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Preface 

 

The work described in this thesis was undertaken from November 2012 to February 

2017, in the School of Civil, Environmental and Mining Engineering, at the University 

of Adelaide. Throughout the thesis, all the materials, techniques, concepts and 

conclusions attained from other external resources have been duly referenced and 

appropriately acknowledged in the text. 

 

Listed below are the sections of the thesis that designate the work which, to the best 

of her knowledge and belief, the author claims originality. 

 

In Chapter 4: 

 

 the details of the database of cone penetration test (CPT) results that were 

compiled from previous ground improvement projects associated with rolling 

dynamic compaction (RDC); 

 the complete development of the model to predict the effectiveness of RDC 

based on CPT data using artificial neural networks (ANNs). 

 

In Chapter 5: 

 

 the details of the database of dynamic cone penetrometer (DCP) results that 

were compiled from previous ground improvement projects associated with 

RDC; 

 the complete development of the model to predict the effectiveness of RDC 

based on DCP test data using ANNs. 
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In Chapter 6: 

 the application of genetic programming (GP) for predicting the effectiveness

of RDC based on CPT data;

 the comparison of the results of GP and ANN modelling.

In Chapter 7: 

 the complete development of the computer program to predict the effectiveness

of RDC based on DCP data using GP;

 the comparison of the results of GP and ANN modelling.

In Chapter 8: 

 the assessment of the developed optimal ANN- and GP-based models and the

selection of the most feasible approach of predicting the effectiveness of RDC

on different ground conditions with respect to CPT and DCP data;

 the development of a comprehensive set of guidelines for each of the artificial

intelligence (AI) techniques, i.e. ANN and GP.

A list of publications that have been prepared as a result of this research is presented 

below. 
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Abstract 

 

The research presented in this thesis focuses on developing predictive tools to forecast 

the effectiveness of rolling dynamic compaction (RDC) in different ground conditions. 

Among many other soil compaction methods, RDC is a widespread technique, which 

involves impacting the ground with a heavy (6–12 tonnes) non-circular (3-, 4- and 5-

sided) module. It provides the construction industry with an improved ground 

compaction capability, especially with respect to a greater influence depth and a higher 

speed of compaction, resulting in increased productivity when compared with 

traditional compaction equipment.  

 

However, to date, no rational means are available for obtaining a priori estimation of 

the degree of densification or the extent of the influence depth by RDC in different 

ground conditions. In addressing this knowledge gap, the research presented in this 

thesis develops robust predictive models to forecast the performance of RDC by means 

of the artificial intelligence (AI) techniques in the form of artificial neural networks 

(ANNs) and linear genetic programming (LGP), which have already been proven to 

be successful in a wide variety of forecasting applications in geotechnical engineering 

aspects. This study is focussed solely on the 4-sided, 8 tonne impact roller (BH-1300) 

and the AI-based models incorporate comprehensive databases consisting of in situ 

soil test data; specifically cone penetration test (CPT) and dynamic cone penetration 

(DCP) test data obtained from many ground improvement projects involving RDC. 

 

Thus, altogether, two distinct sets of optimal models: two involving ANNs – one for 

the CPT and the other for the DCP; and two LGP models – again, one for the CPT and 

the other for the DCP – are presented.  The accuracy and the reliability of the optimal 

model predictions are assessed by subjecting them to various performance measures. 

Furthermore, each of the selected optimal models are examined in a parametric study, 

by which the generalisation ability and the robustness of the models are confirmed. In 

addition, the performance of the optimal ANN and LGP-based models, as well as other 
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aspects, are compared with each other in order to assess the suitability and 

shortcomings of each. Consequently, a recommendation has been made of the most 

feasible approach for predicting the effectiveness of RDC in different ground 

conditions with respect to CPT and DCP test data. The models have also been 

disseminated via a series of mathematical formulae and/or programming code to 

facilitate their application in practice. 

It is demonstrated that the developed optimal models are accurate and reliable over a 

range of soil types, and thus, have been recommended with confidence. As such, the 

developed models provide preliminary estimates of the density improvement in the 

ground based on the subsurface conditions and the number of roller passes. Therefore, 

it is considered that the models are beneficial during the pre-planning stages, and may 

replace, or at the very least augment, the necessity for RDC field trials prior to full-

scale construction. In addition, the analyses demonstrate that the AI techniques provide 

a feasible approach for non-linear modelling involving many parameters, which in 

turn, further encourages future applications in the broader geotechnical engineering 

context. Finally, a comprehensive set of guidelines for each of the AI techniques 

employed in this research, i.e. ANN and LGP, is provided, with the intention of 

assisting potential and current users of these techniques. 
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1.1 INTRODUCTION 

The ground, which involves soils and rock, by its nature, exhibits varied and uncertain 

behaviour because of its formation and variability. However, sometimes, these ground 

variabilities impose limitations upon which constructions are affected. Thus, 

geotechnical engineering often deals with problematic soil conditions, where ground 

improvement techniques are often necessary. Ground improvement provides 

modification or alteration of existing site foundation soils or earth structures in order 

to facilitate better performance under operational conditions (Army, 1999). As 

identified by Munfakh and Wyllie (2000), the main objectives of ground improvement 

are to: 

 increase the bearing capacity (i.e. reduce settlement);

 control deformations and accelerate consolidation;

 provide lateral stability;

 form seepage cut-off and environmental control; and

 increase resistance to liquefaction.

