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Abstract—Data diffusion techniques enable a distributed
system to replicate and propagate data across a potentially
unreliable network in order to provide better data protection
and availability. This paper presents a novel evolutionary
computation approach to developing network construction al-
gorithms and data diffusion strategies. The proposed approach
combines a linear genetic program with a cellular automaton
to evolve digital organisms (agents) capable of self-organizing
into different types of networks and self-adapting to changes in
their surrounding environment, such as link failures and node
churn. We assess the effectiveness of the proposed approach
by conducting several experiments that explore different net-
work structures under different environmental conditions. The
results suggest the combined methods are able to produce self-
organizing and self-adaptive agents that construct networks
and efficiently distribute data throughout the network, while
balancing competing concerns, such as minimizing energy
consumption and providing reliability.
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lular automata, self-organization, data diffusion.

I. INTRODUCTION

Data diffusion is a technique for replicating and dis-
tributing data to all nodes within a network. This process
of physically isolating copies of data improves both data
protection and availability [1]. Designing and implementing
data diffusion techniques, however, is a challenging task
that involves tradeoffs with maximizing data protection and
network performance while minimizing operational costs,
such as resource provisioning [2]. This paper presents an
evolutionary computation approach for evolving digital or-
ganisms (agents) that self-organize into different types of
network structures and distribute data to all other nodes
within the network.

Techniques for data diffusion can be engineered for spe-
cific environments [2], [3], adapted from observed behaviors
in nature [4], or automatically generated by evolutionary
algorithms [5]-[8]. For instance, Wilkes et al. [2] proposed
a data diffusion algorithm for improving data reliability
and network performance in remote data mirroring envi-
ronments. Similarly, Babaoglu et al. [4] developed a set of
biologically-inspired design patterns applicable to frequently
encountered problems in distributed systems, including data

diffusion. In contrast to these approaches that either engineer
a technique or adapt one from nature, Knoester et al.
harnessed the process of evolution to explore algorithms for
network construction [5] and data diffusion [6]. While their
results demonstrated digital evolution is a viable platform for
realizing self-organization and self-adaptation in distributed
systems, the evolved organisms also exhibited biological
behaviors, such as self-replication, that may be irrelevant
within the context of a distributed system.

This paper introduces GAIA, an evolutionary computation
approach that leverages an interpreted linear genetic program
(LGP) [9] to evolve digital organisms that function as
self-organizing and self-adaptive network controllers atop
a cellular automaton (CA) [10], [11] infrastructure. The
underlying CA infrastructure facilitates the exploration of
self-organizing and self-adapting behaviors by restricting
the interactions between organisms. In particular, digital
organisms in the CA only interact with adjacent organisms
(i.e, neighbors), and do not have access to global state
information. Instead, digital organisms must independently
perform decision-making with limited information about
their local surrounding environment in order to cooperate
towards a particular task.

GAIA uses a LGP to evolve digital organisms that are able
to sense other physically adjacent organisms, establish com-
munication links with them, and send and receive messages
through those communication links. GAIA also uses a CA
to evaluate the quality, or fitness, of each digital organism
evolved by the LGP. This evaluation step seeds a candi-
date digital organism into a homogeneous CA environment,
where interactions are determined not only by the state of
the organisms themselves (e.g., whether they have a message
to send), but also by the underlying network topology. The
LGP generates new digital organisms through recombination
and mutation in order to exchange and randomly modify
executable instructions of existing digital organisms, respec-
tively. This iterative process continues until the maximum
number of iterations, or generations, is reached.

We assess the effectiveness of GAIA by conducting sev-
eral experiments under different environmental conditions.
The results suggest that the combined methods are able



to produce self-organizing and self-adaptive behaviors that
construct networks and distribute data throughout the con-
structed network. Moreover, GAIA is capable of balancing
competing concerns, such as minimizing energy consump-
tion while maximizing data reliability and network perfor-
mance. The remainder of this paper is organized as follows.
Section II presents background material on genetic program-
ming and cellular automata. We then introduce the proposed
approach in Section III and describe how it can be applied
to network self-organization and data diffusion. Next, we
present experimental results in Section IV and discuss them
in Section V. Section VI overviews and discusses related
work. Lastly, we summarize our main findings and present
future directions in Section VII.

