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Abstract

This thesis presents three approaches to the automatic design of algorithms for the pro-

cessing of binary images based on the Genetic Programming (GP) paradigm. In the first

approach the algorithms are designed using the basic Mathematical Morphology (MM)

operators, i.e. erosion and dilation, with a variety of Structuring Elements (SEs). GP is

used to design algorithms to convert a binary image into another containing just a partic-

ular characteristic of interest. In the study we have tested two similarity fitness functions,

training sets with different numbers of elements and different sizes of the training images

over three different objectives. The results of the first approach showed some success in

the evolution of MM algorithms but also identified problems with the amount of compu-

tational resources the method required. The second approach uses Sub-Machine-Code GP

(SMCGP) and bitwise operators as an attempt to speed-up the evolution of the algorithms

and to make them both feasible and effective. The SMCGP approach was successful in

the speeding up of the computation but it was not successful in improving the quality of

the obtained algorithms. The third approach presents the combination of logical and mor-

phological operators in an attempt to improve the quality of the automatically designed

algorithms. The results obtained provide empirical evidence showing that the evolution

of high quality MM algorithms using GP is possible and that this technique has a broad

potential that should be explored further. This thesis includes an analysis of the potential

of GP and other Machine Learning techniques for solving the general problem of Signal

Understanding by means of exploring Mathematical Morphology.
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Chapter 1

Introduction

C omputer programming is the art of telling a computer, step by step, how to solve a

problem. The programmer needs to have some expertise regarding the problem at hand in

order to propose a solution, then convert the proposed solution to an algorithm and then

to a program in some programming language.

The following scenario proposes an attractive alternative. A programmer has a com-

pletely new problem at hand. It is outside his current area of expertise and he has problems

with proposing a solution. An expert who needs a solution to the problem decides not to

use the programmer as an intermediary and to explain the problem directly to the computer

instead. The expert presents examples of inputs and desired outputs to the computer, but

not step by step instructions how to solve the problem. The computer produces a program

which solves the given example problems and all similar problems. It is not difficult to

imagine that a solution produced by the computer could be better than the solution the

human programmer would propose. It is also possible to imagine that the computer is able

to solve problems that a human programmer would not be able to solve at all.

One of the biggest challenges in Machine Learning (ML) [89] is a computer system able

to program itself, so-called Automatic Programming. Perhaps the most popular technique

for automatic programming nowadays is Genetic Programming (GP) [71, 12, 83], a branch
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of Evolutionary Computation (EC) [122, 149, 150] and Artificial Intelligence (AI) [120]

that, using principles from natural evolution, automatically generates computer programs.

Since its invention almost two decades ago, GP has been used to solve problems in a wide

variety of fields, in some cases so well that the results had been published as patents [76]

(i.e. the results are better than any corresponding human creation).

GP allows the user to specify the inputs and the expected outputs for the problem

at hand and then searches for a program that matches those inputs and outputs in an

(approximately) optimal way. GP’s potential is huge but it has been relatively explored

little, particularly in its contribution to the field of Computer Vision. This thesis aims

to explore the GP paradigm for Image Processing. The main contribution is made in the

application of Mathematical Morphology (MM) [123, 124, 34, 35], one of the most popular

techniques for non-linear image processing.

Section §1.1 presents a brief introduction to Computer Vision [10] and outlines some

characteristics of Human Vision. In Section §1.2 a brief review of the different approaches

to Image Processing [42] is presented. Section §1.3 explains the motivation for exploring the

GP paradigm for Morphological Image Processing. It briefly introduces MM and explains

the potential of exploring it by means of GP. Section §1.4 presents a list of the questions

this thesis attempts to address and Section §1.5 presents an overview of the contents of

this thesis.

1.1 Human Vision and Computer Vision

One of the most important aims of Artificial Intelligence is to create machines able to emu-

late the human perception and understanding of images. This field is known as Computer

Vision.

To provide a computer with the ability to see is far from easy. Human vision is perhaps

the most developed sense, since more than 80% of the brain activity is related to visual

perception. Human vision is very complex and many characteristics are difficult to emulate.
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Although there have been many successful approaches to vision problems concerned

with shape, texture, colour, appearance, size, illumination, depth and movement, the com-

puter understanding of images is still in its early stages. Some problems cannot be ap-

proached with the current technology such as high-level concepts, ambiguous pictures,

non-canonical views, contextual images and camouflage. However, Computer Vision is a

field that is growing very fast, in part because of the amazing growth of digital imaging

technology and in part because of the developing of storage and processing equipment.

Practically any image may be digitalised nowadays and the scope of Computer Vision is

growing every day. Some of the fields where Computer Vision has showed success are robot

guidance, biomedical applications, industrial inspection, optical character recognition and

satellite imaging.

Image Processing is often taken to be a subset of Computer Vision concerned with

information processing where both the input and the output are images. However, this is

a somewhat artificial boundary.

1.2 Approaches to Image Processing

The different stages of Image Processing include image acquisition, image enhancement,

image restoration, colour image processing, compression, morphological processing, seg-

mentation, recognition, representation and description.

The fields where Image Processing is applied are so varied that categorising images

according to their source is a difficult task. It is interesting to note that many applications

require several steps to achieve a particular purpose. A very important step refers to the

recognition or enhancement of features with a particular size or shape. It is common that

in the process an image is first cleaned to remove noise and after that a particular feature

is enhanced.

A popular enhancement technique is to binarise images. This means that a threshold

is applied to the grey levels of the pixels in an input image and the output image’s pixels
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Figure 1.1: Example of binary feature enhancement (face features). (a) Image in gray-level.
(b) Binary Image. From [1].

Figure 1.2: Example of binary feature enhancement (people tracking). (a) Image in colour.
(b) Binary Image. From [131].

have only two values which represent black and white (usually zero and one). Figure 1.1

shows an example of the face feature detection [1] and Figure 1.2 shows an example of
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people tracking [131].

GP has been little used for Computer Vision and practically unexplored for non-linear

image processing. Mathematical Morphology (MM), is a set of non-linear techniques for

dealing with shape and is particularly suitable for the treatment of binary images. MM

is a fairly well known area of image processing and it has shown some success in solving

problems difficult for linear image processing.

1.3 Why Genetic Programming and Mathematical

Morphology?

The use of GP for Image Processing has a number of potential attractions. For example,

the solutions that GP may propose are likely to be different to those proposed by a human

programmer and thus innovative. GP also does not have pre-conceptions that a human

programmer may have and thus is likely to be less biased towards certain kinds of solutions.

It is often difficult for an expert to convert visual expertise into a computer program,

because even though he may understand the process required he does not know how he

actually sees or how to separate the problem into stages to obtain the desired output. For

this reason GP offers a good alternative where, by means of examples, an algorithm may be

extracted. Different to other ML techniques, GP offers solutions that after simplification

provide meaning to the user, this means that an actual algorithm may be obtained from

it.

MM offers the advantage of a unified field based on set theory that allows the user

to understand what actually is happening when modifying an image. By evolving MM

programs using GP it might be possible to explore a space of solutions which are difficult

to imagine for human programmers. In this way it might be possible to extend the scope

of applications of MM and improve its achievements.
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1.4 About the Thesis

This thesis explores the potential of GP as a tool for the automatic generation of image

processing algorithms based on MM. To date, very few researchers have attempted to evolve

MM algorithms using GP and other Evolutionary Computation techniques. GP has shown

some success in image analysis but it has been mainly used for linear image processing and

search for filters, leaving the important morphological side practically unexplored.

We consider that this research may start an interesting trend since mathematical mor-

phology is a versatile non-linear technique that allows the combination of exploratory

features in several ways.

There have been other attempts to achieve the automatic programming of MM algo-

rithms. Some of the techniques explored include optimal operators based on Statistics and

Probabilities, AI, Greedy Algorithms, PAC Learning, Iterative Design, Switching Algo-

rithms, Artificial Neural Networks, Fuzzy Sets and Hybrid Human-Machine Design. This

literature is reviewed in Section §2.3.2. However, we believe that the most recent theoret-

ical discoveries in the foundations of GP may provide a better context for the automatic

generation of MM algorithms.

It is interesting to note that one important limitation for human practitioners using MM

is the understanding of the results obtained when using non-regular structuring elements

(SEs also known as kernels, see Section §3.1 and Figure 3.1). This is not a problem when

using an automatic technique such as GP (i.e. humans do not need to understand it since

it is automated).

1.5 Structure of the Thesis

This thesis is divided into six chapters. This chapter has provided an introduction to the

problem of automatic programming of image processing algorithms including a definition
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of morphological image processing. Chapter §2 includes a literature survey that reviews

the general GP approach to Image Processing and the previous approaches for morpholog-

ical automatic programming. It also includes an introduction to the basic morphological

operators. Chapter §3 presents exploratory study of GP applied to MM. It includes a set

of hypotheses, a discussion on fitness functions, implementation of the proposed approach,

results and analysis. Chapter §4 attempts to overcome one of the problems emerged in this

exploration, namely the feasibility of implementation. This is done using Sub-Machine-

Code GP (SMCGP), a technique to speed up GP by using the internal parallelism of

CPUs. Chapter §5 presents an alternative solution to improve the results obtained in the

exploratory approach using image storage and a combination of morphological and logical

operators. Finally, Chapter §6 presents the conclusions of this research, including a general

analysis of results, significance, limitations and ideas for future work.

1.5.1 Publications

The research presented in this thesis has been partly published in peer-reviewed forums. An

exploratory approach was presented in the Knowledge-Based Computer Systems Confer-

ence (KBCS) 2002 in Mumbai, India [110]. A second approach including SMCGP obtained

the best paper award at the workshop of Evolutionary Image Analysis and Signal Processing

(EvoIASP) in 2003 in Colchester, U.K. [111]. An extension of the research was accepted

in the Journal Genetic Programming and Evolvable Hardware [109]. The discussion of

Chapter §6 has been communicated to the International Symposium on Mathematical

Morphology to be held in 2005 in Paris, France [108].
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Chapter 2

Fundamentals of Genetic

Programming and Mathematical

Morphology

Chapter Outline

GP has a considerable potential to automatically create effective programs

for Image Processing. This chapter introduces the fundamentals of GP and

makes a brief survey of the main applications of GP to Image Processing. The

survey shows that one of the many open lines of research is the GP approach

to Morphological Image Processing, a branch of Computer Vision that has not

been thoroughly explored using Machine Learning (ML) techniques. The ba-

sics of Mathematical Morphology (MM) are introduced with the general idea

of the automatic generation of morphological image processing algorithms. We

conclude with the motivation to explore the GP paradigm for morphological

image processing.
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T he task of providing a machine with the ability to see is not easy; it is still an open

scientific problem with some philosophical implications. The ultimate goal of Computer

Vision [135, 10] is to emulate human vision, including learning, making inferences and

taking actions based on visual inputs. The current technology is still far from providing a

computer with the ability to understand images as well as a human being can. However,

specific image processing and analysis applications have been used with success in both

science and industry, and the number of applications is growing very fast. In addition, the

availability of high performance hardware makes it possible to employ image processing in

real-world applications.

In order to program a particular domain application it is usually necessary to have

a group of programmers analysing the images (sometimes with the help of the domain

experts) and proposing techniques to divide the problem into intermediate steps. Some

of the intermediate steps may be solved by applying well known algorithms but most of

the time the programmers need to use their intuition and expertise in order to solve the

problem at hand.

One of the most exciting research threads in Image Processing is the automatic solution

of these intermediate steps using Machine Learning techniques. In order to be implemented

correctly by human programmers, a particular domain application should clearly state what

is the final objective and what are the restrictions involved. However, it might be very

difficult to express such an objective clearly and unambiguously. For example, a particular

input image (e.g. a radiograph) simply may not make sense at all for non-specialists.

Therefore, it is difficult to create programs to solve this kind of problem. This thesis

supports the idea that this sort of problem could be solved by using EC [122, 149, 150]

techniques and, more specifically, GP.

Genetic Programming [71] is a technique for getting computers to solve problems au-

tomatically without having to specify explicitly how to do it. GP is a very powerful

optimisation scheme and it has been successfully used in a wide range of difficult applica-
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tions, including automatic design [75], robotic control [13], data mining [148], synthesis of

artificial neural networks [47, 46], bioinformatics [49], music [136], computer graphics [132]

and picture generation [45]. The fundamentals of GP are introduced in §2.1 and there

are numerous publications describing both theoretical studies (e.g., [83]) and applications

(e.g., [71, 12, 78, 73, 74, 76, 77]).

GP is a descendant of Genetic Algorithms (GAs) [58, 41]. Whereas GAs have been

widely applied to Image Processing [6, 96] and Pattern Recognition [97, 95], only a relatively

small number of GP applications to Image Processing have been reported in the literature.

This chapter presents a brief description of GP in §2.1, a survey of the GP approach

to Image Processing in §2.2, the basics of Mathematical Morphology in §2.3, and the

motivation to explore GP in the domain of Morphological Image Processing in §2.4.

2.1 Genetic Programming

One of the most succinct descriptions of GP can be found in Poli’s paper [103]:

GP is the extension of GAs [58, 41] in which the structures that make up

the population under optimisation are not fixed-length character strings that

encode possible solutions to a problem, but programs that, when executed, are

the candidate solutions to the problem.

Programs are expressed in GP as syntax trees, rather than as lines of code.

For example, the simple expression max(x*x,x+3*y) would be represented as

shown in Figure 2.1.