Currently, there are more than 30 different ground improvement techniques (Phear and 

Harris, 2008), which can be broadly categorised into 5 main groups: removal, 

compaction, consolidation, modification and load transfer. Amongst these, 

compaction has found to be an appropriate, cost effective and feasible approach for a 

number of projects associated with ground-related risks. Soil compaction is a form of 

ground improvement technique, whereby the ground is physically compressed by 

means of applied mechanically energy. It often involves the rearrangement of soil 

structure, whilst the strength of the material is increased with a reduction in porosity 

and hydraulic conductivity. Soils are compacted by means of 4 different types of 

compaction effort: vibration, kneading, pressure and impact, which can be further 

categorised into two principal types of compactive force: static and dynamic. Static 

compaction involves the densification of the ground by means of a downward force on 

the ground surface by the self-weight of the machinery, whereas dynamic compaction 

is characterised with a kinetically-driven downward force additional to the 
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equipment’s static weight. The most common types of static compaction equipment 

are circular rollers, which usually employ drums, pad feet and pneumatic multi-tyres, 

whilst dynamic compaction makes use of heavy tamping, vibratory drums and plates, 

rammers, vibroflotation and rolling dynamic compaction. 

Impact rolling, generically known as rolling dynamic compaction (RDC), is a well-

established method of soil compaction where the soil densification is achieved by 

means of high energy impacts. RDC involves heavy (6–12 tonnes) non-circular 

modules (3-, 4- and 5-sided), which rotate about their corners and fall to the ground as 

they are drawn forward behind a tractor. Consequently, RDC enables the impact roller 

to impart a greater amount of compressive energy on to the soil and thus, RDC often 

provides an alternative to the traditional approaches of ground improvement, with 

superior compaction capabilities. As such: 

 RDC is effective, in that it improves the ground to a greater depth – more than

1 m beneath the ground surface and sometimes deeper than 3 m in some soils;

compared to conventional static and vibratory compaction, where the influence

depths are generally less than 0.5 m (Clifford, 1976, 1978b; Avalle and Carter,

2005; Jaksa et al., 2012);

 RDC can compact thicker lifts, in excess of 0.5 m, which is considerably

greater than the traditional layer thicknesses of approximately 0.3 m, which

enhances RDC’s cost effectiveness (Avalle, 2006; Scott and Jaksa, 2012); and

 RDC is also very efficient when employed in large and open sites, as it

traverses the ground at speeds of 9–12 km/h, which is much faster than

traditional compaction methods, using a vibratory roller, for example, which

travels at a speed of 4 km/h (Pinard, 1999).

To date, wider experience with RDC has been gained from impact roller applications 

in a variety of fields particularly in civil and mining projects, pavement rehabilitation 
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and in the agricultural sector. In addition, a number of field studies conducted to date 

has added to the existing body of knowledge on the mechanics of RDC, its energy 

transfer and especially its effectiveness and zone of influence in a range of ground 

conditions. Moreover, research has been directed towards investigating the factors 

affecting the efficacy of RDC, whereas optimization methods have also been 

suggested.  

 

However, there still exists a considerable gap in knowledge in relation to the prior 

estimation of the degree of densification and the extent of the influence depth by RDC 

in different ground conditions. This often results in the use of RDC being based on 

intuition and past experience from previous work undertaken in similar soils and site 

conditions. In addition, the ground improvement projects that identified RDC as a 

possible application for earthworks compaction, generally require a detailed trial 

program in order to affirm the method specification or for verification of RDC 

performance, which usually incurs a non-trivial cost and time commitment. Thus, there 

exists an urgent need for a rational method for the prior assessment of RDC with 

respect to various influencing factors. Such predictive models and empirical guides are 

readily available for many of the more common compaction practices. For instance, 

empirical guides are available to estimate the depth and ground conditions under which 

heavy tamping is applicable (Lukas, 1995). A reliable and accurate predictive model 

for RDC, applicable in a range of ground conditions, will enable geotechnical 

engineers to make a priori estimates of the effectiveness and the depth of influence 

associated with impact rolling. Indeed, forecasting the influence of RDC is complex 

due to the heterogeneous nature of the ground and the various site-specific factors that 

can potentially affect the improvement process. 

 

In addressing the above knowledge gap, the present study aims to develop an accurate 

and robust predictive model for prior estimation of the effectiveness of RDC by means 

of the artificial intelligence (AI) techniques in the form of artificial neural networks 

(ANNs) and genetic programming (GP), which have been shown to be of value in the 

broader geotechnical engineering context (Shahin et al., 2005a; Das et al., 2011; Alavi 

and Gandomi, 2012; Alavi et al., 2013). Attention is focussed on the 4-sided, 8 tonne 
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‘Broons impact roller’ (BH-1300), which is the most common 4-sided application of 

RDC in practice. It is intended that the model will provide additional, a priori 

information to supplement field trials undertaken on site prior to ground improvement. 

It is not expected that such AI models will replace or devalue site-specific field trials; 

rather they will provide a worthwhile additional tool for ground improvement projects 

involving RDC. To date, no such predictive models exist for RDC, neither empirical, 

theoretical nor numerical. 

 

1.2 AIMS AND SCOPE OF THESIS 

This research aims to investigate and quantify the effectiveness of RDC in a range of 

ground conditions and seeks to establish predictive tools, which are based on AI 

techniques. This study is focussed solely on the 4-sided, 8 tonne impact roller (BH-

1300) and the AI-based models are developed using an extensive database consisting 

of in situ soil test data; specifically cone penetration test (CPT) and dynamic cone 

penetration (DCP) test data obtained from many ground improvement projects 

involving RDC. 