II. BACKGROUND

This section presents background material on genetic
programming and cellular automata, both of which are used
as enabling technologies for our work.

A. Genetic Programming

Genetic programing is a search heuristic for automat-
ically generating executable programs that solve specific
tasks [12]. A genetic program comprises a collection, or
population, of individuals. Each individual encodes a set
of instructions and terminals that make up a candidate
executable program. While genetic programming often uses
a tree-based representation to encode programs, the approach
presented in this paper uses an interpreted linear encod-
ing [9]. This linear encoding, depicted in Figure 1, comprises
a vector of instructions that can be executed sequentially
from left to right. These instructions are executed by a
genetic program in order to evaluate the fitness or quality of
each individual. The fitness value assigned to an individual
is proportional to how well it solves the task at hand.

bool inst_N() {
if(m_cond) {
return send_msg(id);
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Figure 1. Interpreted linear genetic program.

A genetic program guides the search process towards
promising areas of the solution space by comparing the
relative fitness values of individuals. To generate new indi-
viduals, a genetic program often applies two key operators:
crossover and mutation. The crossover operator exchanges
instructions from two existing individuals to form two new
individuals. For example, Figure 2(a) illustrates how the
two-point crossover creates an Offspring I by combining the

instructions {A,E} from Parent I and instructions {EG,H}
from Parent II. In contrast, the mutation operator creates
a new individual by inserting, removing, swapping, or
replacing random instructions from an existing individual.
For example, Figure 2(b) shows a mutated genome, T,
where the position of instructions {B} and {C} have been
swapped, and an instruction {R} inserted (denoted by the
shaded block). While crossover exchanges building blocks
(i.e., important groups of instructions) between individuals,
mutation adds new solution elements (i.e., diversity) to a
population. A genetic program terminates once a maximum
number of generations is reached or a sufficiently fit solution
is discovered.
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Figure 2. Linear genetic program crossover and mutation operators.

B. Cellular Automata

A cellular automaton (CA) [10], [11] is a discrete model
with a finite number of cells, each of which comprises a
finite-state machine. As Figure 3 illustrates, each cell in the
CA is connected to a set of neighbors, or adjacent cells,
as defined by an underlying topology. Furthermore, only
neighboring cells interact with each other. For example,
Figure 3(a) depicts a complete topology where a cell may in-
teract with all other cells in the CA. In contrast, Figures 3(b)
and 3(c) respectively depict a grid and random topology
where a cell may interact with some cells but not others.
Moreover, a cell’s set of neighbors may be fixed, where
it remains static as the CA executes, or relative, where it
dynamically changes in response to the interactions between
cells.

(a) Complete (b) Grid (c) Random

Figure 3. Examples of cellular automaton topologies.



To produce a new generation, a CA simultaneously ex-
ecutes the set of rules defined in each cell’s finite-state
machine. Which rules are applied often depend on the state
of neighboring cells (e.g., a new message is available).
Even CAs with a simple set of rules can produce complex
interactions and behaviors. Wolfram et al. [13] classified
the behaviors of CA’s based on whether they produced
stable homogeneous states, or complex, seemingly random
behaviors.

III. PROPOSED APPROACH

This section describes how GAIA combines a linear ge-
netic program and a cellular automaton to produce network
construction and data diffusion strategies.