The set of possible internal (non-leaf) nodes used in GP syntax trees is

called the function set, F = {f1, · · · , fNF
}. The set of terminal (leaf) nodes

in the syntax trees representing programs in GP is called the terminal set

T = {t1, · · · , tNT
}. Table 2.1 shows some example functions and terminals used

in GP.
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Figure 2.1: Syntax-tree representation of the expression max(x*x,x+3*y).

The search space of GP is the set of all the possible (recursive) compositions of the

functions in F ∪ T . The basic search algorithm used in GP is a classical GA with muta-

tion and crossover specifically designed to handle syntax trees. GP starts with an initial

population of randomly generated computer programs composed of functions and termi-

nals appropriate to the problem domain. The algorithm is controlled by a fitness function

which evaluates the quality of the programs stochastically produced by GP. This typi-

cally requires running such programs (within the GP environment) on a number of test

cases. The best individuals are selected and modified to produce a new population which

is evaluated in the next generation. This process is repeated until a stopping criterion is

reached.

Like other ML techniques, GP solves problems without being explicitly programmed.

Because it directly searches the space of computer programs, its outputs (computer pro-

grams) can be immediately interpreted and used. Thanks to these two properties GP is

an excellent tool to provide optimal or near optimal algorithms to solve problems which

are difficult for humans to understand and solve, like some problems of Image Processing.

2.2 GP approach to Image Processing

Although there is no general agreement among authors regarding where Image Processing

stops and Computer Vision starts [42, 135], it is generally agreed that Image Processing

encompasses operations which transform one image into another. This includes the basic

pixel representation of digital data and various processes applied to image data, such
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Functions
Kind Examples
Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE, IFLTE
Looping FOR, REPEAT

Terminals
Kind Examples
Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left
Random constants random

Table 2.1: Example functions and terminals used in GP.

as transformations, filtering, segmentation, enhancement, noise reduction, mathematical

morphology, image compression and encoding, image restoration and others.

Although the basic Image Processing operations are based on sound principles of math-

ematics, signal processing, physics, etc., more complex algorithms for solving specific Image

Processing problems are built up from the basic operations using heuristics and experience

of a designer. An Image Processing expert who designs an algorithm to solve a new prob-

lem is very likely to use methods and algorithms shown to be successful in the past for a

similar range of problems. Over the years this has lead to the development of a particular

library of solutions, which can be considered to be a subset of a larger class of solutions,

some yet undiscovered.

This thesis explores the idea that GP may offer an interesting alternative to expert-

designed image processing algorithms. As GP does not have to be constrained by past

experience or by perceptual or aesthetic qualities, solutions evolved in this way are likely

to explore a broader range of the solution landscape than those designed by experts.

GP has been relatively little explored for Image Processing. The following Subsections

review briefly the application of GP to Image Analysis(§2.2.1), Feature Detection(§2.2.1),

Classification(§2.2.1) and other image related applications(§2.2.2).
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2.2.1 GP for Image Analysis

Many Image Processing tasks involve the use of low-level algorithms to perform enhance-

ment, segmentation or noise reduction. These processes can be implemented using filters

which are optimised for the particular task.

Poli [101, 100, 102] describes a technique to find efficient filters using GP. He introduced

a set of guidelines to make the search feasible and effective. The guidelines suggest a set of

variables capable of capturing the information present in the image at different scales, the

requirement of non-complex calculations (ideally only memory accesses) and a computation

load as light as possible. The implementation showed very good results on several examples

in the medical imaging domain.

Poli and Cagnoni [106] use GP for image enhancement in a user driven approach, where

the presence of the user transforms GP into a very efficient search procedure without fitness

function. To overcome the user bottleneck caused by the limited speed at which complex

comparisons can proceed, they proposed the idea of automatically inducing programs to

model the user’s behaviour.

Depending on the image nature and the particular application it could be necessary to

make some intermediate low-level steps before it is possible to obtain useful information.

Daida et al. [31, 24] developed a GP system for Image Analysis and Scientific Inquiry

in Geoscience and Remote Sensing. The system is a powerful tool for the processing of

images in problems considered untenable for standard image processing algorithms due to

low signal-to-noise ratios, arbitrariness of feature shapes and orientation problems.

Feature Detection

Feature detection is an image analysis operation which attaches a semantic label to a group

of pixels. Features may vary from simple geometric entities such as lines, blobs or geometric

forms to complex entities such as 2D and 3D objects.
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There are many examples of the successful use of GP for the operations in this class,

including the detection of a variety of objects [72, 147, 154, 126, 127] and targets [23, 20, 62],

visual features [19, 100], features in SAR [22, 21] and infrared imagery [116], generic [7] and

specific 2D features including the presence of edges [51, 37, 38, 50, 119], and instances of

a specific orientation [117]. Further examples include the extraction of facial features [64],

face recognition [143] and multi-class object detection [156, 155].

Classification

Classification denotes a process in which a decision rule is applied to categorise a set of

image data. Usually this step transforms image data into symbolic information and follows

earlier steps, namely enhancement, segmentation and feature detection. A good classifi-

cation system should be able to correctly separate sets of images with features previously

defined.

There are numerous examples of GP-based classification. Relatively simple examples

include classification applied to printed text [28, 87] and car number plates [2]. Most typical

is the classification of specific objects or features (for example roads [125]) in complex

images such as satellite images [32], remotely sensed images [112], Synthetic Aperture

Radar data [30, 137], sonar [88] imagery and multi-spectral [113], IR image sets [140, 141]

and visual routines [66].

GP has been also explored to improve the classification performance using pre-classification

[138, 139], supervised classification [128, 129], supervised learning classifiers [5], multi-class

classification [44, 157, 158], multi-category pattern classification [67, 68] and general pur-

pose classification [144, 145].
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2.2.2 Other Image Related Applications

As the use of GP becomes generally popular, so are its applications in the image-related

fields. Examples of these varied applications range from those operating purely on the im-

age data, such as texture generation [146], restoration [59], equalisation [39], colour [118],

pseudo-colour [105], compression [94, 40, 61, 65, 90] and video compression [26], to com-

plex computer vision operations, such as automatic generation of programs for low-level

vision [159, 4], model-based vision [92], stereo vision [43, 82], shape modelling [98, 99],

tracking [98], and motion analysis [45, 114, 133, 134].

2.3 Mathematical Morphology

Mathematical Morphology (MM) [123, 124, 34, 35] is a relatively separate part of image

processing. The non-morphological approach to image processing is close to calculus,

being largely based on the point-spread-function concept and linear transformations such

as convolution. Instead, MM is based on geometry and shape; morphological operations

simplify images, and preserve the main shape characteristics of objects. MM is basically

a tool for extracting image components, such as boundaries and skeletons, that are useful

in the representation of the different regions of an image. Morphological techniques, such

as morphological filtering, thinning and pruning are also used for pre- or post-processing.

The language of MM is set theory. Thanks to this, morphology offers a unified and

powerful approach to numerous image processing problems. Sets in MM represent the

objects in an image. For example, in Figure 2.2 the set of all black pixels (which corresponds

to the 1s in the binary matrix representation on the left) is a complete description of the

image on the right.

In binary images, the elements of the sets in question are members of the 2D integer

space Z2. Each element of a set is a tuple (x1, x2) representing the coordinates of a black

pixel in the image. For example the set of pairs represents the black square in Figure 2.2
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Figure 2.2: Binary image as the set of all black pixels.

as follows

{(5,5), (5,6), (5,7), (5,8), (5,9), (5,10)

(6,5), (6,6), (6,7), (6,8), (6,9), (6,10)

(7,5), (7,6), (7,7), (7,8), (7,9), (7,10)

(8,5), (8,6), (8,7), (8,8), (8,9), (8,10)

(9,5), (9,6), (9,7), (9,8), (9,9), (9,10)

(10,5), (10,6), (10,7), (10,8), (10,9), (10,10)}.

Grey-scale digital images can be represented as sets whose components are in Z3. Each

element of a set is a triplet (x1, x2, x3) representing the coordinates of a pixel and its grey

level. Figure 2.3 shows a simple example of a grey-scale image with three grey levels. The

image corresponds to the set

{(1,1,2), (1,2,2), (1,3,2), (1,4,2), (1,5,2)

(2,1,2), (2,2,2), (2,3,2), (2,4,2), (2,5,2)
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Figure 2.3: Grey-scale image with three grey levels.

(3,1,2), (3,2,2), (3,3,2), (3,4,2), (3,5,2)

(4,1,2), (4,2,2), (4,3,2), (4,4,2), (4,5,2)

(5,1,2), (5,2,2), (5,3,2), (5,4,2), (5,5,2)

(10,10,1), (10,11,1), (10,12,1), (10,13,1), (10,14,1), (10,15,1)

(11,10,1), (11,11,1), (11,12,1), (11,13,1), (11,14,1), (11,15,1)

(12,10,1), (12,11,1), (12,12,1), (12,13,1), (12,14,1), (12,15,1)

(13,10,1), (13,11,1), (13,12,1), (13,13,1), (13,14,1), (13,15,1)

(14,10,1), (14,11,1), (14,12,1), (14,13,1), (14,14,1), (14,15,1)

(15,10,1), (15,11,1), (15,12,1), (15,13,1), (15,14,1), (15,15,1)},

where x3 = 1 stands for light grey and x3 = 2 for black. Sets in higher-dimensional spaces

can represent other image attributes, such as colour and time varying components.
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Figure 2.4: Translation (B) and Reflection (C).

2.3.1 Basic Morphological Operations

The two most used morphological operations are dilation and erosion and most of the

morphological algorithms developed by human experts to perform a particular task make

heavy use of these operators.

Dilation and erosion are based on two set operations namely translation and reflection.

The translation of set B by point x = (x1, x2), denoted (B)x, is defined as

(B)x = {w|w = b + x, {b ∈ B}} (2.1)

The reflection of set C, denoted Ĉ, can be defined as

Ĉ = {w|w = −c, {c ∈ C}} (2.2)

Figure 2.4 shows examples of translation and reflection.

If A and K are sets in Z2 and ∅ denotes the empty set, the dilation of A by K, A⊕K,

requires performing the reflection of K about its origin, then shifting this reflection K̂ by
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Figure 2.5: Examples of dilation of the image in Figure 2.2 using different SEs.

z ∈ Z2 to obtain (K̂)z and finally calculating the set of all displacements z such that (K̂)z

and A overlap by at least one element. That is:

A ⊕ K = {z|(K̂)z ∩ A 6= ∅} (2.3)

Usually the set K is called structuring element (SE or kernel). The origin of K may be

arbitrarily chosen pixel (usually belonging to K but that is not a restriction). The SE is

often small and its shape directly modifies the shape of set A. Figure 2.5 illustrates how

different SEs can produce a thickening effect on the image in Figure 2.2.

The erosion of A by K, A	K, is defined as the set of all points z such that K̂ translated

by z is contained in A. So, the erosion of A by K is:

A 	 K = {z|(K̂)z ⊆ A} (2.4)

This operation is illustrated in Figure 2.6 where different SEs produce a thinning effect

on the image in Figure 2.2.
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Figure 2.6: Examples of erosion of the image in Figure 2.2 using different SEs.

Equations 2.3 and 2.4 are not the only definitions for dilation and erosion, but they are

usually preferred in practical implementations because of their analogy with the operation

of convolution for linear filtering.

Gonzalez and Woods [42] present some examples where morphological operations are

used for image pre-processing (noise filtering, shape simplification), enhancing object struc-

ture (skeletonising, thinning, thickening, extraction of convex hull, object making) and

quantitative description of objects (area, perimeter, projections, Euler-Poincaré character-

istics).

2.3.2 Automatic Approach to MM

MM is a very flexible tool that has been used for a wide range of applications including

biomedical imaging, document processing, pattern recognition, microscopy, inspection and

robot vision [35]. The versatility of MM suggests that the technique has a huge potential

which may not have been completely explored yet.

Two main factors need to be considered in the design of an MM algorithm: the SEs
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(also known as morphological filters or kernels particularly when referring to binary images)

and the sequence of morphological operators. Morphological filters are an important class

of non-linear digital signal processing filters, which have found a range of applications.

However, few generic design methods exist for morphological filters. The selection of the

best type of filters to use and the order in which to apply them are normally application-

specific.

In the recent book Hands-on Mathematical Morphology [35], Dougherty and Latufo ded-

icate the final chapter to the automatic design of morphological operators with a detailed

review to the general approach to automatic morphological image processing:

The key to successful morphological image processing is the selection of

SEs. There are a myriad of algorithms for a multitude of imaging applications,

but in each and every instance, algorithm performance depends on the SEs.

The classical approach to morphological processing is to have a human being,

or group of human beings, use intuition and an understanding of the goals to

design algorithms based on erosions, openings, hit-or-miss transforms and other

basic morphological operators. This approach can work well if the task can be

described in elementary geometric terms and the images under consideration

are not too complex. It breaks down in situations where satisfactory filtering

might require hundreds, or even thousands, of SEs.

The characteristics of MM imply that the algorithms designed by humans are limited

by their understanding of the problem at hand and their experience in using morphological

operators combined with SEs.

Figure 2.7 shows an example of a particular task we may want to perform on a binary

image. The original image (o) contains several features including a moon, a tree, some

stars and a mountain. Let us imagine that our goal is to extract the mountain (the goal

image (g)). The simplest method would be to extract the mountain by hand using image
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Figure 2.7: Transformation from Original Image (o) to Goal Image (g).

editing software. This would be too tedious if there were many similar images to process.

The challenge is therefore to create a transformation algorithm T that applied to the image

(o) produces the image (g). In the ideal case, the extract-mountain algorithm should be

able to extract mountains from all images with similar characteristics as (o). In the general

case this is not a simple task and requires a reasonable level of image processing expertise.