 

Specifically, this thesis aims to:   

 

 develop an extensive database of actual, measured test records of ground 

improvement using RDC, together with a broad range of governing soil 

parameters; 

 

 explore the use of ANNs and GP for a reliable prediction of the ground 

improvement by RDC over a wide range of soil parameters; 

 

 compare the accuracy and reliability of the two AI techniques (ANNs and GP); 

 

 evaluate the influence of a range of input parameters and assess their relative 

importance with respect to RDC ground improvement; 
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 where possible, produce a simple and practical formula, based on the optimum 

AI model results, to forecast the performance of RDC that will improve the 

application of RDC in practice; and 

 

 establish a set of general guidelines for developing ANN and GP models to 

facilitate their further application in the future. 

 

1.3 LAYOUT OF THE THESIS 

This thesis details the research undertaken to develop predictive tools which quantify 

the effectiveness of RDC using AI techniques, as outlined in the following chapters. 

The thesis is presented in the form of a ‘thesis by publication’, where each of the major 

contributions has either been published in relevant international, peer reviewed 

journals, or has been submitted for review. The details of these are provided below. 

 

Chapter 2 provides a brief overview of the conventional soil compaction methods 

followed by a detailed assessment of RDC, highlighting its advantages, applications 

and limitations. A review of the existing literature regarding the estimation of the 

effectiveness and zone of influence of RDC is also given. In addition, the factors 

affecting the efficacy of RDC, which are relevant to the numerical modelling 

undertaken in this study, are presented. In discussing the current practice of estimating 

the effectiveness of RDC, an example of an impact roller compaction trial is described 

and thus, the need for a predictive tool for a priori prediction of the influence of RDC 

is highlighted. The field tests and measurement techniques used for the verification of 

ground improvement by RDC are then briefly discussed, as these test data will be 

incorporated in the subsequent AI model development. 

 

Chapter 3 provides a detailed review of the two AI techniques, ANNs and GP, which 

are the focus of the numerical modelling undertaken in this study, by providing 

background information and their structure and operation. Later in this chapter, the 

relative success or otherwise of ANNs and GP in fields related to ground compaction 

is examined to assess their utilisation in solving real-world problems.  
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Chapter 4 presents the first of the publications resulting from this research and 

involves the development of an ANN model based on CPT data. The paper first 

describes the CPT database, which consists of data related to both the pre- and post-

compaction conditions that were compiled from previous ground improvement 

projects associated with RDC. Following this, the details of the ANN model 

development in the form of multi-layer perceptrons (MLPs) that are trained with the 

back-propagation algorithm are presented. The performances of the resulting models 

are compared and the selection of the optimum model is then discussed. In addition, a 

parametric study that ensures the generalisation ability of the selected optimum model, 

followed by the formulation of design equations based on the optimum model 

parameters, are described. Finally, modelling issues and issues encountered 

throughout the study are discussed. 

Chapter 5 presents the second publication from this research, which involves the 

application of ANNs for predicting the impact of RDC using DCP test results. The 

paper initially describes the compilation of the database in order to provide an 

appreciation of the data that are included in the ANN modelling. This database 

provides information relating to the soil properties and strength data in terms of DCP 

test results that were compiled from a range of ground improvement projects involving 

the 4-sided impact roller. In this chapter, the steps involved in the ANN modelling 

process are outlined with a comprehensive description of each stage, together with 

available options. The results of the model optimisation are presented, followed by the 

behaviour of the optimal network when assessed for robustness using a parametric 

study. Numerical equations that facilitate the dissemination and deployment of the 

optimal ANN model to predict the level of ground improvement derived from RDC 

are detailed. Subsequently, a sensitivity analysis, which identifies the relative 

importance of the factors that are significant to ground improvement predictions in 

different soil conditions, is presented. 

Chapter 6 is comprised of the third publication resulting from this study and details 

the application of GP for predicting the effectiveness of RDC using CPT test 

results. The emphasis of this paper is placed on a particular variant of GP, namely 
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linear genetic programming (LGP). The same database as described in Chapter 4 that 

comprised in situ soil strength data in the form CPT results is again utilised. The 

details of the optimal LGP-based model are then presented along with the 

performance analysis results. Later in this chapter, the robustness of the optimal 

model is investigated using a parametric study, followed by the explicit 

formulation of an LGP-based numerical equation. Subsequently, a comparison 

of the results of GP modelling with those of the previous ANN modelling is presented 

followed by a thorough assessment of the reliability of the developed models. 

Chapter 7 presents the fourth publication, which implements the use of GP for the 

predictions of effectiveness of RDC using DCP test results. The same DCP database 

that presented in the Chapter 5 is employed for the development of the LGP-based 

model in this paper. The results of the optimal LGP model, along with a comparison 

with those obtained from the existing ANN model, are summarised. Following this, 

the details of parametric study and sensitivity analysis are discussed. In addition, the 

selected optimal LGP model for predicting the effectiveness of RDC is presented in 

terms of the C language computer code. 

Chapter 8 presents a summary of this research that synthesises the optimal AI models 

discussed in the previous chapters. The optimal ANN and GP models, with respect to 

CPT and DCP data, are compared with each other and the most feasible approach 

relevant to each dataset is recommended for future applications. The discussion of the 

models obtained using the ANN and GP techniques for the CPT and DCP databases 

has also been included in a conference paper, which is presented separately in 

Appendix C. Later in this chapter, a set of general guidelines for developing ANN and 

GP models are established based on the experience gained from the present research. 