A. Overview of Gaia

GAIA combines an interpreted linear genetic program
(LGP) and a CA to evolve digital organisms, or agents,
capable of constructing and maintaining a network while
distributing data to other organisms in the network. As
Figure 4 illustrates, the LGP is responsible for evolving a
set of candidate digital organisms, and the CA is responsible
for computing the organism’s fitness value. In particular, the
LGP takes an individual from the population, extracts the
encoded program in its genome, and then seeds each cell in
the CA world with that program producing a homogeneous
CA world. The CA then executes this candidate program
for a specific number of generations, and computes a fitness
value proportional to how well the program solved the task at
hand, such as constructing a network or diffusing a message.
In each generation, the LGP repeats this process for every
individual in the population. The fitness values produced
by the CA evaluation enable the LGP to guide the search
process towards new solutions that are, ideally, better than
the ones previously explored.
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Figure 4. Combined linear genetic program and cellular automaton.

B. Description of Cellular Automaton

For this work, the structure of the CA is modeled as
an undirected graph that comprises cells and edges. Each
cell stores a digital organism and an identical copy of
the network controller being evaluated by the LGP. The
underlying graph topology, depicted by dashed edges in
Figure 5, defines the set of neighbors with which a digital

organism interacts. For example, organism A is a neighbor
of organisms B, C, and E. In order to construct a network
for sending and receiving messages, an organism must first
activate an edge, depicted by bold edges in Figure 5, to
at least one of its neighbors. As such, organism A can send
and receive messages from organisms B and C, but not from
organism E. Moreover, organisms are not given instinctual
knowledge about their neighbors and must therefore sense
their environment in order to construct networks and dis-
tribute data to other organisms.

Figure 5. Underlying CA environment model.

As Figure 6 shows, in addition to the network controller
being evaluated, each digital organism also comprises a fixed
amount of energy, two messaging queues, a stack-based reg-
ister, a set of indices to neighboring organisms, and a pointer
to a target neighbor. In particular, the outgoing queue stores
messages that the organism desires to send, and the incoming
queue stores received messages. These messages are queued
until the organism explicitly moves them. To this end, an
organism may drop messages from either queue, as well as
transfer a message from its incoming queue to its outgoing
queue. This process of transferring a message to the outgoing
queue and sending it to a neighboring organism realizes the
process of data replication and diffusion, respectively, in a
distributed system.
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Figure 6. Resources available to a digital organism.

The CA concurrently executes the network controllers
of the organisms in order to evaluate the characteristics
of the resulting network construction and data diffusion
strategies. Table I describes the set of instructions that
an organism may use to construct a network and diffuse
data. In general, these instructions enable an organism to
sense its neighborhood, self-organize into a network by
activating links, and send messages to other organisms in



Table T

INSTRUCTION SET FOR CONSTRUCTING NETWORKS AND DIFFUSING DATA

Instruction Description Cost
HasNeighbors Returns true if organism has at least one active link to a neighbor. 2
SenseNeighbors Returns the ID’s of neighboring (connected) organisms. 5
CreateLink Activates the link to target neighbor. 5
RemoveLink Deactivates the link to target neighbor. 5
SetNextTarget Points target to a neighboring organism with the next highest ID value. 2
SetRandomTarget Points target to a random neighbor. 2
HasMessageToSend Returns true if outgoing queue is non empty. 2
SendMessage Places the front message in outgoing queue to the target’s incoming queue. 5
IsMessageAvailable Returns true if incoming queue is non empty. 2
HasSeenMessage Returns true if front message in incoming queue has been previously sent by organism. 5
TransferMessage Pops the front message in the incoming queue and pushes it into the outgoing queue. 2
DropIncoming Pops the front message in the incoming queue. 2
DropOutgoing Pops the font message in the outgoing queue. 2
GetCostToMessageNeighbor Retrieves the cost to send a message to a neighbor. 5
GetNumMessagesSentByNeighbor Retrieves the number of messages a neighbor has sent. 5
GetNumMessagesQueuedByNeighbor | Retrieves the number of messages queued at a neighbor. 5
GetRemainingEnergy AtNeighbor Retrieves the amount of energy remaining at a neighbor. 5
IF Advances instruction pointer by some offset if next instruction evaluates to false, otherwise flow continues| 2
to the next instruction.
IF NOT Advances instruction pointer by some offset if next instruction evaluates to true, otherwise flow continues| 2
to the next instruction.
AND Returns true if the next two instructions return true, otherwise returns false. 2
OR Returns true if either of the next two instructions return true, otherwise returns false. 2
< Returns true if the value of the next instruction is less than the value of the instruction that follows it, 2
otherwise returns false.
> Returns true if the value of the next instruction is greater than the value of the instruction that follows it,| 2
otherwise returns false.
NOP Do nothing. 0

