40 1.02 0.75 1.17 0.97 0.96
SSM04 1.13 1.36 0.42 1.16 0.72 1.16 1.03 1.01

Tab. 5.8: Average time of a run in milliseconds of three mutations.

Mutations F1 F2 F3 F4 F5 F6 F7 F8

SM 5443 6319 6354 6189 5312 5492 16786 16493

SAM2 5889 6705 6847 6528 5574 5714 18284 18109
SAM3 5783 6773 6676 6536 5656 5847 17031 18756
SAM4 5870 6846 6789 6678 7011 5962 18226 17821

SSM02 8324 8658 8389 8921 8267 8732 21354 22342
SSM02 8427 8781 8478 8965 8221 8789 22313 21324
SSM04 8610 8493 8382 9396 8556 8623 20663 20120

5.3.2 Discussion of Mutation Results

It can be seen that the results of semantic based mutations are similar to crossover, mean-

ing that promoting semantic diversity of mutation brings limited positive effects to the

performance of GP while improving semantic locality of mutation helps to further enhance

the performance of GP. Table 5.6 shows that the number of successful runs of SAM is often

greater than SM and Table 5.7 shows that SAM often found solutions with better quality.

However, the signed-rank test results show none of the improvements of SAM over SM are

significant.

Conversely, it can be observed from Table 5.6 that the version of mutations that keeps

a semantically small change leads to further improvements of the GP system in comparison

with the version that purely promotes semantic diversity. In general, SSM is much better

than both SM and SAM, in terms of finding solutions. Table 5.7 is consistent with this,
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it again confirms that the performance of GP can be enhanced by improving locality in

mutations. It can be seen that the mean best fitness of SSM is always smaller than

for both SM and SAM. The Wilcoxon signed-rank test results show that SSM is always

significantly better than SM on all problems with all tested values of the upper bound of

semantic sensitivities.

To estimate the effectiveness of these mutations, we again measured the running time of

the three mutations. The average time of a run of these mutations is shown in Table 5.8.

Similar to semantic based crossovers, the average time of a run of both semantic-based

mutations, SAM and SSM, are often higher than one of SM. However, the overhead of

running time of both SAM and SSM is also not large. The table also shows that the extra

time of SSM versus SM and SAM is slightly higher than the extra time of SSC versus SC

and SAC (See Section 5.2).

Overall, the results in this section demonstrate that semantics also plays an important

role in mutation and that promoting semantic diversity of mutations is necessary but im-

proving semantic locality is even more important. Therefore, enhancing semantic diversity

of a mutation should always be accompanied with improving semantic locality to gain

further improvements of GP performance.

5.4 Promoting Semantic Similarity of both Crossover

and Mutation

The previous sections show that improving semantic locality of crossover or mutation helps

to improve the performance of GP. The question raised from those results is if simultane-

ously improving semantic locality of crossover and mutation helps to further enhance GP

performance. This section is dedicated to answer that question.

The basic experiment settings for GP systems are given in Table 5.2. The crossover

rate was set at 0.9 and the mutation rate was set at 0.9. The GP configuration that uses

standard crossover and standard mutation is called SCM. The experimental settings for
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SSC and SSM are similar to the previous sections.

The method that improves semantic locality of both crossover and mutation is short-

handed as SSCM. The lower semantic sensitivity for SSCM is also fixed at 10−3, and three

values of higher semantic sensitivity: 0.2, 0.3, and 0.4 are used. The value of Max Trial of

SSCM is also set to 12. Three instances of SSCM will be referred as SSCMX with X= 02,

03, 04.

5.4.1 Results

In this experiment, two classic performance metrics, namely mean best fitness and the

number of successful runs are recorded. The results of the number of successful runs (out

of 100 runs) and the best fitness found, averaged over all 100 runs are shown in Table 5.9

and Table 5.10. We tested the statistical significance of the results in Table 5.10 using a

Wilcoxon signed-rank test with a confidence level of 95%. The results in Table 5.10 are

printed as follows:

1. If a run of SSC, SSM, and SSCM is not significantly better than SCM, it is printed

in plain face

2. If a run of SSC, SSM, and SSCM is significantly better than SCM, it is printed italic

face

3. If a run of SSCM is significantly better than SCM, SSC and SSM it is printed bold

and italic face.

5.4.2 Discussion

The results in both tables show that improving semantic locality of crossover and mutation

helps to improve the performance of GP with this configuration. Table 5.9 shows that

the crossover based on improving semantic locality, SSC, often finds solutions easier than

standard crossover. The exception only lies in one case on function F1 and one case on
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Tab. 5.9: Number of successful runs out of 100 runs when improving semantic locality of
both crossover and mutation.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SCM 5 0 11 2 8 10 7 7

SSC02 3 1 30 4 16 13 19 9
SSC03 6 1 38 10 12 8 14 11
SSC04 13 3 29 3 12 12 11 9

SSM02 11 2 35 5 10 4 23 9
SSM03 11 2 33 6 7 6 25 14
SSM04 8 0 25 10 11 14 26 12

SSCM02 10 3 45 8 8 12 41 22
SSCM03 18 7 45 7 13 9 36 25
SSCM04 20 3 56 4 10 13 30 12

function F6. Similarly, the table also shows that the number of successful runs found by

using the mutation, that is improved semantic locality, SSM, is usually greater than those

found by SCM. The exception falls in some cases on function F5 and F6.

What is a more important result from Table 5.9 is that by improving both semantic

locality of crossover and mutation, we can improve the performance of GP to a greater

extent. The table shows that the number of successful runs found by SSCM is often greater

than ones found by SSC or SSM.

The results in Table 5.10 are consistent with those in Table 5.9 in that it shows the

benefit of improving both semantic locality of crossover and mutation. Definitely, SSCM

finds solutions with better quality in terms of the best fitness in comparison with SSC and

SSM. The results of a Wilcoxon signed-rank test also show that simultaneously improv-

ing semantic locality of crossover and mutation often leads to significantly improved GP

performance compared to only improving semantic locality of crossover or mutation alone.

Overall, the results in this section and the previous sections show that improving se-

mantic locality of crossover or mutation plays an important role in GP performance. It

often leads to significantly enhance the performance of GP. It also shows that when us-

ing a high rate of both crossover and mutation, improving semantic locality of crossover

and mutation at the same time is better than purely improving semantic locality of only
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Tab. 5.10: Mean best fitness when improving semantic locality of both crossover and
mutation. Note that the values are scaled by 102.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SCM 2.26 3.13 1.01 1.84 1.07 1.94 3.43 2.55

SSC02 1.75 2.39 0.72 1.39 0.91 1.44 2.56 1.94
SSC03 1.60 2.27 0.68 1.34 0.86 1.68 2.40 1.66
SSC04 1.59 2.13 0.66 1.46 0.98 1.42 2.77 1.95

SSM02 1.45 2.24 0.61 1.51 1.17 1.47 2.01 1.91
SSM03 1.45 2.03 0.63 1.30 1.06 1.39 1.92 1.54
SSM04 1.53 2.06 0.63 1.39 0.87 1.45 1.67 1.71

SSCM02 1.46 1.72 0.52 1.17 0.89 1.26 1.13 1.31

SSCM03 1.15 1.61 0.45 1.16 0.89 1.12 1.11 1.09

SSCM04 1.09 1.59 0.39 1.09 0.80 1.23 1.09 1.12

crossover or mutation.

5.5 Parameters Sensitivity Analysis

The preceding sections showed that crossover and mutation that improve semantic locality

often result in a significant improvement of GP performance. However, how sensitive are

these operators to their parameter settings? The experiments in this sections investigate

the effect of changing some parameters on the performance of semantic similarity based

crossover and semantic similarity based mutation. An analysis of parameters sensitivity of

SSC is presented first. After that, the effect of changing parameters to SSM is given and

discussed.

5.5.1 Parameters Sensitivity Analysis of Semantic Similarity based

Crossover

The previous sections showed the benefit of using semantic similarity based crossover, SSC.

However, the performance of SSC could also depend on the selection of some parameters.

The incorrect setting of these parameters could lead to a poor performance of SSC. This
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subsection is dedicated to examine how SSC’s parameters affect its performance. The GP

parameters were setup as in Table 5.2. The crossover rate was set at 0.9 and mutation rate

was set at 0.05.

Three parameters of SSC were investigated, namely, the lower bound of semantic sen-

sitivity (LBSS), the upper bound of semantic sensitivity (UBSS), Max Trial (MT) used

to selection two semantically similar subtrees. First, we examined the effect of the most

important parameter, UBSS. We fixed the other parameters as follows: LBSS: 10−3, MT:

12. The UBSS was set at 6 values: 0.1, 0.2, 0.4, 0.6, 0.8, and 1. Six these configurations

of SSC are denoted as SSCUX where X is 01, 02, 04, 06, 08, or 1.

The second experiment analysed the effect of LBSS. In this experiment, the other pa-

rameters were set as follows: UBSS= 0.4, MT= 12. Five values for LBSS were investigated,

i.e. 10−X where (X=1, 2, 3, 4, and 5). These five instances of SSC are referred as SSCLX

with X=1, 2, 3, 4, and 5.

The last experiment tested sensitivity to the number of trials allowed in selecting se-

mantically similar subtrees in SSC (MT). For this experiment, LBSS= 10−3, UBSS=0.4.

MT was set at 4, 8, 12, 16, 20, 24. These configurations of SSC are denoted as SSCMTX,

with X=4, 8, 12, 16, and 20, 24.

To estimate the effect of changing these parameters, we recorded the best fitness of

a run. These values were averaged over 100 runs and are shown in Table 5.11. For the

purpose of comparison, the mean best fitness of standard crossover is also shown in the

top row of this table.

We can see that the value of UBSS has a remarkable effect on the performance of SSC.

It seems that values from 0.2 to 0.8 are suitable for the problems under test, with values

from 0.2 to 0.6 being the best. If UBSS is too small (0.1) or too big (1) the performance of

SSC is poorer. This can be explained by recording the percentage of SSC that successfully

selects two semantically similar subtrees, as shown in Table 5.12. The values for SSCLX

are not shown in this table as they have little effect. We can see that if UBSS is too small,

only a few SSCs can succeed in exchanging semantically similar subtrees (from 30% to 40%

when UBSS is 0.1), so that SSC underperforms. We have tried increasing the Max Trial
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Tab. 5.11: Mean best fitness of SSC with different parameters. Note that the values are
scaled by 102.

Crossovers F1 F2 F3 F4 F5 F6 F7 F8

SC 1.54 2.02 0.60 1.43 0.76 1.18 1.68 1.11

SSCU01 0.99 1.38 0.38 0.91 0.51 0.99 0.85 0.82
SSCU02 0.95 1.27 0.31 0.84 0.39 0.61 0.63 0.72
SSCU04 0.94 1.05 0.21 0.73 0.35 0.59 0.85 0.80
SSCU06 0.94 1.10 0.24 0.92 0.40 0.73 1.03 0.92
SSCU08 0.97 1.11 0.37 0.97 0.47 0.57 1.20 1.10
SSCU1 1.00 1.45 0.40 1.01 0.52 0.75 1.31 1.20

SSCL1 1.04 1.28 0.45 0.97 0.55 0.79 1.50 1.02
SSCL2 0.92 0.97 0.25 0.82 0.40 0.66 0.83 0.88
SSCL3 0.94 1.05 0.31 0.83 0.35 0.59 0.85 0.80
SSCL4 0.74 1.06 0.25 0.79 0.46 0.55 0.84 0.83
SSCL5 0.78 1.09 0.25 0.78 0.43 0.57 0.86 0.79

SSCMT4 1.00 1.32 0.32 1.06 0.51 0.78 1.11 0.83
SSCMT8 0.74 1.09 0.31 0.77 0.45 0.64 0.98 0.87
SSCMT12 0.94 1.05 0.31 0.83 0.35 0.59 0.85 0.80
SSCMT16 0.86 0.98 0.21 0.78 0.42 0.59 0.77 0.87
SSCMT20 0.90 1.08 0.33 0.82 0.41 0.52 0.82 0.75
SSCMT24 0.73 1.02 0.20 0.89 0.38 0.48 0.91 0.84

to compensate for decreasing the upper bound. This was unsuccessful, as if UBSS is too

small, the exchange of semantics between the two parents is also too small, so that SSC is

more readily trapped in local optima. By contrast, if UBSS is too large, it is almost trivial

to find semantically similar subtrees (almost 100% for UBSS=1) because most subtrees are

sufficiently semantically similar, so that SSC behaves like SC.

While changing UBSS has a remarkable effect on SSC, LBSS has almost no effect on

performance provided it is sufficiently small. Table 5.11 shows that while LBSS was set

to small values (from 10−2 to 10−5), the performance of SSC was almost unchanged. In

order to understand this, we recorded the percentage of subtrees with SSD smaller than

10−2 that are actually semantically identical. In fact, 99% of such semantically equivalent

subtrees actually have the same semantics. Thus 99% of these subtrees would have satisfied

the equivalence condition regardless of the values of LBSS. Only in the case when LBSS
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Tab. 5.12: The percentage of SSC that successfully exchange two semantically similar
subtrees.

Crossovers F1 F2 F3 F4 F5 F6 F7 F8

SSCU01 43.4 42.9 51.1 25.8 28.7 19.8 58.2 54.5
SSCU02 66.2 62.1 76.0 53.9 57.0 43.6 73.8 70.0
SSCU04 80.6 79.3 90.6 89.8 82.9 64.4 92.2 93.8
SSCU06 95.0 95.2 97.2 98.5 91.6 81.1 98.1 97.3
SSCU08 98.5 98.3 98.0 99.4 95.3 89.5 99.8 99.8
SSCU1 99.7 99.7 98.2 99.8 98.3 94.9 99.8 99.8

SSCMT4 41.0 41.3 61.7 54.0 46.8 25.8 61.2 59.9
SSCMT8 67.1 66.5 81.6 78.9 72.9 50.3 84.6 85.2
SSCMT12 80.6 79.3 90.6 89.8 82.9 64.4 92.2 93.8
SSCMT16 86.6 86.0 94.1 93.2 87.9 73.0 94.2 94.6
SSCMT20 91.8 90.9 95.2 96.7 91.6 78.8 96.3 96.5
SSCMT24 93.7 92.8 97.2 98.1 93.8 82.1 97.8 97.9

gets too big, e.g. 0.1 , does SSC have poorer performance. In this case, SSC prevents

swapping of subtrees with similar but unequal semantics. We recorded how many subtree

checks found a nonzero SSD smaller than 0.1; this happened approximately 20% of the

time, misleading SSC. In general, we can see that LBSS is only required to be sufficiently

small, and perhaps any value under 10−2 would be suitable.

The third parameter investigated is the number of unsuccessful trials permitted in

selecting semantically similar subtrees (MT). Values of MT from 8 to 20 keep the perfor-

mance of SSC roughly consistent. When MT is too small, e.g. MT = 4, the performance

of SSC is worse. This can also be understood by observing the percentage of SSC events

that successfully exchanged two semantically similar subtrees. For MT=4, only 30% to

40% of SSC events successfully exchanged subtrees, while this figure rises to about 90%

for MT=20. Thus further increasing MT may not help, because nearly all crossover events

have already successfully exchanged semantically similar subtrees.

Overall, these results highlight some important issues in determining the values for SSC

parameters. It seems that UBSS should lie in the range 0.2 to 0.8, LBSS should be less

than 10−2, MT in the range 8 to 20.
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Tab. 5.13: Mean best fitness of SSM with different parameters. Note that the values are
scaled by 102.

Mutations F1 F2 F3 F4 F5 F6 F7 F8

SM 2.14 2.50 0.95 1.60 0.96 1.56 2.99 2.07

SSMU01 1.75 2.11 0.61 1.31 0.82 1.42 1.86 1.70
SSMU02 1.37 1.73 0.45 1.07 0.74 1.20 1.30 1.39
SSMU04 1.13 1.36 0.42 1.16 0.72 1.16 1.03 1.01
SSMU06 1.99 2.40 0.82 1.49 0.94 1.52 2.75 2.02
SSMU08 2.05 2.39 0.91 1.51 0.94 1.51 3.02 2.04
SSMU1 2.06 2.46 0.92 1.55 0.92 1.53 2.97 2.06

SSML1 1.43 1.74 0.58 1.14 0.85 1.44 1.36 1.21
SSML2 1.38 1.50 0.46 1.06 0.78 0.98 1.15 1.03
SSML3 1.13 1.36 0.42 1.16 0.72 1.16 1.03 1.01
SSML4 1.13 1.39 0.36 1.11 0.77 1.02 1.05 0.98
SSML5 1.10 1.49 0.37 0.97 0.76 1.17 1.06 0.98

SSMMT4 1.72 2.04 0.69 1.39 0.78 1.27 1.90 1.34
SSMMT8 1.36 1.78 0.48 1.03 0.77 1.15 1.20 1.09
SSMMT12 1.13 1.36 0.42 1.16 0.72 1.16 1.03 1.01
SSMMT16 1.07 1.38 0.33 0.95 0.67 1.13 1.16 0.89
SSMMT20 1.06 1.35 0.36 1.00 0.70 0.91 0.98 0.99
SSMMT24 0.98 1.33 0.35 0.88 0.78 1.13 1.01 0.90

5.5.2 Parameters Sensitivity Analysis of Semantic Similarity based

Mutation

This subsection examines the impact of changing parameters to the performance of se-

mantic similarity based mutation, SSM. The GP parameters were setup as in Section 5.3.

Similar to SSC, three parameters of SSM were investigated, namely, the lower bound of se-

mantic sensitivity (LBSS), the upper bound of semantic sensitivity (UBSS), and Max Trial

(MT) used to selection two semantically similar subtrees. Configuration and conventional

name for SSM are similar to SSC.

We also recorded the best fitness of a run, averaged over 100 runs, and the results are

shown in Table 5.13. The mean best fitness of standard mutation is also shown in the top

row of this table.

Similar to SSC, UBSS has a remarkable effect on the performance of SSM. It seems
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Tab. 5.14: The percentage of SSM that successfully exchange two semantically similar
subtrees.

Mutations F1 F2 F3 F4 F5 F6 F7 F8

SSMU01 15.9 15.6 16.5 15.2 14.6 14.3 17.3 16.8
SSMU02 40.4 39.9 41.0 40.3 38.9 39.2 35.2 34.5
SSMU04 68.4 68.1 68.7 68.2 66.9 70.0 91.3 90.9
SSMU06 100 100 100 100 100 100 100 100
SSMU08 100 100 100 100 100 100 100 100
SSMU1 100 100 100 100 100 100 100 100

SSMMT4 30.6 30.5 30.8 30.5 29.7 29.9 55.4 55.1
SSMMT8 52.9 52.8 53.2 52.7 51.8 51.9 80.4 80.3
SSMMT12 68.4 68.1 68.7 68.2 66.9 66.9 91.3 90.9
SSMMT16 78.8 78.5 79.1 78.7 77.3 77.7 96.0 95.8
SSMMT20 85.4 85.5 85.8 85.5 84.8 84.7 98.1 98.2
SSMMT24 90.3 90.1 90.3 89.9 89.5 89.6 99.1 99.0

that values from 0.2 to 0.4 are suitable for the problems under test, with values of 0.4 being

the best. It is different with SSC where the suitable range of UBSS is lager (from 0.2 to

0.8) and the best range could be from 0.2 to 0.6. If UBSS of SSM is too small (0.1) or too

big (0.8, 1) the performance of SSM is poorer. This can also be explained by recording

the percentage of SSM that successfully selects two semantically similar subtrees, as shown

in Table 5.14. We can see that if UBSS is too small, only a few SSCs can succeed in

exchanging semantically similar subtrees (from 30% to 40% when UBSS is 0.1), so that

SSM underperforms (trying to increase the Max Trial to compensate for decreasing the

upper bound is also unsuccessful). By contrast, if UBSS is too large, it is almost trivial

to find semantically similar subtrees (almost 100% for UBSS=0.6, 0.8, 1) because most

subtrees are sufficiently semantically similar, so that SSM behaves like SM.

Likewise, LBSS has almost no effect on the performance of SSM provided it is sufficiently

small. Table 5.13 shows that while LBSS was set to small values (from 10−2 to 10−5), the

performance of SSM was almost unchanged. The reason is similar to SSC. Only in the

case when LBSS gets too big, e.g. 0.1 , does SSM have poorer performance. In this case,

SSM prevents swapping of subtrees with similar but unequal semantics, this happened
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approximately 20% of the time, misleading SSM.

With the third parameter, the number of unsuccessful trials permitted in selecting

semantically similar subtrees (MT), the values from 8 to 24 keep the performance of SSM

roughly consistent, in that the values of MT from 12 to 24 seem better than the left values

. When MT is too small, e.g. MT = 4, the performance of SSM is worse and be understood

by observing the percentage of SSM events that successfully exchanged two semantically

similar subtrees. For MT=4, only 30% to 40% of SSM events successfully exchanged

subtrees, while this figure rises to about 90% for MT=24. Thus further increasing MT

may not help, because nearly all mutation events have already successfully exchanged

semantically similar subtrees.

Overall, for SSM, it seems like, UBSS should lie in the range 0.2 to 0.4, LBSS should

be less than 10−2, MT in the range 12 to 24.

5.6 Conclusions

This chapter presented an investigation of semantic diversity and semantic locality of GP

operators. The experimental results showed that while promoting semantic diversity of op-

erators (crossover and mutation) has a limited effect on the performance of GP, improving

semantic locality often leads to a significant improvement of GP performance. The results

also demonstrated that when using a high rate of crossover and mutation, simultaneously

improving semantic locality of both crossover and mutation helps to further enhance the

performance of GP compared to purely doing for only crossover or mutation.

In the last section, the effect of some parameters on the performance of SSC and SSM

were analysed. The experimental results showed that a wide range of these values could

be suitable for these operators with some best values indicated for each operator on the

problems examined.

Finally, we finish this chapter with some notes. Since, crossover has long been seen

as the primary operator of GP [98], in the following chapters, we only focus on studying

semantic based crossovers. For this reason, crossover rate is always set at 0.9 and a small

76



5.6. CONCLUSIONS

rate of mutation at 0.05 is set with the aim to study crossover in the normal form of

GP. The next chapter will propose some approaches to improve Semantic Similarity based

Crossover (SSC).
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Chapter 6

Improving Semantic Similarity based

Crossover

The previous chapter showed the important role of semantic locality for crossover and

mutation on GP performance. This chapter presents some methods to improve Semantic

Similarity based Crossover (SSC). First, another way to collect sample semantic points,

based on the fitness cases, is introduced. A representation that is based on attributes to

store the above semantics is used. Next, two approaches to improve SSC are proposed.

Then, the comparative results between the two new improved versions of SSC with with

SSC are presented. Finally, a method for reducing the number of attributes needed to

store semantics is proposed. The results in this chapter have been published in [134, 138].

6.1 Measuring Semantics

This section presents an alternative way to sample semantics of a subtree and the use of

attributes to store this semantics.
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6.1.1 Subtree Semantics

Although, the use of random sampling for measuring subtree semantics in Chapter 4 has

a number of benefits to GP, it has a drawback: It takes time to quantify and compare

the semantics of two subtrees during the crossover operation. This is exhibited in that

the average time of a run with SSC is often higher than one with SC. To overcome this,

in this chapter, we use a simpler way for calculating the subtree semantics that is based

on the fitness cases of the problem. This semantics is called Subtree Semantics. Subtree

semantics used in this chapter is similar to McPhee’s semantics [123] but extended to real

valued problems rather than Boolean problems. Formally, the subtree semantics of any

(sub)tree is defined as follows:

Definition 2 Let P = {p1, p2, ...pN} be the fitness cases of the problem on domain D and

let F be a function expressed by a (sub)tree T on D. Then the Subtree Semantics of T on

domain D is the set S = {s1, s2, ..., sN} where si = F (pi), i = 1, 2, .., N . 2

This way of measuring semantics is a special case of sampling semantics in Chapter 4.

The difference between subtree semantics and sampling semantics is that sampling seman-

tics is measured based on a number of random points on the problem domain while subtree

semantics is always evaluated based on the fitness cases. It is also noted that, although

subtree semantics is calculated based on fitness case points in the same way as Krawiec

and Lichocki’s semantics [103], our work is different from Krawiec and Lichocki’s work in

several ways. First, Krawiec and Lichocki only use the semantics of the whole trees while

in this thesis, the semantics is at subtree level. Second, we guide crossover by considering

the semantic relationships between subtrees rather than the semantic relationship between

offsprings and their parents. Last, there are a number of children generated in Krawiec and

Lichocki’s work, but only one is added to the next generation, while in our crossover there

are always two children being generated and transfered to the next generation. Therefore,

our crossover is less time consuming than the crossover of Krawiec and Lichocki [103].