Finally, recommendations for future work are presented. 
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2.1 INTRODUCTION 

This chapter provides the background information and a review of the relevant 

literature relating to rolling dynamic compaction (RDC). The following aspects of 

RDC are examined: its equipment and operation, its characteristics and applications, 

and its advantages and limitations. In addition, a detailed assessment of previous 

studies that have quantified the efficacy of RDC is provided followed by a treatment 

of the field trials and in situ test methods that are currently utilised in practice. Each 

of these aspects is relevant to the analyses and developments that follow in later 

chapters. 

2.2 GROUND IMPROVEMENT 

An increasing proportion of construction challenges geotechnical engineers to use land 

optimally, even land previously considered to be geotechnically unsuitable due to poor 

soil conditions, such as expansive soils, soft or compressible soils, non-engineered 

fills, collapsing and softening soils. In such circumstances, these problematic soils 

need to be treated using ground improvement techniques. Ground improvement is 

basically considered as the controlled alteration of the state, nature or mass behaviour 

of ground materials (Mitchell and Jardine, 2002) in order to achieve a satisfactory 

behaviour of the ground in terms of strength, bearing capacity, settlement and lateral 

stability. Over the years, a number of different ground improvement methods have 

been developed, which can be categorised into densification, consolidation, weight 

reduction, reinforcement, chemical treatment, electro treatment, thermal stabilisation 

and biotechnical stabilisation (Munfakh and Wyllie, 2000). Among these, 

densification of the ground by means of soil compaction is by far the most frequent 

method. 

Soil compaction is the method of increasing the soil density by means of mechanically 

applied energy. A rapid volume reduction takes place in the soil during the compaction 

process due to pore air expulsion, which results in particle rearrangement and 

sometimes crushing. Consequently, soil strength is improved, enhancing the stability 

and stiffness, whereby the post-construction and differential settlements of the ground 
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are reduced. At the same time, a denser state of soils reduces the hydraulic conductivity 

(Avalle, 2004d) so that compacted soils are less vulnerable to water seepage, 

contraction and swelling. 

 

A number of methods are widely used in ground compaction, which can be subdivided 

into two categories as static and dynamic compaction, based on the type of compaction 

force being applied. Static compaction is simply the densification of soils with the 

application of a downward force on the ground surface by the self-weight of the 

machine. The compactive effort in static compaction can be pressure and/or kneading. 

Some of the static compaction machinery include drum, pad foot, pneumatic multi-

tyre and sheepsfoot rollers (Figure 2.1). In addition to the compaction of soil layers, 

static compaction rollers are also used for finishing operations as they are able to 

achieve a smooth ground surface (e.g. smooth drum rollers). On the other hand, in 

dynamic compaction, in addition to the equipment’s self-weight, a kinetically-driven 

downward force is applied on the ground surface. Dynamic compaction makes use of 

heavy tamping, vibratory drums and plates, rammers, vibroflotation and rolling 

dynamic compaction (Figure 2.1). As these machines operate, the additional 

downward force, either by vibration or an impact mechanism, effectively rearrange the 

soil particles into a denser state. However, most of the static and dynamic compaction 

methods, except heavy tamping and rolling dynamic compaction, are only capable of 

compacting near surface soil layers, where the compaction depth is limited to between 

0.2 m and 0.5 m (Scott and Jaksa, 2012). 

 

2.3 ROLLING DYNAMIC COMPACTION (RDC) 

Rolling dynamic compaction (RDC) is a soil compaction method that has become 

increasingly popular in the construction industry over the past few decades. This 

method employs a non-circular (3-, 4- and 5-sided) heavy module (6 to 12 tonnes) 

which is drawn behind a tractor and, which distinguishes RDC from other conventional 

compaction methods. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 2.1   Various ground compaction methods: (a) drum rollers; (b) pad foot 

rollers; (c) pneumatic multi-tyre rollers; (d) rolling dynamic compaction;  

(e) heavy tamping; and (f) vibrating plates.

The innovative concept of a non-circular roller emerged during the 1930s, when the 

principles of soil mechanics were being formalised (Clifford, 1978b). Later, in the 

early 1950s, the first practical prototype impact roller became successful in the  

treatment of road subgrades underlain by collapsible sands in South Africa (Clifford, 

1978b). Over the years, a number of advancements have been incorporated on the 

module design but its value was not fully realised until the mid-1980s. Since then RDC 

has become a more viable method amongst the various ground improvement 

techniques currently in widespread use. At present, RDC is commercially available in 

different compactor module designs, implemented worldwide, with two leading 

companies: Landpac Technologies Pty Ltd. employing 3- and 5-sided modules; and 

Broons Pty Ltd. manufacturing and operating the 4-sided module. Figure 2.2 illustrates 

the different module shapes of the RDC compactors in current use.  

Broons Pty Ltd. (2016) manufactures and operates 4 variants of the 4-sided RDC 

module of RDC with specifications as outlined in Table 2.1. This study is focused on 

the 4-sided, 8 tonne 'impact roller' (BH-1300) which is, by a long measure, the most 
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often used in ground improvement projects. Since its introduction in Australia in 1984 

this module has been applied to a wide variety of compaction work related to landfills, 

sub-base and subgrade compaction, as well as agricultural and mine site applications. 

As a result, a large amount of data is available from many project records that can be 

utilised to develop numerical models to predict the application of RDC. 

 

  

(a) 

  

(b) 

  

(c) 

Figure 2.2   Different impact roller modules: (a) 3-sided; (b) 4-sided; and  

(c) 5-sided. 