It would be clearly beneficial to have an automatic system that finds the extract-

mountain algorithm T by itself, with the user providing some input-output image pairs

as examples and obtaining an operator (algorithm T) as an output. To build that kind

of system several approaches have been suggested in the literature, namely optimal oper-

ators based on Statistics [15], Probabilities [36], Artificial Intelligence [121], Greedy Algo-

rithms [48], PAC Learning [16], Iterative Design [56], Switching Algorithms [57], Artificial

Neural Networks [130, 153], Fuzzy Sets [91, 86] and Hybrid Human-Machine Design [14].

Most recently Evolutionary Algorithms have also been applied to this problem and

Section §2.3.3 provides a detailed survey.
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2.3.3 The Use of GAs in Mathematical Morphology

GAs are the most popular technique of EC and have been widely used for optimisation

problems in morphological image processing. Some of the areas of application are the

decomposing of SEs, the design of morphological filters for grey level images and the

design of MM algorithms for binary images. Additionally MM have provided grounds for

the development of GAs theory. We will describe these ideas below.

Decomposing of SEs

A SE can usually be decomposed into smaller SEs that offer an alternative way of obtaining

the same result. For implementation reasons it is desirable to have a sequence of small SEs

rather than bigger arbitrarily shaped SEs (the use of large SEs is not efficient). The problem

of decomposing SEs for binary images has been addressed using a parallel implementation

of Genetic Algorithms, and relatively good results have been obtained [8].

Real-coded GAs

There is an interesting interconnection between different areas in Computer Science. Ideas

from MM have provided grounds for the development of a new type of real-coded GA. A

crossover operator based on morphological operators proposed by Barrios et al. showed

interesting results in empirical experimentation, the use of morphological crossover opera-

tors showed an improvement in the applications explored altough the examples might not

be statistically significant [17, 18].

Design of Morphological Filters for Grey-Level Images

The design of morphological filters for grey-level images is an optimisation problem in itself,

which involves a large number of variables according to the filter size and the image resolu-

tion. Harvey and Marshall [54, 52, 53, 55] demonstrated how simple GAs can be employed
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in the search of one (grey-level) morphological filter obtaining optimum performance for a

given image processing task. Furthermore, the research was extended to an evolutionary

approach for morphological algorithm design looking for suitable sequences of four mor-

phological operations. Even though the search was limited to fixed-length sequences of

morphological operators, a do-nothing operator was introduced so as to effectively allow

the evolution of variable size sequences of morphological operators. An interesting result of

this research was that the do-nothing operator appeared very often in the chromosomes,

indicating the importance of allowing the exploration of variable-length solutions.

Kraft et al. [80, 79] extended the research using parallel GAs. It is obvious that when

the image size and the filter size are large, the feasibility of an optimum filter design

becomes unpredictable. However, the results show that parallel GAs are a useful tool for

the design of morphological filters.

In an attempt to automate morphological filter design for target detection in grey-scale

images, Nong et al. [93] implemented chromosomes with a fixed number of components

and the Mean Square Error (MSE) as their fitness function, proposing also new crossover

and mutation operators to improve convergence. They showed some experimental results

which demonstrate the effectiveness of their method.

The adaptation of structural elements using GAs for texture analysis in grey-scale

images was the purpose of research carried out by Köppen and Teunis [69]. The main

contribution was the introduction of a fitness function based on histogram distribution

which could be generally expanded to every case of adaptation of morphological sequences

to certain image filtering tasks. The methodology proposed shows the ability of GAs

to find masks which are able to represent a pattern in a textured image. However, the

methodology failed to adapt masks on non-regular textures like those on the surface of

castings.
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Design of MM Algorithms for Binary Images

Yu et al. [152] proposed a simple approach for image segmentation using GAs in conjunction

with morphological operations. The images considered were composed of objects with a

constant intensity embedded in a homogeneous background. The images were corrupted

by additive white Gaussian noise. Segmentation was performed on 16×16 non-overlapping

sub-images. The segmented sub-images were then combined to obtain the segmentation

of the entire image. The fitness function measured the similarity of the individual with

respect to the original noisy image. It included a penalty function which was introduced

in order to reduce high frequency noise in segmented results. The authors concluded that

without a priori knowledge of the object shape, it is difficult to determine the optimum

size of the SE.

Yoda et al. [151] opened a very interesting research area when they explored the possibil-

ity of obtaining MM algorithms (they called them procedures) for binary images by means

of GAs. Even though they restricted the search to fixed-length chromosomes and limited

the variety of structuring elements to four different regular structures, they demonstrated

that the proposed method can obtain good solutions. Although the required computational

effort increases sharply when the task to perform is more complex, they suggested that it

is possible to find an MM algorithm that extracts a particular feature from a binary image

in a general purpose framework.

Bala and Wechsler [9] presented a methodology for combining mathematical morphol-

ogy and GAs to generate high-performance shape discrimination operators on binary im-

ages. The encoding scheme consists of 4 operators with 32 different structuring elements

allowing the repetition of an operator. The results show a feasible approach for shape

discrimination, including an operator that discriminates among the shapes according to

previously specified classes. They have also defined a new fitness function which is a

performance index based on the average of responses yielded by the operator.
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Loncaric and Dhawan [84, 85] devised a shape representation called Morphological

Signature Transform (MST) that uses the areas of images iteratively eroded by multiple

SEs as shape descriptors. GAs are used for the selection of optimal structuring elements

in the MST method for shape representation and shape matching. The experiments have

shown that the optimal structuring element enables accurate shape matching and is robust

to noise.

Brigger and Kunt [27] show how GAs can be used for the automatic optimisation

of arbitrary shaped structuring functions in skeleton decomposition. The application to

geometrical shape representation in binary images shows that these features are useful for

image coding. According to the results, GAs provide a robust and efficient search in a

complex search space with the introduction of a shape-oriented crossover operator.

Huttunen et al. [63] provides an approach for the optimisation of morphological filters

for noisy conditions (also referred as to soft-morphological filters) using GAs. The object of

the optimisation is to find optimal or near-optimal filters. The results of the experiments

show that the filters may be optimised if the parameters of population size (around 50) and

mutation rate (around 0.03) are properly selected. The optimisation criterion with various

noise percentages used is MSE. They also studied the effect of various noise percentages.

2.4 Motivation to Explore GP for Morphological

Image Processing

Faced with an image processing problem, an MM practitioner would draw on his own

knowledge and experience to develop solutions to the problem. This would normally involve

the use of published algorithms developed by the experts in the field. If the initial solution

is not good enough, the practitioner has to continue improving it and in the process of

doing so is likely to improve his own expertise.

As in all areas of Computer Science, Mathematical Morphology has developed its own
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set of high-level algorithms such as, for example, skeletonisation, morphological smoothing,

distance transform, etc. However, there are relatively few of these algorithms and the use

of basic operators – erosion and dilation – in the design of specific algorithms is very

common. This particular aspect of MM poses a challenge to the developers. The number

of possible structuring elements from which to choose is very large and this, combined

with the possible choices of morphological operator sequences, makes morphological image

processing something of a black art.

All the efforts towards an automatic approach for morphological image processing are

limited by the lack of well defined criteria for the selection of SEs and morphological op-

erators. Another limitation is the lack of measures for deciding whether an MM algorithm

has been successful in solving the problem at hand.

Research described in this thesis is motivated by the success of GP in other difficult

design fields. It is built on the hypothesis that by using GP it is possible to construct pro-

grams (i.e. algorithm implementations) for morphological image processing which perform

as well as programs constructed by a human expert.

At the onset of this research it was apparent that it is possible to define a set of MM

functions and terminals on which GP could operate. It was also clear that using GP it is

possible to evolve algorithms which solve general domain problems. Although the use of

GAs in the context of MM has provided useful insights into the potential of Evolutionary

Algorithms for morphological image processing, there are a number of questions that have

not been answered, or at least could be re-framed in the context of Genetic Programming:

* Most of the applications using GAs have a limited number of morphological opera-

tors. Would the increase in the number of morphological operators result in better

algorithms?

* GA approaches usually have a fixed number of morphological operators. Would the

inclusion of a variable number of morphological operators result in better algorithms?
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* GA approaches have not explored the application of irregular SEs. Would the com-

bination of irregular and regular SEs result in better algorithms?

* There is no reason to restrict the search to a particular size of SEs. Would the

combination of SEs of different sizes result in better algorithms?

* GA approaches have not combined morphological operators with other operators

(like logical). Would the combination of logical and morphological operators result

in better algorithms?

* Most of the automatic approaches have restricted the evaluation of the success of

the image processing operations to the Mean Square Error and Mean Average Error

applied pixel-wise as the measure of fitness. Are there any other, possibly better,

measures to evaluate the success of an automatically generated algorithm?

* The ideal case would be to come up with an automatic design technique able to solve

different problems using similar features. This is known as generalisation. How good

is GP as a general tool for the automatic design of high-quality MM algorithms?

* GP is an expensive technique from the computer resources point of view (memory

load and processing time). How can we make the search of morphological algorithms

feasible and effective?

In this thesis we will attempt to answer all of these questions.

2.5 Chapter Summary

This Chapter has given an introduction to GP as a powerful technique for automatic design

of computer programs. In particular, the use of GP in the field of Image Processing has

been reviewed.

It has been pointed out that an important sub-field of Image Processing, namely Math-

ematical Morphology, has been little explored within the GP paradigm. An introduction
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to MM has been provided, followed by a review of research on automatic programming

and the particular contribution of Evolutionary Computation in this context.

It has been concluded that there has been little research on GP applied to MM, and

that the underlying field of the automatic design of morphological algorithms are in early

stages. These findings have motivated the work presented in this thesis. In Chapter §3
we state the hypotheses that this thesis aims to evaluate and we outline the proposed

approach to exploring Genetic Programming as a technique for the automatic generation

of MM algorithms.
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Chapter 3

A GP Approach to Mathematical

Morphology

Chapter Outline

This chapter presents a GP approach to morphological image processing.

A set of hypotheses to answer the open questions of Section §2.4 is discussed in

Section §3.1. An important part of any automatic approach to image process-

ing is the way to evaluate how similar two images are. This issue is explored

in Section §3.3. The approach is explained in Section §3.4 including the data

used, a set of experiments to test the hypotheses from Section §3.1, analysis

and discussion. Section §3.5 presents the testing of the algorithms evolved

in the implementation using a set of images not included in the training set.

The conclusions are presented in Section §3.6 including the limitations of the

study of this chapter.

33



34 Chapter 3. A GP Approach to MM

3.1 Hypotheses

The interesting results of GAs on the automatic generation of MM algorithms suggest that

there is a huge search space to be explored. For instance, Yu et al. [152] provide a GA

approach to image segmentation by means of morphological operations. The results were

promising but the search was restricted to four morphological operators. Furthermore, the

search was restricted to sequences of one closing (dilation after erosion) followed by one

opening (erosion after dilation) using only one squared structuring element. Is it really

necessary to restrict the search space that much?

Another interesting example is the GAs research by Yoda et al. [151]. The search

was again restricted in three different approaches. First, it was restricted to sets of two

morphological operators and two structuring elements combined with two logical operators.

The second approach included the combination of a whole GA run (they name it era) with

logical operators in order to recover over- and under-extracted data. The third approach

increased the number of structuring elements to four and the length of the sequences was

increased up to 30. This is still a highly restrictive approach, since it is using only a reduced

number of structuring elements and training sets.

Perhaps the main restriction on those investigations was due to computational resources

but it was also due to the nature of GAs which use fixed-length chromosomes (i.e. MM

sequences). GP is represented using tree-like structures while GA is represented using

strings. GP is likely to perform better than GAs since it is a technique capable of broad-

ening the search space in comparison to GAs [12]. The additional capabilities that we

propose include the use of sequences of MM operators of variable length, the use of struc-

turing elements of various sizes, the introduction of irregular structuring elements and the

combination with logical operators. It is clear that fixed length sequences in GAs do not

allow many different ways to approach the evolution of morphological algorithms. GP is

more flexible and allows the inclusion of sequences of variable size. This thesis intends to
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explore and test the hypotheses discussed below:

* Application related hypotheses

* The inclusion of irregular SEs in addition to regular SEs will result in better

performance than with the use of regular SEs alone. It can be observed that in

most MM algorithms developed to date regular SEs such as squares, lines and

crosses are used more often than irregular SEs. This is understandable because

it is more natural for human programmers to use simple regular structures. An

automatic programming technique such as GP is not constrained in this way

and hence can easily explore a larger search space including irregular structuring

elements (see Figure 3.1). The availability of a larger search space may result

in new, previously unknown, algorithms which may perform better.

* Small SEs will perform tasks faster and better than large SEs. This is expected

because several small kernels can perform the same task as one large kernel. The

advantage of using small kernels is the increased diversity of the search space.

Another advantage is that computation using a small structuring element is

more efficient.

* Combination of Morphological and Logical Operators will achieve better results

than morphological operators alone. Combining these operators is a common

programming practice in image processing and hence it is worth exploring in

the context of GP.

* Methodology related hypotheses

* A larger training set will lead to a better performance than a smaller training set.

This is expected because a training set with a bigger number of images would

provide more information to GP in order to evolve more accurate algorithms.
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Figure 3.1: Regular and irregular SEs of sizes 3 × 3, 5 × 5 and 7 × 7

On the other hand, this may have the disadvantage of slowing down the GP

search.