Based on subtree semantics, a semantic distance between two subtrees is defined in a

similar way to sampling semantics distance (SSD) in Chapter 4. From that, two semantic
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Fig. 6.1: An individual in AGP and the process of evaluating the value of its attributes.
This illustrates the initialisation (a) and the evaluation of its attributes (b, c, d) by prop-
agation up toward the rote note.

relationships between subtrees, semantic equivalence (SE) and semantic similarity (SSi)

are defined in the same way with their definitions in Chapter 4.

6.1.2 Attributes-based Representation

As mentioned in the previous section, the subtree semantics of each subtree is stored in

the root node of that subtree by using a number of attributes and the resulting GP system

is called Attributes Genetic Programming (AGP). Assume that the problem has N fitness

cases, then N attributes are added to every node in a tree-based individual. In Figure 6.1

N is set to 3, so three attributes A1, A2, A3 are added to every node in the individual to

store semantics of the subtree rooted at that node.

Figure 6.1 also describes the process of evaluating attribute values in AGP. Initially

(Figure 6.1a), the attributes are set to zero. Assume that the fitness cases include three
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values 0, 0.5, and 1, then, in the second step, the attributes of the leaves of the individual

are assigned with these values (Figure 6.1b, attributes at the nodes labeled with a constant

are assigned with the value of that constant). Next, the attributes at the level above the

leaves are assigned with values. At this point, the semantics of the leaves is passed upward

to their parents, and the operator at those nodes are applied to calculate the values for the

attributes (Figire 6.1c) at these nodes. This process is then continued until the attributes

at the root node are assigned with values (Figure 6.1d). It is noted that when this process

of value propagation completes, the fitness of the individual can be obtained by comparing

the semantics of the root node with the values of the target function on the corresponding

fitness cases. This helps to speed up crossover in AGP in comparision with using sampling

semantics.

The power that subtree semantics brings to AGP comes with a cost that is the increase

of storage size of the population. Assume that the population is of P individuals. If the

average size of an individual in the propulation is S (nodes) and there are N fitness cases

(N attributes) which occupies B bytes each, then, the magnitude of increase in storage

size, (I), in AGP is calculated as in Equation 6.1. For instance, if each attributes is stored

in a real number with 4 bytes, then the memory space needed to store subtree semantics

of all individuals in GP population, with typical population sizes, is shown in Table 6.1.

It is generally well within the capabilities of modern computers.

I = P ∗ S ∗N ∗B (6.1)

6.2 Improving Semantic Similarity based Crossover

Although, the previous chapter has shown some advantages of SSC over other crossover

operators, it comes with a cost, especially when being compared with SC, it has extra

parameters to tune. The most important extra tunable parameter in SSC are the semantic

sensitivity bounds. As the performance of SSC depends on the semantic sensitivities,
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Tab. 6.1: Memory space needed to store Subtree Semantics.

Pop Size Fitness cases Average Size Memory Space (Mbs)

20 100 3.18
500 100 100 19.1

500 100 95.4

20 100 7.63
1000 100 100 38.2

500 100 190

incorrect selection of these values could affect SSC performance. In this section we propose

two methods for remedying this drawback. The first approach allows these sensitivities

to be self-adapted during the evolutionary process and the second approach eliminates

the upper bound of sensitivity from SSC. It should be noted that in the two following

subsections, we mostly focus on controlling the upper bound of semantic sensitivity of

SSC. This parameter is more important and more difficult to determine than the lower

one. The lower bound of semantic sensitivity is simply adjusted based on the upper one

or set as a small non-zero value.

6.2.1 Self-Adapting Semantic Sensitivities

The first method to overcome the weakness of SSC allows semantic sensitivities of SSC to

be self-adapted. There have been a number of studies of automated control of different

aspects of evolutionary algorithms. Angeline [4] distinguished three categories:

1. component-level – adaptive approaches that automatically alter some elements of an

individual [5].

2. individual-level – adaptive techniques that adjust the way an individual itself is han-

dled by the system [144, 63].

3. population-level – a class of methods that gathers the global information from the

whole population and use this information to dynamically adapt parameters [162,

168].
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Most early research on self-adaptation focused on controlling operators (crossover and

mutation). More recently, self-adaptive schemas have also been developed for other aspects.

One parameter that has been attracted much attention is the population size [40, 73]. Silva

and Dignum [175] presented a self-adaptive method for setting the maximum length of GP

individuals.

The self-adaptive methods proposed in this subsection can be seen as population-level

methods, in that they gather information from the whole population and use this informa-

tion in the next generation. They differ from previous self-adaptive schemas in self-adapting

two new parameters, the semantic sensitivities, in SSC.

The motivation for this is to guarantee that there is a certain portion of SSC operations

that successfully exchange two semantically similar subtrees. It is easy to see that if the

upper bound of semantic sensitivity is two small (e.g 10−2), SSC may not work. The

reason is that it is very difficult to select subtree pairs that satisfy SSC’s condition for

being swapped. Conversely, if the upper sensitivity is two great (e.g 100) SSC would

behave almost as the same SC, as all most all subtree pairs could satisfy this condition.

For this reason, a self-adaptive scheme called Self-Adaptive Successful Execution (SASE)

is introduced. The main aim of SASE is to guarantee that there is a large enough portion,

but not all, of SSC operations that successfully exchange similar subtrees pairs. Formally,

the upper bound sensitivity is controlled according to the following equation:

βt+1 =































ci · βt , if ps
t< ψ;

cd · βt , if ps
t> ψ;

βt , if ps
t= ψ.

(6.2)

where βt is the upper bound of semantic sensitivity at generation t, βt+1 is the value at

generation t + 1, and ps
t is the ratio of SSC operations that successfully exchange two

similar subtrees at generation t. ci is the size of increment and cd is the size of decrement.
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After the upper bound of semantic sensitivity gets changed, the lower bound of semantic

sensitivity at generation t+1 is recalculated as: αt+1=10−3.βt+1. The initial value of upper

bound of sensitivity was set at 0.4 in the experiments in this chapter. Several values of ψ

will be investigated in the following subsections.

6.2.2 The Most Semantic Similarity based Crossover

While the first approach to improve SSC tries to self-adapt SSC’s semantic sensitivities,

the second method eliminates its semantic sensitivities. This results in a new semantic

based crossover. The new crossover is called the Most Semantic Similarity-based Crossover

(MSSC). The idea behind MSSC is to avoid the manual tunning of the semantic sensitivities

in SSC, while still maintaining a semantically small change. MSSC works as follows. N

subtree pairs are randomly selected from the two parents. The subtree semantic distance

(SSD) of the subtrees in each pair is then calculated. The pairs that have the smallest

SSD (but not equivalent) in the N pairs is chosen for crossover. In MSSC, the concept

of semantic equivalence is the same as in SAC. Algorithm 5 shows how MSSC works in

detail. In the experiments of MSSC, Extremal Value was set to 106 and several values of

Max Trial (TM) was tested.

6.3 Experimental Settings

To examine the effects of the improved versions of semantic similarity based crossover,

SSC, in comparison with other crossover operators, we tested them on the eight real-

valued symbolic regression problems in Chapter 5. The basic experimental settings is as

in Table 5.2.

In this chapter, the performance of two new improvements of SSC will be compared

not only with standard crossover, semantic similarity based crossover, but also with some

methods that are based on fitness including No Same Mate (NSM) selection [62] and Soft

Brood Selection (SBS) [3].
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Algorithm 5: The Most Semantic Similarity based Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
Max=Extremal Value;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
SD=SSD(Subtree1, Subtree2)
if α < SD < Max then

Max=SD;
CrossPoint1=Subtree1;
CrossPoint2=Subtree2;

Execute crossover by exchange the subtrees at CrossPoint1 and CrossPoint2;

For SSC, the lower bound of semantic sensitivity is fixed at 10−3. It has been shown in

Chapter 5 that the performance of SSC is mostly consistent with any small enough value

of the lower bound of semantic sensitivity. The upper bound of semantic sensitivity is fixed

at 0.4. This value has been shown as one of the best value for the good performance of

SSC. Three values of Max Trial of SSC, 12, 16, 20 are tested. These values were calibrated

from the experiments in the previous chapter as some of the best values. Again, three

experiment configurations of SSC will be called SSCX with X = 12, 16, 20 respectively.

For SBS, three brood sizes: 2, 3, and 4 are used. Although, Tackett suggested the use

of a subset of fitness cases to figure out the individual in the brood to the next genera-

tion [180, 179], in this comparison we use the original version of SBS of Altenberg in [3].

In this, the number of the fitness evaluation of SBS increases pCross*N times (where, N

is brood size and pCross is the rate of crossover) in comparison with the standard GP

crossover. Therefore, for a fair comparison, the population size of the GP with SBS should

be pCross*N times reduced. In this paper, three population sizes: 277, 185, 138 corre-

sponding to these above brood sizes are used. This way of comparing a crossover with SBS

is similar to what have been used in some previous studies [116, 103]. Three configurations

of SBS will be referred as SBSX with X= 2, 3, 4.
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Tab. 6.2: The comparison of two improved schemas with SSC, SBS, NSM and SC in terms
of number of successful runs out of 100 runs.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 12 4 40 3 20 17 31 18

NSM 19 7 50 8 21 20 34 11

SBS2 28 14 60 10 42 19 32 19
SBS3 24 10 58 17 32 23 32 20
SBS4 17 7 39 17 38 22 25 19

SSC12 30 17 70 23 49 38 43 32
SSC16 31 12 72 21 50 39 55 20
SSC20 27 14 71 17 52 41 39 25

SASE65 31 17 76 29 61 42 75 59
SASE75 32 16 85 26 60 38 75 49
SASE85 36 15 81 33 58 37 71 53
SASES 37 16 77 41 61 39 83 61

MSSC12 35 19 79 34 55 45 79 40
MSSC16 29 14 80 33 62 41 70 45
MSSC20 40 18 88 39 72 44 65 37

For SASE, the size of increment (ci) was fixed at 0.9 and the size of decrement was set

as 1/ci. These values were calibrated from our experiments as good values for SASE. Four

configurations of SASE were tested. In the first three configurations, the ratio of SSC that

successfully exchange (referred to as successful SSC) two semantically similar subtrees of

65%, 75%, and 85% were examined. These configurations of SASE are called SASEX with

X as 65, 75, and 85, respectively. In the last version of SASE, the rate of successful SSC

is adapted itself. The motivation for this is that at the beginning of the search process,

GP tends to need more exploratory power to discover new solution areas. Therefore, the

rate of successful SSC in earlier generations should be smaller. Later on in a run, SSC

should be encouraged to more exploitative. In later generations, the rate of successful SSC

should be increased. In order to implement this, the rate of successful SSC will be changed

according to the following equation:
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R SSC = α+ (β − α) · Current Gen
Max Gen

(6.3)

where Current Gen is the current generation and Max Gen is the maximal number of

generations set for the algorithm. R SSC is the rate of successful SSC in the current

generation. In our experiments, α was set at 65% and β was set at 85%. This version of

SASE is referred to as SASES.

For MSSC, the lower bound semantic sensitivity was set as in SSC at 10−3. Three values

of Max Trial: 12, 16, 20 were tested resulting in three configurations of MSSC referred as

MSSCX with X=12, 16, 20.

6.4 Results and Discussion

6.4.1 Results

For all systems, two classic performance metrics, namely mean best fitness and the number

of successful runs were recorded. The results of the number of successful runs (out of 100

runs) of these crossovers are presented in Table 6.2. Table 6.3 shows the best fitness found,

averaged over all 100 runs of each GP system. We tested the statistical significance of the

results in Table 6.3 using a Wilcoxon signed-rank test with a confidence level of 95%. The

results in Table 6.3 are printed as follows:

1. If a run of NSM, SBS, SSC, SASE, and MSSC is not significantly better than SC, it

is printed in plain face

2. If a run of NSM, SBS, SSC, SASE, and MSSC is significantly better than SC, its is

printed italic face

3. If a run of SASE and MSSC is significantly better than all SC, NSM, SBS, and SSC

it is printed bold and italic face.
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Tab. 6.3: The comparison of two improved schemas with SSC, SBS, NSM and SC in terms
of mean best fitness. Note that the values are scaled by 102.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 1.54 2.02 0.60 1.43 0.76 1.18 1.68 1.21

NSM 1.28 1.58 0.52 1.21 0.76 1.04 1.42 1.24

SBS2 1.00 1.48 0.39 0.94 0.57 1.00 1.31 0.93
SBS3 1.18 1.55 0.46 1.11 0.61 1.09 1.45 1.38
SBS4 1.40 1.67 0.69 0.93 0.60 1.26 1.91 1.22

SSC12 0.82 1.08 0.32 0.80 0.42 0.65 0.97 0.95
SSC16 0.80 1.14 0.31 0.81 0.43 0.63 0.75 0.89
SSC20 0.86 1.09 0.32 0.82 0.45 0.55 0.92 0.79

SASE65 0.74 1.03 0.20 0.75 0.35 0.49 0.61 0.55

SASE75 0.71 1.02 0.17 0.76 0.37 0.53 0.56 0.50

SASE85 0.74 1.02 0.22 0.66 0.38 0.51 0.47 0.45

SASES 0.70 0.89 0.21 0.63 0.32 0.52 0.30 0.43

MSSC12 0.71 0.85 0.20 0.60 0.37 0.52 0.29 0.54

MSSC16 0.77 0.87 0.19 0.62 0.35 0.49 0.30 0.48

MSSC20 0.70 0.92 0.17 0.61 0.30 0.50 0.47 0.59

6.4.2 Discussion

Table 6.2 and Table 6.3 show some important results. Firstly they are consistent with the

results in Chapter 5 where promoting semantic diversity like NSM gives a positive effect

on the performance of GP. It can be seen from Table 6.2 that NSM often finds solution

easier than SC. The number of successful runs of NSM is usually higher than those of SC

with only one exception on function F8. Table 6.3 shows that the quality of solutions that

found by NSM is often better than ones found by SC. However, the table also show that

the size of the improvement is not large and not statistically significant.

The results in the two above tables are also consistent with the results in Chapter 5

when we compare the performance of SSC with SC. It can be observed from Table 6.2

that the number of successful runs found by SSC is always much higher than those found

by SC. Table 6.3 shows that SSC is always significant better than SC in terms of finding

better solutions. Generally, these tables confirm the important role of improving semantic

locality of crossovers as SSC even the way for measuring semantics of subtrees has changed.
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Tab. 6.4: Average time of a run in milliseconds of MSSC, SASE, SSC, SBS, NSM and SC.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 3042 3092 3112 4022 3428 3646 10180 10128

NSM 2991 3054 3050 4029 3213 3657 10786 10164

SBS2 6141 6387 4952 6913 5477 6425 19924 21250
SBS3 5838 5849 5046 6176 5104 5418 14668 16500
SBS4 4580 4348 3641 4830 3950 4106 13044 14906

SSC12 3117 2927 3107 4016 3537 3696 10343 10572
SSC16 3126 2953 3098 3972 3418 3623 10067 10037
SSC20 3215 3229 3373 4116 3658 3833 10027 10474

SASE65 2958 3244 3240 4103 3682 3935 6269 7883
SASE75 2837 2975 3020 3978 3309 3629 7922 8448
SASE85 2917 3011 2622 3707 3153 3438 9019 9376
SASES 2867 2879 2773 3726 3266 3439 7154 8077

MSSC12 2979 3006 3056 3991 3367 3425 6480 8399
MSSC16 2954 2901 3088 3825 3240 3558 5643 7149
MSSC20 2672 2673 2553 3787 3224 3134 5560 6202

For SBS, it can be seen from the table that SBS helps to improve the performance of

GP in comparison to SC. The table shows that the number of solutions found by SBS is

often greater for SC and NSM. It is, however, very important to point out that improving

semantic locality in SSC is still better than searching based on fitness as in SBS. The

number of the solutions found by SSC is consistently greater than ones found by SBS.

Table 6.3 again shows that SBS is better than SC in terms of finding solutions with

higher quality (smaller of the best fitness). However, the improvement of SBS is not so large

and not always statistically significant. The Wilcoxon signed-rank test results show that

SBS is only significantly better than SC with some brood sizes and on some functions like

F1, F2, F3, F4, F5 and F7. On the two other functions, F6, F8, no improvement of SBS over

SC is observed. By contrast, SSC is always significantly better than SC on all problems

with all tested values of Max Trial.

For the two new improved methods, it can be seen from Table 6.2 that both SASE and

MSSC help to further improve GP performance. This is reflected by the greater number

of solutions found by SASE and MSSC over SSC. In four configurations of SASE it seems
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the performance of SASES was the most consistent while the performance of three MSSC’s

configuration was mostly the same.

The results in Table 6.3 are strongly consistent with those in Table 6.2 confirming the

superiority of SASE and MSSC over SSC. The improvement of SASE and MSSC over SSC

seem more impressive on the two bivariate functions, F7 and F8. The Wilcoxon signed-

rank test results confirm that the improvement of all SSC based crossovers is statistically

significantly better than SC and that in many cases, the improvement of SASE and MSSC

over SSC was also significant. The results in the table also show that MSSC was slightly

better than SASE.

All in all, the results in this section show that improving semantic locality as in SSC

is better than two methods that are based on fitness control NSM and SBS in terms of

enhancing GP performance. Moreover, two new improvements of SSC, SASE and MSSC,

help not only to overcome the weakness of SSC (by removing the manual tunning of extra

parameters) but also to further improve SSC performance.

Since, subtree semantics is stored in the attributes, it is important to see how effective

it is in reducing semantic checking time. We measured the average time of a run of the

above methods. The results are show in Table 6.4. It can be seen from this table that

the average running time of NSM is mostly equal to the average running time of SC. It is

understandable since NSM does not need any extra time for fitness qualifying. By contrast,

the average running time of SBS is often much higher than of SC, especially with the brood

size of 2 and 3. The reason could be that SBS need more time to evaluate the context of

subtrees before doing crossovers.

For SSC, the table shows that its average running time is almost the same with that of

SC. It can be seen from this table that sometimes SSC runs faster than SC and sometimes

SC runs faster than SSC. These results are more positive than the results in Chapter 5

where it has been shown that SSC always runs more slowly than SC. This confirms the

benefit of using attributes to store trace semantics.

With two new improved methods of SSC, the table shows that SASE and MSSC usually

run faster than SC. The exception only lies in one case of SASE where SASE65 runs more

90



6.5. ATTRIBUTE REDUCTION

slowly than SC. Generally, the average running time of SASE and MSSC was only equal to

80% the average running time of SC. In the group of bi-variable functions, the running time,

compared to SC, was often reduced nearly a half with MSSC. In a comparison among SASE

and MSSC, it can be seen that MSSC usually runs faster than SASE. It can be explained

by the results in the next chapter where MSSC is shown to produce less bloat than SASE

and other crossovers.

6.5 Attribute Reduction

Since AGP used a number of attributes added to every node in every individual to store

semantic, it consumes more memory space than standard GP. The experiments in this

section are designed to show a way to overcome the above limitation. In particular, an

approach that uses only a subset of fitness cases as subtree semantics is proposed. In

other words, the subtree semantics of a subtree (tree) is now redefined as the following

subsection:

6.5.1 Subtree Semantics

Definition 3 Let P = {p1, p2, ...pN} be the fitness cases of a problem on domain D, then

Q = {q1, q2, ...qK} is a randomly drawn subset of P . Let F be the function expressed

by a (sub)tree T on D. Then the Subtree Semantics of T on domain D is the set S =

{s1, s2, ..., sK} where si = F (qi), i = 1, 2, .., K. 2

With this definition of subtree semantics, the semantic distance, semantic relationships

and semantics-based crossovers are redefined accordingly. The only modification is that

the number of attributes needed to store subtree semantics is now reduced from N to K

with K ≤ N . Assume that the population is of P individuals. If the average size of an

individual in the population is S (nodes) and there are N fitness cases which occupies B

bytes each, then, the magnitude of reducing in storage size, (R), in AGP is calculated as

in Equation 6.4
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I = P ∗ S ∗ (N −K) ∗B (6.4)

Notice that the values for these attributes can be calculated during the fitness calcu-

lation in a similar way as in Subsection 6.1.2. The following experiments and results will

show to what extent one can reduce the number of the attributes for AGP on the tested

problems so as to reduce the memory space needed to store semantics while maintaining

the performance of AGP with semantics based crossover operators.

6.5.2 Experimental Settings

As has been shown in Table 6.1, the memory space needed to store subtree semantics is only

really significant when the number of fitness cases is large. Therefore, in this experiment,

we increased the number of fitness cases of the problems. In particular, the number of

fitness cases for single variable problems was set at 80 and for bivariate problems was 400.

We tested the performance of SSC, SASE, and MSSC with this new and reduced semantics

and compared them with SC.

For SSC, we selected the first configuration where the upper bound of semantic sensi-

tivity was set at 0.4. The proportion of fitness cases chosen for subtree semantics was set

as Number of Fitness Cases/X where X = 1, 2, 4, or 8. These four configurations of SSC

will be called: SSCX with X=1, 2, 4, 8. For SASE, SASES was selected to test and for

MSSC, MT was set as 12. Similar to SSC, four subsets of fitness cases were examined and

will be refered as SASEX and MSSCX with X=1, 2, 4, and 8, respectively.

6.5.3 Results and Discussion

To compare the performance of these configurations with SC, we recorded the best fitness

of each run and averaged over 100 runs. The results are shown in Table 6.5.

Again, a Wilcoxon signed-rank test with a confidence level of 95% is conducted in Ta-
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Tab. 6.5: The comparison between SC and crossovers for improving semantic locality with
semantics is defined on a subset of fitness cases in terms of mean best fitness. Note that
the values are scaled by 102.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 1.47 2.00 0.64 1.53 0.91 1.65 1.42 1.19

SSC1 0.97 1.09 0.28 0.89 0.48 0.69 1.25 0.77
SSC2 0.98 1.24 0.29 0.94 0.45 0.70 1.03 0.78
SSC4 0.92 1.16 0.27 0.88 0.48 0.71 1.03 0.79
SSC8 0.90 1.24 0.30 0.90 0.52 0.72 1.10 0.78

SASE1 0.92 1.08 0.22 0.71 0.38 0.65 0.55 0.69
SASE2 0.89 1.09 0.18 0.74 0.42 0.64 0.49 0.60
SASE4 0.87 1.09 0.22 0.79 0.41 0.66 0.66 0.66
SASE8 0.85 1.06 0.23 0.82 0.37 0.62 0.45 0.65

MSSC1 0.81 0.99 0.16 0.70 0.37 0.63 0.35 0.56
MSSC2 0.78 1.07 0.19 0.66 0.41 0.61 0.34 0.61
MSSC4 0.69 1.06 0.16 0.68 0.42 0.60 0.42 0.53
MSSC8 0.79 0.99 0.22 0.84 0.36 0.62 0.46 0.63

ble 6.5, and if a crossover configuration was not significantly better than SC, it is printed

in italic face. It can be seen from the table that all three semantic locality promoting

crossovers were still significantly better than SC. Moreover, even when the number of sam-

ples in subtree semantics was reduced to 1/8 of the number of fitness cases, the performance

of these crossover are still almost completely preserved. Therefore, we argue that using

attributes to store semantics is a reasonable method. It not only facilitates the design of

semantic based crossovers and guarantees the execution of these crossovers, but also helps

to speed up the GP system. Moreover, whenever, the number of fitness cases is too large,

we can use a much smaller subset of them as semantics without degrading the performance

of semantic based crossovers. This table also confirms the superior performance of SASE

and MSSC over SSC.
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6.6 Conclusions

This chapter introduces an alternative way to sample points for measuring semantics of a

subtree that is based on the fitness cases of the problems. This way of sampling semantics

allows us to use a number of attributes to store semantics of a subtree. By caching seman-

tics, it helps to speed up semantic relationships checking and facilitates the design of some

new semantic based crossovers.

After that, two new improvements of SSC are proposed. The first one self adapts the

semantic sensitivities of SSC and the second version tries to eliminate the higher sensitivity

from SSC. The experimental results showed that these two approaches helped not only to

remove the burden of manually tunning semantic sensitivities in SSC, but also to further

improve SSC performance.

Last, we proposed a way for reducing the memory space needed to store semantics.

Here, subtree semantics is measured on a subset that is randomly drawn from the fitness

cases of the problems. An experiment was dedicated to investigate the efficiency of this

method. The results showed that we could use a much smaller set of the fitness cases

while still preserving the performance of semantic locality promoting crossovers. The

next chapter will present an investigation of some properties (semantic diversity, semantic

locality etc.) of semantic based crossovers to understand the reason for the advantages of

these operators.
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Chapter 7

Some Properties of Semantic based

Crossovers

The previous chapters showed that promoting semantic diversity and locality of crossover

brings positive impact on GP performance. This chapter analyses some characteristics

of semantic based crossovers. They include the rate at which semantically equivalent

crossover events occur, the semantic diversity resulting from such crossovers, the locality

of the operator, its constructive effect, its code bloat effect, and semantics exchanged

in crossovers. The results are compared with Standard Crossover (SC) and No Same

Mate (NSM) selection 1. The results in this chapter shed some light into the performance

of semantic based crossovers. In particular, it helps to explain why promoting semantic

diversity can only slightly improve GP performance while enhancing semantic locality leads

to a significant improvement. The results in this chapter have been published in [133, 140].