 



14 Chapter 2. Literature Review: Rolling Dynamic Compaction 

 

Table 2.1   Broons module characteristics (Broons Hire, 2016). 
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BH-1300 13.8 1.3 8 150 F, RF, SB, SG 4.5 2.61 1.5 12 

BH-1300 HD 18.2 1.3 12 150 F, RF, SB, SG 4.8 3 1.5 12 

BH-1300 MS 14.3 1.3 8.5 150 M, R, F 4.8 2.61 1.5 12 

BH-1950 MS 18.2 1.3 12 150 M, R, F 4.8 3.31 1.5 12 

* F = Fill, M= Mining, R = Rock, RF = Refuse, SB = Sub-base, SG = Subgrade 

 

2.3.1 Characteristics of the 4-sided Impact Roller 

The 4-sided impact roller module consists of a steel casing which is completely filled 

with concrete to produce the non-circular solid mass with rounded corners, as shown 

previously in Figure 2.2(b). A feature of the 4-sided impact roller is that it incorporates 

a double-linkage spring system, which again can be seen in Figure 2.2(b) and is 

connected to the impact roller frame and the module’s axle. The double-spring linkage 

system provides additional energy to initiate rolling and compact the ground. When 

the impact roller traverses the ground, the module rotates eccentrically about its 

corners and falls to the adjacent face of the square-shaped mass resulting in a series of 

high amplitude impact blows delivered onto the ground at a low frequency of 90 to 

130 blows per minute (Pinard, 1999). As the module undergoes the lifting phase, the 

spring system compresses and when the energy stored in spring system is released, the 

module is accelerated to the downward phase, whereby an impact blow is imparted 

onto the ground. Thereafter, the impact roller mass remains at rest on the ground 

surface for a brief amount of time (dwell-time) allowing the double linkages to relax, 

whilst the tractor moves forward relative to the compactor module (Clifford and 

Bowes, 1995). As such, the revolution of the roller mass continues and impact blows 

are delivered onto the ground at regular intervals. In addition, to enable the roller to be 
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transported to and from the site without damaging adjoining pavements and 

infrastructure, the roller is fitted with a hydraulic ram that lifts the module clear of the 

ground. 

2.3.2 Energy Transformation and Improvement in Soil Density 

During the compaction process, the compactive effort is derived from three sources: 

(1) main potential energy from the static self-weight of the module; (2) additional

potential energy from being lifted about its corners; and (3) kinetic energy developed 

from being drawn along the ground. However, the computation of the energy 

transferred to the ground essentially requires several factors to be rationalised 

including: the indentation effect at the leading corner of the module; possible losses 

due to friction forces; and effects of the spring system (Clifford and Bowes, 1995; 

Avalle, 2004d). Nonetheless, it has been identified that with the impact roller 

mechanism has the potential to fully transfer the kinetic energy to the ground as 

indicated by the cessation of the drum motion immediately after an impact blow 

(Avalle, 2004d). Additionally, several field studies have investigated the amount of 

energy transferred to the ground by the action of impact rolling. For example, Avalle 

et al. (2009) conducted a study to quantify the effects of the 4-sided impact roller in 

terms of the energy imparted into the ground and to investigate the ground response. 

The testing regime comprised load cells and accelerometers embedded in ground along 

the impact roller path, whereby pressures and ground decelerations were measured. In 

this investigation, difficulties were encountered in controlling the reproducibility of 

the impacts, as it is almost impossible to ensure that the module strikes the exact same 

location on the ground, with each pass. Nevertheless, the study demonstrated that the 

pressure distribution beneath the impact module is non-uniform.  

As described earlier, due to the combination of potential and kinetic energy derived 

from the impact mechanism, together with the large mass of the module, RDC 

produces a greater amount of compactive effort than traditional (i.e. non-dynamic) 

compaction techniques. Consequently, the soil beneath the surface is densified into a 

state of lower void ratio by expelling the pore air and fluid, as mentioned above. The 
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process of densification by RDC was explained by Clifford (1978a). As the impact 

blows are delivered onto the ground surface, a denser band of soil is created 

immediately below the ground. The thickness of this band varies depending upon a 

number of factors, such as soil type, moisture content, the number of roller passes, and 

this will be discussed further later in this chapter. With the compaction is in progress, 

this denser band starts to expand in thickness. When it reaches the surface level, this 

soil band acts as a mass of dense material, where the energy waves resulting from the 

impact blows are radiated to the deeper layers in the ground. This phenomenon is 

illustrated in Figure 2.3. 

Figure 2.3   Dense layer build-up by impact compaction from Clifford (1978a). 

2.3.3 Comparison of Impact Compaction with Traditional 

Counterparts 

As a result of the greater amount of energy imparted to the ground from the impact 

mechanism, RDC often leads to a deeper influence depths; i.e. in excess of 3 m below 

the ground surface in some soils (Avalle and Carter, 2005), which is much deeper than 

conventional static and vibratory compaction (Clegg and Berrangé, 1971; Clifford, 
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1976, 1978b), where the influence depths are generally less than 0.5 m below the 

ground. This was demonstrated by  Pinard (1999) using a nail/hammer analogy, as 

illustrated in Figure 2.4. It is evident that RDC accounts for high load intensity and a 

large surface area of the compactor module in comparison to the static and vibratory 

compactors, coupled with a high amplitude/low frequency operation mode which 

results in RDC developing deeper influence depths than those of other conventional 

compaction methods (Pinard, 1999).  

Figure 2.4   Effectiveness of different compaction methods with respect to the 

nail/hammer analogy [modified from Pinard (1999)]. 