the network. In particular, the evolutionary process selects
which instructions, and in what order, to incorporate within
a digital organism to solve a specific network construction
and data diffusion task. Furthermore, the evolutionary pro-
cess may combine executable instructions with logical and
conditional operators to generate more complex behaviors.
For instance, combining the instructions HasSeenMessage
and Droplncoming produces a behavior to avoid resending
messages an organism has already distributed throughout the
network. In addition, each instruction is also associated with
a specific execution cost that can be configured to model
different network environments.

C. Fitness Functions for Interpreted LGP

The LGP in GAIA computes the fitness value of each
individual by executing the network controller within the
CA and observing how well it accomplishes its tasks. To this
end, we defined five fitness sub-functions to guide the LGP
towards solutions that maximize data reliability and network
performance while minimizing operational costs, such as
activating links and messaging other organisms within the
network. While the following set of fitness sub-functions
require global-state knowledge about the structure of the
network, these are applicable only at design-time. In par-

ticular, these fitness sub-functions enable GAIA to generate
network controllers for a specific network topology that
can then be deployed and executed without run-time access
to global information. Moreover, this set of fitness sub-
functions can also be modified to explore different aspects
of network construction (e.g., efficient routing topologies)
and data diffusion strategies (e.g., data routing protocols).

Network Construction. In terms of network construction,
GAIA applies two different fitness sub-functions. The first
fitness sub-function, Fconn, rewards organisms for con-
structing a connected network. In particular,

100.0 connected

F =
conn 0.0 : disconnected

This fitness sub-function is discrete in the sense that digital
organisms either receive a full reward, if the network is
connected, or nothing at all. As such, this fitness sub-
function reflects the importance of constructing a connected
network for diffusing data. In addition, the following fitness
sub-function, Flinks> rewards organisms for constructing
a network by activating as few links as possible (i.e., a
spanning tree):

Linksactive

Fy; =100 * (1.0 —
links * ( Linkstotal



where Links,.ive 1S the number of active links in the
network, and Links;,,; is the total number of links that
could be activated in the network. Combined, these two
fitness sub-functions guide the LGP towards solutions that
construct a connected network with the fewest number of
links possible.

Data Diffusion and Network Performance. The LGP
also applies two fitness sub-functions to evaluate how candi-
date solutions diffuse data in terms of maximizing data reli-
ability and network performance. In particular, the following
two fitness sub-functions reward organisms for maximizing
the amount of data successfully diffused while minimizing
the number of messages sent throughout the network:

Fmess = 100 x %
Messages,, ..
and, b
atag;
Fqier = 100 x ———
diff * Datasched

where Messagess.,,; measures the total number of messages
sent through the network, Messages;,q, is an upper bound
on the number of messages an organism can send given
its limited energy resources, Datag; ¢ is the total number of
messages diffused throughout the network, and Datagpq is
the total number of messages that organisms had to diffuse.

Energy Efficiency. The LGP also applies a fitness sub-
function to evaluate how candidate solutions maximize the
amount of energy conserved while constructing a network
and diffusing data. In particular,

Energy.,.q
Energystart

where Energyiq,+ and Energy.,; measure the amount of
energy remaining in the cellular automaton at the beginning
and end of the evaluation phase.