The GP parameter settings in this chapter are described in Table 5.2 in Chapter 5.

Three configurations of Semantic Aware Crossover (SAC) were used, with semantic sen-

sitivities set to 10−X with X=2, 3, and 4. These configurations of SAC are denoted as

SACX, for X=2, 3, or 4. For Semantic Similarity based Crossover (SSC), LBSS was set

to 10−3 and UBSS to 0.4. Three configurations of SSC were used, with Max Trial being

1Soft Brood Selection (SBS) is not considered in here as it is a local search based technique making it
irrelevant for the comparison in this chapter.
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at 12, 16, and 20. For Self-Adaptive Successful Execution (SASE) method and the Most

Semantic Similarity based Crossover (MSSC), the experimental settings are the same with

those in Chapter 6.

7.1 Rates of Semantically Equivalent Crossover Events

The first experimental result records the extent of semantically equivalent exchanges aris-

ing from the tested crossover operators. Here we say that a crossover operation is an

equivalent crossover if it is performed by exchanging two semantically equivalent subtrees.

Since the proposed new crossover operators (SAC and SSC, SASE, and MSSC) work by

analysing the semantics of subtrees, and trying to prevent the exchange of semantically

equivalent subtrees, it would be informative to see how frequently this actually happens.

This information shows us how frequently SC fails to change the semantics of individuals

(semantically unproductive) and the extent to which SAC, SSC, SASE, and MSSC could

solve this problem. The statistics collected are the percentage of such crossover events, for

all crossovers. The results are shown in Table 11.3.

It can be seen from Table 11.3 that the overall average for equivalent crossovers in

SC is from 12% to 17%. This value for NSM is only slightly smaller ranging from 11%

to 15%. By contrast, it is much smaller (from 1% to 2%) for SAC and from 1% to

6% for SSC, SASE and MSSC. It is clear that SAC, SSC, SASE, and MSSC are more

semantically exploratory than SC on these problems. We also conducted an experiment

to test how crossover affects the relative fitness of the offspring compared to their parent

when it swaps two semantically equivalent subtrees. The results indicate that, in nearly

all cases (about 99%), such crossovers leave the child fitness unchanged. It should be

noted that swapping two semantic equivalent subtrees does not always leave the fitness of

the children unchanged, because two semantically equivalent subtrees are not necessarily

identical subtrees. If they are only approximately the same, the crossovers can still change

the fitness of the children, but the level of change is very small, often less then 1%.

We note also that the number of equivalent crossovers is often marginally higher for
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Tab. 7.1: Average percentage of semantically equivalent subtrees in crossover

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 14.3 14.6 17.3 13.2 14.1 14.4 11.8 12.2

NSM 14.0 14.3 15.0 12.8 13.7 14.0 11.5 11.7

SAC2 1.66 1.62 2.68 1.41 1.58 1.73 1.07 1.05
SAC3 1.67 1.57 2.72 1.43 1.56 1.70 1.07 1.02
SAC4 1.64 1.58 2.52 1.44 1.54 1.65 1.06 1.01

SSC12 3.18 3.36 3.10 1.79 2.57 4.75 0.29 0.42
SSC16 2.28 2.50 2.80 1.04 1.76 3.92 0.18 0.29
SSC20 1.71 1.70 1.87 0.73 1.34 3.20 0.14 0.23

SASE65 5.43 5.48 7.72 4.36 4.84 4.96 5.55 5.03
SASE75 4.07 4.01 4.98 3.22 3.63 3.66 4.16 3.75
SASE85 2.53 2.63 5.77 2.07 2.36 2.28 2.31 2.46
SASES 3.83 3.78 5.11 2.99 3.49 3.50 3.68 2.60

MSSC12 1.42 1.51 2.16 1.85 3.15 2.41 0.93 0.95
MSSC16 1.37 1.44 2.07 1.81 3.01 2.44 0.64 0.69
MSSC20 1.42 1.35 1.87 1.95 2.80 2.18 0.54 0.65

SSC and SASE than for SAC. This is understandable, as SAC focuses purely on prevent-

ing semantically equivalent crossovers, while SSC and SASE are also aimed at preserving

semantic similarity of the exchanged subtrees. Preventing equivalent crossovers is valuable

in reducing the unproductive crossovers of SC, but keeping semantic changes small (as

seen in the succeeding sections) is even more effective in preserving diversity and achieving

constructive effects, leading to substantial performance improvements.

7.2 Semantic Diversity

In the previous section, we have shown that SAC, SSC, SASE and MSSC encourage the

exchange of semantically different subtrees, forcing a change in semantics relative to their

parents. It triggers a question on how well do SAC, SSC, SASE and MSSC promote

(semantic) diversity?

So far, two classes of metrics have been used to measure and control the diversity of

a population: at the genotype level and at the phenotype level [61, 65]. The former is
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Tab. 7.2: Average percentage of generating new children after applying SC, NSM, SAC
and SSC, SASE and MSSC.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 65.0 66.3 61.6 58.8 64.8 58.8 68.3 69.7

NSM 67.5 67.4 64.6 62.2 65.3 62.4 69.1 70.9

SAC02 73.2 73.3 70.5 62.8 69.6 66.6 74.3 75.1
SAC03 72.7 75.3 69.3 64.5 69.8 67.5 73.0 74.7
SAC04 72.8 74.1 69.6 64.5 70.4 68.2 72.9 74.9

SSC12 75.7 77.9 70.9 70.7 69.8 67.9 73.7 76.9
SSC16 76.7 77.1 71.8 71.4 70.8 67.4 71.1 77.4
SSC20 77.0 78.0 70.7 72.4 70.4 67.3 73.6 77.1

SASE65 74.7 76.1 68.5 67.1 70.2 64.4 74.8 75.3
SASE75 75.6 76.9 69.2 67.6 69.4 66.9 75.0 75.1
SASE85 78.2 77.5 68.8 69.7 69.5 69.4 74.1 73.9
SASES 76.4 76.8 70.8 69.5 70.5 68.1 74.2 74.8

MSSC12 78.1 80.9 73.1 71.5 70.8 70.0 78.5 75.3
MSSC16 79.2 80.7 73.9 72.8 69.7 69.1 80.7 79.4
MSSC20 77.8 81.2 74.5 71.3 71.3 70.4 83.3 78.4

based on the syntax (i.e., structure) of an individual [148] and the latter on the behaviour

(i.e., fitness) of an individual [126]. In this thesis, we propose a new measure for semantic

diversity known as Semantic Diversity of Crossover (SDC). SDC is different from other

metrics in that SDC does not aim to measure the difference between the individuals in

the same population, but rather to measure the difference between the individuals of two

successive populations. In other words, SDC is a measure of how much individuals change

semantically through crossover. Here, the semantic difference between individuals before

and after crossover is again determined based on the set of semantic points of the problems.

We used SDC to measure the semantic diversity of the above methods by counting

the percentage of the crossover events that generated semantically different offspring from

their parents (we will call them new children). These results are shown in Table 7.2.

It can be seen from Table 7.2 that there are about 60% to 70% of SC that can change

semantics from parents to children. By preventing the swapping of two semantically equiv-

alent subtress, both NSM and SAC increase the probability of crossovers that can gener-
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ate semantically newly children. However, while NSM only marginally rises the rate of

crossover that can change semantics (about 2% to 4%), SAC makes it to a greater extent

(about 8% to 10%).

Comparing between SAC and SSC, it can be seen that SSC is often better than SAC

in terms of generating semantically newly children. It is also interesting to see that,

although SAC was better than SSC in terms of preventing equivalent crossovers, by keeping

semantic changes small, SSC was nevertheless often better than SAC at producing a more

semantically diverse population. With two improved version of SSC, SASE and MSSC, it

can be seen from the table that while SASE is mostly equal with SSC, MSSC is generally

better than both SSC and SASE in changing semantics of individuals in crossover. We note

that SAC, SSC, SASE and MSSC in general do not guarantee to generate semantically new

offspring, even though they try to swap two semantically different subtrees. We believe

this arises from some fixed-semantic subtrees as in the Boolean domain [123].

7.3 Semantic Locality

The next set of results show the locality property of SSC, SASE and MSSC compared to

SAC and SC. Generally, using a representation with high locality is important for efficient

evolutionary search [69, 169]. To date, most current GP representations and operators only

focus on controlling syntactic locality [69] and semantic locality is still very small. Since,

the new crossover operators (SSC, SASE and MSSC) differ from other crossover operators

in that it attempts to control the scale of change in terms of semantics rather than syntax,

it is informative and useful to see how they achieve semantic locality.

To compare the locality of SSC, SASE, MSSC, with SAC, NSM and SC, an experiment

was conducted where the fitness change of individuals before and after crossover was mea-

sured and recorded. For example, suppose two individuals (P1 and P2) having fitness of 10

and 15 are selected for crossover respectively, and after the crossover operation their chil-

dren are C1 and C2, where C1 roots at P1 and C2 roots at P2 (meaning that C1 and C2 are

generated by replacing a subtree of P1 and P2, respectively, with a new subtree) have fitness
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Tab. 7.3: The average change of fitness after crossover for SC, NSM, SAC, and SSC.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 1.18 1.26 0.89 0.62 0.78 1.40 0.52 0.48

NSM 1.02 1.18 0.71 0.64 0.84 0.96 0.47 0.49

SAC02 1.07 1.08 0.81 0.68 0.76 0.92 0.51 0.56
SAC03 1.03 1.11 0.78 0.64 0.72 0.94 0.59 0.50
SAC04 1.05 1.19 0.80 0.67 0.75 0.96 0.58 0.50

SSC12 0.65 0.49 0.31 0.29 0.32 0.72 0.30 0.16
SSC16 0.42 0.40 0.25 0.25 0.29 0.68 0.21 0.16
SSC20 0.50 0.43 0.20 0.20 0.19 0.65 0.23 0.16

SASE65 0.76 0.58 0.42 0.31 0.44 0.72 0.17 0.16
SASE75 0.51 0.69 0.37 0.25 0.34 0.62 0.16 .017
SASE85 0.40 0.62 0.35 0.28 0.30 0.55 0.16 0.14
SASES 0.45 0.58 0.24 0.35 0.32 0.72 0.14 0.15

MSSC12 0.48 0.35 0.27 0.25 0.35 0.50 0.09 0.13
MSSC16 0.34 0.32 0.16 0.27 0.23 0.51 0.07 0.16
MSSC20 0.35 0.25 0.16 0.37 0.25 0.46 0.07 0.10

of 17 and 9. The change of fitness of these individuals is (Abs(17−10)+Abs(9−15))/2 = 7.5.

This value was averaged over the whole population and over 100 runs. The average fitness

change of individuals before and after crossover is shown in Table 7.3.

Table 7.3 confirms that the step size of the fitness change for our new crossover operators

(SSC, SASE and MSSC) was smaller than for either NSM, SAC or SC, and thus the change

in fitness over the generations of SSC, SASE and MSSC was smoother than for SAC, NSM

and SC. By making a semantically small change in the parents as in SSC, SASE and MSSC

one can achieve a small change in semantics of their offsprings. This result is important, as

it is not trivial to achieve the locality property by making syntactically small changes. This

not only helps to improve the performance of GP as shown in the previous chapters, but

may also provide an impetus to attract other GP researchers to find more effective ways

of achieving locality for their GP systems. The table also shows that the fitness change

of both SAC and NSM was only slightly smoother than SC on some problems. This can

be seen as a reason why SAC and NSM were not significantly better than SC as shown in

the previous chapters. Comparing between the two new improved versions of SSC, it can

100



7.4. CONSTRUCTIVE EFFECTS

be seen that the step size of the fitness change of SASE is mostly the same with one of

SSC with two exceptions on function F7 and F8, whereas MSSC often make smaller change

than both SSC and SASE.

7.4 Constructive Effects

The results from the previous sections show that SAC, SSC, SASE and MSSC are more

semantically productive than SC, and that SSC, SASE and MSSC have higher locality

than both SAC and SC. This leads to a further question, whether these properties help

the crossover operators to generate better children than their parents (more constructive

crossover). In other words, we would like to know the relative constructiveness of the

operators, SSC, SASE, MSSC, SAC and SC. Statistics were collected measuring the con-

structive effect of NSM, SAC, SSC, SASE, MSSC and SC, using a method similar to that

in [117]. The constructive effect is measured by calculating the percentage of crossover

events that generate children better than their parents.

We distinguish two categories of constructive crossovers: semi-constructive crossovers

and full-constructive crossovers. Let us assume that two parents P1 and P2 are selected for

crossover, generating two children C1, C2 (C1 rooted at P2, and C2 rooted at P2). Then,

a crossover is called semi-constructive if it generates at least one child that is better then

its parents. In other words, the condition (C1 is better than P1 OR C2 is better than P2)

is used to count semi-constructive crossovers. When the condition is more strict – both

children are better than their parents (C1 is better than P1 AND C2 is better than P2)

– the crossover is called full-constructive. A crossover that is not semi-constructive nor

full-constructive is called destructive.

The semi-constructive and full-constructive crossovers results for these operators are

shown in Table 7.4 and Table 7.5, respectively. It can be seen from Table 7.4 that both

methods that promote semantic diversity, NSM and SAC were more semi-constructive than

SC. This is a consequence of the greater semantic diversity of SAC and NSM relative to

SC. The table also shows that while NSM is only marginally better than SC, from 1% to
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Tab. 7.4: The percentage of semi-constructive crossovers of SC, NSM, SAC, and SSC,
SASE, MSSC (i.e. at least one child is better than the corresponding parent).

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 21.2 21.3 20.8 19.0 24.9 19.2 31.1 31.2

NSM 23.4 22.6 23.2 21.1 24.7 21.4 32.6 31.9

SAC02 28.1 27.3 29.1 23.0 30.0 25.8 37.7 37.0
SAC03 27.8 28.5 28.3 23.6 29.9 26.1 36.9 37.0
SAC04 27.9 27.9 28.0 24.3 31.0 26.4 37.0 37.0

SSC12 34.3 35.2 33.5 31.5 38.8 32.2 40.9 41.9
SSC16 36.0 35.3 34.8 32.8 39.1 32.7 40.8 42.3
SSC20 36.8 36.1 34.7 32.4 40.2 34.1 42.1 42.2

SASE65 34.7 34.8 33.9 31.0 38.2 31.6 40.5 40.7
SASE75 35.7 35.1 34.4 30.9 37.8 33.2 40.7 41.9
SASE85 36.3 34.9 34.4 31.7 38.8 33.6 40.1 42.0
SASES 35.4 35.4 35.6 31.9 39.7 33.6 41.0 42.2

MSSC12 37.1 38.6 37.6 35.0 38.9 35.2 43.3 43.9
MSSC16 40.0 40.3 39.6 37.0 39.9 36.7 45.8 46.2
MSSC20 40.5 41.7 41.8 37.5 41.5 38.5 47.3 46.9

3%, SAC is often better than both SC and NSM, from 5% to 8%. This can be seen as the

result of more semantic exploration of SAC versus NSM and SC on these functions. These

increases are particularly important because the semi-constructive rate for SC was rather

small (about 20%).

While promoting semantic diversity like SAC helps to enhance the probability of crossover

that generates better children, improving semantic locality as in SSC is even more effective.

The tables shows that SSC creates the probability of better children to a greater extent.

Usually, SSC is often from 10% to 15% more semi-constructive than SC. Comparing be-

tween two improved methods of SSC, it can be observed that SASE is roughly equal to

SSC in terms of semi-contructive effect, while MSSC is often 5% better than both SSC and

SASE. These results provides support to explain why the performance of MSSC is often

better than SSC, while the better performance of SASE can be the result of the balance

between local and global search.

Table 7.5 shows how difficult it is for standard GP crossover to generate improved
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Tab. 7.5: The percentage of full-constructive crossovers of SC, NSM, SAC, and SSC, SASE,
MSSC (i.e. both children are better than the corresponding parent).

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 2.27 2.25 2.28 2.00 2.62 1.97 4.20 4.02

NSM 2.49 2.39 2.52 2.19 2.77 2.14 4.32 4.23

SAC2 3.28 3.25 3.56 2.62 3.18 2.87 5.42 5.18
SAC3 3.29 3.43 3.45 2.63 3.80 2.96 5.26 5.17
SAC4 3.31 3.32 3.40 2.78 3.94 2.96 5.28 5.17

SSC12 4.94 5.15 4.58 4.07 5.40 4.52 6.21 6.29
SSC16 5.25 5.15 4.80 4.36 5.45 4.57 6.30 6.31
SSC20 5.33 5.30 4.69 4.63 5.71 5.00 6.29 6.13

SASE65 5.07 5.06 4.81 4.19 5.39 4.21 5.91 6.07
SASE75 5.01 5.09 4.84 4.11 5.25 4.37 6.01 6.26
SASE85 5.22 4.98 4.86 4.17 5.31 4.57 6.06 6.37
SASES 5.09 5.13 5.12 4.33 5.41 4.67 5.12 6.34

MSSC12 5.55 5.80 5.49 4.84 5.41 5.05 6.51 6.47
MSSC16 6.08 6.13 5.66 5.34 5.49 5.39 6.40 6.81
MSSC20 5.99 6.24 5.85 5.47 5.69 5.66 6.49 6.63

solutions. The percentage of fully constructive crossovers for SC was only about 2% for

one-variable functions and 4% for bivariate functions. But adding semantics to crossover

enabled many more full-constructive crossovers. SAC often scored 1.5 times higher than

SC in frequency of full-constructive events, and SSC scored around 2 times higher. This

table again shows that SSC and SASE are mostly equal while MSSC is always the best

crossover in terms of full-constructive effect.

7.5 Code Bloat Effect

This section is dedicated to the investigation of the (side)effect of promoting semantic

diversity and improving semantic locality of crossovers on code bloat in GP. It starts with

a comparison of the effect of the above crossovers on the code bloat. Then, the relationship

between semantic locality of crossovers and bloat is studied.
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Tab. 7.6: Average size of individuals over all generations (i.e. the number of nodes in each
individuals).

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 53.5 50.7 48.9 60.8 48.6 57.4 42.8 41.7

NSM 52.8 51.1 47.1 63.2 48.9 57.9 43.5 41.6

SAC02 56.6 54.9 48.6 64.7 51.4 58.2 44.8 45.9
SAC03 57.2 55.3 48.4 63.6 50.7 59.7 46.8 44.9
SAC04 57.8 56.1 48.2 64.4 51.2 58.5 46.6 44.7

SSC12 47.0 46.6 46.5 60.1 46.3 51.0 41.6 40.2
SSC16 46.9 47.1 46.0 59.7 48.2 50.2 41.5 40.4
SSC20 47.0 48.0 46.8 58.6 48.1 49.6 41.4 40.3

SASE65 45.7 47.0 43.2 59.8 47.3 53.1 23.0 27.7
SASE75 44.6 46.2 44.7 59.3 48.2 53.2 27.6 29.5
SASE85 48.0 48.8 42.5 59.7 44.9 51.8 33.2 34.0
SASES 45.4 45.8 43.6 59.4 45.3 52.9 26.0 28.4

MSSC12 42.2 42.1 41.5 57.7 46.7 50.7 25.7 33.8
MSSC16 40.9 41.6 40.6 54.0 46.0 48.5 21.5 27.9
MSSC20 41.1 40.8 40.5 55.2 45.4 44.7 20.7 28.7

7.5.1 Semantic Diversity, Semantic Locality and Code Bloat

It has been known since the early days of GP that the average size of programs inexorably

grows, sometimes even exponentially [9]. This phenomenon is known as code bloat 2.

There are a number of explanations for code bloat in the GP literature (e.g. [109, 143,

177, 38]. Although this is still an area of debate, it is generally agreed that code bloat

negatively impacts GP search, and also makes GP solutions difficult to comprehend. While

a comprehensive study of the role of semantics on GP code bloat is not the main objective

of this thesis, it is interesting to see how semantic based crossover affects GP code bloat.

To investigate the effect of the semantic based crossovers on code bloat we measured

the average size of individuals (number of nodes) over 50 generations, averaged over 100

runs. The statistics are presented in Table 11.7. The table reveals that promoting semantic

diversity as in SAC and NSM often leads to a little more bloat than SC. The table also

shows that SAC often exhibits more bloat than NSM. The reason could be that SAC is

2In this thesis, we use terms code bloat simply means the growth of population size.
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Tab. 7.7: Average size of the solutions.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 66.4 73.0 53.3 78.1 67.4 67.1 63.9 65.4

SSC12 59.3 70.8 58.7 83.8 60.9 55.3 62.4 51.8
SSC16 60.1 47.0 48.0 86.7 65.6 51.8 55.8 55.6
SSC18 65.6 64.5 50.7 79.8 76.6 45.5 58.6 59.9

SASE65 65.9 67.3 52.0 75.5 66.8 56.7 38.5 41.9
SCAS75 61.6 59.4 47.3 83.9 73.5 58.3 47.3 41.1
SASE85 60.5 47.5 50.7 74.6 69.6 63.8 49.1 49.8
SASES 51.5 56.4 50.0 86.4 62.3 63.9 41.9 41.3

MSSC12 51.5 50.3 52.5 75.0 62.9 55.3 38.1 39.2
MSSC16 50.2 63.4 44.5 55.6 63.7 53.8 29.0 28.3
MSSC20 50.1 34.6 43.7 77.3 65.8 53.4 25.5 24.6

more semantically exploratory than NSM. However, it also indicates that the amount of

excessive bloat was acceptable. On the contrary, improving semantic locality as in SSC

usually reduces code bloat compared to SC. Similarly, both new improvements of SSC,

SASE and MSSC have less bloat than SC, and MSSC is the best method in terms of

reducing code bloat.

The reduction in code bloat of SSC, SASE and MSSC over SC, consequently, reduces

the running time. The results in Chapter 6 show that SSC, SASE, especially MSSC, usually

run faster than SC. The exception only lies in some cases of SSC. Generally, the average

running time of SASE and MSSC was only equal to 80% the average running time of SC.

In the group of bi-variable functions, the running time, compared to SC, was often reduced

a half with MSSC (see Chapter 6).

Another benefit of having less bloat in SSC, SASE and MSSC is that it potentially

helps to find more comprehensible solutions (smaller and more readable solutions). This

is confirmed by the result in Table 7.7, where we show the average size of the solutions

found in the runs. It can be seen from the table that SSC, SASE and MSSC usually found

solutions with better quality (in terms of size). The exception again lies in function F3, F4

and F5 with SSC and SASE. In the comparison among SSC, SASE and MSSC, the result is

consistent with the previous results where MSSC was usually better than SSC and SASE
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in terms of finding smaller solutions. Overall, the improvement of SSC, SASE and MSSC

over SC were not only in performance but also in reducing code bloat, which led to smaller

running times and shorter solutions.

7.5.2 The Relationship of Semantic Locality and Code Bloat

The previous subsection shows that improving semantic locality leads to reduced code

bloat in GP. It also seems that higher semantic locality of crossover tends to even further

reduce code bloat. To investigate the relationship between semantic locality and code bloat

we designed an experiment that tries to measure this correlation by tunning the semantic

locality of these crossovers (by changing semantic sensitivities) from low to high. The

experimental settings are as follows:

For SSC, to increase its semantic locality, we need to reduce the upper bound semantic

sensitivity. It should be noted that an upper bound of semantic sensitivity that is too small

could deter SSC performance. However, since the objective of the experiment was purely

to focus on code bloat, the performance was ignored. Five values for the upper bound

of semantic sensitivity were examined: 0.05, 0.1, 0.2, 0.4, and 0.8. As reducing upper

semantic sensitivity, will make it more difficult to select a pair of subtrees that satisfy

SSC’s condition, the number of trials (MT) needs to be increased. Therefore, the values

of MT for the above semantic sensitivities were 80, 40, 20, 10, and 5 respectively. In total,

5 configurations of SSC were tested and will be referrer to as SSCX with X=5, 10, 20, 40,

80 respectively.