The effectiveness of RDC has been compared with traditional methods in several 

previous trial studies in South Africa. For example, Clifford (1976) conducted a 

comparison of the performance of impact rollers and vibratory rollers (4.5 and 9 tonne 

static mass) on a site filled with marine sand. He compared the performance data in 

terms of surface settlements corresponding to 50 roller passes, as illustrated in Figure 

2.5, and concluded that the impact roller influences the ground to a depth at least 3 m, 

whereas the depth influence is approximately 1.8 and 2.2 m below the ground for 4.5 

and 9 tonne vibratory rollers, respectively.  
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Figure 2.5   Comparison of impact compaction with vibratory rollers - level 

reduction in hydraulic fill of marine sand  

[modified from Clifford (1976)].  

As described by Pinard (1999), the following graph (Figure 2.6) compares the in-

depth effectiveness in terms of the dynamic stiffness of the soil with respect to several 

impact roller modules together with a conventional vibratory roller. It is evident that 

impact roller modules result in higher compacted layer stiffness than the vibratory 

roller. 

Furthermore, RDC is capable of inducing significant settlements over poorly 

compacted ground. In an earlier study conducted by Clegg and Berrangé (1971), the 

settlements imposed by a pentagonal shaped impact roller, with respect to the number 

of roller passes, were compared with those obtained from several other conventional 

static and vibratory rollers. As demonstrated in Figure 2.7, it is evident that the impact 

roller induces significantly greater subgrade settlements when compared to the other 

roller types. 
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Figure 2.6   Variation of dynamic stiffness of soil from different compaction methods 

[modified from Pinard (1999)]. 

Figure 2.7   The variation of average settlement induced by different roller modules 

[modified from Clegg and Berrangé (1971)]. 
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2.3.4 Advantages, Applications and Limitations 

The major benefit of implementing RDC is its effectiveness; the capability of 

influencing the ground to a greater depth, i.e. in excess of 3 m below the ground surface 

in some soils, when compared to conventional soil compaction methods. The 

effectiveness is discussed in detail later in this chapter. Moreover, the economics of 

the use of RDC is also favourable since the module traverses the ground at a speed of 

between 9 to 12 km/h, which is substantially greater than traditional static and 

vibratory rollers that operate at approximately 4 km/h (Pinard, 1999). This creates 

approximately two module impacts over the ground each second. Thus, RDC is 

particularly efficient when employed in large and open sites. For example, case studies 

conducted by Avalle and Carter (2005) and Bouazza and Avalle (2006) showed that 

the use of RDC resulted in a cost-effective and environmentally sustainable approach, 

where it was required to improve a large open area (approximately 2.2 ha) overlying a 

former landfill. These inherent characteristics of RDC make it very effective for many 

compaction applications. Moreover, it also appears that prudent use of RDC can 

provide significant cost savings in the civil construction sector. Thus, it has proven to 

be successful in a variety of applications within Australia and worldwide, particularly 

in civil, mining and agricultural applications, as discussed below.  

The deeper compactive effort and faster operating speed make RDC very effective for 

bulk earthworks. Thus, RDC is extensively used for the in situ densification of existing 

fills, such as on brownfield sites or former industrial land, raised land, landfills and 

earth embankments. The utilisation of RDC for these applications can be widely seen 

in developments related to Australian metropolitan areas, as well as in the United 

Kingdom, Hong Kong and the Netherlands (Avalle, 2004a). Moreover, RDC is 

frequently adopted in land reclamation projects, where usually dredged sand is 

compacted to form a densified soil base of significant thickness in order to reduce 

differential settlements.  In addition, RDC is found to be beneficial for landfill 

treatment due to its capability of effectively compacting the extremely variable, 

heterogeneous waste fills that generally lead to substantial differential settlements 

(Avalle and Carter, 2005; Bouazza and Avalle, 2006).  
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Impact rolling is also extensively used for subgrade compaction, where density 

improvement and a more uniform subgrade can be achieved from the ground surface, 

without excavation of material. It can compact thicker lifts, in excess of 500 mm (Scott 

and Jaksa, 2012), which is considerably greater than the traditional layer thicknesses 

of between 200 mm and 500 mm (Avalle, 2006) and also it can operate with larger 

particle sizes. Furthermore, RDC facilitates subgrade preparation by inducing 

significant settlements over poorly compacted ground. In addition, RDC is used for 

proof rolling, as it is readily able to identify soft spots. Sealed or stabilised base 

courses, even concrete bases in existing pavements, can also be fragmented efficiently 

using impact rolling, leaving material suitable for sub-base where new base and 

wearing courses can be laid without further earthworks (Avalle, 2004a). There have 

been many earthworks and pavement construction related projects that have been 

carried out successfully using the square impact roller, such as the reconstruction of 

rural roads in South Australia, Adelaide Airport and the Port River Expressway 

(Avalle, 2004a; Avalle and Grounds, 2004). 

RDC is also useful for a number of applications in the mining industry, including the 

construction and improvement of haul roads and cross-falls in mine sites, as the high 

speed and deep compaction effect facilitates the use of thicker layers and coarser 

materials. In addition, RDC has been productively utilised for construction of tailing 

dams (Avalle, 2006), compaction of the capping over waste rocks (Scott and Jaksa, 

2012), compaction of bulk earthworks of mine spoil materials and to induce fracturing 

of the surface layers in rock quarries, instead of using drill-and-blast techniques 

(Avalle, 2006). Moreover, significant value has been demonstrated in rubblising rocky 

materials in mine haul roads and tip heads to create smaller particles, thereby extending 

the life of tyres of mine haul trucks, which are particularly costly to replace. Some of 

the applications of RDC are illustrated in Figure 2.8.  