* A training set with bigger images will perform better than a training set with

smaller images. This is expected because bigger images would include more

data that would allow GP to discriminate among features. Again, this may

have the disadvantage of slower search.

3.2 Problems of GP Applied to Images

When GP is applied to real-world binary images it faces several constraints that have to

be addressed in order to make the search feasible and effective.
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* Implementation Feasibility. It seems that GAs implemented for the automatic dis-

covery for morphological algorithms were restricted due to limited computational

resources. The populations used are relatively small (50-200 individuals on 100 gen-

erations [152] and 100 individuals on 6-50 generations [151]). Since the implementa-

tions to solve other problems using GP usually make use of much bigger populations

over a large number of generations, we should investigate how to make the search

feasible and effective in these conditions.

* Training set size. GP usually uses very big training sets including thousands of

examples to drive the evolution. When using images this is not feasible since applying

a big number of GP individuals (programs) to a big set of images (test set) may

require a huge amount of processing time and memory allocation depending on the

primitive set, the size of the images and the resolution.

* Size of the images. If the images where the GP generated algorithms are meant to

be applied are large there is a problem in the creation of a suitable training set. The

inclusion of high-resolution images in the training set requires larger computational

resources.

* Creating the training set. In some real-world applications it is difficult to create a

good training set. If, for example, face detection is attempted, it is usually neces-

sary to create a training set using an image editing software on images such as the

one shown in Figure 3.2. This requires subjective skills of the expert and does not

guarantee that the training set is accurate. The task of creating a training set may

be difficult and tedious.

* Pixel detection and feature detection. When applied to real-world binary images the

problem of detection has to be extended to features instead of pixels. The prob-

lem is that the task of counting features by hand it is not practical most of the
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Figure 3.2: Example of image for face detection where subjective skills are needed to create
a training set.

times. Counting the number of features detected or mis-detected is a task not always

easy to do, particularly when there are features overlapping or features with similar

characteristics.

* Ambiguous Images. There may be cases of ambiguous images, images with overlap-

ping or similar features. In those cases it is difficult to define a training set even for

imaging experts. GP training may be biased due to the creation of a training set

that must be based on the observer’s assumptions.

3.3 Fitness Functions

In order to measure how fit an individual is in a GP population it is necessary to introduce

a suitable Fitness Function. When GP is used for image processing it is difficult to define

an equation that adequately measures the differences between input and output images.

Particularly in binary images this is an issue that has been approached in different empirical
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ways.

3.3.1 Sensitivity/Specificity Dilemma

When Poli [101, 100] started exploring GP for Image Analysis he confronted the dilemma

of maximising both sensitivity and specificity. Basically the problem is that no detection or

segmentation algorithm can perfectly detect the features of interest without mis-detections

or over-detections.

Our objective is to convert the original image, o, into the goal image, g. If g(xi, yi) = 1

then we say that we have a true positive if o(xi, yi) = 1. If, instead, o(xi, yi) = 0 we have

a false positive. If g(xi, yi) = 0 then we have a true negative if o(xi, yi) = 0, and a false

negative if o(xi, yi) = 1.

We can now define the notions of sensitivity (SV) and specificity (SP):

SV =
TP

TP + FN

SP =
TN

FP + TN

where TP is the number of true positives, FP is the number of false positives, TN is

the number of true negatives and FN is the number of false negatives. (These true/false

positive/negative numbers are obtained by integrating over every pair of (xi, yi) coordinates

in the original image.)

We shall illustrate the concepts of sensitivity and specificity using as an example of the

image shown in Figure 3.3. Its size is 640×480 and it contains four features, namely circles,

squares, rings and stars. The task is to find an algorithm which extracts the squares only.

An algorithm that converts the image in Figure 3.3 into the image in Figure 3.4 provides

the highest sensitivity and the highest specificity, since it accurately detects the squares

without false positives or false negatives.
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Figure 3.3: Example of a binary image with four features: squares, circles, stars and rings

Figure 3.4: Example of image detection of squares from Figure 3.3 with high sensitivity
and high specificity.
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Figure 3.5: Example of image detection of squares from Figure 3.3 with high sensitivity
and low specificity.

Figure 3.6: Example of image detection of squares from Figure 3.3 with low sensitivity and
high specificity.
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Figure 3.7: Example of image detection of squares from Figure 3.3 with low sensitivity and
low specificity.

An image in Figure 3.5 represents an example of high sensitivity and low specificity

(i.e. it accurately finds the squares but it also detects the circles which is not desirable).

An image in Figure 3.6 represents an example of low sensitivity but high specificity (i.e.

it does not find any other features but squares, however it does not detect all the squares

present in Figure 3.3). An image in Figure 3.7 represents an example of low sensitivity

and low specificity (i.e. it does not detect all the squares present in Figure 3.3 and it has

several non-square features as well).

The first fitness functions proposed by Poli [101, 100] intended to minimise the number

of false positives and false negatives (i.e. f = FP +FN and f = FP 2+FN2). The problem

found was that minimising their squared sum does not necessarily lead to the maximisation

of both sensitivity and specificity. Poli found a fitness function that provided better results:

f = FP + FN exp (10 (
FN

P
− α)) (3.1)
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where P is the number of pixels belonging to the structures to be detected and α is a

domain dependent parameter. The introduction of P and α requires a priori knowledge

about the problem at hand. First, a clear understanding of the pixels that belong to the

features to be detected is needed. Second, an estimation of what kind of algorithm is

required (i.e. a high value of α bias the search toward highly sensitive algorithms while a

low value of α biases the search toward highly specific algorithms).

In later research, Poli and Cagnoni [106, 105] proposed that a user might drive the

selection for Image Enhancement. This approach is an efficient way to produce solutions

of real-life problems without using a fitness function. Nonetheless it has the disadvantage

of the subjective evaluation by a user and the requirement of hundreds of evaluations

(meaning many user-hours spent on selecting images).

3.3.2 Similarity fA

To tackle the problem of shape feature detection Yoda [151] defined the objective fitness

function fA known as similarity (0 ≤ fA ≤ 1) as the normalised correlation coefficient

between a goal and a processed image

fA =
(f · g)√

(f · f)
√

(g · g)
(3.2)

where f and g are two digital images and

(f · g) =
1

N
· 1

N

N∑

i=1

N∑

j=1

f(i, j) · g(i, j)

The function fA tries to maximise the number of matching black pixels in the images f

and g. The optimum is fA = 1 when all the pixels match. The worst case is fA = 0 when

none of the pixels match. This function tries to maximise sensitivity since it ignores all

the cases where f(i, j) and g(i, j) are different.
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3.3.3 Resemblance fB

We defined a new fitness function fB known as resemblance (0 ≤ fB ≤ 1) related to the

trade-off between sensitivity and specificity needed in detection algorithms [81].

fB =
SP 2

2
+

SV 2

2
− (SP + SV ) (3.3)

The function fB intends to maximise both specificity (the ability to detect true negatives

accurately) and sensitivity (the ability to detect true positives accurately). The optimal

value is fB = 1 when SP = SV = 1, the closer both SP and SV are to 1 the closer

fB will be to 1; the worst case is fB = 0 when SP = SV = 0. The difference between

Eqs. 3.3 and 3.1 is that fB is normalised and that fB does not introduce domain knowledge

(i.e. fB intends to be a generic fitness function for binary image processing). Different to

f = FP 2 + FN2 [101, 100], fB focuses in specificity and sensitivity instead of minimising

false positives and false negatives.

3.4 Experiments

3.4.1 Data Used and Process Steps

In order to test the hypotheses discussed in Section §3.1 we propose to use data with the

following characteristics.

* Use a training set from a real-life problem.

* Use a training set where several features related to shape may be extracted to test

the generalisation of the proposed method.

* Use a training set where the image size can be varied.

* Use a training set where the number of images used can be varied.
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o g1 g2 g3

Figure 3.8: Examples of binary transformations. The original fragment of a music sheet
(o) and three possible goals extracted by hand: noteheads (g1), beams (g2) and staffs (g3).

* Use a test set different from the training set using images with the same resolution

to prove unbiased generalisation.

* Use a test set using bigger images than the training set images to visualise unbiased

generalisation.

The GP approach is used to find a sequence of morphological operators in the MM

algorithm’s search space to convert an image into another one containing only a particular

feature of interest. We chose musical sheets as examples with the objective to extract

three different features, namely noteheads, beams and staffs. Examples of the desired

binary transformations are shown in Figure 3.8.

We performed a total of 1512 GP runs combining 3 features to extract (noteheads,

beams and staffs), 4 training set sizes (1, 5, 15 and 25), 2 fitness functions, 3 training-set

image-sizes (16× 16, 32× 32 and 64× 64), 3 different combinations of structuring element

types (Regular, Irregular and Mixed Regular and Irregular) and 7 different combinations

of structuring elements sizes (3; 5; 7; 3 and 5; 3 and 7; 5 and 7; 3, 5 and 7). All the

experiments were implemented using Lilgp, a popular GP toolkit written in C [160].

The terminal set includes primitives that have the following form:

x(yz[w])
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where: x ∈ {e, d} represents a morphological operator (erosion and dilation); y ∈ {R, I}

represents the type of structuring element selected (regular and irregular); z ∈ {3, 5, 7} rep-

resents the size of structuring element and w ∈ {1..11} represents the structuring element

index. The number of structuring elements was chosen to balance regular and irregular

(i.e. we identify 11 comonly used regular structuring elements). For example, the primitive

e(R3[7]) represents erosion using the seventh regular structuring element of size 3 × 3.

We use a function set including two functions, EVAL1 and EVAL2 of arity 1 and 2,

respectively, which simply execute their arguments. EVAL1 and EVAL2 are used to transform

the GP tree into a linear representation.

The process is visualised in Figure 3.9. The first step is to build a set of examples

of correct feature extraction to be used as training sets in GP (Figure 3.9A). Next, it is

necessary to define the type, size and number of structuring elements to be made available

for GP (Figure 3.9B). After the primitive set is defined (Figure 3.9C) we start the GP

search to obtain a (near) optimum tree representing an MM algorithm (see Figure 3.9D).

The algorithm includes a sequence of MM operations; note that this is not a fixed-length

sequence. The best evolved sequence, according to the fitness value, is also analysed

visually (Figure 3.9E) to decide whether or not the numerical fitness value is reflected by

the image quality. If it is, the problem is solved. Otherwise one needs to run the algorithm

again. As shown in Figure 3.9D, at evaluation time each GP tree is transformed into a

linear representation, which, when read from left to right, represents an MM algorithm.

This is applied to the training set in order to evaluate the fitness of the corresponding tree.

The GP parameters we have used in our experiments are similar to those suggested in

Koza [71]. Specifically, a 0.9 crossover rate and 0.1 mutation rate were used. Mutation was

based on the ramped-half-and-half initialisation method, which was also used to initialise

the population.

Tables 3.1–3.3 include the best and the average fitness values for the whole 1512 runs

sorted according to each hypothesis to allow better discussion.
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Figure 3.9: Process to obtain an MM algorithm using GP: A) construction of examples
by hand, B) choice of structuring elements, C) definition of primitive set, D) running GP
obtaining a near optimum tree, E) visual evaluation of best result.
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Table 3.1: Best and average numerical fitness values for Structuring Elements type.

Noteheads Beams Staffs
fA fB fA fB fA fB

best avg best avg best avg best avg best avg best avg
Structuring Elements type
Regular 0.747 0.623 0.655 0.528 0.832 0.526 0.641 0.448 0.678 0.573 0.623 0.508
Irregular 0.750 0.660 0.672 0.620 0.833 0.570 0.681 0.540 0.683 0.581 0.911 0.593
Both 0.747 0.638 0.661 0.555 0.832 0.545 0.645 0.473 0.678 0.578 0.625 0.517

3.4.2 Testing the Irregular SEs vs. Regular SEs Hypothesis

When an MM algorithm is designed by hand, the programmer usually chooses a small

number of regular structuring elements to be used in MM operations. There is no reason

for choosing a regular structuring element except that we, as humans, are more likely to

understand regularities such as squares, lines, triangles, etc. However, the MM algorithm’s

search space does not have to be limited to regular structuring elements. There are many

irregular structuring elements which could provide significant benefits for specific applica-

tions. So, we include also irregular structuring elements (selected randomly) in the GP

search space. Analysing Table 3.1 we may observe that the use of irregular kernels provides

slightly better performance than the use of regular kernels only for the studied problem.

3.4.3 Testing the Small SEs vs. Big SEs Hypothesis

There are no accepted general principles for choosing the size of structuring elements. Hu-

man programmers have developed the expertise in combining the use of SEs of different

sizes. In order to emulate this characteristic we tested the system performance on struc-

turing elements of sizes 3 × 3, 5 × 5 and 7 × 7 such as those shown in Figure 3.1. In total

we included 11 regular and 11 irregular structuring elements of each size.

Analysing Table 3.2 we may observe that every column has a slight improvement when

using bigger structuring elements. From this observation we may infer that bigger SEs



3.4 Experiments 49

Table 3.2: Best and average numerical fitness values for Structuring Elements size

Noteheads Beams Staffs
fA fB fA fB fA fB

best avg best avg best avg best avg best avg best avg
Structuring Elements size
3 0.701 0.612 0.643 0.559 0.809 0.535 0.644 0.454 0.618 0.541 0.604 0.521
5 0.735 0.646 0.653 0.580 0.825 0.547 0.655 0.501 0.660 0.584 0.625 0.551
7 0.748 0.649 0.672 0.579 0.833 0.566 0.682 0.512 0.683 0.599 0.911 0.589
3,5 0.735 0.651 0.656 0.580 0.648 0.473 0.825 0.552 0.660 0.582 0.625 0.547
3,7 0.747 0.657 0.662 0.561 0.833 0.563 0.658 0.504 0.683 0.596 0.636 0.510
5,7 0.750 0.653 0.672 0.570 0.833 0.560 0.682 0.495 0.683 0.601 0.911 0.567
3,5,7 0.701 0.614 0.637 0.542 0.809 0.506 0.644 0.469 0.618 0.540 0.593 0.492

allow GP to cope better with the complexities in the training set.