For SASE based crossover(s), SASES was used in our experiment. It can be seen that

the semantic locality of both SASE and MSSC will be higher when we increase the number

of subtree selection trials (MT). Therefore, similar to SSC, 5 values of MT: 5, 10, 20, 40,

80, were set for each SASE and MSSC. They comprise 5 configurations for SASE and

for MSSC and are called SASEX and MSSCX with X=5, 10, 20, 40, 80 respectively. To

investiage the relationship between semantic locality and code bloat we also measured the

average size of individuals (number of nodes) over 50 generations, averaged over 100 runs.
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Tab. 7.8: Average size of individuals over all generations (i.e. the number of nodes in each
individuals) when increasing semantic locality of crossovers.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC 53.5 50.7 48.9 60.8 48.6 57.4 42.8 41.7

SSC5 51.1 50.4 48.7 60.3 47.5 53.2 44.7 42.1
SSC10 46.1 49.4 45.0 60.0 46.6 49.4 42.2 41.3
SSC20 45.1 45.0 42.5 60.0 45.4 49.1 30.7 34.4
SSC40 43.2 43.5 43.7 59.3 46.1 48.2 25.8 31.6
SSC80 46.7 45.3 46.1 62.3 48.6 52.5 27.8 32.4

SASE5 49.1 49.2 46.4 61.4 49.6 54.8 38.3 36.4
SASE10 45.2 47.8 43.9 61.2 48.2 51.6 28.9 34.5
SASE20 42.8 46.5 41.2 59.9 47.1 49.3 21.2 26.6
SASE40 42.2 43.9 43.0 59.0 47.0 47.9 21.0 26.1
SASE80 46.3 48.1 45.4 62.3 49.8 53.7 24.0 27.6

MSSC5 49.3 50.8 47.7 61.9 47.9 53.8 38.3 39.7
MSSC10 43.9 47.6 45.1 59.2 46.8 51.6 28.3 35.7
MSSC20 41.1 40.8 40.5 55.2 45.4 44.7 20.7 28.7
MSSC40 40.4 39.8 38.7 54.6 39.8 42.6 20.3 26.0
MSSC80 40.7 42.1 42.3 53.9 41.5 44.0 20.9 25.8

The results are presented in Table 7.8.

It can be observed from this table that there was a strong correlation between semantic

locality and code bloat where increasing the semantic locality of crossovers led to further

reduction in code bloat. The table shows that the average size of individuals is consistently

decreased when MT was increased from 5 to 40. It is interesting, however, that when the

semantic locality went higher it did not help to further reduce code bloat. The average

individual size when MT is 80 was often larger than when MT is 40. Overall, the results

in this section show that promoting semantic diversity of crossovers tends to increase code

bloat while improving crossover semantic locality leads to a remarkable reduction in code

bloat. Moreover, the results also confirm that the higher semantic locality of crossover, the

less problem with code bloat GP will have. However, this locality should not be arbitrarily

high as there is a saturation point where higher semantic locality of the crossover operator

could not help to reduce code bloat only to require more running time.
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7.6 Semantics Exchanged in Crossovers

The previous sections showed a number of advantages of improving semantic locality of

standard crossover, but why should we improve semantic locality of standard crossover?

This section addresses that question by analysing the semantic exchanged in SC and SSC.

SAC is not investigated here since it could be seen as a special version of SSC with the

upper semantic sensitivity set to an extreme value. The section starts with some analysis on

the semantic exchanged between two subtrees in SC. The effects of this semantic exchange

on the semantic locality and constructive effect are also examined. Then, the semantic

exchange of two subtrees of SSC is given.

7.6.1 Semantics Exchanged in Standard Crossovers

As SSC works by both preventing the exchange of two semantic equivalent subtrees and

keeping a small semantic difference, it is informative and useful to see semantics of two

subtrees exchanged by this crossover compared to SC. In order to investigate this we

designed an experiment as follows:

Let Sem be the semantic distance of two subtrees exchanged in SC. We divide SC into

7 groups, these 7 groups will be referred as SCs from here, as follows:

1. SC0 if Sem <10−3

2. SC1 if 10−3≤Sem <0.1

3. SC2 if 0.1≤Sem <0.2

4. SC3 if 0.2≤Sem <0.4

5. SC4 if 0.4≤Sem <0.8

6. SC5 if 0.8≤Sem <1.6

7. SC6 if 1.6≤Sem
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Tab. 7.9: The percentage of each groups in 7 groups of Standard Crossover.

Methods F1 F2 F3 F4 F5 F6 F7 F8

SC0 14.3 14.6 17.3 13.2 14.1 14.4 11.8 12.2

SC1 2.65 2.68 4.63 0.96 1.14 0.60 4.63 5.40
SC2 3.23 3.13 5.48 3.73 3.68 2.42 4.80 4.38
SC3 4.70 4.54 10.7 11.6 6.34 2.88 28.5 24.7

SC4 22.1 22.3 31.6 25.5 11.7 11.2 28.8 30.0
SC5 38.3 38.4 17.7 24.5 33.9 35.0 14.4 15.9
SC6 14.7 14.2 12.4 20.4 29.0 33.3 6.41 6.79

SC0 corresponds to the situation where SC exchanges two semantically equivalent sub-

trees. SC1, SC2 and SC3 are instances where we expect SSC to operate most effectively

and three remaining cases (SC4, SC5 and SC6) are the situations when SC exchanges

subtrees which are semantically too different. We firstly recorded how many operations

of SC that happened during our runs of GP falling in each of the seven groups at each

generation. The values are then averaged over 50 generations and 100 runs and are shown

in the Table 7.9.

It could be seen from Table 7.9 that there was a small portion of SC events that exchange

two semantically similar subtrees (with Sem lies in the interval from 10−3 to 0.4). In total,

there was only 10% to 15% of SC that lies in these three cases. In terms of exchanging two

semantic equivalent subtrees, the results show from 12% to 15% of SC. It is not a large

percentage but it also reduces the semantic diversity of SC that will usually lead to a poorer

performance of SC compared to SAC and other crossover operators for promoting semantic

diversity. By contrast, there was a large number of times SC exchanged two semantically

dissimilar subtrees. The table shows that there was from 50% to 70% of SC operations

that swapped two subtrees with their semantic distance greater than 0.4. Therefore, if

the exchange of two semantic dissimilar subtrees causes an abrupt movement of semantics

during the course of evolution, preventing this situation is essentially important to smooth

out the change of semantics.

To investigate the effect of semantic exchange between two subtrees on the semantic
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Tab. 7.10: The change of semantics from parents to children in Standard Crossover.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SC1 0.23 0.27 0.16 0.06 0.08 0.09 0.07 0.04
SC2 0.20 0.20 0.23 0.11 0.15 0.16 0.08 0.07
SC3 0.45 0.37 0.28 0.21 0.19 0.36 0.13 0.13

SC4 0.56 0.57 0.47 0.30 0.27 0.58 0.20 0.21
SC5 0.72 0.89 0.71 0.46 0.44 0.67 0.33 0.43
SC6 2.02 2.20 1.53 0.72 1.25 1.39 1.02 1.07

Tab. 7.11: Full-constructive events of Standard Crossover.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SC1 9.58 9.66 8.38 7.79 9.19 8.58 11.9 12.2
SC2 6.72 7.02 5.06 5.39 7.73 6.26 7.41 7.38
SC3 4.51 4.56 3.96 3.84 5.75 4.13 5.81 5.70

SC4 2.72 2.77 2.60 2.59 4.14 2.92 4.29 4.21
SC5 1.99 2.00 1.42 1.60 3.10 2.17 2.94 2.90
SC6 1.49 1.41 1.23 1.30 1.95 1.61 2.30 2.21

movement from the parents to the children, we recorded semantic distance of two consecu-

tive populations. The value is then averaged over 50 generations and 100 runs. The results

are shown in Table 7.10. It can be seen from this table that when SC exchanges two

semantic equivalent subtrees, the semantics transfered from parents to children is likely

unchanged. Therefore, there was at least from 12% to 15% of SC operation that will

not change the semantics of individuals. Moreover, when SC exchanges two semantically

similar subtrees, the change of semantics from parents to children is often much smoother

than when it exchanges two semantically dissimilar subtrees. It can be observed that the

population semantic distances of SC1, SC2 and SC3 were usually much smaller than for

SC4, SC5 and SC6. Hence, we argue that making a semantically small change leads to a

smooth movement of semantics during the course of evolution, while a big change leads to

an abrupt movement.

What is more important is that a smooth semantic movement leads to a more construc-
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tive effect of crossovers while an abrupt semantic movement leads to a less constructive

effect. It is confirmed by the results in Table 7.11 where the percentage of full-constructive

events with each kind of SC is shown. Here, the concept of full-constructive crossover is

similar to the concept in the previous section. In other words, assume that two parents

P1 and P2 selected for crossover generates two children C1, C2 (C1 rooted in P1 and C2

rooted in P2), then, a crossover is called constructive if C1 is better than P1 AND C2 is

better than P2.

We counted the percentage of full-constructive events of seven classes of SC at each

generation. The values are then averaged for all generations and over 100 runs and shown

in Table 7.11. It can be seen from this table that SC0 does not change the semantics

of individuals, therefore, can not improve their fitness. Moreover, making a semantically

smooth change led to a much greater full-constructive effect than when making a semantic

abrupt change. The percentage of full-constructive events of SC1, SC2 and SC3 was from

4% to 12% while these values of SC4 was only around 2% to 3% and of SC5 and SC6

were event smaller with only approximately 1% to 2%. To summarize, this subsection

shows that most of SC operations (events) exchanges two semantic equivalent subtrees or

two semantic dissimilar subtrees. Furthermore, exchanging two semantic similar subtrees

leads to a smoother change of semantics from parents to children while exchanging two

semantic dissimilar subtrees leads to an abrupt change of semantics. This, consequently,

leads to a greater full-constructive effect of exchanging two semantic similar subtrees versus

exchanging two semantic dissimilar subtrees.

7.6.2 Semantics Exchanged in Semantic based Crossovers

The previous subsection shows that there is only a tiny portion of SC events that exchange

two semantic similar subtrees. Moreover, SSC is aims to increase the exchange of two

semantic similar subtrees, it is important to see how SSC is successful in this objective. In

order to investigate, we designed an experiment that is similar to the previous experiment

with SC. As before, the upper bound of semantic sensitivity of SSC in this experiment was
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Tab. 7.12: The percentage of each groups in 7 groups of SSC.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SSC0 3.17 3.36 3.10 1.79 2.57 4.74 0.29 0.42

SSC1 24.2 24.7 24.6 6.40 11.5 8.64 11.3 14.5
SSC2 26.0 24.7 23.7 21.3 28.8 26.8 12.6 12.7
SSC3 30.8 30.5 41.5 59.9 43.7 30.6 74.6 70.9

SSC4 4.60 4.74 3.42 3.89 1.99 4.27 0.41 0.56
SSC5 8.17 8.62 1.94 3.46 5.77 12.6 0.38 0.49
SSC6 2.91 3.25 1.58 3.17 5.43 12.1 0.31 0.40

set as 0.4 and Max Trial is set at 12. Similar to SC, SSC is divided into seven groups.

These seven groups will be referred to as SSCX (X=0, 1,..., 6). We recored the percentage

of SSC that lies in each of the seven groups at each generation. The values are averaged

over 50 generations and 100 runs. The results are shown in Table 7.12.

It can be seen from this table that the portion of SSC that semantically exchanges

two similar subtrees is substantially increased compared to SC. There is about 80% to

90% of SSC that lies in SSC1, SSC2 or SSC3. At the same time, the percentage of SSC

that exchanges two semantic equivalent subtrees and the percentage of SSC that swaps two

semantic dissimilar subtrees are remarkably reduced. This table provides the evidence that

SSC actually achieved its design objective to keep a small change of parents in crossover

in terms of semantics.

We also recorded this statistic for new improved methods of SSC, SASE and MSSC.

The results, although are not shown in this chapter (See Appendix A), show that both

SASE and MSSC achieved their design objective in terms of keeping a small semantic

change from parents to children.

7.7 Conclusion

This chapter investigated some properties of semantic based crossovers. The comparison

was undertaken with standard crossover and a fitness-based method, SNM. The results
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showed that there is about 12% to 15% of SC that exchanges two semantically equivalent

subtrees and the semantic based crossovers are successful in preventing this phenomena.

The results also show that semantic based crossovers are more exploratory than SC and

that crossovers that aim to keep a small change from parents to children enhance their

semantic locality. This results in a more constructive effect of semantic based crossover

in comparison with the left crossovers, meaning that semantic based crossovers are more

likely to produce children that are fitter than their parents.

The effect of the crossovers under semantic control on GP code bloat was also examined

and the results showed that promoting semantic diversity leads to more bloat than SC.

However, the amount of excessive bloat is small and acceptable. On the contrary, improving

semantic locality helps to further reduce code bloat and this helps these operators run faster

than SC. The quality of the solutions that are found by these crossovers are also better in

terms of size of the solution.

Finally, a comprehensive analyses of semantics exchanged of SC and SSC was conducted

and the results show that there is about 12% to 15% of SC events that do not change

semantics of parents and a large portion of SC (50% to 70%) that exchanges two semantic

dissimilar subtrees. This leads to a low value of semantic locality of SC. Low semantic

locality results in abrupt movements of semantics during the course of evolution and this

in turn leads to the destructive effect of SC. The analysis of SSC showed that SSC helps to

solve problem of low semantic diversity and especially semantic locality of SC. We argued

that this is the main reason for the better performance of SSC and its two new improved

versions, SASE and MSSC. The next chapter will investigate the generalisation ability of

semantic based crossover, SSC and MSSC (SASE is not investigated more as its behaviour

is similar to SSC).
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Chapter 8

Examining Generalisation Ability of

Semantic based Crossovers

The previous chapters have shown that semantic based crossovers improve the performance

of GP on training data. This chapter examines the generalisation ability of GP using

these semantic based crossovers. First, a review of work on GP generalisation ability is

given. Then we present the GP parameter settings and the problems that are used to

test the generalisation ability of GP. Next, the generalisation ability of the semantic based

crossovers, Semantic Similarity based Crossover (SSC) and the Most Semantic Similarity

based Crossover (MSSC) are compared with the standard crossover, the validation set

method and two bloat control methods including a multi-objective approach and Tarpeian

Bloat Control. Some preliminary results in this chapter have been published in [135].

8.1 Introduction

In the field of Machine Learning (ML), generalisation has been seen as one of the most

desirable properties for learning machines [125]. Since GP could be seen as a (evolutionary)

machine learning methodology, it is very important to guarantee that the solutions GP

finds, not only work well on training data but also on the unseen data [29]. Surprisingly,
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a large number of GP researchers have only reported results on training data. While

overfitting the training data to get the exact solutions is suitable in some cases, for most

learning problems in reality it would not be enough without considering their generalisation

over unseen data.

Some recent research (e.g. [29, 182, 52]) has shown that the ability of GP to generalise

could be poor. The awareness of the ability of GP to generalise is also important in the

context of performance comparison between different GP systems. It has been recently

shown [29] that an enhanced GP system performance might be remarkably better than

standard GP on training data, but not significantly better on unseen data.

The previous research on improving the ability of GP to generalise is mostly focused on

reducing the solution size [182, 52, 115, 42]. The motivation for such an approach is that

GP usually bloats, with solution complexity (size) increasing rapidly during the evolution-

ary process. High complexity solutions are often poor in their ability to generalise as they

contradict Ockham’s razor principle [125] (simple solutions are prefered). In this chap-

ter, we demonstrate the ability to improve generalisation of GP using a semantic based

approach. In particular, we test if the previously proposed semantics based crossovers,

namely the Semantic Similarity based Crossover (SSC) and the Most Semantic Similarity

based Crossover (MSSC) could improve the ability of GP to generalise. The experimen-

tal results show the effectiveness of the SSC and MSSC approaches in comparison with

standard GP, the validation set based method and the bloat reduced methods.

8.2 A Review of Generalisation in Genetic Program-

ming

Although generalisation of learned solutions is the primary interest of any learning ma-

chine [125], it was not seriously considered in the field of GP for a long time. Before

Kushchu published his work on the generalisation ability of GP [105], there was little re-

search dealing with the GP generalisation aspect. Francone et al. [49] proposed a new GP

115



8.2. A REVIEW OF GENERALISATION IN GENETIC PROGRAMMING

system called Compiling GP (CGP) and the authors compared its generalisation ability

with that of other machine learning techniques. The results show that the ability of CGP

to generalise compares favourably with a number of more traditional machine learning

methods. Furthermore, the influence of using extensive mutation on the ablity of CGP to

generalise was investigated and the experimental results show positive effects [10]. Ekart

and Nemeth [42] tested the generalisation ability of GP that is based on a multi-objective

method. The results show that the multi-objective method based on Pareto Nondom-

ination Criterion help to reduce code bloat while maintaining the the ability of GP to

generalise.

Recently, the issue of generalisation in GP is deservedly receiving increased attention.

Mahler et al. [115] experimented with Tarpeian Control on some symbolic regression prob-

lems and tested the side effects of this method on the generalisation ability of GP. The

results were inconsistent and problem dependent, i.e., it can either increase or reduce the

generalisation power of solutions found by GP. Gagné et al. [52] investigated two methods

to improve generalisation in GP-based learning: the selection of the best of run individuals

using a three datasets method (training, validation, and test sets), and the application of

parsimony pressure in order to reduce the size of the solutions. Their experimental results

indicate that using a validation set could slightly improve the stability of the best of run

solutions on the test sets. Costa et al. [28] proposed a new GP system called relaxed

Genetic Programming with generalisation ability better than standard GP.

More recently, Costelloe and Ryan [29] showed the important role of generalisation

on GP. They experimentally showed that a technique like Linear Scaling [92] may only

be significantly better than standard GP on training data but not superior on testing

data. They proposed an approach to improve GP generalisation by combining Linear

Scaling and the No Same Mate strategy [62]. Vanneschi and Gustafson [182] improved GP

generalisation using a crossover based similarity measure. Their method is to keep a list of

over-fitting individuals and to prevent any individual entering the next generation if it is

similar (based on structural distance or a subtree crossover based similarity measure) to one

individual in the list. The method was then tested on a real-life drug discovery regression
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Tab. 8.1: Symbolic Regression Functions for investigating GP generalisation ability.

Functions Training Data Testing Data

F1 = x4 + x3 + x2 + x 30 random points ⊆ [-1,1] 100 ⊆[-1:0.02:1]
F2 = x3 − x2 − x− 1 60 random points ⊆ [-1,1] 100 ⊆[-1:0.02:1]
F3 = arcsin(x) 30 random points ⊆ [-1,1] 200 ⊆[-1:0.01:1]
F4 =

√
x 60 random points ⊆ [0,4] 200 ⊆[0:0.02:4]

F5 = 0.3sin(2πx) 30 random points ⊆ [-1,1] 100 ⊆[-0.5:0.02:1.5]
F6 = cos(3x) 60 random points ⊆ [-1,1] 200 ⊆[0:0.01:2]
F7 = xy + sin((x− 1)(y + 1)) 60 random points ⊆ [-1,1] 100 ⊆[-1:0.02:1]
F8 = x4 − x3 + y2/2 − y 60 random points ⊆ [-1,1] 100 ⊆[-1:0.02:1]

problem and the experimental results showed improvements on the ability to generalise.

Castelliet et al. [22] compared the generalisation ability of different GP frameworks. The

results showed that a multi-objective method is effective in improving GP generalization

ability in solving a hard regression real-life application in the field of drug discovery and

development. The authors then further investigated the relationship between generalisation

ablity and solutions functional complexity [186, 23] and their experimental results show

that there is a correlation between the generalisation ability of GP solutions and their

functional complexity measured by Graph Based Complexity. It should be noted here

that, most research on improving the ability of GP to generalise has been purely focused

on reducing the complexity of the solution and semantic control has not been considered

as an approach to enhance ability of GP to generalise.

8.3 Experimental Settings

This section presents the problems used to test generalisation ability of semantic based

crossovers and the parameter settings for tested methods.

8.3.1 Symbolic Regression Problems

To investigate the impact of semantic based crossovers on the ability of GP to generalise,

we used eight real-valued symbolic regression problems. The tested problems, training and
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testing data are shown in Table 8.1. These functions were taken from some other work on

GP learning generalisation [29, 48, 115, 92]. The training sets are used to train the GP

system. The best individual in terms of fitness of each run is selected. This individual is

tested on the test sets to determine the generalisation ability of GP solutions. It is noted

that the testing sets are often much larger than the training sets and in some cases they

contain values that are not in the training intervals (F5, F6). This makes the experimental

setting more general.

8.3.2 Parameter Settings

The basic experimental settings used in this chapter are as in Table 5.2. The ability of

semantic based crossovers (SSC and MSSC) to generalise is compared with a validation

set method [52], Tarpeian Bloat Control [155, 115], a multi-objective method [42]. The

configuration and naming convention for SSC and MSSC are similar to those adopted in

Chapter 6.

For the validation set method (referred to as VAL method) the training set is randomly

divided into 2 (for each run): 67% is used for training (training set) and the remaining

33% is used for validating (validation set). At each generation the fitness of individuals is

measured on the training set and this fitness is used for tournament selection. At the same

time, a two-objective trial (fitness and size of an individual) is conducted in order to extract

a set of non-dominated individuals (the Pareto front). The individuals in the Pareto front

are then evaluated on the validation set, with the best of run individual selected as the one

of these with the smallest error rate on the validation set. This configuration is similar to

the validation configuration in [52].

The multi-objective method [42] is shorthanded as MUL. The idea of this approach

is to select an individual for the mating pool if it is not dominated by any individuals

from a previous selected individuals set. Here individual gp1 dominates individual gp2 if

fitness(gp1) < fitness(gp2) and size(gp1) < size(gp2) + bias. Although, there are three

different ways to determine bias that affect the size of the selected individual [42], here
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we use the first way that assigns bias to a threshold. It has been shown [42] that this

is an effective way to reduce code bloat while still maintain generalisation ability. Three

different threshold, 20, 30, 40, will be used. These three configurations of MUL will be

referred as MULX with X=20, 30, 40 in the following section.

The last method is Tarpeian Bloat Control (TBC) [155, 115]. The idea behind Tarpeian

Bloat Control is to assign a very low fitness for the individuals that have a size greater

than the average size of the population when a random generated number is smaller than

the Target Ratio. In this experiment, three value of Target Ratio, 0.1, 0.2, 0.3, are used.

These three configurations of TBC is denoted as TBCX with X=01, 02, 03.

8.4 Results and Dicussion

This section investigates the ability of semantic based crossovers (SSC and MSSC) to

generalise. First, we compare the GP performance of semantic based crossovers with other

methods. The impact of these methods on GP code bloat and on the ability of GP to

generalise are presented after that.

8.4.1 On the Performance of GP

Since there could be a relationship between the error of the solutions on training sets and

on testing sets, we first compare the performance of GP of these methods on the training

sets. We recorded a classic performance metric, the mean best fitness of these methods

on the training data. The results are shown in Table 8.2. This table is consistent with

the results in Chapter 6, in which both SSC and MSSC help to remarkably improve GP

performance. We also statistically tested the improvement of SSC and MSSC versus SC in

Table 8.2 using Wilcoxon signed-rank test with a confidence level of 95%, and the results

of the statistical test show that both SSC and MSSC always significantly improve the

performance of GP in comparison with SC. The results in this table are also consistent

with those in Chapter 6 where it again confirms that MSSC is often better than SSC.
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Tab. 8.2: The average of best fitness on training set. Note that the values are scaled by
102.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 1.54 3.42 0.49 1.40 2.45 1.34 11.1 13.3

VAL 1.27 2.87 0.53 1.18 2.27 1.46 10.64 12.8

MUL20 2.57 4.57 1.76 1.50 4.77 1.86 13.4 15.1
MUL30 2.31 3.39 1.97 1.77 4.26 1.74 12.1 14.8
MUL40 2.39 3.61 1.88 1.50 3.73 1.80 11.9 13.8

TBC01 1.32 3.44 0.74 1.31 2.69 1.57 12.6 13.4
TBC02 1.60 3.93 0.62 1.46 2.99 1.63 13.0 13.9
TBC03 3.38 4.57 1.24 1.82 3.50 1.82 15.4 16.8

SSC12 0.85 1.85 0.28 0.62 2.11 0.92 8.59 9.89
SSC16 0.82 1.52 0.29 0.67 1.89 0.82 8.56 9.92
SSC20 0.86 1.53 0.30 0.71 1.87 0.74 8.63 9.24

MSSC12 0.76 1.28 0.22 0.53 1.77 0.79 8.47 8.43
MSSC16 0.77 1.40 0.21 0.55 1.77 0.46 9.02 8.60
MSSC20 0.82 1.45 0.20 0.66 1.88 0.90 9.35 9.91

With other methods, we can see that there is a very limited improvement. While there

is a slight improvement of VAL on some problems (however, Wilcoxon signed rank test

confirms it is not significant), there is almost no improvement of MUL and TBC in terms

of GP performance in comparison with SC. These results are understandable since these

methods do not aim to improve the performance of GP on the training data.