Impact rollers have also been shown to be beneficial for agriculturally related 

applications. Due to RDC, the relative density of the ground is improved and at the 

same time the material’s permeability is also reduced as a result of reduction of the 

pore air volume. Thus, RDC is being used for in situ density improvement of the bases 
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of water storage facilities and canal banks, whilst reducing infiltration, so as to 

minimise adverse environmental effects (Avalle, 2004d). Moreover, reduction in 

ground permeability facilitates water retention, which is significant in preserving 

limited water resources. Several field based studies, for example, Auzins and Southcott 

(1999), has investigated the potential benefits that arise from the use of impact roller 

in these applications. In addition, (Avalle, 2004d) reported several case studies, where 

infiltration tests are conducted in conjunction with impact rolling to quantify the soil 

permeability with respect to number of impact roller passes. The results showed a 

significant reduction in infiltration rate into the ground after a few roller passes. For 

example, in channel improvement works carried out in Marthaguy Irrigation in NSW, 

the infiltration rate of 210 mm/hour was reduced to a no measurable rate after 1 hour 

after only 5 impact roller passes.  

(a) (b) 

(c) (d) 

Figure 2.8   RDC applications: (a) compaction of subgrade; (b) proof rolling and 

demolition of existing pavements; (c) rubbilising rocky materials in mine haul roads; 

and (d) mine haul road maintenance. 
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As presented above, there are many benefits of RDC, however, there are also several 

limitations of adopting this technology. One is the disturbance to the ground surface 

layer, which occurs as a consequence of the action of the module. After RDC, the 

ground surface becomes undulating and the upper 100 to 200 mm, approximately, is 

loosened due to the kneading and shearing effect caused by the shape of the module 

(Avalle, 2004b, 2006). Most of the displacements occur vertically, but lateral 

displacements are also likely to occur around the area of impact (Clifford, 1978b). 

Thus, the top surface layer is not optimally compacted, when using RDC and often a 

grader and a drum roller are needed to finish the ground surface. However, on the other 

hand, the resulting surface corrugations provide a measure of interlock between 

adjacent soil layers, which helps to overcome lateral shearing effects. 

In addition, the module travel speed is also a consideration. As mentioned, the square 

impact roller is typically towed at an optimal speed of 9 – 12 km/h. This creates 

approximately two module impacts over the ground each second (Avalle et al., 2009). 

However, slower speeds of less than 9 km/h cause the compactor module to slide over 

the ground without turning about its corners due to the insufficient momentum, whilst 

at speeds above 12 km/h, the module tends to bounce causing uneven compaction, as 

well as the driver discomfort. This may also cause damages to the damping system and 

the mechanical components of the roller (Avalle et al., 2009) and undue fatigue to the 

tractor. Given these reasons, RDC is usually constrained to occupy in open spaces. 

When it is used on small and complex earthworks sites, RDC becomes inefficient and 

ineffective because of the inability of the module to achieve the speed requirements to 

operate in full momentum (Clifford, 1978b) and because of the required turning circle 

of approximately 10 m due to the equipment and the speed of operation. 

Because of the not insignificant ground vibrations that are generated by the impact 

roller operation, potential hazards exist to nearby sensitive structures and buried 

services in built up areas.  In such situations, continuous monitoring of ground 

vibrations is usually specified. Avalle (2007a) suggested that a buffer zone of at least 

2 to 5 m be adopted for industrial buildings, whilst a 7 to 20 m zone be used for 

residential buildings during impact rolling with the 8 tonne, 4-sided module.   
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2.3.5 Effectiveness and Zone of Influence 

There are several instances in the literature where RDC has been examined 

experimentally through field-based studies with the intention of investigating the 

degree of densification and the extent of influence depth in different ground 

conditions. Some of the recent research studies that have evaluated the effectiveness 

of the 4-sided impact roller (BH-1300) are briefly discussed below in chronological 

order. 

Avalle and Carter (2005) evaluated the ground improvement caused by impact rolling 

from a field study conducted in an industrial site in Banksmeadow, Sydney consisting 

of Botany sands, which were described to comprise uniformly graded fine-to-medium 

sized quartz grains. In investigating the depth of influence, the results of the cone 

penetration test (CPT) were compared with respect to number of roller passes. As a 

further measure, Avalle and Carter (2005) analysed the CPT results in terms of the 

improvement index for densification (Id) as per Equation 2.1, which utilises the 

specific energy of CPT penetration represented by cone tip resistance (qc), where qcf 

and qci are the values of qc after and before compaction, respectively. 

𝐼𝑑 = (
𝑞𝑐𝑓

𝑞𝑐𝑖
) − 1 (2.1) 

Based on the comparative results of Id obtained from this study at 3 locations after 5 

and 20 passes, as shown in Figure 2.9, Avalle and Carter (2005) confirmed that there 

was an improvement in strength after impact rolling to depths of at least 3 m below 

the surface. At the same time, a degree of inconsistency was observed in the degree of 

improvement at Location 1, which is likely the result of natural variations in the 

ground.  

Bierbaum et al. (2010) also attempted to investigate the influence zone of the impact 

roller in an uncompacted area of land in Gillman, South Australia. In their study, the 

research correlated the influence depth of RDC with the energy transferred during 

impact rolling in terms of vertical stress measurements, assuming minimal ground 

disturbance. Based on the measurements from earth pressure cells (EPCs) that were 
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embedded in the ground at different depths, they suggested that the influence depth 

with respect to 20 passes of the impact roller continued below 1.8 m. However, as the 

deepest embedment of the EPC was limited to a depth of 1.8 m, this study was unable 

to capture the influence of RDC extending deeper into the ground. Nonetheless, 

Bierbaum et al. (2010) conducted several additional CPTs and observed a noticeable 

improvement in the cone tip resistance measurements with respect to the number of 

roller passes and thus, verified that the influence depth of RDC could extend up to 3 

to 3.5 m below the ground.  