3.4.4 Testing the Big Training Set vs. Small Training Set Hypothesis

The number of images in the training set is likely to affect the results of training. Intuitively,

on the one hand a bigger number of images should provide more information to the GP

system to learn the task and generalise. On the other hand, a bigger number of images may

result in a slower learning process and consumes more computer resources. The smallest

training set which produces plausible results would be a reasonable compromise. To learn

if the number of elements in the training set affects the result quality we used training sets

of four different sizes: 1, 5, 15 and 25.

Table 3.3 shows that the number of images used in the training set did not affect the

final results much, with the exception, perhaps, of the training set of size 15, which was

slightly better.

3.4.5 Testing the Big Image Sizes vs. Small Image Sizes Hypothesis

To find out whether or not the size of the images in the training sets affects the quality

of the results, we constructed (by hand) training sets containing images of size 16 × 16,

32 × 32 and 64 × 64 for each one of the different features to look for. The set of images
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Table 3.3: Best and average numerical fitness values for Noteheads, Beams and Staffs

Noteheads Beams Staffs
fA fB fA fB fA fB

best avg best avg best avg best avg best avg best avg
Training Set Size
1 0.730 0.593 0.658 0.594 0.665 0.543 0.675 0.430 0.683 0.566 0.775 0.584
5 0.750 0.648 0.662 0.576 0.712 0.554 0.641 0.508 0.637 0.576 0.842 0.521
15 0.738 0.664 0.672 0.603 0.833 0.604 0.681 0.537 0.648 0.583 0.731 0.574
25 0.732 0.656 0.658 0.594 0.798 0.600 0.665 0.543 0.643 0.585 0.775 0.580

Table 3.4: Best and average numerical fitness values for Noteheads, Beams and Staffs

Noteheads Beams Staffs
fA fB fA fB fA fB

best avg best avg best avg best avg best avg best avg
Image Size
16× 16 0.624 0.537 0.643 0.499 0.391 0.309 0.474 0.335 0.567 0.530 0.911 0.494
32× 32 0.738 0.675 0.672 0.581 0.833 0.676 0.681 0.543 0.625 0.585 0.624 0.533
64× 64 0.750 0.708 0.662 0.622 0.703 0.656 0.641 0.582 0.683 0.617 0.636 0.592

shown in Figure 3.8 belongs to the 64 × 64 training set.

The results in table 3.4 show that it is preferable to use bigger training images. For

instance, the 64 × 64 examples produced better results than the others.

3.5 Testing the Generalisation of the Evolved Algo-

rithms

In order to test the ability of GP to generalise we applied the best evolved algorithms

to a test set of images. The test set includes ten images with the same resolution of the

training set, but this time each image shows a whole music score sheet (see Figure 3.10).

The images in the testing set are of size 512 × 512.

Tables 3.5, 3.6 and 3.7 show the results of a detailed analysis of the best evolved

algorithms. The first column in each table represents the image ID, the second column the
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Table 3.5: Visual analysis of a notehead detector generated using GP

Notehead detection on test images using e(R3[3])e(R3[9])d(R3[10])e(I3[9]).

Test Image Noteheads in image True Positives False Negatives False Positives

1 190 190 0 7
2 131 131 0 7
3 166 166 0 12
4 160 160 0 15
5 198 198 0 15
6 87 87 0 3
7 99 99 0 7
8 128 128 0 12
9 161 161 0 17
10 171 171 0 15

Table 3.6: Visual analysis of a beam detector generated using GP

Beam detection on test images using e(R3[0])d(R3[3])e(R3[0])d(R3[8]).

Test Image Beams in image True Positives False Negatives False Positives

1 44 31 13 90+
2 28 18 10 80+
3 48 32 12 90+
4 39 25 14 70+
5 49 41 8 40+
6 24 21 3 30+
7 24 23 1 50+
8 36 28 8 50+
9 41 34 7 70+
10 39 32 7 70+

number of features actually present in the image, the third column the number of features

correctly detected (true positives), the fourth column the number of features mis-detected

(false negatives) and the fifth column the number of other regions present in the image

(false positives). Note that we are counting regions not pixels; the values of columns 2− 5

were obtained according to a subjective visual counting.

In addition to numerical results returned by the fitness functions, we have analysed

visually the results produced by the evolved MM algorithms. Although this analysis was
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Table 3.7: Visual analysis of a staff detector generated using GP

Staff detection on test images using e(R5[9])e(R7[10])d(R7[10]).

Test Image Staffs in image True Positives False Negatives False Positives

1 40 40 0 50+
2 40 40 0 40+
3 35 35 0 40+
4 35 35 0 40+
5 35 35 0 40+
6 30 30 0 20+
7 34 34 0 20+
8 32 32 0 30+
9 35 35 0 40+
10 35 35 0 40+

not exhaustive (i.e. we focused on those MM algorithms that had a high fitness value and

those with interesting string features) we observed that fitness function fB consistently

produced programs with well balanced outputs, whereas function fA often had a tendency

to be either overly sensitive or overly specific. The degree of accuracy is very difficult to

evaluate visually and, depending on the evaluator, visual quality does not always match

the numerical fitness values obtained.

The image in Figure 3.10 corresponds to the image labelled with ID 1 in Tables 3.5, 3.6

and 3.7.

3.5.1 Noteheads

GP easily found several algorithms to solve the noteheads extraction problem.Table 3.5

shows the results of the evolved algorithm e(R3[3])e(R3[9])d(R3[10])e(I3[9]) applied to 10

test images. The evolved algorithm obtained perfect sensitivity (having detected all true

positives without false negatives) and a high specificity value (a small number of false

positives). This is considered to be a very good result.

Figures 3.11, 3.12, 3.13 and 3.14 show, step by step, the process of the MM noteheads-
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Figure 3.10: Example of testing image not in the training set

detector algorithm generated by GP. The SEs are represented from top to bottom and left

to right, e.g. (010;010;010) represents the following SE:
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Figure 3.11: Notehead detector step 1: Output generated after e(001;010;100) is applied
to the image in Figure 3.10.
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Figure 3.12: Notehead detector step 2: Output generated after e(111;000;000) is applied
to the image in Figure 3.11.

3.5.2 Beams

The beams extraction problem is difficult. Beams can be mismatched with staffs, noteheads

or other features present in a musical sheet. In spite of that, some GP algorithms generated

good approximations to the desired outcome. Table 3.6 shows the results of the beam-
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Figure 3.13: Notehead detector step 3: Output generated after d(000;000;111) is applied
to the image in Figure 3.12.

detector algorithm e(R3[0])d(R3[3])e(R3[0])d(R3[8]) where we may observe a considerable

number of mis-detections and a large number of other regions present. Most of these

regions are very small (some of them including just 3 pixels). So, even when the number of

Other regions detected may be rather high, the visual quality of the results is only weakly
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Figure 3.14: Notehead detector step 4: Output generated after e(001;011;000) is applied
to the image in Figure 3.13. This is the final output generated by the notehead-detecting
MM program e(R3[3])e(R3[9])d(R3[10])e(I3[9]) evolved by GP when applied to the image
in Figure 3.10.

affected by these misclassifications. Figures 3.15, 3.16, 3.17 and 3.18 show the sequence

of a GP-generated program applied to the image Figure 3.10.



58 Chapter 3. A GP Approach to MM

Figure 3.15: Beam detector step 1: Output generated after e(111;111;111) is applied to
the image in Figure 3.10.

3.5.3 Staffs

Contrary to expectation, the staff extraction problem presented many difficulties for GP

using only MM operators. It seems that GP is trying to find the right sequence but the

available structuring elements are not enough to perform the task requested. The results
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Figure 3.16: Beam detector step 2: Output generated after d(001;010;100) is applied to
the image in Figure 3.15.

obtained were either tending to completely white images or showed mismatches between the

staffs and other features. Table 3.7 shows the GP staff-detector e(R5[9])e(R7[10])d(R7[10])

with 100% sensitivity but low specificity. There is a high number of false positives mostly

due to beam-like structures that are similar to staffs in the sense that they both are
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Figure 3.17: Beam detector step 3: Output generated after e(111;111;111) is applied to
the image in Figure 3.16.

horizontal features. This is illustrated in Figures 3.19, 3.20 and 3.21 where it is shown

step by step how GP accurately finds the staffs, but also finds it difficult to remove most

of the beams present in the test image. These results emphasise the need to look for

specialised algorithms when we are attempting to detect features that may be confused
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Figure 3.18: Beam detector step 4: Output generated after d(001;001;001) is applied
to the image in Figure 3.17. Output generated by the beam-detecting MM program
e(R3[0])d(R3[3])e(R3[0])d(R3[8]) evolved by GP when applied to the image in Figure 3.10.

with other features with similar characteristics.
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Figure 3.19: Staffs detector step 1: Output generated after
e(11111;00000;00000;00000;00000) is applied to the image in Figure 3.10.

3.6 Conclusions

In this chapter we have presented an approach to morphological image processing based on

the GP paradigm. We tested several hypotheses in order to get better insights about GP
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Figure 3.20: Staffs detector step 2: Output generated after
e(0000000;0000000;0000000;0000000;0000000;0000000;1111111) is applied to the im-
age in Figure 3.19.

for morphological image processing. We have studied the behaviour of two different fitness

functions using a variety of regular and irregular structuring elements. We have applied

this approach to the extraction of three features in musical score sheets. In our approach

we have avoided using human expertise (i.e. the three different MM feature extraction
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Figure 3.21: Staffs detector step 3: Output generated after
d(0000000;0000000;0000000;0000000;0000000;0000000;1111111) is applied to the im-
age in Figure 3.20. Final output generated by the line-detecting MM program
e(R5[9])e(R7[10])d(R7[10]) evolved by GP when applied to the image in Figure 3.10.

algorithms were obtained using GP in exactly the same way). We have also investigated

how the size of the training set of images and their number affect the results quality.

We have observed that GP is indeed capable of evolving MM algorithms. As a result of



3.6 Conclusions 65

this work we have identified a set of promising directions for further research. For example,

the use of irregular structuring elements has proved to be useful. Bigger image sizes in the

training sets provide better results. The number of images in the training set did not affect

the results noticeably. We have also concluded that fitness function fA has a tendency to

maximise either sensitivity or specificity, which is undesirable. The fitness function fB is

better in this respect but we believe there is still scope for improvement.

3.6.1 Limitations

Although the results obtained in this chapter are promising, there are several lines of re-

search that could be explored to improve the results. Perhaps the most restrictive problem

is the amount of computational resources needed to implement the GP system on mor-

phological images. Due to the heavy computation and memory loads required in GP for

image analysis (see also Poli and Cagnoni [106]), all the experiments were performed using

a population of 50 individuals run for 100 generations. The number of evaluations was

relatively small to be able to get a true conclusion about the real potential of GP for

morphological image processing.

In the MM approach described in Section §3.4 the sizes of the images in the training set

were 16×16, 32×32, 64×64 and 128×128. The number of images in the training set were

1, 5, 15 and 25 in different experiments. All the experiments were performed using 5000

fitness evaluations. In GP much bigger populations (around 50000) are usually considered

over a larger number of generations (around 1000). In our preliminary experiments (using

bigger populations) very often the programs were terminated by the system before finishing

because of memory overload.

In order to evaluate how the population size and the number of images (size 32 ×

32) in the training set affected the maximum number of generations accepted before the

process is killed we made a total of 720 GP runs combining 3 features to extract (heads,
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Training Set Size Population Size
500 1000 5000

1 1000 500 100
5 350 180 35
10 180 90 25
15 120 60 10

Table 3.8: Estimated generation when a process is terminated.

hooks and lines), 4 different numbers of training set elements (1, 5, 10, 15), 3 different

population-sizes/number-of-generations combinations (500/1000, 1000/500 and 5000/100)

and 20 different random seeds. The results are shown in Table 3.8.

It is evident that the number of images in the training set affects considerably the

maximum number of generations. If we consider that each image is represented as a

matrix of 16 × 16, 32 × 32 or 64 × 64 bytes (i.e. 256, 1024 or 4096 bytes each image),

and we consider that GP needs to generate many internal images to represent different

branches of the trees during the evolution, then a possible explanation to the fast memory

overload is the image encoding. Chapter §4 presents a possible solution to this problem.

Another important issue is the loss of information due to long sequences of the same

morphological operator. A long sequence of erosions will provide a completely white image

and a long sequence of dilations will provide a completely black image. In either case

the morphological operators are not able to proceed further in the search of improved

alternatives. In Chapter §5 this issue is re-visited and a way forward proposed.

3.7 Chapter Summary

Experiments whose role was to investigate the feasibility of using the GP paradigm for

morphological image processing for binary images were presented in this chapter. The

experiments have shown that GP is indeed able to evolve MM algorithms. There are some

problems with the current approach. One of them is the need for very large computational
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resources. Chapter §4 aims to tackle this problem by means of the GP technique known

as Sub-Machine-Code-GP (SMCGP). Another problem is that the consecutive use of the

same morphological operator in an MM algorithm causes the loss of image information.