8.4.2 On the Code Bloat Effect

Similarly, there could be a strong correlation between the complexity of solutions and

their ability to generalise (Ockham’s razor or Minimum Description Length - MDL prin-

ciple [125]), statistics on solution size were also recorded and analysed. This includes the

average size of the population averaged over all generations and the average size of the best

fitness on the training data (with validation set method it is the average size of the best

fitness on the validation data) by each method. These results are depicted in Table 8.3

and Table 8.4, respectively.
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Tab. 8.3: The average of population size.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 52.4 60.5 46.1 55.8 70.5 54.5 50.6 48.1

VAL 50.0 57.6 42.8 51.7 65.7 55.8 49.1 55.8

MUL20 23.5 32.6 26.4 30.4 35.2 28.7 28.6 27.4
MUL30 30.2 40.5 28.9 38.2 39.2 37.0 33.8 32.4
MUL40 37.8 47.5 32.0 30.4 47.0 43.4 39.2 37.1

TBC01 39.9 50.8 35.5 44.9 53.9 46.8 40.1 37.8
TBC02 26.7 38.0 23.7 34.1 40.8 35.4 31.1 29.4
TBC03 12.0 26.6 12.2 24.8 27.4 26.1 21.8 20.6

SSC12 47.3 57.9 43.9 49.7 69.3 45.2 46.7 42.2
SSC16 44.4 57.6 42.9 49.5 64.5 44.4 44.5 41.0
SSC20 46.4 56.7 42.8 49.2 64.9 42.8 43.6 38.1

MSSC12 40.5 52.8 39.8 46.8 65.4 43.9 41.1 38.0
MSSC16 41.3 49.9 38.4 45.0 65.4 39.7 40.2 35.2
MSSC20 38.0 48.9 38.4 44.6 62.8 41.0 36.5 34.8

It can be seen from Table 8.3 that all these methods help to reduce GP code bloat,

however the extent in which they reduce code bloat is different. Obviously, VAL only

marginally reduce bloat, while MUL and TBC reduces GP code bloat to a greater extent.

Usually, the average size of the population of both MUL and TBC is often only a half of

SC. These results evidences that both MUL and TBC achieve their objective in reducing

GP code bloat.

With SSC and MSSC, the extent in which they reduce GP code bloat is often from 10%

to 20% in comparison with SC. This table also shows that MSSC usually helps to reduce

GP code bloat more than SSC. These results are consistent with the results in Chapter 7

where it has been shown that improving semantic locality leads to reducing code bloat and

MSSC has the less bloat effect compared to SC and SSC.

Even if there is less bloat in some runs, it does not guarantee that the resulting solutions

are smaller in size – best solutions could have an unrepresentative size relative to the rest of

the population. Since the best solution in terms of fitness on the training sets (with VAL it

is on the validating sets ) is used as the final solution that will be tested for generalisation
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Tab. 8.4: The average size of the best fitness.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 68.7 85.3 65.2 78.2 104.6 51.1 73.6 69.4

VAL 51.5 72.8 43.8 61.7 66.4 45.3 4.61 6.92

MUL20 34.1 51.3 26.0 44.4 41.6 25.5 50.5 45.7
MUL30 36.9 61.0 31.0 49.3 52.1 34.0 53.2 52.8
MUL40 50.1 69.8 34.2 44.4 64.0 47.7 58.9 57.4

TBC01 46.9 68.4 45.7 57.2 75.5 44.2 61.3 51.7
TBC02 32.4 49.1 32.8 42.5 59.9 25.9 48.6 41.7
TBC03 18.2 35.0 18.4 31.6 41.6 21.5 34.9 30.9

SSC12 63.1 88.4 68.4 75.0 103.8 50.6 77.2 68.1
SSC16 60.8 85.0 68.2 75.4 102.5 50.9 73.1 68.6
SSC20 62.1 85.0 72.2 70.1 103.4 49.4 70.6 65.8

MSSC12 54.1 77.7 67.7 66.8 102.1 50.0 69.3 65.0
MSSC16 62.8 75.3 64.8 66.0 102.1 44.2 66.6 57.6
MSSC20 57.8 76.9 68.4 68.1 101.2 50.8 61.7 57.9

ability, it is important to see the size of the final solutions of these methods. The results

in Table 8.4 show that the reducing bloat of the above methods often helps them to find

solutions with smaller size. The exceptions lie in some functions like F2, F3, F8 with SSC

and F3 with MSSC. It should be noted here that while VAL, MUL and TBC often help

to find solutions that are much smaller than SC, the reduction of the size of the solutions

found by SSC and MSSC versus SC is not much. In some cases, F3, F5, F6, they are only

slightly smaller.

8.4.3 On the Ability of GP to Generalise

The previous subsections showed that improving locality like SSC and MSSC help to both

improve GP performance and reduce GP code bloat, and that other methods (VAL, MUL,

TBC) help to further reduce code bloat and find the solutions with better quality in terms

of size, it is important to test the effect of these methods on GP’s generalisation ability. To

measure the generalisation ability of these methods, we tested the best individual found

using the training set (with VAL it is the best individual in the validation set), for its
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Tab. 8.5: The average of best fitness on testing set. The results of SSC and MSSC are
printed bold face if they are significantly better than ones of SC. Note that the values are
scaled by 102.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 2.53 4.48 0.83 1.93 16.2 19.5 38.3 14.8

VAL 3.08 4.08 1.19 1.86 18.2 21.8 38.1 14.4

MUL20 3.67 5.39 2.08 2.19 20.3 20.4 37.7 16.7
MUL30 3.17 4.26 2.29 2.38 19.6 19.5 36.0 18.0
MUL40 3.91 4.36 2.21 2.19 16.6 25.7 36.4 16.5

TBC01 2.13 4.26 1.03 1.70 22.0 18.1 37.7 15.7
TBC02 2.09 4.65 0.86 1.81 15.2 21.8 36.4 13.7
TBC03 4.72 5.25 1.45 2.23 15.2 18.2 38.8 18.1

SSC12 1.26 2.15 0.56 1.04 15.2 17.6 34.9 12.5
SSC16 1.32 1.99 0.58 1.16 16.4 16.3 34.9 14.2
SSC20 1.52 1.96 0.56 1.19 14.1 13.4 35.1 13.3

MSSC12 1.48 2.14 0.55 0.91 12.7 13.7 36.5 11.4
MSSC16 1.73 1.88 0.50 1.33 12.7 11.1 38.0 12.6
MSSC20 1.41 2.12 0.46 1.26 14.2 16.4 36.3 13.8

ability to generalise over independent test sets (See Table 8.1). We recorded the mean best

fitness of the best individual on testing sets. The results are shown in Table 8.5.

It can be seen from this table that using a validation set method (VAL) or bloat control

methods as MUL and TBC does not consistently help to improve the generalisation ability

of GP even they help to reduce GP code bloat and find smaller solution. In fact, TBC

is better than SC in some cases but the size of improvement is marginal and Wilcoxon

signed-rank test shows it is not significant with a confident level of 95%. Generally, the

average of the best fitness on the testing set of these methods is mostly equal to one of

SC with some exception for MUL where the table shows that MUL is often much worse

than SC on some functions (Functions F1, F3 and F4). These results are consistent with

the previous results in [42, 115, 52], it confirms that using validation set method or bloat

control methods have a very limited impact on GP generalisation ablity.

Conversely, the table shows that both SSC and MSSC help to improve the generalisation

ability of GP. We can see that the error of SSC and MSSC on the testing set are often
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smaller than of SC. We also statistically tested the improvement of SSC and MSSC versus

SC of the results in Table 8.5 using a Wilcoxon signed-rank test with a confidence level of

95%. In this table, if the improvement is statistically significant, the results are printed

bold face. It can be seen that most of the improvement of SSC and MSSC is significant,

with only exception on function F7, where none of the improvement of SSC and MSSC is

significant. The results of the statistical test also shows that MSSC more often significantly

improve the generalisation ability then SSC.

Overall, the results in this section show that the advantage of semantic based crossovers

(SSC and MSSC) over standard crossover is not only better on training data but also on

unseen data. The results also confirm that using the validation set method or bloat control

methods bring a limited impact on the generalisation ability of GP.

8.5 Conclusions

This chapter investigated the impact on the generlisation ability of GP on a number of

methods. The experimental results showed that improving semantic locality of crossover

often helps to improve GP’s generalisation ability. The effect of using a validation set

method and bloat control methods were also tested and the results showed that they both

bring very little impact on the generalisation ability of GP, although they often help GP

runs have faster runtimes and find more comprehensive soluitons. The next chapter will

compare the role of semantic locality and syntactic locality of crossover.
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Chapter 9

The Role of Semantic Locality and

Syntactical Locality of Crossover

The previous chapters have shown that improving semantic locality of genetic operators

leads to a significant improvement in GP performance. This raises a question whether

locality in semantic or syntactic level are more important? This chapter investigates the

role of syntactic locality and semantic locality of crossover in GP. First we propose a novel

crossover for improving syntactic locality, Syntactic Similarity based Crossover (SySC).

Then we compare this crossover with the crossover for improving semantic locality, Se-

mantic Similarity based Crossover (SSC). The metrics analysed include GP performance,

GP code bloat and the ability of GP to generalise. The results in this chapter have been

published in [137].

9.1 Introduction

Locality is important in all search methods. In the field of Evolutionary Computation

(EC), locality (continuity – small changes in genotype corresponding to small changes in

phenotype) has long been seen as a desirable property of a representations [57, 69, 169, 171].

The preceding results have shown the benefits of improving semantic locality of crossover.
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9.2. SYNTACTICAL SIMILARITY BASED CROSSOVER

However, assuming a continuous genotype-phenotype mapping, one may then ask, whether

it is better to design operators to control locality in genotype or phenotype space. On the

side of the genotype space lies the advantage of simplicity: it is easy to measure and control

locality directly in the space where the operators are applied. Thus virtually all previous

work [57, 69, 169, 171] has relied on genotypic distance through syntactic metrics. On the

other hand, at the cost of greater complexity, one might argue that phenotypic distances,

being (presumably) more closely correlated with fitness, might lead to better metrics. Is

this so? Is it worth the extra complication of designing semantic based control of operators?

This chapter examines that question. We compare the semantic based control of crossover,

SSC, with a new, syntactic based form.

9.2 Syntactical Similarity based Crossover

To create a crossover operator based on syntactic similarity, a structural distance/metric

between any two trees is required. In this chapter, we use an extended version of tree

distance that has been use by Ekart and Nemeth [41]. In other words, the syntactical

distance between two trees is calculated as follows:

1. Make the two trees to be compared to have the same tree-structure (adding NULL

nodes if necessary). Figure 9.1 gives an example of two trees which are completed by

adding NULL nodes so that they have the same structure.

2. Count the distance between any two nodes located at the same position in the two

trees. If two nodes are labeled with the same symbol, the distance between them is

0, otherwise the distance is 1.

3. Sum the distances computed in the previous step to form the distance of the two

trees.

From this, a syntactic similarity relationship between two (sub)trees is defined in a

similar way to the semantic similarity relationship. In other words, two subtrees are called
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Fig. 9.1: Two trees are added the NULL nodes to have the same layout

syntactic similar if the syntactic distance (SyD) between them lies in an interval. Formally,

two subtrees S1 and S2 are syntactic similar (SySi) if

SySi(S1, S2) = if α < SyD(S1, S2) < β

then true

else false

where α and β are two predefined constants, the lower and upper bounds for syntactic

sensitivity. In this chapter, α is set to 0, and β is set to 4. These values are calibrated

from our experiments as good values for the performance of syntactic based crossover.

Based on SySi, a syntactic similarity based crossover is proposed. The crossover for

improving syntactic locality, Syntactic Similarity based crossover (SySC), is inspired from

the crossover for improving semantic locality, SSC. The algorithm for implementing SySC

is similar to the one for performing SSC with the only difference being that syntactic

similarity is checked instead of semantic similarity. Algorithm 6 shows how SSC works in

detail. Several values of Max Trial of SySC will be tested in the following subsections.
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Algorithm 6: Syntactic Similarity based Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
calculate the SySD between Subtree1 and Subtree2 on P
if Subtree1 is syntactically similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

9.3 Semantic Locality Vs Syntactical Locality

This section compares the crossover for improving syntactic locality, SySC, with the crossover

for improving semantic locality, Semantic Similarity based Crossover (SSC), and standard

crossover (SC). The comparison is undertaken with three aspects of GP: GP performance,

GP code bloat and the ability of GP to generalise. The tested problems are the eight

problems that have been used in Chapter 8.

The basic GP parameter settings are given in Table 5.2. For SSC, three configurations

similar to those in Chapter 8 are used. They are shorthanded as SSCX with X=12, 16 and

20. For SySC, three values ofMax Trial, 2, 4 and 6 were used. These values of Max Trial

guarantee from 60% (with Max Trial=2) to nearly 100% (with Max Trial =6) SySC

successfully exchanges two syntactically similar subtrees. Totally, three configurations of

SySC were tested that will be referred to as SySCX with X=2, 4, 6.
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Tab. 9.1: The average of best fitness on training set. Note that the values are scaled by
102.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 1.54 3.42 0.49 1.40 2.45 1.34 11.1 13.3

SySC2 1.40 3.38 0.59 1.21 2.55 1.52 11.4 14.2
SySC4 1.73 3.22 0.82 1.25 2.45 1.86 11.9 14.9
SySC6 1.70 3.44 0.66 1.48 2.55 1.49 12.6 14.0

SSC12 0.85 1.85 0.28 0.62 2.11 0.92 8.59 9.89
SSC16 0.82 1.52 0.29 0.67 1.89 0.82 8.56 9.92
SSC20 0.86 1.53 0.30 0.71 1.87 0.74 8.63 9.24

9.3.1 Performance Comparison

To compare the performance of the three operators, we again recorded a classic performance

metric, the mean best fitness. The results are shown in Table 9.1. It can be seen from this

table that syntactically-bounded crossover (SySC) does not improve GP performance. The

mean best fitness of SySC is mostly equal to SC. In some cases SySC is better than SC

but in other cases SC is better than SySC. Conversely, the mean best that found by SSC

is much better than both SC and SySC. This is consistent with the results in the previous

chapters where it has been shown that SSC significantly improve GP performance.

We also statistically tested the performance of SSC versus SC and SySC using Wilcoxon

signed-rank test with a confidence level of 95% (Table 9.1), confirming the significant im-

provement of SSC over both SC and SySC. Thus despite some advantages in implementa-

tion of SySC, SSC is a better bet than SySC in improving GP performance.

9.3.2 On the Code Bloat Effect

Although, improving syntactic locality of crossover does not improve the performance of

GP, intuitively, it may help to reduce bloat compared to other crossovers. This subsection

investigates the impact of SySC on the code bloat problem in GP. We compare it with the

crossovers for promoting semantic locality. We measured the average size of individuals

(number of nodes) over 50 generations, averaged over 100 runs and the average size of the
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Tab. 9.2: The average of population size.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 52.4 60.5 46.1 55.8 70.5 54.5 50.6 48.1

SySC2 46.5 53.0 41.0 45.6 57.6 47.7 42.9 41.9
SySC4 42.5 48.1 38.1 43.1 53.6 44.8 38.3 38.0
SySC6 40.0 47.5 37.3 43.0 52.4 43.4 39.4 39.1

SSC12 47.3 57.9 43.9 49.7 69.3 45.2 46.7 42.2
SSC16 44.4 57.6 42.9 49.5 64.5 44.4 44.5 41.0
SSC20 46.4 56.7 42.8 49.2 64.9 42.8 43.6 38.1

Tab. 9.3: The average size of the best fitness.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 68.7 85.3 65.2 78.2 104.6 51.1 73.6 69.4

SySC2 59.8 73.2 57.4 56.9 80.9 46.4 60.7 59.5
SySC4 51.2 61.7 45.4 53.3 71.9 47.0 53.2 51.6
SySC6 54.2 63.0 43.5 53.9 68.8 42.0 56.6 54.4

SSC12 63.1 88.4 68.4 75.0 103.8 50.6 77.2 68.1
SSC16 60.8 85.0 68.2 75.4 102.5 50.9 73.1 68.6
SSC20 62.1 85.0 72.2 70.1 103.4 49.4 70.6 65.8

best fitness on the training set. The average size of individuals in the population is shown

in Table 9.2 and the average size of the best fitness is depicted in Table 9.3.

Table 9.2 reveals that improving syntactic and semantic locality both helps to reduce

code bloat, and in this respect, improving syntactic locality has a greater effect than im-

proving semantic locality with some exceptions on function F6 and F8. We also investigated

whether reducing the scale of change of SySC could further reduce GP code bloat, and

indeed this was the case – but at the cost of poorer performance of SySC; the syntactic

sensitivity used in this chapter is one of the best values found for the SySC’s performance.

Table 9.3 shows that both promoting semantic and syntactical locality help crossover

to find better solutions in terms of the size of the best fitness. It can be seen from the table

that the average size of the best fitness on the training set of SySC are always smaller than

ones of SC. The results for SSC are closer to SC than SySC and, in this respect, improving

syntactical locality also has a greater effect than improving semantic locality. The average
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Tab. 9.4: The average of best fitness on testing set. The results of SSC are printed bold
face if they are significantly better than ones of SC.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 2.53 4.48 0.83 1.93 16.2 19.5 38.3 14.8

SySC2 2.98 4.17 0.99 1.74 14.7 20.0 37.1 16.7
SySC4 2.94 3.99 1.18 1.68 14.3 19.1 37.1 17.2
SySC6 2.84 4.40 1.02 1.92 14.6 19.2 36.2 18.1

SSC12 1.26 2.15 0.56 1.04 15.2 17.6 34.9 12.5
SSC16 1.32 1.99 0.58 1.16 16.4 16.3 34.9 14.2
SSC20 1.52 1.96 0.56 1.19 14.1 13.4 35.1 13.3

size of the best fitness that found by SySC is always smaller than one of SSC. This can be

seen as the result of reducing further bloat of SySC in comparison with SSC.

9.3.3 On the Ability to Generalise

The previous subsection has shown that improving syntactical locality helps to maintain

the performance of GP (the performance of GP with SySC is mostly equal to SC), while

remarkably reduce GP code bloat. Especially, SySC alway finds solutions (the best fitness

individuals) that are much simpler (smaller) than SC. Therefore, it is important to test if

this kind of reducing code bloat can help to improve the generalisation ability of GP.

To measure the generalisation ability, we again tested the best individual found on the

training set, for its ability to generalise over independent test sets (see Table 8.1). These

values are then averaged over 100 runs and the results are shown in Table 9.4.

It can be seen from this table that although help to reduce GP code bloat and find

simpler solutions, improving syntactical locality of a crossover does not improve the gener-

alisation ability of GP. The table shows that the average fitness on the testing set of SySC

and SC are mostly equal. On some functions (F2, F4, F5, F8), it seems that SySC slightly

improve the ability of GP to generalise. However, the size of improvement is small and not

significant (using Wilconxon signed-rank test with a confidence level of 95%). On other

function, SySC and SC are most equal and sometimes SySC is worse (F1, F8). By contrast,
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improving semantic locality often leads to significantly improve the generalisation ability

of GP. Generally, the results in this section confirm the more important role of semantic

locality of crossover in comparison with syntactical locality.

9.4 Conclusions

This chapter investigates the role of semantic locality and syntactic locality of crossover.

We propose a novel syntactic similarity based crossover for improving syntactic locality.

We compare syntactic similarity based crossover with the crossover for improving semantic

locality, Semantic Similarity based Crossover, and with standard crossover on a number of

aspects of GP. The experimental results show that while improving semantic locality helps

to significantly improve GP performance, reduce GP code bloat and substantially enhance

the ability of GP to generalise, improving syntactic locality only leads to reducing code

bloat and slightly improving the ability of GP to generalise over standard crossover. The

results confirm the more important role of semantic locality than syntactic locality. These

results could be seen as an evidence to attract GP researchers to pay more attention to

semantics when designing their algorithms. The next chapter will examines the role of

semantics for problem difficulty and their effect on fitness landscape.
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Chapter 10

A Study of Problem Difficulty and

Fitness Landscape

The previous chapters have shown the advantages of semantic based crossovers in solving a

class of problems. However, how these crossovers deal with increasingly difficult problems

and how they affect search on the fitness landscape are still open questions. This chapter

presents a study of search fitness landscape of problems with increasing level of difficulty.

First, an investigation of semantics based crossovers with increasingly difficult problems is

presented. The question it aims to address is how semantic based crossovers deal with in-

creasingly difficult problems. Next, the chapter focuses on examining the fitness landscape

with the aim to answer the question if improving semantic locality of an operator helps

to smooth out the fitness landscape of a problem. Some results in this chapter have been

published in [139].

10.1 Semantic based Crossovers with Difficulty In-

creased Problems

This section studies the behaviour of semantic based crossovers when the difficulty of a

problem is increased. A brief review of previous work on problem difficulty is given first.
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10.1. SEMANTIC BASED CROSSOVERS WITH DIFFICULTY
INCREASED PROBLEMS

The experimental settings, results and discussion are presented after that.

10.1.1 Related Work

There have been a number of studies addressing problem difficulty for Genetic Program-

ming (GP). In the early days of GP, Koza introduced semi-empirical formula for estimating

the number of trials needed to solve a problem with a specified success probability [98].

Since then, three have been two main strands of research on GP problem difficulty. The

first strand is to build a test suite of tunably difficult problems and the second strand is

to quantify the difficulty of a problem.

In the first strand, Koza [98] introduced the set of tunably difficult problems including

the problems for learning Boolean multiplexers and the Boolean parity functions. In his

second book in the series on GP [99], Koza provided polynomials (a sextic and a quintic),

Boolean symmetry (5- and 6-symmetry), and Fourier sine series (3- and 4-terms). Gath-

ercole and Ross [53] proposed the MAX test suite, while Punch et al. [160] introduced a

tunably difficult royal tree problem. O’Reilly and Goldberg [56, 149] have also proposed

ORDER and MAJORITY that have been claimed to be the GP version of the onesmax

problem in GA. In a thoughtful paper, Daida et al. [34] examined a tunable problem,

the binomial-3 function with varying ephemeral random constant (ERC) ranges. In this

case, GP problem difficulty increases with the increased range of ERC values when ERC is

greater than 1. The authors argued that the conflict between content and context is largely

responsible for increased difficulty of these problems. In a recent work, Hao et al. [70] pro-

posed ORDERTREE, a natural analogue of the onemax problem, in which the difficulty

of the problem can be tuned by increasing problem size or by increasing the non-linearity

in the fitness structure.

In the second strand, O’Reilly [148] used the metaphor of fitness landscape to study

problem difficulty. This work is a GP extension of the work on fitness landscape analysis

in GA [118, 72]. The general knowledge is that the more rugged the fitness landscape,

the more difficult the problem is. Kinnear [95] used landscape autocorrelation to study
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the difficulty of problems. The results showed that there is a strong correlation between

adaptive walks and the difficulty of problems. Approaching in a different way, Gustafson et

al. [61] studied the relationship between code growth and problem difficulty. The authors

showed that there is a correlation between code bloat and problem difficulty in which

increased problem hardness induces higher selection pressure and less genetic diversity,

which both contribute toward an increased rate of code growth. In a series of work [183,

181, 185], Vanneschi et al. proposed Fitness Distance Correlation (FDC) and Negative

Slope Coefficient (NSC) to measure problem difficulty. These methods have been tested

on a number of problems and the results show that they are useful in qualifying the difficulty

of problems. However, the weakness of FDC is that it needs to know the optimal solutions

beforehand, while NSC can not compare the difficulty of different problems.

This section uses a class of increasingly difficult problems, the binomial-3 [34], as a

tool to investigate the performance of semantic based crossovers. The previous chapters

have shown that semantic based crossover help to significantly improve the performance

of GP. Therefore, it is interesting to see how these crossovers behave when the difficulty

of problems is increased. In other words, it is important to investigate if these crossovers

help to improve GP performance when the problems become harder. This section aims to

address the above questions.

10.1.2 Experimental Settings

In this section we use a class of symbolic regression problems that are scaled in difficulty

to observe the behaviour of semantic based crossovers. This class is the binomial-3 prob-

lem [34]. The binomial-3 problem consists of approximating the function f(x) = (x+ 1)3.

Using the terminals set of {x, ERC}, it has been shown in [34, 61] that the difficulty of this

problem is increased with the changing of ERC. In other words, if ERC ≥ 1, the difficulty

of binomial-3 is increased by increasing ERC. In this experiment we use three ranges of

ERC which has been use in [34, 61], they are [-1, 1], [-10, 10] and [-100, 100]. Binomial-3

with these ranges of ERC will be referred to as Bin1, Bin10 and Bin100, respectively.
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The basic experiment settings are as in Table 5.2 where the only difference is the

terminal set. The terminal set now is {x, ERC} with ERC varies in three ranges for

binomial-3. The training set for all problems include 20 equidistant over interval (0, 1].

We examined the behaviour of semantic based crossovers (SSC and MSSC) when they

deal with increasingly difficult problems and compared them with standard crossover (SC).

The lower bound of semantic sensitivity for SSC was set at 10−3 and the upper bound one

was set to 0.4. There values of Max Trial, 12, 16, 20 were tested. They are the values that

have been used in the experiments in the previous chapters. These three configurations

of SSC will be denoted as SSCX with X=12, 16, 20. Similarly, the lower bound semantic

sensitivity for MSSC was set to 10−3. Also, there values of Max Trial, 12, 16, 20 for MSSC

were tested. These three configurations of MSSC will be referred to as MSSCX with X=12,

16, 20. For all configurations, 100 runs were performed.