Overall Fitness Function. These five fitness sub-
functions are combined through a linear-weighted sum, as
follows:

Fenergy = 100

FF = aconn * Fconn + oJipks * Flinks T @mess * Fmess+
agiff * Fgiff + cenergy * Fenergy (1)

where each «; coefficient represents the relative importance
of each concern, as measured by the fitness function itself.
The sum of all a coefficients must equal to 1.0.

IV. EXPERIMENTAL RESULTS

This section presents two experiments that assess the
effectiveness of GAIA. Both experiments focus on how
digital organisms, evolved by the LGP, self-organize within
the CA in order to achieve a given task, specifically network
construction and data diffusion. Table II specifies the LGP
and CA configuration parameters applied for these experi-
ments. The majority of these configuration parameters are
default values used often in genetic programming as they

provide good starting points if no additional details are
known a priori about the execution environment and the
application domain. In particular, the LGP executes for a
total of 75 generations and then outputs the best network
controller found so far. This parameter can be adjusted de-
pending on how rapidly the LGP converges. If the LGP does
not converge within the maximum number of generations
allotted, then the maximum number of generations should
be increased accordingly. If, on the other hand, the LGP
converges to near-optimal values within a few generations,
then the maximum number of generations can be decreased
to reduce the amount of execution time.

During each generation, the LGP applies tournament
selection, two-point crossover, and mutation to produce a
new population. In tournament selection [14], k individuals
are selected at random from the population and the one with
the highest fitness value survives onto the new population.
This selection process is repeated until the new population
size equals 20% of the previous population size. Next,
two-point crossover and mutation operators are repeatedly
applied until the new population size equals the size of the
previous population.

For the CA configuration, each digital organism begins
with 2000 units of energy resources that are consumed as
the candidate network controller executes. The amount of
starting energy resources can be changed in order to simu-
late different network scenarios. Likewise, the CA network
comprises 25 nodes or organisms, though this parameter can
also be changed depending on the specific network being
explored. Moreover, within this energy-constrained model,
node churn and link failures occur when a digital organism
depletes its energy resources. In particular, an organism that
has depleted its energy resources is no longer able to send
(receive) messages to (from) other organisms in the network.
Furthermore, messages sent to an organism that has depleted
its energy resources are dropped from the network. Lastly,
for each experiment, we conduct 30 trials for statistical
significance and plot the mean values, with error bars are
included as applicable.

Table II
CONFIGURATION PARAMETERS FOR LINEAR GENETIC PROGRAM AND
CELLULAR AUTOMATON.

Parameter Value
Population Size 50

Max. Number of Generations 75
Crossover Rate 0.4
Mutation Rate 0.4
Selection Rate 0.2
Selection Method Tournament (K = 2)
Number Digital Organisms 25

CA Max Number of Generations 200

Digital Organism Starting Energy 2000




A. Network Construction

The objectives of this experiment are two-fold. First,
this experiment evaluates whether evolved digital organisms
are able to self-organize into a specific type of network.
In addition, this experiment also evaluates whether the
underlying CA topology (i.e., the connections between cells)
affects how digital organisms self-organize. To address the
first objective, this experiment rewards organisms for con-
structing a connected network while also minimizing the
number of active links (i.e., a spanning tree). Specifically,
we set the relative weights of each fitness function as
follows: ayipks = 0.5, aconn = 0.5, and all others equal to
0. We note that the maximum fitness value achievable by
an organism that constructs a disconnected network is 50
(i.e., obtains the maximum reward for Fj;,;s and no reward
for Fconn). Furthermore, to achieve the second objective, we
independently evaluate this network construction task on two
different CA topologies, a complete undirected graph where
all organisms are neighbors, and a random undirected graph
where each organism is a neighbor, on average, of three
other organisms.