Chapter §5 aims to solve this problem by combining MM operators with logical operators.
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Chapter 4

Sub-Machine-Code GP Approach to

MM

Chapter Outline

Sub-Machine-Code GP (SMCGP) is a technique to speed up GP and to

extend its scope based on the idea of exploiting the internal parallelism of

sequential CPUs. This chapter presents a SMCGP approach to obtain al-

gorithms for binary images. SMCGP is used to find programs to convert a

binary image into another containing just a particular characteristic of inter-

est. The results reported are compared with the GP approach to obtain MM

algorithms for binary images presented in Chapter §3.

69



70 Chapter 4. SMCGP Approach to MM

4.1 Sub-Machine-Code GP

GP is usually quite demanding from the computation load and memory use point of view.

One of the ideas that has been applied to improve the performance of GP is SMCGP [107,

104]. SMCGP is a GP variant aimed to exploit the intrinsic parallelism of sequential

CPUs. SMCGP extends the scope of GP to the evolution of parallel programs running

on sequential computers. These programs are faster as, thanks to the parallelism of the

CPU, they perform multiple calculations during a single program evaluation. SMCGP

presents the idea of computing multiple fitness cases in parallel during a single execution

of a program. The potential of SMCGP is already available and very promising.

Some instructions in a CPU are performed in parallel and independently for all the bits

in the operand. For example, the bitwise AND operation is performed internally by the

CPU activating concurrently a group of AND gates within the arithmetic logic unit (see

Figure 4.1).

If we see the CPU as a SIMD computer we can imagine that each of its 1-bit processors

is able to produce a result after each instruction. Most of the CPUs do not allow handling

single bits directly. All the values are usually loaded into the CPU and the results produced

are packed into bit vectors.

The differences from a normal GP system are that in a SMCGP system:

* The function set should include operations which exploit the parallelism of the CPU.

* The result produced by the evaluation of a program should be interpreted as a bit

vector. Each bit of this vector represents the result of a different 1-bit processor.

* The terminal set could include input variables and constants. These should also be

interpreted as bit vectors where each bit represents the input to a different 1-bit

processor.
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Figure 4.1: Three different ways to look at bitwise AND using a 16-bits CPU processor.
From [107]

4.2 Sub-Machine-Code GP approach to Image Pro-

cessing

In their first paper on SMCGP, Poli and Langdon [107] suggested an application for char-

acter recognition re-framed as classification. They demonstrated the impressive potential

of SMCGP for this task. Figure 4.2 shows the original bitmaps, with their corresponding

bit-strings and the SMCGP generated subexpressions showing accurate classification.

Adorni et al. have suggested the use of SMCGP for the efficient design of low-level

vision programs [4, 3]. The applications include SMCGP approaches to plate detection

and character recognition. The results obtained show that SMCGP is able to generate

programs that are both accurate and efficient.
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Figure 4.2: A,B and C bitmaps with their corresponding bit-strings. Below there are some
subexpressions and their corresponding bit-string. The last subexpression presents correct
classification. From [107]

The idea of this chapter is to apply SMCGP to MM. As explained in Section §2.3.1,

erosion and dilation may be derived from the low-level set operators Union, Intersection,

Translation and Reflection. For instance, a dilation may be derived from translation and

intersection according to Eq. §2.3. This is trivial for 1D MM operators, but may be non-

trivial for 2D and higher dimensions operators and it is recommended as a subject for

further research.

4.3 Experiments

We have experimented with SMCGP to evolve transformation algorithms for the same

music score sheets as used in Chapter §3. We aim to transform an original image into

a goal image containing only a particular feature. The features analysed are noteheads,

beams and staffs.

We noted that the binary image representation was suitable for improvement. An

alternative representation may be obtained using bitwise representation. Instead of using
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Figure 4.3: Binary image (left). Representation with 1024 bytes, 8 bits per pixel (centre).
Representation with 32 words, 1 bit per pixel (right).

Functions
Arity Name Function
2 AND Bitwise AND
2 OR Bitwise OR
1 NOT Bitwise NOT
2 XOR Bitwise XOR
1 SL Bitwise shift left
1 SR Bitwise shift right

Terminal
X[1] One binary image
X[2] represented using 32
... unsigned long integers
X[32] (One row each.)

Table 4.1: Functions and terminal used in the SMCGP approach.

a complete 32 × 32 image represented with 1024 bytes (8 bits per pixel) we propose to

represent the same binary image in a 32 word representation (1 bit per pixel). Figure 4.3

shows an example, the image on the left is represented with 1024 bytes, the same image

is represented in the centre with 1s and 0s and the same image is represented using word

representation on the right (hexadecimal codification).

For the experiments we used populations of 500, 1000 and 5000 programs over 1000,

500 and 100 generations respectively (to fix the number to 500000 performance evaluations
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in each run) using 15 different random seeds. GP was setup using Lilgp with a 0.9 crossover

rate, tournament selection and 0.1 mutation rate using a half and half initialisation method.

Note that encoding the images using unsigned long integers allows to take advantage

of the SMCGP paradigm. Each image will be represented as a vector X of 32 unsigned

long integers, each item of the vector (32 bits) represents a row in the image. We set up a

preliminary experiment to find out whether it is possible to obtain acceptable results using

some of these operators on bitwise level, namely union (AND, ∪), intersection (OR, ∩)

and translation (shift left (SL) and shift right (SR)), complement (NOT) and exclusive-or

(XOR) i.e. we use a Function and Terminal set as presented in Table 4.1. The bitwise

operations are applied to all the vector items. This means that a logical operator on a

32 × 32 image requires only 32 bitwise operations.

The fitness function used is Resemblance fb (Eq. 3.3), so the program is evaluated

according to the output provided by the SMCGP evolved programs (note that X is eval-

uated as a whole and not each bit separately like in other SMCGP implementations). We

made a total of 3 SMCGP sets of 540 runs combining 3 features to extract (noteheads,

beams and staffs), 4 different numbers of training set elements (1, 5, 10, 15), 3 different

population-sizes/number-of-generations combinations (500/1000, 1000/500 and 5000/100)

and 15 different random seeds to make a total of 1640 runs.

4.4 Results

SMCGP approach impressively speeds up the evolution when the results are compared

with those of Chapter §3 (also presented in [110, 111]). This approach is original because

SMCGP has not been used before for morphological image processing. When the com-

parison is possible (recall that in §3.6.1 we remark that GP and MM can not evolve so

many generations) the SMCGP approach is up to 10 times faster. Table 4.3 shows a time

comparison for some notehead experiments (populations of 500, 1000 and 5000; training

set size 1 and 5; times shown in seconds). Experiments for beams and steams presented



4.4 Results 75

Table 4.2: Best Numerical Fitness Values per Population Size.

Noteheads Beams Staffs
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Population Size
500 0.9587 0.9616 0.9587 0.7977 0.7649 0.7477 0.9368 0.9368 0.9281
1000 0.9608 0.9727 0.9608 0.7715 0.7833 0.7567 0.9368 0.9354 0.9306
5000 0.9541 0.9561 0.9383 0.7575 0.7717 0.7594 0.9399 0.9398 0.9392

Table 4.3: Time Comparison for Noteheads (Seconds).

Noteheads
500 1000 5000

1 5 1 5 1 5
MM 99.73 1079.98 77.15 494.16 124.35 716.92
SMCGP 25.54 60.92 33.50 57.01 21.58 56.33

similar behaviour. The SMCGP approach is also able to evolve larger populations for a

longer number of generations. Indeed, the SMCGP approach finishes approximately 90%

of the runs properly while the GP and MM approach under the same circumstances hardly

run over all the training sets (see Table 3.8).

Table 4.2 shows the best fitness function values per population size for each set of 540

runs. Comparing the values of Table 4.2 to the best fitness function values of columns

fB in Tables 3.1–3.3 we observe that the fitness function values obtained for SMCGP are

better in all cases. However, when the resulting image output of the program was analysed

visually we observed that the images were completely white (i.e. the programs have a

tendency to maximise the number of True Negatives).

Figures 4.4, 4.5 and 4.6 show the programs with the highest fitness values for noteheads,

staffs and beams respectively. When applied to any image they lead to either the original

image or completely white images (where 0 refers to white). This observation is confirmed

by the analysis of the program code. A simple way to review this is to simplify all the

boolean expressions, e.g.(AND(X, X)) = X, (XOR(0, X)) = X, (XOR(X, X)) = 0, etc.
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Let us take as an example the program in Figure 4.4. The program may be simplified

step by step as follows:

* (XOR (AND X X) (XOR (XOR X X) (XOR (XOR (XOR X X) (XOR X (XOR

(XOR X X) X))) (AND (XOR X (XOR X (AND X X) ) ) X ) ) ) )

* (XOR X (XOR 0 (XOR (XOR 0 (XOR X (XOR 0 X ) ) ) (AND ( XOR X (XOR X

X) ) X ) ) ) )

* (XOR X (XOR 0 (XOR (XOR 0 (XOR X X ) ) (AND ( XOR X 0) X ) ) ) )

* (XOR X (XOR 0 (XOR (XOR 0 0 ) (AND X X) ) ) )

* (XOR X (XOR 0 (XOR 0 X) ) )

* (XOR X (XOR 0 X ) )

* (XOR X X)

* 0

4.5 Limitations of the SMCGP approach to Image

Processing

The evolved programs tend to maximise the number of true negatives which is not desirable.

The fitness function used is defined to maximise both sensitivity and specificity and it

is unlikely that its form is the sole cause of this problem. The most likely reason for

the observed behaviour is that the features (represented by black pixels) are small in

comparison with the total image area. It is therefore easier for GP to maximise the

number of true negatives. Alternatives to solve this problem are to use a more specific

fitness function or to allow shifts up and down as well as left and right.
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Figure 4.4: Example of a run with high fitness for noteheads extracted from Lilgp.

The design of a better fitness function should also take into account the fact that the

same operator is applied to all the lines in the image and not all the lines contain the same

information nor they have the same characteristics of input and output. Due to the use

of 1D logical bitwise operators the programs obtained are unlikely to obtain good visual

results when used in 2D images with a different size.

4.6 SMCGP approach Conclusions

We have presented an SMCGP approach to speed up the evolution of algorithms for bi-

nary images. We have used logical bitwise operators as the GP Function Set. The algo-

rithms have not produced visually correct results in spite of the high fitness function values

achieved by evolution.

The fitness values for the training set are better than those obtained in the GP and
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Figure 4.5: Example of a run with high fitness for staffs extracted from Lilgp.

MM approach. Even though the speed up is very promising the obtained algorithms

with SMCGP cannot be generalised, in contrast to those obtained with the GP and MM

approach. This may be due to the fact that bitwise operators, as we code them are 1D

and take into account only 1D (horizontal) features but completely ignore the vertical

features and the overall 2D coherence of the image data. The speed-up obtained with the

use of SMCGP offers significant advantages for the development of MM algorithms and

further research should be carried out to overcome the problems encountered in the initial

investigation described in this chapter.

4.7 Chapter Summary

This chapter presented an attempt to solve the problem of evolving programs for binary

images using large GP populations due to very large computer resources (time and memory)
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Figure 4.6: Example of a run with high fitness for beams extracted from Lilgp.

required for evolutionary techniques. The approach presented is based on the SMCGP

paradigm. The results show an improvement in the speed of the evolution. However, the

evolved algorithms tend to maximise the true negatives. Chapter §5 explores the idea of

using both morphological and logical operators to evolve programs for binary images and

aiming for a better quality of the GP algorithms obtained.
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Chapter 5

Genetic Programming without the

User Feedback

Chapter Outline

This chapter presents a preliminary experiment which explores to what

extent the image analysis programs can be evolved without any user feedback.

In Chapters §3 and §4 the user provides a visual feedback by means of visually

selecting the best results obtained. In contrast, this chapter studies what

fitness function can correspond to visual outcomes. Experimental set-up is

described in Section §5.2. The terminal set includes both morphological and

logical operators. The results are presented in Section §5.3. The conclusions

of these experiment are presented in Section §5.4 where a brief analysis is also

provided.
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5.1 User as a component of a fitness function

Chapter §3 described experiments and presented results which demonstrate that GP can

evolve MM programs which, when executed, generate good quality results on fairly complex

images. The results presented in the thesis and the discussion that followed focused on the

best results obtained using GP. One of the points made in the discussion was that the high

value of a fitness function did not always correspond to the visual quality of the results as

assessed by the user. It has become clear that the user feedback has played a key role in

the selection of the best results, which, in turn, affected the choice of a fitness function, the

conclusions about the size and the choice of the SEs, image size, and all other parameters.

This concern was further enhanced by results of the experiments in Chapter 4 where the

programs evolved using logic operators, without user intervention, resulted in visually poor

results in spite of high values returned by the fitness function.

Stimulated by these observations, we have decided to carry out a short exploratory

work attempting to get an insight into the question “What fitness function corresponds

better to the visual outcomes?”.

In the experiments we have used a fitness function which, in place of the user, can bias

the search towards either specificity or sensitivity (but without explicit user intervention).

Secondly, instead of using several small images with hand-selected target features, we have

used just one training image with the features appearing in different configurations and

contexts. We have opted for difficult images in which the features resemble one another.