10.1.3 Results and Discussion

Since there is not any method that can exactly quantify the difficulty of different problems,

here we use three metrics that are often used to characterise problem difficulty. These three

metrics are: the number of solutions found by GP, the rate of minimizing the best fitness,

and code growth. The number of solutions is measured by the number of successful runs

(a run is considered successfully if it hits on all fitness cases). The rate of minimizing the

best fitness is measured by the best fitness of a run and code growth is quantified by the

average of individual size in the population. We recored these values, averaged over 100

runs and the results are shown in Table 10.1. In this table, No. Solutions is the number of

solutions found by each crossovers, Best Fitness is the best fitness of each run and averages

over 100 runs and Pop. Size is the size of individuals in the population averaged over all

generations and 100 runs.

Table 10.1 shows that the difficulty of binomial-3 is increased by the increase of ERC

from Bin1 to Bin100. It is reflected by both the number of solutions found for each problem

and the rate of minimising the best fitness. It can be seen that the number of solutions are
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Tab. 10.1: The Comparison of Crossovers on Binomial-3.

Crossovers
No. Solutions Best Fitness Pop. Size

Bin1 Bin10 Bin100 Bin1 Bin10 Bin100 Bin1 Bin10 Bin100
SC 8 2 0 2.18 3.81 5.68 59.8 60.1 62.7
SSC12 19 14 10 1.03 2.14 2.47 51.8 51.9 52.5
SSC16 19 13 6 0.91 1.92 2.41 49.0 50.6 51.0
SSC20 15 12 9 1.05 2.19 2.71 51.0 49.3 49.8
MSSC12 35 26 19 0.85 1.66 1.94 48.2 49.2 44.7
MSSC16 29 19 13 0.99 1.48 1.89 46.1 43.4 45.1
MSSC20 31 23 17 1.02 1.71 1.81 45.3 46.3 43.7

reduced from Bin1 to Bin100 while the mean of the best fitness rises from Bin1 to Bin100.

These results are consistent with the previous results [34] where the authors also showed

that the difficulty of Binomial-3 is increased by increasing the value of ERC with ERC

greater than 1.

While the results of both number of solutions and the mean best fitness provide evidence

for the increasing difficulty of binomial-3 from Bin1 to Bin100, the results on code bloat

seems to be a different story. The table obviously shows that there is not any relationship

between code growth and problem difficulty at least with this GP parameter settings. It

seems like the relationship between code growth and problem difficulty investigated in [61]

is also dependent on GP settings.

Comparing between crossovers, the table clearly shows that semantic based crossovers

help to improve the performance of GP even when problems become harder. It is shown

by the fact that the number of solutions found by SSC and MSSC are always greater than

the ones found by SC, and the mean best fitness of SSC and MSSC are consistently smaller

than those of SC. The statistical test (using Wilcoxon signed-rank test) shows that all the

improvements of SSC and MSSC versus SC are significant with a confident level of 95%.

It also seems that when problems become harder, the size of the improvement of SSC and

MSSC are even bigger. The table also shows that MSSC is often better than SSC and

both SSC and MSSC help to reduce code bloat while MSSC help to reduce it to a further

extent.
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In summary, on the tunably difficult binomial-3 problem we see a performance advan-

tage for the semantic based operators over standard crossover. Therefore, paying attention

to semantics can effectively reduce difficulty in this case.

10.2 Examining Fitness Landscape of Semantic based

Crossovers

The earlier chapters have shown that semantic based operators help to significantly improve

GP performance. The improvement of semantic locality leads to the enhancement of a

number of aspects of GP systems. In this section, we investigate the impact of these

semantic based operators on the fitness landscape. The main aim of this section is to

examine if improving semantic locality of an operator can help to smooth out the fitness

landscape.

The previous section in this chapter showed that we can scale the difficulty of the

binomial-3 problem by changing ERCs, and that semantic based operators can deal well

with increasingly difficult problems. Therefore, it is also informative to see if the difficulty

of these problems is caused by a change to the fitness landscape or by other factors. The

section is organised as follows. We first discuss the related work on fitness landscape in

Evolutionary Computation. Two methods used to qualify fitness landscape are briefly

presented after that. Next are experimental settings, results and discussion.

10.2.1 Related Work

A fitness landscape is a way of describing the search space of a problem in evolutionary

algorithms. The concept of fitness landscape was first proposed by Wright [199] to study

the evolutionary process in biology. Since then, it has widely been used to model the

problem difficulties in evolutionary algorithms (EAs) [163, 36]. A Fitness landscape uses

metaphors from nature such as peaks, hills, valleys, ridges, basins, watersheds etc. to

characterise the search space of a problem that EAs might encounter. A fitness landscape
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with many local peaks surrounded by deep valleys is called rugged. For the problems

with this fitness landscape, it is more difficult to find solutions (the highest peaks), since

the algorithms can be trapped in any local peak. Generally, the more rugged the fitness

landscape, the more difficult the problem is. If all genotypes have the same fitness values,

on the other hand, a fitness landscape is said to be flat. For this fitness landscape, an

algorithm can not exploit knowledge (e.g., fitness gradients) from the search space.

In practice, the visualisation of the whole search space of a problem is problematic.

Therefore, a number of methods that attempt to describe the structure of fitness landscapes

have been proposed [190, 163, 188]. In fact, before describing a fitness landscape, its

primary components must be defined [87]. The first component is the representation, i.e.,

how we encode the problem on a genotype structure to represent all potential solutions of

the problem. The second component is the operators that transform a candidate solution

from one point to another point in the search space. The third component is comprised

of a function (the fitness function) which allows us to assign a measure of quality (fitness)

to each candidate solution, a fitness space, and a partial order of solutions over the fitness

space.

The structure of fitness landscapes influences the ability of an evolutionary algorithm to

perform an efficient search. There are several characteristics associated with the landscape

that define its structure. These characteristics include number, type, magnitude, and the

sizes of the optima, and of their basins of attraction. Researchers have investigated the

different aspects of the structure of fitness landscapes, such as landscape deceptiveness [54,

55], modality [3] and ruggedness [91, 190], to understand the nature of evolutionary search

under different conditions.

Some authors suggest the use of an operator that minimises distance traveled in the

search space when studying fitness landscape [67, 181, 184]. In this research, we follow the

work in [95, 87, 88, 187] to define the metric in terms of the operators. It is reasonable

since the main objective of this research is to compare the characteristics of the fitness

landscape with different operators.
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10.2.2 Techniques Used

To characterise the fitness landscape of these methods, we use two well known techniques.

The first technique is the autocorrelation function and the second method is the information

content. They are detailed below:

Correlation Analysis: correlation analysis is a set of techniques for charactering problem

difficulty by measuring the correlation between the fitness of neighbouring points [36].

There are three main techniques of correlation analysis of these autocorrelation metric of

fitness landscape will be used in this study.

Using autocorrelation function to study fitness landscapes was first proposed by Wein-

berger [190]. For a given fitness landscape with f (the fitness function), a starting point

s0 is randomly selected. A mutation operator is used to create a neighbouring point s1 of

s0. Repeat this proccess N time to get a random walk of N steps F = {f(si)}N
i=0. Then

the autocorrelation function of this random walk is defined as follows:

ρ(h) =
R(h)

s2
f

(10.1)

where h is the distance between two points in the random walk. s2
f is variance of the

sequence and calculated as follows:

s2
f =

∑N

i=0(f(si) −mF )2

N + 1
(10.2)

and R(h) is autocovariace funtion of sequence F . For each h, R(h) is estimated by:

R(h) =

∑N−h

i=0 (f(si) −mF ).(f(si+h) −mF )

N − h + 1
(10.3)

where mF is mean of fitness sequence F , mF = 1
N+1

∑N

i=0(f(si)). The autocorrelation

function indicates the correlation between points that are separated by a distance h. A

smooth landscape is highly correlated as the fitness difference between a point with its

neighouring is small. In this case the autocorrelation function is greater. Conversely, if a

fitness landscape is rugged, the fitness difference a point with its neighouring is high, the
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autocorrelation function is smaller.

Information Content: a method for charactering a fitness landscape based on the con-

cept of information content was first proposed by Vassilev et al. [188]. Similar to an

autocorrelation function, a random walk of N steps, F = {f(si)}N
i=0 is obtained, first. A

sequence is driven from F , S(ǫ) = s1, s2, ..., sN , to present this random walk for each ǫ,

where

si = Ψ(i, ǫ) (10.4)

and

Ψ(i, ǫ) =































−1 if fi − fi−1<−ǫ;

0 if |fi − fi−1| ≤ ǫ;

1 if fi − fi−1 > ǫ;

(10.5)

The parameter ǫ is a real-number from the range [0..L], where L is the greatest value in

the sequence F . ǫ determines the accuracy of calculation of S(ǫ). If ǫ=0, function Ψ(i, ǫ) =

will be very sensitive, and insensitive when ǫ=L.

After that, four measures of entropy and amount of fitness change during the random

walk are calculated as follows:

1. Information Content (H(ǫ)): indicates the ruggedness of a landscape

2. Partial information content (M(ǫ)): indicates the modality of a landscape.

3. Information stability (ǫ∗): indicates the magnitude of optima in a landscape.

4. Density-basin information (h(ǫ)): characterises the structure of a landscape around

optima.
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The information content characterises the ruggedness of a fitness landscape. It is defined

as follows:

H(ǫ) =
∑

p 6=q

P[pq]log6P[pq] (10.6)

where the probability P[pq] are the frequencies of 6 posible block qp, p 6= q, of elements

from S(ǫ). They are defined as

P[pq] =
N[pq]

N
(10.7)

where N[pq] is the number of occurrences of pq in S(ǫ).

The partial information content is defined as

M(ǫ) =
µ

N
(10.8)

where N is the length of frequency S(ǫ). µ is calculated by calling a recursive function of

three integer arguments and called by ΦS(1, 0, 0), with ΦS(i, j, k) is defined as follows:

ΦS(i, j, k) =















































k if i>N

ΦS(i+ 1, i, k + 1) if i = 0 and si 6= 0;

ΦS(i+ 1, i, k + 1) if j > 0 and si 6= 0 and si 6= sj;

ΦS(i+ 1, j, k) otherwise;

(10.9)

When M(ǫ)=0 it is an indication that there is no slope in the random walk and when

M(ǫ)=1, it is an indication that there is a maximal of multi-modality in the random walk.

Moreover, for a given partial information content, M(ǫ), the number of optimal (Optimal

No. in Table 10.3, Table 10.4, and Table 10.5) in the random walk can be calculated as

⌊N.M(ǫ)
2

⌋.

142



10.2. EXAMINING FITNESS LANDSCAPE OF SEMANTIC BASED
CROSSOVERS

The last measurement,density-basin information, h(ǫ), can be calculated as

h(ǫ) =
∑

p⊆{−1,0,1}

P[pp]log3P[pp] (10.10)

where pp is one of three sub-blocks, 00, -1-1, 11. The high value of h(ǫ) presents the high

number of peaks in a small area of the landscape. The low value means that the optima is

isolated.

In general, higher values of information content, partial information content, number of

optimas in the landscape, density-basin information define a more rugged landscape which

is more difficult to search. A smaller ones define a smoother landscape which is easier to

a search.

10.2.3 Experimental Settings

We use the class of problems investigated earlier in this chapter (binomial-3) to determine

the impact of semantic based operators on their fitness landscape. There are two main ob-

jectives of this experiment. The first objective is to determine whether increasing problem

difficulty might stem partly from changing the fitness landscape, or from other factors. The

second objective is to test if improving semantic locality of an operator helps to smooth

out the fitness landscape of a problem.

To experimentally investigate the fitness landscape of the above problems, a walk of N

steps need to be created first. Most of the previous work studied the fitness landscape of a

mutation [67, 181, 184, 95, 87] where a random walk of N steps can easily be generated by

applying the mutation N times. Since this research mainly focuses on studying the fitness

landscape of crossovers, we followed Riley and Ciesielski [164] in creating a random walk

of N steps as follows:

• An individual i0 is randomly selected from the search space.

• set s = 1
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• Repeat

– Another individual is, is 6= is−1, is randomly selected from the search space.

– Crossover is performed between is and is−1 with probability Pcrossover resulting

in two new individuals i’1 and i’2, both are neighbours of (a single step from)

is−1. Set is=i’1 and discard i’2.

– is undergoes mutation with probability Pmutation

– set s = s+ 1

• Until s > N

In this experiment, we set Pcrossover=0.9 and Pmutation=0.05 as the same with the pre-

vious experiments. We compare the fitness landscape of Standard Crossover (SC), with

Syntactic Similarity based Crossover (SySC) and two semantic based crossover, Seman-

tic Similarity based Crossover (SSC) and the Most Semantic Similarity based Crossover

(MSSC). For each crossover, a random walk of 10000 steps was generated. All fitness val-

ues of individuals encountered during the random walk were recorded. 500 random walks

were conducted for each problem, making making a total of 5,000,000 fitness evaluations

for each experiment.

The lower semantic sensitivity used for SSM is 10−3 and the upper semantic sensitivity

is set to 0.4. The Max Trial of SSM is set at 12. These values of the parameters for SSM

have been shown are good values for the performance of SSM in the previous chapters. For

MSSC we set Max Trial=12 and for SySC Max Trial is set to 4. Similarly, they are the

values for the good performance of these crossovers.

10.2.4 Results and Discussion

To characterise the fitness landscape of these crossovers, the autocorrelation and informa-

tion content of SC, SySC, SSC and MSSC were measured. The results of autocorrelation
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Tab. 10.2: Autocorrelation Analysis (larger values are better).

Distance (h) Crossovers Bin1 Bin10 Bin100

SC 0.714 0.712 0.704
1 SySC 0.719 0.715 0.712

SSC 0.776 0.758 0.744
MSSC 0.782 0.776 0.764

SC 0.633 0.637 0.635
2 SySC 0.644 0.648 0.650

SSC 0.727 0.706 0.695
MSSC 0.735 0.734 0.727

SC 0.521 0.535 0.538
4 SySC 0.544 0.556 0.566

SSC 0.655 0.627 0.621
MSSC 0.665 0.670 0.672

SC 0.392 0.413 0.419
8 SySC 0.421 0.445 0.461

SSC 0.556 0.522 0.519
MSSC 0.571 0.582 0.593

SC 0.265 0.287 0.294
16 SySC 0.316 0.330 0.324

SSC 0.438 0.397 0.396
MSSC 0.453 0.471 0.493

SC 0.162 0.179 0.182
32 SySC 0.219 0.213 0.227

SSC 0.318 0.267 0.269
MSSC 0.328 0.347 0.375

analysis were shown in Table 10.2. Table 10.3, Table 10.4 and Table 10.5 show the results

of information content analysis for Bin1, Bin10 and Bin100, respectively.

Table 10.2 shows that improving syntactic locality of crossover has a limited impact on

the fitness landscape. It can be seen that the value of the autocorrelation function of SySC

is only slightly greater than of SC. The statistical test using a Wilcoxon signed-rank test

with a confident level of 95% shows that it is mixed, meaning that only some of the values

of SySC is significantly greater than SC. These results explain why SySC does not help to

improve the performance of GP in comparison with SC.

Conversely, improving semantic locality of crossover helps to smooth out the fitness
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Tab. 10.3: Information Content Analysis of Bin1 (smaller values are better).

Epsilon(ǫ) Crossovers H(ǫ) h(ǫ) M(ǫ) Optima No.

SC 0.733 0.629 0.475 2376
0 SySC 0.688 0.629 0.495 2479

SSC 0.686 0.626 0.472 2374
MSSC 0.686 0.627 0.465 2371

SC 0.683 0.572 0.257 1284
0.2 SySC 0.671 0.569 0.257 1280

SSC 0.568 0.487 0.186 931
MSSC 0.545 0.461 0.172 859

SC 0.572 0.476 0.195 979
0.4 SySC 0.556 0.468 0.193 964

SSC 0.437 0.380 0.135 677
MSSC 0.420 0.361 0.126 631

SC 0.497 0.417 0.164 817
0.6 SySC 0.479 0.408 0.160 801

SSC 0.373 0.335 0.115 576
MSSC 0.358 0.313 0.107 537

SC 0.443 0.378 0.144 717
0.8 SySC 0.426 0.369 0.141 702

SSC 0.335 0.305 0.104 522
MSSC 0.322 0.291 0.097 488

SC 0.402 0.351 0.130 651
1 SySC 0.387 0.343 0.127 635

SSC 0.310 0.288 0.096 487
MSSC 0.298 0.274 0.091 456

landscape of a problem to a greater extent. Obviously, the value of autocorrelation function

of SSC and MSSC are always much greater than those of SC and SySC. It means that the

fitness value of the individuals in the population of SSC and MSSC has stronger correlation

than SC and SySC and hence the fitness landscape of the population that are constructed

by SSC and MSSC are smoother than one of both SC and SySC. We also statistically

tested the difference between autocorrelation values of SSC and MSSC with SC and SySC

using a Wilcoxon signed-rank test and the results of this test shows all the differences

are significant with a confidence level of 95%. The table also shows that the value of the

autocorrelation function of MSSC is alway greater than SSC. This explains why MSSC
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Tab. 10.4: Information Content Analysis of Bin10 (smaller values are better).

Epsilon(ǫ) Crossovers H(ǫ) h(ǫ) M(ǫ) Optima No.

SC 0.734 0.657 0.474 2376
0 SySC 0.698 0.647 0.492 2462

SSC 0.706 0.652 0.470 2353
MSSC 0.693 0.641 0.473 2366

SC 0.671 0.579 0.265 1325
0.2 SySC 0.664 0.578 0.265 1329

SSC 0.604 0.527 0.216 1081
MSSC 0.585 0.510 0.205 1025

SC 0.577 0.502 0.214 1072
0.4 SySC 0.569 0.497 0.213 1065

SSC 0.498 0.441 0.170 852
MSSC 0.473 0.421 0.158 794

SC 0.518 0.457 0.188 942
0.6 SySC 0.509 0.453 0.186 931

SSC 0.442 0.400 0.150 754
MSSC 0.413 0.378 0.139 696

SC 0.477 0.428 0.172 862
0.8 SySC 0.467 0.420 0.169 847

SSC 0.406 0.375 0.139 695
MSSC 0.377 0.352 0.128 642

SC 0.444 0.407 0.161 805
1 SySC 0.434 0.398 0.158 788

SSC 0.380 0.358 0.131 656
MSSC 0.352 0.338 0.121 607

produces better performance than SSC as has been shown in the previous chapters.

In comparison between the problems, the table shows very little difference between

Bin1, Bin10 and Bin100. In fact, it can be seen from the table that in some case the values

of autocorrelation function of B100 and Bin10 are greater than Bin1 and in some other

case they are converse. Therefore, it is difficult to conclude that the difficulty of Bin10 and

Bin100 are stemed from their fitness landscape. We believe that the increasing difficulty

of Bin10 and Bin100 versus Bin1 is because of the conflict between context and content as

they have been shown by Daida et al. [34].

Table 10.3, Table 10.4 and Table 10.5 are consistent with Table 10.2 in which they con-
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Tab. 10.5: Information Content Analysis of Bin100 (smaller values are better).

Epsilon(ǫ) Crossovers H(ǫ) h(ǫ) M(ǫ) Optima No.

SC 0.741 0.717 0.445 2226
0 SySC 0.725 0.706 0.456 2281

SSC 0.724 0.711 0.440 2220
MSSC 0.712 0.716 0.443 2217

SC 0.639 0.570 0.266 1327
0.2 SySC 0.625 0.565 0.262 1310

SSC 0.585 0.529 0.232 1160
MSSC 0.558 0.517 0.223 1116

SC 0.559 0.507 0.226 1131
0.4 SySC 0.546 0.499 0.221 1108

SSC 0.496 0.464 0.193 979
MSSC 0.471 0.447 0.185 927

SC 0.513 0.473 0.207 1035
0.6 SySC 0.496 0.465 0.203 1013

SSC 0.451 0.432 0.181 905
MSSC 0.421 0.415 0.168 849

SC 0.479 0.453 0.195 927
0.8 SySC 0.463 0.444 0.191 952

SSC 0.423 0.418 0.172 861
MSSC 0.392 0.398 0.161 806

SC 0.450 0.436 0.185 926
1 SySC 0.446 0.428 0.183 907

SSC 0.400 0.406 0.162 830
MSSC 0.370 0.386 0.155 778

firm the limited influence of improving syntactic locality of crossover on a fitness landscape.

It can be observed that the value of information content, partial information content, infor-

mation stability, and density-basin information of SySC are only marginally smaller than

that of SC and sometimes these values even greater than the those of SC. The results of

the statistical test show that only a few of the differences between SySC and SC in these

tables is significant with a confidence of 95%.

On the other hand, these tables show the ability to smooth out the fitness landscape

by improving semantic locality. Definitely, the values that characterise for information

content of SSC and MSSC are always smaller than both SC and SySC, meaning that SSC
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and MSSC help not only to reduce the ruggedness of the fitness landscape but also to

decrease the number of local optima in the landscape and decrease the magnitude of this

local optimal. We also statistically tested the difference between SSC and SSM with SC

and SySC in Table 10.3, Table 10.4 and Table 10.5 using Wilcoxon signed-rank test and

the results of this test show most of the difference is significant with a confidence level of

95% with only some exceptions when ǫ = 0 .

Comparing between SSC and MSSC, these tables again show that the fitness landscape

constructed by MSSC is smoother than SSC. It is reflected by the fact that the values

for information analysis of MSSC is consistently smaller than SSC. Investigating the in-

formation analysis of the three problems, Bin1, Bin10 and Bin100, it is hard to draw any

conclusions. Therefore, the difficulty of these problems are not caused by changing the

characteristic of their fitness landscape.

10.3 Conclusion

This chapter investigated problem difficulty and the fitness landscape in GP with semantic

based operators. The first section examined the behavious of semantic based crossovers

with increasingly difficult problems. In this section, a class of tunably difficult problems,

binomial-3, were used in the experiments. Semantic based crossovers were tested on these

problems and the results showed that semantic based crossovers (SSM and MSSC) can

deal well with increasingly difficult problems. In other words, they show that semantic

based crossovers still help to significantly improve the performance of GP in comparison

with standard crossover.

The next section studied the fitness landscape of semantic based crossovers. We anal-

ysed the fitness landscape of the above problems using two well know techniques, an au-

tocorrelation function and information content. The results showed that semantic based

crossovers help to smooth out the fitness landscape of these problems. These results again

have shed some light on the performance of semantic based operators. The next chapter

will examine the role of semantic based crossover in solving Boolean problems.
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Chapter 11

Semantic based Crossovers for

Boolean Problems

This chapter investigates the role of semantic diversity and locality of crossovers in Genetic

Programming (GP) for Boolean problems. We design several new crossovers based on

subtree semantics. They can be categorised into two classes depending on their purposes:

promoting semantic diversity or improving semantic locality. We test the operators on

several well-known Boolean problems, comparing them with Standard crossovers and with

the Semantic Driven Crossover (SDC) of Beadle and Johnson [11]. The experimental

results show the positive effects both of promoting semantic diversity, and of improving

semantic locality, in crossover operators. They also show that the latter has a greater

positive effect on GP performance than the former. Some important aspects of GP with

these crossovers are also investigated that provide evidence for the improvement of semantic

based crossovers. Some preliminary results in this chapter have been published in [136].

11.1 Introduction

The results in the previous chapters have shown that promoting semantic diversity is

useful. However, improving semantic locality is even more important and it often leads
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Fig. 11.1: An individual and the process of evaluating the value of its attributes. This
illustrates the initialisation (a) and the evaluation of its attributes (b, c, d) by propagation
up toward the root note.

to a further improvement of GP performance in solving real valued symbolic regression

problems. The previous chapters also demonstrate that limiting semantic change between

two subtrees in crossover to an intermediate range leads to improve both diversity and

locality of that crossover on real valued problems. Potentially, though, discrete domains

could show a different behaviour: the benefits of an intermediate semantic change might

disappear with a quantised fitness function. In other words, the questions addressed here

are whether semantic diversity and semantic locality are important for Boolean problems

and if the crossovers in the early chapters (SAC and SSC) work well on Boolean problems.

This chapter aims to answer the above questions.
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11.2 Measuring Semanatics

The way to measure semantics for Boolean problems in this chapter is similar to the

approach in Chapter 6. In other words, semantics is measured based on fitness cases of the

problems. Again, to speed up the process of semantic checking, semantics of a subtree is

stored in the root node of that subtree. In Figure 11.1, four attributes (A1, A2, A3, A4) are

used to represent the semantics of a problem with only two input variables. These attributes

are evaluated bottom-up, as shown in figure 11.1, in which the values are initialised to zero

(subfigure a), then propagated upwards (subfigures b, c, d).