Figure 7 plots the mean fitness values, with error bars,
achieved by evolved digital organisms at each LGP gen-
eration for this network construction task. As this figure
illustrates, regardless of the underlying CA topology, the
evolved organisms self-organized into a connected network
while minimizing active links. The non-overlapping error
bars in this figure also indicate that the LGP achieved
significantly higher fitness values for the connected CA
topology rather than the random CA topology. A possible
explanation for the difference in both fitness values and
range of error bars is that the underlying CA topology plays
a significant role in facilitating or hindering the organism’s
ability to construct a network. In particular, an organism
placed in a completely connected CA topology can exploit
its high degree of connectivity with other organisms to
rapidly construct a connected network. In contrast, in a
randomly connected CA topology, it may be possible for a
digital organism to be connected to only one other neighbor,
thus limiting its ability to construct a network.

Figure 8 plots the mean number of active links throughout
each LGP generation. As this figure illustrates, evolved
digital organisms maintained network connectivity while
minimizing the number of active links. The most common
evolved strategy involved organisms first constructing a
dense network, thereby obtaining 50% of their maximum
fitness value, and then gradually deactivating (i.e., prun-
ing) redundant links. Another evolved behavior combined
conditional and neighbor-sensing instructions to activate a
link if an organism had not already activated a link to
some other organism. These strategies, and their variations,
enabled organisms to construct networks with, on average,
3 to 4 redundant links. Furthermore, evolved organisms
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constructed spanning trees in 4 of the 50 trials for the
random CA topology and in 9 of the 50 trials for a complete
CA topology.
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B. Network Construction and Data Diffusion

The objective of this next experiment is to evaluate
whether evolved digital organisms are able to construct
a connected network and diffuse data. This experiment
rewards organisms not only for self-organizing into a con-
nected network while minimizing active links, but also for
minimizing the number of messages sent while maximizing
the number of data items diffused and the amount of energy
conserved. To this end, we set the relative weights of each
fitness function as follows: agjpks = 0.2, cconn = 0.2, agifr
= 0.3, amess = 0.25, and aepergy = 0.05.

For this study, we consider data to be diffused when all
digital organisms in the CA have received it. To this end,
the CA inserts a unique message into the incoming queue



of 3 random individuals at different generations of the CA.
These messages represent new data that must be diffused
throughout the network. Figure 9 plots the mean fitness
values, with error bars, achieved by evolved organisms at
each generation of the LGP. As this figure illustrates, the
LGP successfully evolved organisms that became more adept
at constructing a network and diffusing data, as indicated by
the increasingly higher fitness values.
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Figure 9. Mean fitness value for network construction and data diffusion
tasks.

Network Construction. Figure 10 plots the mean number
of active links for both the random and connected CA
topologies throughout each LGP generation. This figure
shows the LGP evolved digital organisms that successfully
self-organized into networks that facilitated the diffusion
of data. However, this figure also suggests that the LGP
encountered some difficulties at minimizing the number of
active links while simultaneously diffusing data across the
network. In particular, for this experiment, the LGP not only
had to construct and maintain a network, but also generate
organisms capable of data diffusion. As a result, organisms
tended to construct a dense network, diffuse data throughout
that network, and then focus on minimizing the number of
active links. The effects of this strategy are most notable for
the complete CA topology, as the LGP gradually reduces
the number of active links after generation 10.

Data Diffusion. In this study we consider a data item
to be successfully diffused throughout the network when
every organism in the CA has received a copy of the data.
Figure 11 plots the mean number of data items successfully
diffused by digital organisms throughout the network. In
particular, organisms self-organized into a connected net-
work and diffused data. No statistical significance can be
observed in the number of data items diffused in either
the complete or random CA topology, thereby implying
evolved diffusion techniques were successful regardless of
the underlying topology. For the completely connected CA
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Figure 10. Mean number of active links.

topology, organisms were usually able to diffuse all three
data items. In contrast, for the randomly connected CA
topology, organisms were usually able to diffuse between
two and three data items. As with the previous experiment,
these results also highlight the relevance of the underlying
CA topology on the organisms ability to not only construct
a network, but also diffuse data.
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Figure 11. Mean number of messages diffused across network.