Finally, as a terminal set we have used both MM and logic operators. The reason for this

was that in “real life” programming it is very rare to use MM operators alone. Given the

level of difficulty of the test images, the inclusion of both kinds of operators would give

GP a better “chance” to evolve quality solutions.
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5.2 Experiments

5.2.1 Image Data

Training Set

In order to test GP in a more complex environment than the one presented in Chapter §3
we used images of size 640× 480. Each training set includes two images, one source image

and one target image both of size 640 × 480. The source image includes four different

features, namely squares, circles, stars and rings. Each source image contains 20 features

of each type to make a total of 80. The features are distributed randomly in the image

and they may overlap to make the detection more complex. In order to test how well GP

is able to cope with different resolutions we use 5 different feature sizes. Figures 5.1, 5.2,

5.3, 5.4 and 5.5 show examples of the five different source images used in the training

set. The target image includes only one of the four features (e.g. Figure 5.6 shows the

square target image of the source image shown in Figure 5.3). The images are synthetic

and have been created using a C program. This approach makes it easy to generate the

target images without user intervention and time-consuming editing, which would be very

tedious for images containing a large number of features as our training images do.

For example, Figure 5.6 shows the image containing the squares from Figure 5.3 and

Figure 5.7 shows the image containing the circles from Figure 5.2.

Each training set includes only one feature size (e.g. Figure 5.3 shows an image con-

taining four features of size 3). We did not combine different sizes in the training sets.

Test Set

Test images are 640 × 480 including the same features with the same size but distributed

randomly in a different way. The test images are not included in the training set.
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Figure 5.1: Original Image (size 1) containing four features: squares, circles, rings and
stars.

5.2.2 The Image Processing Task

The task was to generate programs that accurately detect one of the features. This task

is interesting because it is not easy even for human experts. Different tasks may require

different sequences of different operators. If we demonstrate that GP search suitably varies

for different training sets, this may suggest that the fitness function pushes the search in

the right direction.
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Figure 5.2: Original Image (size 2) containing four features: squares, circles, rings and
stars.

5.2.3 Function and Terminal set

The Function and Terminal set is composed of logical and morphological operators as

shown in table 5.1. EVAL is used to generate the tree-like structure needed in Lilgp. The

terminals are generated randomly at the beginning of every run.

We have included a variable β to balance the number of logical and morphological

terminals. If β = 0.5 then the number of logical or morphological operators are selected

with equal probability. A higher value of β biases the search toward logical operators.

The reason for including this variable was that logical and morphological operators modify

the image in a very different way. Whilst logic operators modify the whole content of
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Figure 5.3: Original Image (size 3) containing four features: squares, circles, rings and
stars.

the image, morphological operators modify the shapes inside the image. Logical operators

modify the image as a whole because most of the pixels are modified with one operator while

morphological operators usually modify the borders of the shapes only. Logical operators

are computationally less expensive than morphological (i.e. logical operators require two

nested cycles while morphological operators require a two nested cycle plus a three–nested

cycle).

The SEs k are generated randomly at the beginning of each run. Chapter §3 showed the

importance of using irregular SEs, therefore the kernels are drawn from the entire search

space of 3 × 3 SEs. There are 512 options of 3 × 3 SEs (i.e. 29 = 512). We represent
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Figure 5.4: Original Image (size 4) containing four features: squares, circles, rings and
stars.

every k value as the corresponding binary value read left-right and top-bottom (e.g. e(8)

corresponds to erosion using SE (000, 001, 000)).

5.2.4 Evaluation

For every evaluation the tree is converted into a sequence of operators. The sequences of

operators are read from left to right. Every sequence starts with a default (not included)

store operator which saves the original image into a buffer. When an operator &, |, ∼ or ∧

appears in the sequence the respective logical operator is applied to the image (i.e. AND

(&), OR (|), NOT (∼), XOR (∧)). The logical operators AND, OR and XOR need two
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Figure 5.5: Original Image (size 5) containing four features: squares, circles, rings and
stars.

input images, therefore the stored images is used together with the current image. When

a store (s) operator appears in the sequence, the image obtained with the sequence so far

substitutes the image currently saved in the buffer.

For example, the program ∼ d(238)&d(462)se(185)∧ read from left to right represents

the storage of the image in the buffer (default initial operation), followed by a logical

NOT, followed by a dilation using the SE corresponding to 238, followed by a logical AND,

followed by a dilation using the SE corresponding to 426, followed by the storage of the

current image in the buffer, followed by an erosion using the SE corresponding to 185 and

finally a logical XOR of the current image with the buffer.
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Figure 5.6: Expected squares from Figure 5.3

Functions
Symbol Action
& ∪, Union, AND
| ∩, Intersection, OR
∧ Exclusive-or, XOR
∼ Negation, NOT
s Store operator
e(k) Erosion using kernel k (random [0..511])
d(k) Dilation using kernel k (random [0..511])

Terminal
Function Arity Description
EVAL 2 Tree generator

Table 5.1: Functions and terminal used in the hybrid approach.
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Figure 5.7: Expected circles from Figure 5.2

5.2.5 Fitness Function

The fitness function used is a modification of the Resemblance function fB (Eq. 3.3) which

includes a variable α (0..1) that allows tuning to bias the search depending on whether we

are looking for a program with high sensitivity (high α value) or with high specificity (low

α value). The function is defined as:

fC = 1 −
√

(1 − (SP × (1 − α)))2 + (1 − (SV × α))2

√
2

. (5.1)
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5.2.6 The experimental set up

A set of 180 experiments was prepared. These includes 5 different resolutions, 4 different

features and 9 different random seeds. The run values fixed were α = 0.9, β = 0.7,

crossover rate 0.9, mutation rate 0.2. Mutation was based on the ramped-half-and-half

initialisation method, which was also used to initialise the population. All the experiments

were implemented using Lilgp [160].

5.2.7 Environment

For the experiments in this Chapter we used a Linux cluster with Red Hat Linux 8.0 using

one master node (CPU dual Intel Xeon 2GHz, 2GB Memory) and 22 client nodes (CPU

Dual Athlon MP 1900+, 1.6GHz, 1GB Memory). In order to measure the system’s perfor-

mance we ran a set of preliminary experiments with different numbers of fitness evaluations

(i.e. maximum number of generations of 500, 1000, 1500 and 2000 and populations sizes

500, 1000, 1500 and 2000). Our conclusion was that the cluster was hardly able to cope

even with the minimum configuration (i.e. 500 × 500 fitness function evaluations). In the

light of this we have decided to use the minimum configuration, so as to ensure that the

experiments terminate.

5.3 Results

Figures 5.8, 5.9 and 5.10 show the output of a GP algorithm evolved for the detection

of the ring, square and star features in Figure 5.3. Likewise, Figures 5.11 and 5.12 show

results of the detection for features in Figure 5.3. These results are typical for most of the

algorithms evolved.

Tables 5.2– 5.5 present the best numerical fitness values for each run. It is generally

observed that for all the features at least one program achieved a fitness value over 0.94.

This may lead to the conclusion that the evolution is pushing GP to solve the adequate



92 Chapter 5. Genetic Programming without the User Feedback

Figure 5.8: Rings detector. This is the final output provided by the ring-detecting program
∼ d(238)&d(462)e(185) ∧ se(508)e(246)∧ evolved by GP when applied to the image in
Figure 5.1

feature detection regardless of the shape. There seems to be no significant difference

between feature sizes since most fitness functions reach values over 0.9. Another observation

was that not all the runs terminate properly, hence the result is not available (NA). It is

likely that the runs did not terminate due to server overload. Each run took between 4

and 7 hours.
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Figure 5.9: Squares detector. This is the final output provided by the square-detecting
program d(74)∧ | e(251) evolved by GP when applied to the image in Figure 5.1

5.4 Discussion

The visual quality of the results returned in this set of experiments is considerably worse

than of those obtained in Chapter 3. This is in spite of using a wider set of operators

(i.e. both MM and logical) and of using a larger set of features for training. These results

strongly support the notion that the user’s feedback forms a very important part of the

fitness evaluation. This form of feedback is normally implicit and it is rarely mentioned as

a factor in Evolutionary Computation applied to images.

However, the analysis of the evolved algorithms (as opposed to the resulting images)
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Figure 5.10: Stars detector. This is the final output provided by the star-detecting program
∼ e(138)& evolved by GP when applied to the image in Figure 5.1

is more encouraging. The feature extraction problem posed in this set of experiments was

difficult. It would therefore be very unlikely to evolve even partially effective algorithms

randomly. On the inspection, the evolved algorithms show interesting traits and sequences

which might have been evolved and recognised as logical by a human programmer.

As an example let us consider the evolved algorithm d(74)∧ | e(251) applied to the

image in Figure 5.1. The first step d(74) is a dilation using an irregular SE. The second

step is an XOR using the original image; this removes most of the stars and rings. The

third step is an OR with the original image; this enlarges the squares and circles. Finally

the fourth step is an erosion e(251) which eliminates part of the circles and the squares.
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Figure 5.11: Rings detector. This is the final output provided by the ring-detecting program
∼ d(238)&d(462)e(185) ∧ se(508)e(246)∧ evolved by GP when applied to the image in
Figure 5.3

The parameters α and β were put in place partially to replace the explicit user feedback.

Whereas the experiments were inconclusive regarding β (the balance between the MM and

the logical operators), setting α to a high value (i.e. α = 9), to bias the fitness function

towards very high specificity, consistently led to better visual quality of the resulting images

than when α was low. This is consistent with the observations made in Chapter 3.

The experiments have highlighted the inadequacy of a fitness function which is based

on individual pixels and does not take into account human perception. The need for a

perceptually based fitness function is discussed in the concluding Chapter 6.
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Figure 5.12: Squares detector. This is the final output provided by the square-detecting
program ∧e(267) ∧ e(142)e(267)∧ d(193)e(265)d(9)d(182) evolved by GP when applied to
the image in Figure 5.3

5.5 Chapter Summary

This chapter described a preliminary set of experiments to explore the performance of the

GP algorithms evolved totally automatically, without explicit or implicit user feedback.

The experiments have confirmed the importance of the role that the user plays in the

evaluation of the pictorial outputs. Whilst visually the results could be much improved,

the algorithms contain effective, although incomplete, operator sequences.
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Table 5.2: Best numerical fitness values for Square Detectors.

Best Fitness for Square Detectors
Feature Size

1 2 3 4 5
Runs
1 0.798818 0.783523 0.780784 0.775885 0.769051
2 0.798818 0.783523 0.780784 0.775885 0.769051
3 0.947817 0.943099 0.933182 0.929711 NA
4 0.948798 0.943099 0.931338 0.929745 NA
5 NA 0.944189 0.931095 0.929812 NA
6 NA 0.783523 0.780784 0.748584 NA
7 NA 0.761179 0.780784 0.775885 NA
8 NA 0.942951 0.926524 0.853889 NA
9 NA 0.942839 0.926689 0.865183 NA
NA means Not Available

Table 5.3: Best numerical fitness values for Circle Detectors.

Best Fitness for Circle Detectors
Feature Size

1 2 3 4 5
Runs
1 0.820240 0.821542 0.813145 0.811260 0.805648
2 0.820240 0.821542 0.813145 0.811260 0.805648
3 0.947770 0.946664 0.929652 0.934687 0.925630
4 NA 0.946672 0.933240 0.934680 0.925630
5 NA 0.946665 0.933270 0.934654 0.925590
6 NA 0.821542 0.641787 0.811260 0.644148
7 NA 0.746412 0.716023 0.811260 0.773692
8 NA 0.936418 0.840953 0.917778 0.809275
9 NA 0.840353 0.641786 0.871008 0.644148
NA means Not Available
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Table 5.4: Best numerical fitness values for Ring Detectors.

Best Fitness for Ring Detectors
Feature Size

1 2 3 4 5
Runs
1 0.849446 0.862156 0.850385 0.845347 0.840962
2 0.849446 0.862156 0.850385 0.845347 0.840962
3 NA 0.948235 0.941237 0.938996 0.863007
4 NA 0.948210 0.944260 0.939015 0.931851
5 NA 0.947374 0.939235 0.939034 0.748219
6 NA 0.862156 0.850385 0.845347 0.643103
7 NA 0.862156 0.850385 0.845347 0.643103
8 NA 0.919204 0.933268 0.934803 0.643103
9 NA 0.942405 0.937697 NA 0.643102
NA means Not Available

Table 5.5: Best numerical fitness values for Star Detectors.

Best Fitness for Star Detectors
Feature Size

1 2 3 4 5
Runs
1 0.892949 0.895277 0.910033 0.917760 0.923306
2 0.892949 0.895277 0.910033 0.917760 0.923306
3 0.950536 0.947066 0.918326 0.946531 0.932250
4 0.949900 0.947810 0.942752 0.946499 0.945119
5 0.949905 0.947059 0.943487 0.946515 0.945151
6 0.892949 0.895277 0.746185 0.917760 0.840356
7 0.892949 0.895277 0.640735 0.917760 0.746416
8 0.932004 0.933459 0.806562 0.935049 0.746416
9 0.946457 0.933685 0.900301 0.935173 0.840356



Chapter 6

Conclusions

Chapter Outline

This chapter presents the conclusions of this thesis. Section §6.1 briefly

summarises the topics that this thesis has explored. Section §6.2 describes

the contributions of this thesis. Section §6.3 explains to what extent the

open questions stated in the motivation have been answered and discusses

the limitations of this thesis. Finally section §6.4 discusses ideas for further

research.

6.1 Summary

GP applied to Computer Vision is in its early stages but it is very promising and it is

believed that it will lead to the discovery of powerful new programs. In the literature,

GP has shown some success in image analysis applications but it has been mainly used

99



100 Chapter 6. Conclusions

for linear image processing and searching for filters, leaving the non-linear side practi-

cally unexplored. MM is a versatile non-linear technique that allows the combination of

exploratory features in several ways.