Based on Subtree Semantics, a Subtree Semantics Distance between two subtrees is

defined in a similar way to Sampling Semantics Distance (SSD) in Chapter 4. From that,

two semantic relationships between subtrees, Semantic Equivalence (SE) and Semantic

Similarity are defined in the same way with their definitions in Chapter 4.

11.3 Semantic based Crossovers

This section presents some semantic based crossovers for Boolean problems. Two crossovers

for promoting semantic diversity are presented first. After that, two crossovers for improv-

ing semantic locality are detailed.

11.3.1 Crossover for Promoting Semantic Diversity

The first crossover that promotes semantic diversity in Boolean problems is Semantic Aware

Crossover (SAC). As has been presented in the previous chapters, SAC works by aborting

crossovers that exchange semantically equivalent subtrees. However, for Boolean problems,

SAC cannot guarantee to produce children semantically different from their parents. For

example, consider figure 11.2(a), showing part of a GP tree with attached semantic at-

tributes (X, Y and Z represent whole subtrees, not merely single nodes). Assume that

X is the point selected for crossover. Suppose that it is replaced by subtree X1, with the

semantics shown in 11.2(b). Although the semantics of X and X1 differ, the semantics
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Fig. 11.2: A parent and its generated children from crossover.

at the parent ’AND’ node does not change, nor does it change at the root ’OR’ node.

However when X is replaced with X2, the semantics of the ancestors do change.

Thus the form of fixed semantics investigated in McPhee et al. [123] is the only one

cause of crossover failing to change semantics. The replacement might simply not change

the right components of the semantics for the change to propagate to the root. To remedy

this, we propose a crossover operator known as Guaranteed Change Semantic Crossover

(GCSC). The objective of GCSC is to guarantee a change in the semantics of the children

in the new population. The detail of GCSC is presented in algorithm 7.

How can we efficiently compute whether two crossover points are change-inducing?

Before we try to exchange X and X1 in figure 11.2 (a, b), we compute which attributes

differ (in this case, forming the set {A2, A3}). We then propagate this upward, discovering

that at the parent ’AND’ node, since Y guarantees that A2 and A3 will be 0, the root

difference set R becomes the empty set, φ. Therefore, this crossover is not change-inducing,

so it is aborted. If we try to exchange X and X2 in figure 11.2 (a, c), the difference set

is {A1, A2, A3, A4}, which propagates to the ’AND’ as {A1, A4}, and then to the ’OR’ as
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Algorithm 7: Guaranteed Change Semantic Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
if Subtree1 and Subtree2 are change-inducing then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=Max Trial then
choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

R = {A4}. Since the root change-set is nonempty, this crossover is change-inducing.

The objective of GCSC is similar to that of SDC [11]: to guarantee change. The

differences lie in the use of subtree semantics rather than the semantics extracted from

using ordered binary decision diagrams (ROBDDs) , and in the checking of only a single

child.

11.3.2 Crossover for Improving Semantic Locality

The first crossover used for improving semantic locality is Semantic Similarity based

Crossover (SSC). In SSC, the crossover is aborted not only when the two children are

semantically too similar, but also when they are too dissimilar. However, for the Boolean

domain, since SAC is not guaranteed to change semantics from parents to children, SSC

may also work in a similar way and this can diminish the efficiency of SSC.

Here we propose a variant, Locality Controlled Semantic Crossover (LCSC). LCSC

is an extension of GCSC, bearing the same relation to it as SSC does to SAC. LCSC is
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implemented in the same way as GCSC, propagating the difference set of changed attributes

upward in the tree. However when the root is reached, the crossover is aborted not only if

the difference set is empty, but also if it is too large. In other words, LCSC is only executed

if 0 < |R| ≤ǫ, where R is the difference set at the root, and ǫ is a predefined constant

called the semantic sensitivity. In this chapter, the value of ǫ is one of the experimental

parameters.

11.4 Experimental Settings

This section presents the Boolean problems that we use to test semantic based crossovers

and the parameter settings for GP system.

11.4.1 Boolean Problems

We investigated the effects of the new crossover operators GCSC and LCSC, comparing

them with SC , SDC 1, SAC and SSC. We tested all operators on four test-bed Boolean

problems: 5 bit parity, 5 bit majority, 6 bit multiplexer, and 6 bit parity. These problems

have been used in the previous studies on semantic based crossover [123, 13].

The 6-bit multiplexer problem (6MUX) 6MUX interprets the two control bits

{A0, A1} as an address with which to choose the correct input bit from the binary in-

put lines {D0, D1, D2, D3} as its output.

The even 5- and 6-bit parity problems (5PAR and 6PAR) These problems take

respectively 5 and 6 bits as input, returning true (1) if and only if an even number of the

inputs are true (1).

The 5 majority problem (5MAJ) This problem takes 5 bits as input, and returns

true(1) if and only if, the majority of the inputs are true(1).

1Here, SDC is implemented using subtree semantics as other crossovers in this chapter rather than
using ordered binary decision diagrams as in [11].
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In these (minimising) problems, the fitness of an individual is the mean of error bits (

the bits that do not match the target function). A run is considered successful if it finds

an individual with no error (i.e. fitness zero).

11.4.2 Parameter Settings

The basic parameter settings are similar to the settings in Table 5.2, Chapter 5 with the

following modifications.

• The population size is set at 250. This value is calibrated from the experiments to

highlight the performance of these crossovers.

• The function set for all problems is {AND, OR, NAND, XOR}

• The terminal set is {X1, X2, ..., XN}, where N is the number of input variables.

The maximum number of trials permitted to select satisfied subtrees for SDC, SAC,

GCSC, SSC and LCSC was set at 20. Although, SDC in [11] repeated attempts at crossover

until semantically different children were found. However the effect of continuing beyond 20

attempts is small, while the computational cost can be significant. For better comparability,

we used the same bound as for the other algorithms.

The semantic sensitivities for SSC set to 0.2, 0.3, 0.4. These values were tested for real-

valued problems and also the values for good performance of SSC for Boolean problems.

Three these configurations of SSC will be referred as SSCX with X = 02, 03, 04. Because

LCSC testing is more exhaustive than SSC, it is likely to generate change for a given fitness

case; thus semantic sensitivity levels need to be set correspondingly lower. We used 0.1,

0.15 and 0.2, for the semantic sensitivities of LCSC. The corresponding treatments being

denoted LCSCX with X = 01, 015, 02.
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Tab. 11.1: The percentage of successful runs.

Xovers 5PAR 5MAJ 6MUX 6PAR

SC 52 53 15 19

SAC 55 50 19 24
SDC 75 72 16 21
GCSC 67 76 18 22

SSC02 62 60 19 25
SSC03 70 58 22 33
SSC04 71 62 21 41

LCSC01 76 76 48 31
LCSC015 83 70 33 35
LCSC02 84 79 36 47

11.5 Effect of Semantic Diversity and Semantic Lo-

cality on GP Performance

To compare the performance of GP under the control of semantic diversity and semantic

locality of operators for Boolean problems, we recorded two classic performance metrics,

the percentage of successful runs out of 100 runs (table 11.1) and the mean best fitness

(table 11.2). We tested the statistical significance of all differences from SC in the results in

table 11.2, using a Wilcoxon signed-rank test with a confidence level of 95%. If a crossover

operator is significantly better than SC, the result is printed in bold face.

11.5.1 Effects of Promoting Diversity

It can be seen from Table 11.1 that semantic diversity promoting of crossover leads to a

positive effect on GP performance on the tested Boolean problems. It is reflected by a

greater number of solutions found by semantic based crossovers for enhancing diversity.

The table, however, also shows the different effect of these crossovers on different problems.

It looks like the positive effect of SAC is not great and on 5MAJ, SAC is even worst than

SC in terms of finding solutions. Conversely, the advantage of both GCSC and SDC is

greater especially on 5PAR and 5MAJ. These results can be explained when we see the
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Tab. 11.2: Mean and Standard Derivation of best fitness. Note that the values are scaled
by 102.

Xovers 5PAR 5MAJ 6MUX 6PAR

SC 2.24±3.19 1.78±2.18 5.96±3.88 8.32±5.73

SAC 2.56±3.33 2.03±2.40 5.34±3.76 8.12±5.98
SDC 1.31±2.63 0.96±1.64 5.04±3.51 6.37±4.93
GCSC 1.59±2.71 0.84±1.59 4.68±3.39 7.25±5.47

SSC02 1.96±2.96 1.50±2.05 5.53±4.30 7.53±5.85
SSC03 1.18±2.07 1.37±1.68 4.96±3.91 6.28±5.65
SSC04 1.28±2.35 1.40±1.95 4.40±3.81 5.28±5.32

LCSC01 0.96±1.86 0.87±1.66 3.09±4.26 5.95±4.83
LCSC015 0.71±1.76 1.03±1.58 3.39±3.67 5.43±5.12
LCSC02 0.65±1.61 0.75±1.54 3.28±3.33 4.54±5.45

percentage of semantics changing from parents to children for each crossover. However,

on two more difficult problems, 6MUX and 6PAR, the advantage of both SDC and GCSC

seem to be lower.

The results in Table 11.2 are consistent with those in Table 11.1, in that promoting

semantic diversity brings a positive influence on the quality of GP found solutions. The

table shows that the mean of best fitness of the crossovers for semantic diversity promoting

is usually smaller than of SC with only two exceptions on problem 5PAR and 5MAJ for

SAC. The margin of the improvement, nevertheless, depends on both problems and the

crossover operators. While the enhancement of SAC versus SC seems not so significant,

the improvement of GCSC and SDC are consistently greater. This, again can be explained

by the ability of each crossover to modify the semantics of its parents.

The statistical test results show the less convincing better of SAC over SC. SAC is

not significantly better than SC on any problem. By the contrast, both GCSC and SDC

are significantly better than SC on two easier problems (5PAR, 5MAJ) and only SDC is

significantly better than SC on 6PAR. In general, the results in this section provide evidence

for the positive effect of the crossovers for semantically promoting diversity. However,

on problems 6MUX, none of these crossovers (namely SAC, SDC and GCSC) help to

significantly improve the performance of GP in comparison with SC.
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11.5.2 Effects of Improving Locality

Table 11.1 shows how effective locality contributes to GP performance. It can be recognised

that keeping a semantically small change leads to a further improvement of a GP system

in comparison with only promoting semantic diversity. Generally, SSC is better than SAC

and LCSC is superior to GCSC. This table shows that SSC not only works well with real

valued problems, as has been shown in the early chapters, but also works well with Boolean

problems. It, however, also shows that in Boolean problems, a better way for designing an

operator may exist and LCSC is a typical instance. The table clearly shows LCSC has the

best performance in comparison with other tested crossovers.

Table 11.2 is consistent with Table 11.1, it confirms the further improvement of per-

formance when improving locality. It can be observed that controlling locality as in SSC

leads to a more frequently significant improvement versus SC in comparison with purely

promoting diversity as in SAC. Likewise, LCSC is usually better than GCSC and always sig-

nificantly better than SC. On problems 6MUX, where none of the crossovers for promoting

semantic diversity make significant improvement, both crossovers for enhancing semantic

locality significantly improve GP performance and LCSC makes significant improvement

on all the tested semantic sensitivities.

All in all, the results in this section again demonstrate that semantically promoting

diversity is only one part of a story and that improving semantic locality is even more im-

portant. It is strongly believed that combining enhancing semantic diversity and improving

locality helps to further improve GP performance and intensively promoting diversity and

suitably keeping semantically small change as in LCSC may be better than other purely

semantic diversity controlled methods.

11.6 Some Properties of Semantic based Crossovers

This section presents some behavioural aspects of GP under semantic based crossovers.

The properties analysed in this section are: the rate of crossover events that exchange two
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Tab. 11.3: Average percentage of semantically equivalent subtrees in crossover.

Xovers 5PAR 5MAJ 6MUX 6PAR

SC 6.89 7.63 6.22 5.72

SAC 0.01 0.01 0.01 0.01
SDC 0.22 0.12 0.24 0.31
GCSC 0.35 0.75 0.20 0.07

SSC02 5.80 5.53 5.22 4.96
SSC03 1.35 0.99 1.34 1.38
SSC04 0.43 0.40 0.48 0.49

LCSC01 2.55 2.30 1.61 1.24
LCSC015 1.71 1.23 0.82 0.69
LCSC02 1.49 1.01 0.60 0.51

semantically equivalent subtrees, the rate of crossover events that change the semantics and

fitness from the parents to the children, the locality (the movement step of both semantics

and fitness of the individuals) property of these crossovers, the crossover constructive effect,

and the effect of these crossovers on code bloat of the GP systems.

11.6.1 Semantic Equivalence

The first result recorded the extent of semantically equivalent exchanges arising from the

tested crossover operators. Since the proposed new crossover operators (SAC and SSC,

GCSC, SDC, and LCSC) work by analysing the semantics of subtrees, and tries to pre-

vent the exchange of semantically equivalent subtrees, it would be informative to see how

frequently this actually happens. This information shows us how frequently SC fails to

change the semantics of individuals (semantically unproductive) and the extent to which

SAC, SSC, GCSC, SDC and LCSC could solve this problem. The statistics collected are

the percentage of such crossover events, for all crossovers. The results are shown in Table

11.3.

The table shows that there is quite small portion of crossover that exchanges two

semantically equivalent subtrees. This value for SC is only from 6% to 7%. This proves that

exchanging semantically equivalent subtrees is not the main reason that causes semantics to
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Tab. 11.4: The percentage of semantic change and fitness change of crossovers.

Crossovers
5PAR 5MAJ 6MUX 6PAR

SmD FnD SmD FnD SmD FnD SmD FnD

SC 25.7 21.6 24.6 18.5 29.0 22.9 33.6 27.5

SAC 27.5 22.1 25.8 19.0 29.8 23.4 34.5 28.9
SDC 94.4 74.0 90.2 64.6 96.3 74.6 98.9 74.4
GCSC 95.4 74.5 91.3 64.7 97.2 75.4 98.8 74.4

SSC02 25.7 20.7 23.6 18.2 27.2 22.8 34.6 28.1
SSC03 23.4 19.2 21.3 16.5 26.8 21.4 32.5 26.7
SSC04 24.3 20.5 22.4 17.6 28.4 21.9 33.2 17.4

LCSC01 73.8 57.6 81.3 58.1 85.8 64.5 86.9 60.4
LCSC015 80.9 61.4 89.4 62.7 93.2 70.5 92.1 65.4
LCSC02 83.4 63.4 91.2 64.4 94.9 72.8 93.8 67.6

be unchanged from parents to children, but the replacement of inapproriate subtrees could

be the main reason. The table also shows that semantic based crossovers successfully

prevent the exchange of two semantically equivalent subtrees. The percentage of this

phenomenon with semantic based crossovers is often less than 3% except on SSC02. It

should be noted that the values for crossovers which improve semantic locality is often

greater than crossovers for promoting semantic diversity. The reason is that SSC and

LCSC also have to focus on finding subtrees that make a semantically small change.

11.6.2 Semantic Diversity

The second statistics recorded the rate of crossover events that change the semantics from

parents to children. Notice that, the change of semantics does not lead to the change of

fitness from parents to children (for Boolean problems, there may be many individuals

that have different semantics but the same fitness). Therefore a statistic that recorded the

percentage of crossovers that change the fitness from parents to children is also recorded.

The rate of crossover events that changes semantics (Semantic Difference - SmD) and

fitness (Fitness Difference - FnD) is shown in Table 11.4. It can be seen from this table

that the proportion of SC that can change semantics from parents to children is rather
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small. There is only about from 20% to 30% of SC that change semantics from parents

to children. It is different from the real valued problems where around 60% to 80% of SC

that can change semantics. It explains why promoting semantic diversity in real valued

problems has less effect than in Boolean problems. The small percentage of SC that can

modify the semantics leads to a small percentage that can alter fitness. This value is about

18% to 25%.

By preventing the swap of two semantically equivalent subtrees, SAC slightly improves

the ability of crossover in generating semantically different children. These results explain

why the advance of SAC over SC is less convincing. These values of SSC are also nearly the

same as those of SC and in fact SSC often produces fewer semantically different children

from their parents. It is, therefore, assumed that the noticeable enhancement of SSC versus

SC is mostly due to its locality property.

Conversely, three crossovers, SDC, GCSC and LCSC are much better than the other

crossovers in terms of changing semantics and fitness after crossover. This means that these

crossover have achieved their objective in terms of promoting semantic diversity. Hence,

this is also evidence for the remarkable improvement of these three crossovers over SC.

11.6.3 Semantic Locality

The next set of statistical results are used to analyze the locality property of the crossovers.

Since, the main aim of SSC and LCSC is to improve the locality of these crossovers in

comparison with SC, it is very important to see how successful they are at enhancing

locality. To compare the locality of these crossovers an experiment was conducted where the

semantic change and fitness change of individuals before and after crossover was measured.

For example, suppose two individuals having semantics of 00101010 (P1) and 10110101

(P2) are selected for crossover and after crossover their semantics are 10100100 (C1) and

00101001 (C2) respectively. Then the change of semantics from the parents to the children

is 5 with P1, C1 and 4 with P2 and C2. In total, the change of semantics from the parents

to the children is (5 + 4)/(8 ∗ 2) = 9/16 = 0.56.
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Tab. 11.5: The size of semantic change and fitness change of crossovers. Note that the
values are scaled by 102.

Crossovers
5PAR 5MAJ 6MUX 6PAR

SmC FnC SmC FnC SmC FnC SmC FnC

SC 15.7 12.5 11.7 8.75 11.4 7.78 14.1 9.28

SAC 15.9 12.8 11.7 8.71 11.3 7.66 14.3 9.54
SDC 14.4 11.8 11.6 8.08 11.4 7.46 13.2 8.49
GCSC 14.3 11.4 11.6 7.90 11.1 7.26 13.3 8.58

SSC02 14.4 11.2 9.18 6.72 9.52 6.22 12.4 8.18
SSC03 12.0 10.2 7.96 6.09 8.41 6.01 10.4 7.60
SSC04 12.4 10.3 8.46 6.68 8.58 6.31 10.7 7.95

LCSC01 9.15 7.93 7.19 5.29 6.50 4.61 6.90 5.11
LCSC015 9.32 8.09 7.25 5.32 6.86 4.82 7.20 5.11
LCSC02 10.2 8.20 8.16 5.34 7.47 5.17 7.98 5.53

Similarly, if the parents have fitness of 0.75 and 0.45 are selected for crossover, and after

the crossover operation their children have fitness of 0.80 and 0.15 The change of fitness of

these individuals is (Abs(0.75−0.8)+Abs(0.45−0.15))/2 = 0.175. These values (Semantic

Change - SmC, and Fitness Change - FnC) were averaged over the whole population and

over 100 runs. The average semantic change and fitness change of individuals before and

after crossover is shown in Table 11.5 (the values are scaled by 102).

The table shows that there is very small difference between SAC, SDC, GCSC versus

SC in terms of the size of both semantic and fitness change. It is reasonable as these

crossovers do not aim to control locality. By contrast, the table confirms that the size of

the semantic change and the fitness change of both SSC and LCSC were remarkably smaller

than SC, SAC, SDC or GCSC. These results lead to a smoother change both in semantics

and fitness over the generations of SSC and LCSC versus SC, SAC, SDC and GCSC. The

table also shows that the crossovers for improving semantic locality have achieved their

objective in making a smaller change in terms of semantics from parents to children.
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Tab. 11.6: Semi-constructive and full-constructive effect of crossovers.

Crossovers
5PAR 5MAJ 6MUX 6PAR

SeC FuC SeC FuC SeC FuC SeC FuC

SC 2.51 0.15 2.12 0.14 3.61 0.24 4.33 0.29

SAC 2.61 0.18 2.22 0.16 3.86 0.28 4.59 0.32
SDC 20.2 1.96 15.7 1.15 21.2 1.87 21.6 1.92
GCSC 20.3 1.71 16.0 1.11 21.4 1.90 21.4 1.90

SSC02 2.67 0.19 2.31 0.18 3.94 0.33 4.61 0.36
SSC03 2.15 0.20 2.34 0.19 3.90 0.34 4.46 0.34
SSC04 2.16 0.18 2.35 0.17 3.95 0.35 4.81 0.39

LCSC01 14.8 1.32 13.6 1.02 18.3 1.66 17.0 1.59
LCSC015 16.0 1.37 15.3 1.09 21.2 1.82 19.6 1.76
LCSC02 16.8 1.82 16.8 1.24 21.6 1.92 20.7 1.98

11.6.4 Constructive Effect

The next set of statistical results examine the constructive effect of the crossovers on

Boolean problems. The early results show that SDC, GCSC and LCSC are more semanti-

cally productive than the others crossovers and that SSC and LCSC have higher locality

than all other operators. This leads to a further question, whether these properties help

the crossover operators to frequently generate better children than their parents (more

constructive crossover). In other words, we would like to know the relative constructive-

ness of the crossovers. Statistics were collected measuring the constructive effect of these

crossovers using a method similar to that which has been used in Chapter 7. Here we also

distinguish two types of constructive crossover: semi-constructive and full-constructive

crossover.

The percentage of semi-constructive (SeC) events and full-constructive (FuC) events of

these crossovers are shown in Table 11.6. It can be seen from this table that SAC and SSC

is only sightly more semi-constructive and full-constructive than SC, while SDC, GCSC

and LCSC are more constructive than the other operators. The reason may be that SAC

and SSC are only slightly more semantically productive than SC, whereas SDC, GCSC

and LCSC are remarkably more semantically productive than SC. These results support
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Tab. 11.7: The average of individual size in the population and the average size of solutions.

Crossovers
5PAR 5MAJ 6MUX 6PAR

Pop Sol Pop Sol Pop Sol Pop Sol

SC 177.2 207.8 133.4 218.3 144.4 212.1 176.7 195.5

SAC 186.2 215.9 137.6 228.8 148.6 203.6 178.8 206.7
SDC 195.6 219.7 138.9 274.7 161.8 320.0 193.9 223.6
GCSC 197.0 237.3 135.7 267.2 167.7 247.1 199.1 245.8

SSC02 168.4 193.4 130.2 201.3 142.2 220.7 172.4 144.7
SSC03 157.4 167.3 123.8 185.0 129.0 151.7 156.8 157.7
SSC04 166.9 173.3 125.8 215.3 132.1 131.4 163.3 143.7

LCSC01 145.6 175.7 109.9 213.3 115.3 196.1 158.1 140.1
LCSC015 165.4 146.0 110.3 197.6 117.5 181.5 144.3 170.0
LCSC02 150.3 158.5 107.3 217.5 128.5 254.8 141.2 162.9

the improvement of these crossovers in comparison with other operators.

11.6.5 Code Bloat Effect

The last set of statistics investigated the effect of the crossovers on GP code boat. It

has been shown in the Chapter 7 that promoting semantic diversity leads to slightly more

bloat while improving semantic locality leads to reduce code bloat for real valued problems.

Therefore, it would be very interesting to see how semantic based crossovers affect to code

bloat on Boolean problems?

To investiage the effect of these crossovers on code bloat we measure the average size

of individual (number of nodes) in the population over 50 generations, averaged over 100

runs. This statistics is presented in Tables 11.7 (Pop column). The table also shows the

average size of the solutions (the best fitness individuals) found by each crossovers (Sol

column).

The results in this table are consistent with the results in the Chapter 7. Again, it can

be seen that promoting semantic diversity of crossover leads to a little more bloat than

SC. The table shows that the average size of the population of SAC, SDC and GCSC are

greater than SC. In these three crossovers, it seems that SAC has less bloat than SDC and
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GCSC. The reason could be that SAC does not promote semantic diversity as extensively

as SDC and GCSC.

While promoting semantic diversity exacerbates code bloat, improving semantic locality

always helps to reduce code bloat. The average individual size in the population of both

SSC and LCSC are consistently smaller than one of SC. The table also shows that the

size of reduction code bloat of LCSC is often greater than SSC. The reason could be that

LCSC is often more successful than SSC in changing semantics from parents to children.

The diminishing code bloat of SSC and LCSC potentially help these crossovers to find

more comprehensive solutions (smaller and more readable solutions). This is confirmed

by the results in Table 11.7 (Sol column). It can be observed from this table that both

SSC and LCSC usually find solutions with better quality in terms of size. The exception

happens only in one case on 6MUX problems with LCSC. Conversely, The exacerbating

bloat of SAC, SDC and GCSC often lead them to find bigger solutions in terms of size.

Generally, this section shows the positive effect of improving semantic locality and slightly

negative of promoting semantic diversity of crossover on GP code bloat.

11.7 Conclusions

This chapter investigated the impact of semantic based crossovers on Boolean problems.

For Boolean problems, some novel semantic based crossovers were introduced. Again, these

crossovers addressed two main objectives: promoting semantic diversity and improving

semantic locality. The semantic based crossovers were tested on four test bed Boolean

problems. The results showed that promoting semantic diversity helps to improve GP

performance, but improving semantic locality is even more beneficial.