Network Performance. In addition to constructing a
network and diffusing data, this experiment also rewards
digital organisms for minimizing the number of messages
sent through the network as part of the data diffusion
process. Figure 12 plots the mean number of messages sent
throughout the network at each generation of the LGP. This
figure shows that digital organisms evolved by the LGP
struggle to minimize the number of sent messages in order to
successfully diffuse data. One possible explanation for this
behavior is that each digital organism has limited knowledge



of its surrounding environment, and without global state
information it is impossible for an organism to determine
if other organisms have received a specific data item. As a
result, evolved digital organisms adopt a strategy of sending
many messages in order to maximize the number of diffused
data items.
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Figure 12. Mean number of messages sent throughout the network.

Energy Conservation. Lastly, this experiment also re-
wards digital organisms for maximizing the amount of
energy they conserve as they construct a network and diffuse
data. Figure 13 plots the mean remaining energy in the CA
at the end of the fitness evaluation process (i.e., when 200
generations have executed in the CA). This plot shows that
the LGP is able to evolve digital organisms that consume
fewer resources while constructing a network and diffusing
data. The LGP applied two different strategies to achieve this
objective. First, the LGP reduced the length of candidate
programs in order to execute fewer instructions and thus
conserve energy. Second, the LGP leveraged conditionals as
guards to prevent digital organisms from executing unneces-
sary expensive instructions, such as sending a message when
the outgoing queue is empty. Combined, these two strategies
enabled digital organisms to conserve more energy while
reducing the number of active links and sent messages.

Sample Genome. Figure 14 presents a sample genome
evolved by GAIA for constructing a network and diffusing
data. As the sequence of instructions in this figure shows,
this organism first executes a simple initialization phase to
check for incoming messages. In particular, if no message
is stored in the incoming queue, then the organism moves
the instruction pointer to the end of the program in order to
conserve energy. On the other hand, if the incoming queue
contains a message, then the organism begins two neighbor
selection phases. Both neighbor selection phases attempt the
same strategy of forwarding a data item to a neighboring
organism whose incoming queue is not congested with more
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incoming messages than it can send throughout the net-
work. This genome comprises several logical conditionals,
such as [F-NOT, to alter its execution path in response
to the outcome of another instruction. Often, these logical
conditionals are mutated into the genome around several
no-op instructions, most likely to facilitate the conditional
jumps within the genome. If no suitable organism is found
in these two selection phases, then the organism selects
some neighbor at random. Lastly, the organism establishes
a communication link with the target neighbor, sends the
message to the target neighbor, and then removes the data
item from its outgoing queue.

In summary, GAIA successfully evolved digital organisms
that not only constructed connected networks while mini-
mizing active links, but also managed to diffuse data while
attempting to maximize conserved energy. To achieve these
objectives, most digital organisms first focused on satisfying
their functional objectives of constructing a connected net-
work and diffusing data. Digital organisms then addressed
non-functional objectives, such as minimizing active links
and maximizing network performance and energy conserva-
tion.

V. DISCUSSION

The underlying CA topology dictates, to some degree,
how well digital organisms satisfy functional and non-
functional requirements in self-organization tasks. Specifi-
cally, the amount of information that an organism can obtain
about the network is directly related to that organism’s
neighborhood size. Experimental results suggest that digital
organisms are able to satisfy their functional objectives
despite the underlying CA topology, as digital organisms
successfully constructed connected networks in both exper-
iments and diffused data in the second experiment. The
underlying CA topology, however, significantly affects how
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Figure 14. Sample genome for constructing a network and diffusing data.

well digital organisms satisfied non-functional objectives,
such as minimizing the number of messages send and maxi-
mizing the amount of energy conserved. In particular, it is in-
creasingly challenging for digital organisms to self-optimize
their behaviors with limited information about other digital
organisms in the network. These observations imply that
careful consideration must be given to the underlying CA
topology when modeling specific network environments.