This thesis provides an investigation on GP applied to morphological image processing.

There have been other attempts to achieve automatic programming of MM algorithms

in the literature, but just a few attempts to evolve MM algorithms using GP and other

EC techniques. A popular technique in MM is to construct sequences of morphological

operators based on concatenations of the two basic operations: dilation and erosion. The

sequences of morphological operators are usually constructed according to the intuition

and experience of human programmers and practitioners. From the pragmatic point of

view, a sequence of morphological operators extracts information from images, but it is

usually difficult to design adequate sequences of morphological operators to solve partic-

ular problems for image analysis. This usually requires heuristics and also requires the

decomposition of the the general problem into sub-problems in an ad hoc way [124, 35, 14].

This thesis has explored the approach of constructing a GP system that automatically

designs sequences of morphological operators. Three aspects of morphological image pro-

cessing have been investigated. The extensive set of experiments aimed at evolving MM

programs using GP produced satisfactory results, but also identified inefficiencies when

using big populations over a large number of generations. This led to the exploration of

SMCGP as the means of speeding up the evolution. The use of SMCGP made the evolution

of big populations over a large number of generations feasible but did not produce good

visual results. Finally, the combined use of the logical and MM operators was explored

and the role of the user feedback, as an implicit fitness function was examined.

6.2 Contributions

This thesis has made a number of contributions to the fields of Mathematical Morphology

and Genetic Programming.
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The literature review of the state of the art of automatic morphological image processing

with emphasis on EC applied to morphological image processing demonstrated that there

was a gap in GP applied to morphological image processing where our main contributions

have been made.

* We explored the feasibility of GP as a technique for the automatic generation of

MM programs. We have indeed demonstrated that it is possible to evolve effective

morphological programs using GP. Moreover, the obtained programs are fairly easy

to understand and easy to analyse step by step. This is not necessarily the case for

other evolutionary techniques.

* It is interesting to note that one important limitation for human practitioners us-

ing MM is the understanding of the results obtained when using irregular SEs. A

contribution of this thesis is the GP exploration of irregular SEs. Through the ex-

periments we have demonstrated that they are useful for the automatic creation of

morphological algorithms for image processing.

* We have also explored the question of the design of SEs which is important for MM.

We have concluded that using bigger SEs tends to produce visually better output

images, but big SEs also lead to slower performance.

* Previous approaches using EC techniques were limited to sequences of morphological

operators with fixed sizes. One of our contributions is to allow the sequences to have

operators of variable size. The use of variable sizes of the sequences has proved to

be useful.

* We explored the inclusion of various image sizes in the training set and we did not

find an advantage of using a particular size. Nonetheless, an observation was that

it is better to use only one big image containing many features in the training set.
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This seems to lead to better GP evolved programs, probably due to the availability

of richer contextual information.

* We performed a preliminary research on the SMCGP technique to speed up the

implementation. Although SMCGP succeeded in this respect, it did not succeed in

providing a good quality of visual results.

* In the course of this work, we studied three different fitness functions and various

sets of functions and terminals. Our conclusion is that all these features have to be

adapted to the problem in hand in order to make the requirements to the GP system

as precise as possible.

In conclusion, these contributions are significant because they have demonstrated the

feasibility of the automatic programming of effective morphological algorithms (i.e. pro-

gram implementations) using GP. Other researchers may build on these contributions,

using them as the basis for exploring the automatic programming of morphological image

processing in higher dimensions, for example grey-level or 3D shape. Work described in

Chapters §3, §4, §5 of this thesis has been published [110, 111], cited [11, 115], or accepted

for publication [109] in peer-review outlets, thus confirming that it is valued by the research

community.

These contributions are substantial because they present a study of a well understood

problem using a bottom-up approach from the very basic level. We included a description of

the problem, hypotheses, experiments using several approaches, results, analysis, statistics,

conclusions, limitations and have identified lines for further research.

6.3 Discussion

The evidence provided in this thesis allow us to confirm that using a variable number

of morphological operators benefits the automatic programming of morphological image
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processing using GP. However, it is important to point out that the experiments presente

may not be statistically significant to generalise the presented results.

It is also confirmed that the use of irregular SEs improves the programs evolved. This

issue has been analysed empirically. The analysis can be improved further by carrying on

statistical analysis of the SEs that appear more often in the evolution. Another issue is

that depending on the sort of features we are looking for, it may be useful to seed some

SEs related to the shapes. We have not explored this idea on this thesis.

One of our hypotheses was that there is no reason to restrict the search to a particular

size of SEs. We were proved wrong, because for implementation reasons it is better to use

small SEs. Nonetheless, larger SEs have been useful as well. We suggest that it may be

useful to look for an alternative implementation (e.g. using SMCGP) to exploit the benefits

of using larger SEs.

The preliminary exploration of combining logical and morphological operators suggests

that it may be beneficial to the performance and to the program quality. However, the

study has to be much more substantial to find out to what extent the combination is useful

(e.g. including variations of β in experiments similar to those in Chapter §5).

We found that our knowledge about the design of fitness functions that accurately

capture the behaviour of the human vision is very poor. There must be better ways to

model the expected results from evolutionary algorithms than to simply count pixels. So

far fC appears to be an interesting fitness function to continue exploring, tuning the values

of α for different sub-problems of the general signal understanding problem (see below).

As regards generalisation, we may say that GP has proved to be a flexible technique that

is pushing the evolution according to the problems that we intend to solve and obviously

improves the results of those of a random search. Whether GP is the best technique for

morphological image processing is an open question from our point of view.

We have come up with some ideas to make the GP implementation feasible and effec-

tive. Exploratory work described in Chapter §5 has suggested the idea that an attractive
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alternative may be to sample only those algorithms which modify a significant number of

the pixels in the image. This idea may save lot of computational effort and may lead in

turn to improved performance.

From the personal perspective we have found that the task of evolving morphological

algorithms is far more difficult than initially believed.

6.4 Future Research

Frequently, the systems that automatically design sequences of morphological operators

are based on Artificial Intelligence or closely related disciplines. In their recent book

Foundations of Genetic Programming [83], Langdon and Poli put forward their view about

Artificial Intelligence (AI) foundations as a whole:

The foundations of AI are fundamental principles which are common to all

disciplines within AI, be they artificial neural networks, evolutionary compu-

tation, theorem proving, etc. The common feature of this techniques is search

(although the representation being used to express solutions and the search

used may be radically different). In our opinion search (be it deterministic or

stochastic, complete or incomplete, blind, partially sighted, heuristic, etc.), the

related representation, operators and objective functions are the foundations

of AI.

In this context, it is interesting to note that MM has not been systematically explored

from the AI point of view. This thesis explored the extraction of features in binary images,

but it is indeed possible to use GP and other AI techniques to solve the general problem

of signal understanding.

6.4.1 Signal Understanding problem.

For the problem of Signal Understanding, Teller [142] offers a succinct definition:
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Given a ’signal’ type and a notion of ’symbols’ that represent important

characteristics of signals of that type, how can we create a process for auto-

matically extracting these symbols from the signals they represent?

In the ideal case we would like to create a system able to automatically extract and detect

symbols from a variety of sources. The best approach known so far is the human being, an

entity capable to detect, analyse and understand a wide range of signals and to map them

adequately to symbols (i.e. humans are capable to map sounds, images and sensations to

their corresponding labels or symbols).

Recent results in theory and applications lead to the conclusion that is not possible to

obtain a general solution to complex problems (such as Signal Understanding) but it is

possible to divide the general problem into sub-problems and then find specific solutions

for those sub-problems [89, 83, 149]. A possible approach to solve the problem of Signal

Understanding is to divide the problem into sub-problems:

* Classification. The signal s belongs to one of several classes.

* Detection. Is the symbol s present in the signal f?

* Location. Where is the symbol s located into the signal f? The symbol s may be

present 0 or more times in the signal f .

* Extraction. Extract symbol s from signal f . This may be done either converting

signal f into another signal containing symbol s only or indicating the characteristics

of symbol s presence into signal f .

* Recognition. Which symbols are present in signal f?

These sub-problems have been widely explored from the linear processing point of view.

Nonetheless, to the best of our knowledge, an approach to solve the general problem of

Signal Understanding has not been proposed yet (although Teller and Veloso invested a
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big effort to describe the sub-problems involved and they achieved interesting results to

solve the sub-problem of classification [145, 143, 144, 142]).

It is arguable that the most promising approach to solve the general problem of Signal

Understanding is an hybrid Human-ML approach, where we take advantage of human

capabilities to understand and describe abstract signals and ML capabilities to search and

learn from complex search spaces (such as the space of signals).

It is also arguable that a promising approach to solve the general problem is starting

from binary signals. The problem of Signal Understanding on the binary level is still a

complex one and we have to solve it first in order to solve the sub-problems in more complex

domains.

Morphological processing in particular and non-linear processing in general are im-

portant because the human understanding of signals as symbols has a tendency to use

non-linear features. Perhaps the biggest advantage of MM as a technique for Signal Un-

derstanding is its ability to describe in mathematical terms what humans understand as

shape.

First of all, if we receive a signal and we don’t know anything about it, it is difficult

to know what sort of signal we are dealing with. A statistical measure or a transform into

the frequency domain can provide some information about its contents, but it is only when

human expertise converts it into a symbol that we can understand what sort of signal we

are dealing with.

Objective Functions

A practitioner should take advantage of his own expertise and provide an automatic sys-

tem with the best measure of success according to the sub-problem at hand. As mentioned

above, we are still far from solving the general problem of Signal Understanding in the bi-

nary level, so it is suggested to start exploring objective functions for binary signals/images.

Objective functions may include Hamming distance, similarity [151], sensitivity-specificity
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trade-off measures [101, 111], functions for OCR [60], subjective visual evaluation [106] or

any other the practitioner’s intuition suggests may solve the sub-problem at hand.

It is interesting to note that the state-of-the-art research in ML contemplates the com-

bination of success measures using approaches such as multi-objective optimisation [33, 29].

There are several lines open for further research. Theoretically, it is possible to ex-

tend the results of this thesis to evolve morphological algorithms to higher dimensionality

(grey-level images, time-scales, multi-layer images). In practice, this requires far more

computation resources.

An interesting line of research proposed by Bloomberg [25] is to investigate whether

it is possible to apply MM operators on the bitwise level. If that it is possible, then it is

very likely that we may explore the advantages of MM and SMCGP to evolve algorithms

suitable for a broad kind of binary image processing tasks. An interesting line for further

research could be to write morphological functions as combination of bitwise operations to

speed up the evolution while conserving the accuracy already obtained with GP and MM.

Another alternative that has been little explored in the image processing field is the

use of Multi-objective evolutionary optimisation [29, 33, 81]. Multi-objective optimisation

has been developing very fast in the last few years and a better analysis in the context

of multi-objective optimisation may lead to better results. Another possibility would be

to define binary detection in the context of classifier systems understanding strength and

accuracy as analogues for sensitivity and specificity. If binary image processing is re-defined

as a classification problem, a general dilemma about strength and accuracy in automatic

classifiers will apply to binary images [70].

It has become clear that the choice of the fitness function is very important and that

this topic needs much further work. Whereas fB was fairly good at achieving a good

balance between sensitivity and specificity, it might be more advantageous to have other

means of directing the search toward a desired solution. For example, for the detection of

small features a highly sensitive algorithm would be better while, if the image contains a
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number of features that might be confused one with another, a highly specific algorithm

would be more beneficial.

In general, the main limitation of all the existing fitness functions is that they do not

take into account the characteristics of the shape itself. It is hard to imagine that the

mean-absolute error is the only measure to obtain an optimal filter, particularly when

the intention is to find a shape with no apparent statistical correlation (e.g. signature

authentication).



Appendix A

Notation

Acronyms

AI Artificial Intelligence.

CPU Central Processing Unit.

CPUs Central Processing Units.

EC Evolutionary Computation.

FN False Negative.

FP False Positive.

GA Genetic Algorithm.

GAs Genetic Algorithms.

GP Genetic Programming.

ML Machine Learning.

MM Mathematical Morphology.

NA Not Available.

OCR Optical Character Recognition.

SE Structuring Element.

SEs Structuring Elements also known as morphological filters or kernels (pag. 21).
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SIMD Single Instruction Multiple Data.

SP Specificity.

SV Sensitivity.

TN True Negative.

TP True Positive.

SMCGP Sub-Machine-Code Genetic Programming.

Mathematical Notation

x = (x1, x2) Tuple representing the coordinates of a pixel in an image.

x = (x1, x2, x3) Triplet representing the coordinates of a pixel and its grey level.

1D One dimensional.

2D Two dimensional.

3D Three dimensional.

= Equal.

6= Not equal.

+ Addition.

∪ Set union operator.

∩ Set intersection operator.

⊆ Subset equal.

∅ Empty set.

∈ Set membership operator: x ∈ X means x is an element of X.

/∈ x /∈ X means x is not an element of X.
∑

Summation, e.g., the sum of a series of values X1 to Xn

is
n∑

i=1

Xi.

(B)x Translation of set B by point x. Pag. 20.
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Ĉ Reflection of set C. Pag. 20.

⊕ Morphological dilation.

	 Morphological erosion.

Z2 Two dimensional integer space.

Z3 Three dimensional integer space.

Miscellaneous Notation

§ Chapter, Section or Subsection in this thesis.

eq.(1.1) A numbered equation.

e.g. For example (Latin exempli gratia for the sake of example).

et al. And others (Latin et alii).

etc. And the rest, and so on (Latin etcetera).

i.e. That is to say (Latin id est).

pag. Page, pages.
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