Next, some properties of the GP system under the effect of these crossovers were anal-

ysed. The results showed that the designed crossovers achieved their objectives in pro-

moting semantic diversity and improving semantic locality. This led to a positive effect on

constructive rate, a positive impact of SSC and LCSC on GP code bloat and negative im-

pact of SAC, SDC and GCSC on the code bloat effect of GP. Overall, this chapter showed
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that improving semantic locality combining with promoting semantic locality of crossover

is not only important for real valued problems but also vital for Boolean problems. In the

following chapter we go on to conclude the thesis.
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Chapter 12

Predicting Time Series using

Semantic based Crossovers

In this chapter, semantic based crossovers are applied to time series problems. We com-

pare the prediction ability of two semantic based crossovers – Semantic Similarity based

Crossover (SSC) and the Most Semantic Similarity based Crossover (MSSC) with stan-

dard crossover on two time series. The first time series is an artificial time series (Mackey

series) and the second one is a real time series (Tide series in Venice Lagoon, Italy). The re-

sults show the comparative ability to predict of semantic based crossovers versus standard

crossover. Some results in this chapter have been published in [138].

12.1 Introduction

The previous results have shown the advantages of using semantic based crossovers in

comparison with standard crossovers on not only real valued problems but also on Boolean

problems, on not only GP performance but also on the ability of GP to generalise. However,

the tested problems in the preceding chapters are artificial problems. This raises a question

whether the advantages of semantic based crossovers is maintained when solving a real

world problem.
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In the realm of GP real world applications, time series prediction has been considered

as a major target [77, 172, 165, 110]. The main approach in the previous work is to build

up forecasting models by combining different variables that can represent the knowledge

from time series data.

In this chapter, we use two semantic based crossovers (SSC and MSSC) to solve the

problem of predicting time series. The first time series is an artificial time series (Mackey

series) and the second one is the tide series in Venice Lagoon, Italy. Two these problems

has been seen as truly difficult problems [1, 73].

12.2 Predicting Mackey Time Series

This section presents the ability of semantic based crossovers to predict Mackey time series.

First, we clearly state the problem. The experimental settings are given next. After that,

results are presented and discussed.

12.2.1 Problem Statement

Mackey and Glass introduced their time series in 1977 [114]. It has been widely used as

a benchmark for the generalisation ability of a variety of machine learning methods. The

Mackey-Glass equation is:

x(t+ 1) = x(t) − bx(t) + a
x(t− τ)

1 + x(t− τ)10
(12.1)

With x(0) = 1, a = 0.2, b = 0.1 and τ = 17, the time series is aperiodic, non-convergent,

and completely chaotic. Figure 12.1 plots the 500 points (from position 3501 to 4000) of

Mackey time series.

The requirement in time series prediction is to estimate the future values of a series
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Fig. 12.1: Mackey-Glass 500 points (from position 3501 to 4000) ( a = 0.2, b = 0.1 and
τ = 17).

based on its past values. In other words, it is to find a function F such that:

x(t+ 1) = F (x(t), x(t− α), ..., x(t−Nα)) (12.2)

This problem is generally considered quite tough, as there is no exact closed form

solution [73]. We follow the approach of [59] to discard 3500 initial points of the series

in order to avoid initialisation transients and set α = 1 and N = 8 as in [159]. That is,

our task is to estimate the value of the series at time t + 1 given the 8 values at times

t, t− 1, ..., t− 7 in the past.

12.2.2 Experimental Settings

Our experiment compared the ability of GP systems with standard crossover and two

semantic based crossovers to solve the Mackey-Glass problem. The experimental settings

are as in Table 5.2, the only difference being the terminal set, which here consists of
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Fig. 12.2: The plot of 270 points that are combined into 30 fitness cases.

one constant (1) and 8 variables (X1, X2, ..., X8) representing the time series values at

x(t), x(t − 1), ..., x(t− 7). The lower semantic sensitivity of SSC is set to 10−3 and upper

bound set to 0.4. Three value of Max Trial, 12, 16, and 20 are tested (They are the values

that have been used in the previous experiments). These configurations of SSC will be

referred as SSCX with X=12, 16, 20. Similarly, three configurations of MSSC are tested

and they are shorthanded in a similar way to SSC.

We took the first 370 points of Mackey-Glass time series as the data set. The first

270 points were used for constructing the training set. These points are divided into 30

blocks of 9 consecutive points (indexed from 1 to 9). For each block, a fitness case for

the training set is extracted as follows. The point at position 9 is the output and the 8

points at positions 8, 7, ..., 1 are the inputs. Figure 12.2 is the plot of 270 points that are

combined into 30 fitness cases

Three test sets were used, referred to as Test k with k = 0, 1, 2. Each test set is

extracted in the same way as above from a set of 270 points, but for Test k, these consist

of the last 270 − 10k points of the first 270 points, together with the first 10k points of

the remaining 100 points of the series. For example, with k = 2, we use the points from

101. . .270 (the last 170 points of the first 270), together with the following 100 points,

giving a total of 270 points. For each such set of 270 points, we extract the test set in the

same way as for the training set.

To investigate the impact of population size to the ability of GP in solving this problem,

in this experiment, 3 population sizes of 250, 500 and 1000, were tested. Correspondingly,

three values of generation: 100, 50, 25 respectively, were used. These values fixed the

number of fitness evaluations as 25000.
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Tab. 12.1: The mean best fitness on the training sets and on the three testing sets. Note
that the values are scaled by 102.

Crossovers
Pop250 Pop500 Pop1000

Tr T0 T1 T2 Tr T0 T1 T2 Tr T0 T1 T2
SC 1.03 1.05 1.11 1.06 0.82 0.86 0.92 0.82 0.76 0.78 0.80 0.71
SSC12 0.81 0.93 0.98 0.88 0.69 0.80 0.86 0.77 0.67 0.70 0.78 0.68
SSC16 0.86 1.01 1.01 0.90 0.64 0.82 0.82 0.77 0.64 0.72 0.73 0.67
SSC20 0.80 0.88 0.97 0.88 0.68 0.76 0.83 0.75 0.64 0.70 0.72 0.65
MSSC12 0.79 0.84 0.88 0.80 0.58 0.64 0.68 0.62 0.57 0.63 0.66 0.61
MSSC16 0.78 0.84 0.89 0.80 0.64 0.71 0.74 0.72 0.57 0.72 0.72 0.62
MSSC20 0.77 0.87 0.90 0.82 0.61 0.69 0.72 0.66 0.57 0.63 0.66 0.60

12.2.3 Results

In order to compare the performance and the ability to predict of these crossovers, we

recorded the best fitness on the training set. This value is then averaged for 100 runs.

Also, the individual with the best fitness on the training set is selected and tested on the

three testing sets. These values are then again averaged over 100 runs. The best fitness on

the training set (Tr column) and the best fitness on three testing sets (T0, T1, T2 columns)

are shown in Table 12.1. We also tested the statistical significance of all differences from

SC in the results in table 12.1, using the Wilcoxon signed-rank test with a confidence level

of 95%. If a crossover operator is significantly better than SC, the result is printed in bold

face.

12.2.4 Discussion

We first look at the performance of semantic based crossovers compared to standard

crossovers. Obviously, these semantic based crossovers (SSC and MSSC) help GP to im-

prove its performance in solving Mackey time series problems. It can be seem from this

table that the best fitnesses found by SSC and MSSC are always smaller than ones found

by SC. The statistical test shows that the improvement of SSC and MSSC over SC is

always significant.

We now compare the prediction ability of these crossovers. It can be seem from Ta-
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ble 12.1 that semantic based crossovers not only help to improve GP performance on the

training set but also on the testing sets. The table shows that the mean error on the testing

sets of SSC and MSSC is always smaller than one of SC. The statistical test show that the

improvement on the testing sets of SSC and MSSC over SC is often significant with only

some exceptions on SSC. In comparison between SSC and MSSC the table again shows

that MSSC is superior to SSC both on the training test and the testing sets.

Comparing between three testing sets, the results show that, in this problem, predicting

long time does not necessary more difficult than predicting short time. Definitely, the error

on the two first testing sets (T0 and T1) is often greater than one on the third testing set

(T2) while T1 is also greater than T0. This result is not entirely surprising since Rivero et

al. also shows that the error of predicting long time can be smaller than predicting short

time [165].

In terms of the effect of population size on the GP performance and GP ability to predict

of these crossovers, it can be seen that a bigger population with a shorter generation brings

a better result than a smaller population with a longer generations on both GP performance

and the ability of GP to predict. It is reflected by the smaller values of mean best fitness

on the population of 1000 versus the population of 500 and 250 and of the population of

500 versus 250. It should be noted here that all systems have the same number of fitness

evaluation (25000), therefore using a bigger population size is more beneficial in solving

this problem.

12.3 Predicting Tide

This section presents the ability of using semantic based crossovers in predicting the Tide in

Venice Lagoon, Italy. The description of the problem is given first. Next are experimental

settings, results and some discussion.
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Fig. 12.3: The plot of 500 first points of the tide level in Venice Lagoon.

12.3.1 Problem Statement

The prediction of high tides has long been the subject of interest to humans. The motiva-

tion for such interest is the economic benefits of the prediction/forecasting system. Usually,

high tides is the result of a combination of some chaotic climatic elements. Therefore, tide’s

behaviour is difficult to predict, because it depends on too many factors [1]. Two main

factors that most affect tide level are the astronomic and atmospheric agents. The problem

has been approached by using time series analysis and nonlinear neural networks [81]. In

this experiment we use GP equipped with semantic-based crossovers to solve the problem.

The time series data to predict in this section is high tides in Venice Lagoon, Italy. The

data is measured in centimeters each hour along the years 1990 to 1995 [1]. Figure 12.3

plots 500 first points of this data 1. It has been shown in [81] the tide is period of 24 hours.

Therefore, the authors predict the value in the future based on the values of 24 successively

previous points. However, they argued that this model have a large number of input values

1To make it easier for GP to solve this problem, we normalise data to the range from -1 to 1.
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and it makes the problem more difficult to be predict. Therefore, they simplify the model

by reducing the number of input values from 24 to 7. In other words, their model is to

find function F so that.

x(t+ 1) = F (x(t), x(t− 4), ..., x(t− 24)) (12.3)

However, we have conducted an experiment to predict the tide with this model and we

found that it is more difficult to predict (the error on the testing sets is greater) than the

following model:

x(t+ 1) = F (x(t), x(t− 1), ..., x(t− 6)) (12.4)

Therefore, in this experiment we predict the tide in the future based on 7 successive values

in the past as the above equation.

12.3.2 Experimental Settings

The experimental settings for GP are as the same in Table 5.2, the only difference being

the terminal set, which here consists of one constant (1) and 7 variables (X1, X2, ..., X7)

representing the time series values at x(t), x(t − 1), ..., x(t − 6). Three configurations of

SSC and MSSC are similar to those in the previous section are used and have the same

naming convention.

We took 340 points (from position of 1 to position of 340) from this data set. We

divided these data into two sets, one for training and the other for testing. The first 240

values are used for the training set. They are combined into 30 fitness cases. Similarly, 30

fitness cases were used for the testing set. We divided the testing set into 3 sets with the

number of points in the future is 10k (k = 0, 1, 2). These 3 sets will be referred as Tk with

k = 0, 1, 2 in the following text.
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Tab. 12.2: The mean best fitness on the training sets and on the three testing sets. Note
that the values are scaled by 102.

Crossovers
Pop250 Pop500 Pop1000

Tr T1 T2 T3 Tr T1 T2 T3 Tr T1 T2 T3
SC 5.58 12.5 7.33 7.39 5.30 10.9 8.84 7.60 5.35 9.98 6.42 6.72
SSC12 5.37 10.7 7.21 6.44 5.20 8.99 6.47 5.99 5.03 7.45 6.16 5.35
SSC16 5.47 11.9 7.16 6.74 4.87 9.32 6.48 6.73 4.81 7.36 5.95 5.40
SSC20 5.45 11.8 7.26 7.36 4.84 8.84 6.31 6.52 4.74 7.18 5.75 5.09
MSSC12 5.42 11.0 7.03 7.06 4.39 8.30 5.99 5.77 4.47 6.77 5.30 5.34
MSSC16 5.52 10.8 7.19 6.60 4.69 9.03 6.59 6.08 4.25 6.46 4.91 4.76
MSSC20 5.35 10.5 6.61 6.39 4.65 9.22 6.04 6.30 4.21 6.82 5.11 5.01

12.3.3 Results

Similar to the previous section, we recorded the best fitness on the training set. This value

is then averaged for 100 runs. Also, the individual with the best fitness on the training

set is selected and tested on three testing sets. These values are then again averaged over

100 runs. The best fitness on the training set (Tr column) and the best fitness on three

testing sets (T0, T1, T2 columns) are shown in Table 12.2. We also tested the statistical

significance of all differences from SC in the results in table 12.2, using a Wilcoxon signed-

rank test with a confidence level of 95%. If a crossover operator is significantly better than

SC, the result is printed in bold face.

12.3.4 Discussion

On the GP performance, we can see from the table that semantic based crossovers is better

than standard crossover in solving this problem. The mean best fitness of SSC and MSSC

is always smaller than one of SC. The statistical test result shows that the improvement of

SSC and MSSC over SC is often significant with exception on the population of 250 with

both SSC and MSSC and some cases of the population of 500 and 1000 with SSC.

On the ability to predict of these crossovers, the table shows semantic crossovers again

help GP to improve its prediction ability. The error on the testing sets is always smaller

with SSC and MSSC compared to SC. The Wilcoxon test results shows that SSC and
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MSSC often help to significanly improve the ability of GP to predict versus SC in solving

this problem. The table also shows that MSSC is better than SSC. The values found by

MSSC is often smaller and more often siginicant than SSC versus SC.

Comparing between three testing sets, the results show that predicting long time is

easier than predicting short time. The error found on T2 is often smaller than on T1 and

on T1 is often smaller than on T0. On the impact of there popolation size. The table

again shows that a bigger population and a shorter generation is better than a smaller

population and a longer generation. What is important here is on the biggest population

(the best configuration to predict in this problem), MSSC is always significant better than

SC and SSC is more usually significant better than SC.

12.4 Conclusion

This chapter applied semantic based crossovers to two time seriec prediction problems.

The first time series is an artificial Mackey time series and the second one is the tide se-

ries in Venice Lagoon, Italy. The results on both problems showed that semantic based

crossovers, especially the Most Semantic Similarity based Crossover (MSSC), often signifi-

cantly improve both GP performance and GP ability to predict. These results showed the

ability of semantic based crossovers in solving real world problems.
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Chapter 13

Conclusions and Future Work

This chapter first gives a summary of the main contributions of the thesis and then some

possible future extensions originating from the thesis are outlined.

13.1 Contributions

In addition to a review of literature regarding the research in the thesis, the following

contributions can be drawn from the investigations presented in this thesis.

A novel way to measure semantics: The thesis proposed a new way to measure

semantics in Genetic Programming (GP). This semantics was called Sampling Semantics.

The sampling semantics of a subtree was estimated by evaluating the subtree on a number

of points that are sampled from the problem domain. This way of measuring semantics

provides us an easy way to approximate the semantics of a subtree in real valued problems,

which is often difficult to measure by using other methods.

New semantics relationships: Based on sampling semantics, a semantic distance

was defined as the mean of the absolute distance of semantic points. From that two seman-

tics relationships between two subtrees were introduced. The first semantic relationship is

Semantic Equivalence and the second relationship is Semantic Similarity. These relation-

ships support the design of semantic based operators.
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New semantic based operators for promoting semantic diversity: By analysing

the semantic relationship between subtrees in operators, the thesis proposed a crossover,

Semantic Aware Crossover (SAC) and a mutation, Semantic Aware Mutation (SAM) to

promote semantic diversity. These operators were executed only if the exchanged subtrees

were not semantically equivalent. The experimental results showed the positive impact of

these operators on GP performance.

New semantic based operators for improving semantic locality: Based on

the semantic similarity relationship, the thesis proposed two semantic based operators for

improving semantic locality. The first operator was Semantic Similarity based Crossover

(SSC) and the second one was Semantic Similarity base Mutation (SSM). These operators

improved semantic locality of standard operators by making a smaller change, in terms of

semantics, from parents to children. The results from the experiments showed that they

led to a further improvement of GP performance in comparison with the operators for

promoting semantic diversity.

A new GP tree-based representation: Since it takes time to evaluate the sam-

pling semantics of a subtree, the thesis introduced a new GP tree-based representation to

overcome this drawback. First, the values for qualifying semantics were moved from ran-

dom points to the fitness cases of the problem. Then, the new tree-based representation

was formed by adding a number of attributes to every node in the traditional tree-based

representation. These attributes were used to store the semantics of each subtrees in a

GP individual. This representation helped to speed up the execution of semantic based

crossovers.

Two methods to improve Semantic Similarity based Crossover: Although, the

performance of SSC was better than some other tested crossovers, it had a weakness: its

performance depended on some tunable parameters (semantic sensitivities). To remedy

this, the thesis proposed two approaches. The first method self-adapted SSC’s semantic

sensitivities and the second one implicitly removed its higher bound of semantic sensitiv-

ities. These methods not only overcame SSC’s drawbacks but also helped to improve its

performance.
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Experimental analysis of properties of semantic based crossovers: To un-

derstand the reason behind the improvement of semantic based crossovers, a thorough

analysis on some crucial properties of GP under semantic based crossovers was conducted.

The properties that were analysed include semantic diversity, semantic locality, the con-

structive effect of crossovers and their code bloat effect. These analyses helped to explain

the superior performance of semantic based crossover versus other crossovers.

An Investigation on the generalisation ability of semantic based crossovers:

Since, generalisation has long been seen as one of the most desirable properties of a machine

learning method, the thesis investigated the ability of semantic based crossovers to gener-

alise. The investigation showed that the superior performance of semantic based crossover

was maintained on unseen data.

A comparison between the role of semantic and syntactic locality of crossover:

Locality is important for all search methods. However, is semantic locality or syntactic

locality more important? To address this question, the thesis proposed a new syntactic

based crossover for improving syntactic locality and compared it with the semantic based

crossover for enhancing semantic locality. The results showed that semantic locality is

more important in improving GP performance.

A study of semantic based crossovers with problem difficulty: Although se-

mantic based crossovers helped to improve the performance of GP, would they still maintain

their superior performance when problems become harder? The thesis addressed that ques-

tion by comparing the performance of semantic based crossovers with standard crossover on

a class of increasingly difficult problems. The results showed that semantic based crossovers

could deal well with increasingly difficult problems.

A study of semantic based crossovers and fitness landscape: Is there any

relationship between the fitness landscape of a problem and the semantic locality of an

operator? The thesis investigated that relationship by conducting an analysis of the fitness

landscape of semantic based crossovers for improving semantic locality. The results in

Chapter 10 showed that there is a strong relationship between the fitness landscape of a

problem with the semantic locality of operators and that improving semantic locality led
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to a smoother fitness landscape.

An extension of semantic based crossover to Boolean problems: Finally, this

thesis applied semantic based crossovers to Boolean problems. For Boolean problems,

some novel semantic based crossover were proposed. These operators again addressed the

problem of promoting semantic diversity and improving semantic locality. The results in

Chapter 11 showed that both semantic diversity and semantic locality were important for

Boolean problems and that the latter led to further improvement of GP performance. In

addition, a demonstration of the success of semantic based operators can also be seen on

other problems domain, namely time series prediction problems, in Chapter 12.

13.2 Future Work

Building upon this research, there are numerous avenues for future work. Several of these

avenues are discussed here.

First, the various semantic based mechanisms interacted quite simply with standard

crossover, just rejecting some proposed exchanges. Thus other crossovers – crossover with

bias on the depth of nodes [79] or one point crossover and uniform crossover [156, 108] –

could be used instead. In the near future we plan to combine them with semantic based

crossovers, especially with SSC, SASE and MSSC.

Next, the semantic based crossovers can also be used with Linear Scaling [92]. Linear

scaling is a simple technique that is used for smoothing out the fitness function, which is

measure by mean squared error (MSE) on training data [78]. Future work could combine

linear scaling with semantic based crossovers to see if they help to further improve GP

performance in solving symbolic regression problems.

Another potential research direction is to apply semantic based crossovers to other

problem domains. Although, this thesis has applied semantic based crossovers to real

valued symbolic regression problems, Boolean problems and time series prediction, and

the results show the ability of these crossovers in solving these kind of problems, the

question if these crossovers can be applied to other domain problems such as classification
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problems, control strategy problems, ect. is still open. For such problems we suspect

that semantics must be measured differently and semantic based crossovers have also to

be differently designed.

This thesis showed that semantic based crossovers, SSC, SASE and MSSC work to

reduce code bloat, but the reason behind this reduction is still unclear from the thesis.

Future work aims to answer the question why these crossovers reduce GP code bloat. One

direction is to apply a similar method of Soule [178] to study the effect of semantic based

crossovers on code bloat during the evolutionary process and the role of various branch

size in these crossovers.

Similarly, the thesis showed that semantic based crossover help to improve the gen-

eralisation ability of GP, however the reason why the ability to generalise of semantic

based crossovers better than standard crossover is not investigated in this thesis. One may

suspect the reduction in GP code bloat of these crossovers might help them improve gener-

alisation ability. Nevertheless, the thesis has indicated that controling code bloat does not

necessarily lead to enhancing the ability to generalise. Therefore, the reason may be that

semantic based crossovers find the solutions closer to the perfect solution than standard

crossover. If so, the question is to what extent can we continuously run GP systems with

semantic based crossovers and that are still less overfitting than standard crossover. Future

work aims to address this question.

Finally, this thesis proposed a novel way to measure semantics in GP by sampling a

number of points from the problem domain. However, other ways to measure semantic

could be better. Future research aims to find other ways to qualify semantic in GP to

apply to other problem domains.
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Appendix A

Semantics Exchanged in Semantic

based Crossovers

This chapter analyses the semantics exchanged in two improvement of Semantic Similarity

based Crossover (SSC). The two analysed crossovers are Self-Adaptive Successful Execution

(SASE) method and the Most Semantic Similarity based Crossover (MSSC). It has been

shown in Chapter 7 that the largest proportion of standard crossover (SC) events make a

big change in terms of semantics from parents to children and SSC achieves higher locality

than SC by increasing the percentage of SSC events that make smaller change. Since SASE

and MSSC are two improvements of SSC, it is important to see how the semantics of the

subtree exchanged in these crossovers.

Tab. A.1: The percentage of each groups in 7 groups of SASE

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SASE0 3.80 3.74 4.79 3.02 3.58 3.46 3.48 3.19

SASE1 27.1 27.6 42.4 9.65 17.9 9.27 46.2 42.6
SASE2 25.1 26.2 25.9 29.5 35.2 24.6 19.7 19.8
SASE3 18.9 18.8 10.2 37.6 21.4 21.9 18.9 20.7

SASE4 11.7 10.2 8.82 9.37 6.04 22.6 5.67 6.58
SASE5 9.91 9.86 4.60 5.91 9.21 9.44 3.64 4.35
SASE6 3.48 3.44 3.14 5.00 6.47 8.69 2.37 2.69
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Tab. A.2: The percentage of each groups in 7 groups of MSSC

Xovers F1 F2 F3 F4 F5 F6 F7 F8

MSSC0 1.42 1.51 2.16 1.85 3.15 2.40 0.93 1.08

MSSC1 40.3 40.9 51.3 16.1 22.7 13.3 57.0 50.4
MSSC2 21.1 20.3 20.0 31.7 27.4 25.3 18.2 17.4
MSSC3 14.4 14.6 14.4 30.5 18.3 17.4 20.3 25.8

MSSC4 16.9 16.3 8.90 13.8 11.7 23.3 2.31 3.23
MSSC5 4.77 5.17 1.98 3.69 11.1 13.0 0.87 1.22
MSSC6 0.97 1.17 1.16 2.24 5.42 5.30 0.44 0.69

We conducted an experiment to analyse the semantics exchanged in these crossovers.

For SASE we used SASES and for MSSC we set Max Trial=12. The experimental settings

are as follows. Similar to SC and SSC, SASE and MSSC are divided into seven groups (see

Chapter 7). These seven groups will be referred to as SASEX and MSSCX (X=0, 1,...,

6). We recored the percentage of SASE and MSSC that lies in each of the seven groups at

each generation. The values are averaged over 50 generations and 100 runs. The results

are shown in Table A.1 for SASE and Table A.2 for MSSC.

It can be seen from these tables that the portion of SASE and MSSC that makes a

small change, in terms of semantics, from parents to children is substantially increased

compared to SC. There is about 60% to 90% of SASE lies in SASE1, SASE2 or SASE3,

and the similar results with MSSC. At the same time, the percentage of SASE and MSSC

that exchanges two semantic equivalent subtrees (SASE0 and MSSC0) and the percentage

of SASE and MSSC that swaps two semantic dissimilar subtrees are remarkably reduced.

These table provide the evidence that both SASE and MSSC actually achieved their design

objective to keep a small change of parents in crossover in terms of semantics.
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