This study applies an interpreted LGP for evolving net-
work controllers that not only construct connected networks
and diffuse data, but are also amenable to visual inspection
and analysis. This simplicity in the program’s representation,
however, comes at the expense of modularity. In particular,
true modularity was not observed in the sense of reusing a
series of instructions via a subroutine or a loop. Instead, as
the genome previously presented in Figure 14 illustrates, the
LGP exploited the crossover operator in order to replicate
important sets of instructions multiple times throughout an
organism. This lack of modularity is likely caused not only
by the linear representation in a LGP, but also by the
lack of looping instructions in our instruction set. A more
sophisticated GP platform, such as the Push GP language
by Spector et al. [15] may address this issue.

VI. RELATED WORK

This section presents related work in the areas of evo-
lutionary computation-based approaches for network con-
struction and data diffusion, as well as the use of cellular
automata for network modeling.

A. Evolution of Network Construction and Data Diffusion

Knoester et al. explored algorithms for network construc-
tion [5] and data diffusion [6] in the Avida digital evolution
platform [16]. Conceptually, Avida is a complex instance
of a CA. To this end, their approach generated network
controllers as the CA executed. The results demonstrated
the viability of digital evolution as a means to explore self-
organizing and self-adaptive behaviors. In contrast, GAIA
uses a linear genetic program to gemerate network con-
trollers that are then evaluated within a CA. Moreover,
while the Avida instruction set includes biologically-relevant
instructions for tasks such as self-replication, the instruction
set in GAIA focuses only on network construction and
data diffusion tasks. As a result, GAIA is able to evolve
network controllers in fewer evaluations than with the Avida
platform.

B. CA-based Models of Wireless Sensor Networks

CAs have been applied to explore different wireless sensor
networking algorithms. These approaches tend to model the
execution environment of the wireless sensor network as a
fixed topology. For instance, Fan et al. [17] presented an al-
gorithm for network self-organization that was modeled after
a one-dimensional CA, such as a vector. Similarly, Cunha et
al. [18] explored the viability of two-dimensional CA’s for
modeling sensor networks, with a focus on controlling the
topology of the wireless sensor network. Fixed topologies,
however, do not necessarily capture realistic scenarios that
arise in networks, such as irregular topologies where nodes
may fail. In contrast, Doman [19] proposed simulating and
analyzing wireless sensor network algorithms with a CA
whose underlying topology could change during simulation.
The approach presented in this paper overlaps with the work
by Doman et al. in that our CA also supports dynamic
underlying topologies. However, while these approaches
evaluate existing algorithms on a given CA topology, GAIA
leverages the CA as a platform to automatically program
self-organizing and self-adapting behaviors.

Subrata et al. [20] presented an approach that combined
a genetic algorithm [14] and a CA to manage location man-
agement schemes in wireless sensor networks. Specifically,
their approach evolved a vector of CA state-based transition
rules that specified whether a wireless sensor node reported
gathered data or not. To this end, their approach used a fixed
hexagonal-shaped grid to model the placement of wireless
sensor nodes. In contrast, GAIA uses an interpreted LGP
to evolve a network controller that not only constructs a
network from an arbitrary topology, but also diffuses data
throughout the network.

VII. CONCLUSIONS

This paper presented GAIA, a new evolutionary computa-
tion approach that can be used to develop self-organizing
network construction algorithms and efficient and robust



data distribution strategies. The proposed approach com-
bines a linear genetic program with a cellular automaton
to generate digital organisms capable of self-organization
and self-adaptation. Experimental results demonstrate this
approach is able to evolve organisms that construct different
types of networks, as well as distribute messages to all
other organisms in the network. Future directions for this
work include exploring whether we can combine GAIA with
the Push genetic programing infrastructure [15] to evolve
modular network controllers.
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