Figure 2.9   Variation of Id with respect to different number of impact roller passes 

[modified from Avalle and Carter (2005)].  

In addition, Jaksa et al. (2012) quantified the influence zone, i.e. both the vertical and 

lateral extent of the 4-sided impact roller, by means of a field-based case study. 

However, this study was considered to be an extension of the field work previously 

undertaken by Avalle et al. (2009), where the effectiveness of RDC was investigated 

in terms of the energy imparted into the ground measured using load cells. The field 

trial was conducted at the Iron Duke mine in Whyalla, South Australia and involved a 

series of EPCs embedded in the ground at different depths below the surface. As 

illustrated in Figure 2.10, the superimposed EPC data demonstrated a deterioration in 

maximum dynamic pressure as the depth increases and thus, Jaksa et al. (2012) 
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confirmed that the influence of impact blows decays with the depth, as expected. 

Moreover, the results of the averaged peak pressure measurements of EPCs at different 

depths obtained in this study (Figure 2.11) ensured that a significant and quantifiable 

improvement in ground has occurred mostly within the upper 2 m beneath the ground 

surface. This study also observed that the influence depth extends beyond 3.85 m 

below the ground.  

Figure 2.10   Super-imposed results of EPCs embedded at different depths as 

obtained by Jaksa et al. (2012). 

Figure 2.11   Resulting average peak pressure variation as obtained by 

Jaksa et al. (2012). 
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More recently, Scott and Jaksa (2014) conducted a field study involving a compaction 

trial that investigated both the vertical extent and lateral zone of influence of RDC 

again by means of the CPT. The site was described to be comprised of predominantly 

quartzose and carbonate sand (thickness of the compacted fill was 1 m) underlain by 

natural soil of stiff to hard silty clay. Based on the measurements of CPTs undertaken 

to a minimum depth of 2 m, they found that the influence depth extended to at least 

1.75 m below the surface after 10 impact roller passes. In addition, they found that the 

nature of the profile obtained from the CPT measurements, i.e. qc versus depth (Figure 

2.12), was unlikely to be attributed to the RDC compaction trial, however, it was 

suggested that the results may have been influenced by sensing the soil interface ahead 

of the cone tip. 

Figure 2.12   The variation of cone tip resistance with depth before and after 10 

passes of impact roller as obtained by Scott and Jaksa (2014). 

In addition to the above field-based research studies, to date many field trials have 

been conducted prior to full-scale compaction associated with various construction 

projects to ascertain the site-specific operational parameters, especially the number of 
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roller passes to satisfy the project specifications. The details of these field trials are 

discussed later in this chapter. However, comparatively, there has been very little 

research directed so far towards the application of numerical modelling for evaluating 

the effectiveness of RDC. To date, Kim (2010), Bierbaum et al. (2010) and Bradley et 

al. (2012) have investigated the influence zone of the impact roller using the finite 

element method (FEM). 

In particular, Kim (2010) used the FEM to account for the depths of influence of RDC 

with respect to different shapes of the impact roller module, i.e. cylindrical, triangular, 

Landpac (3-sided module), pentagonal and octagonal shapes having an identical drum 

weight of 12 tonnes. This study considered the depth of influence to be the depth where 

the vertical stress decreases to one-tenth of the stress at the surface. The numerical 

model demonstrated that the width of the contact area between the roller module and 

the soil is directly related to the influence depth, in addition to the higher energy 

induced by impact blows. Thus, based on the comparison of results, as shown in Figure 

2.13, this study affirmed the efficacy of utilising non-circular rollers for in-depth 

compaction over cylindrical shaped modules. However, this numerical simulation did 

not account for the effects of the water table, different soil types and the wave 

absorption and reflection effects, which restricts its wider acceptance. In addition, the 

study adopted a relatively simple soil constitutive model which was not calibrated 

against field-based measurements. 

The research conducted by Bierbaum et al. (2010), in their final year undergraduate 

research study, simulated the stress distribution in the ground resulting from the 4-

sided impact roller, both statically and dynamically. Static analysis accounted for the 

stresses induced by the self-weight of the roller module, whilst the dynamic analysis 

considered the pressure induced by the impact blows. However, the software used in 

this study, i.e. Midas GTS, incorporated very limited capabilities of dynamic FE 

analysis and restricted the simulations of multiple strikes of the roller module. 

However, based on their findings, Bierbaum et al. (2010) confirmed that dynamic 

effects induce greater influence depths than those obtained by static compaction. 
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Figure 2.13   The depth of influence of different drum shapes 

as obtained by Kim (2010). 

Bradley et al. (2012) also simulated the stress distributions obtained from impact 

rolling, as well as static loading. In quantifying the effectiveness of RDC, this study 

proposed a redefinition of the depth of influence, which is the depth of soil affected by 

the load imposed at the ground surface; generally, but certainly not uniformly, using 

10% of the peak stress as the limit. However, Bradley et al. (2012) defined the 

improvement depth, which is the depth over which the soil undergoes significant 

improvement in density and shear strength due to RDC. The proposed FE model was 

found to predict soil stresses reasonably accurately for both static and dynamic 

conditions. As the FE model was validated against the field data obtained by Mentha 

et al. (2011), it was shown that RDC was most effective for depths of 0.8 to 3 m below 

the surface, where the soil density increased with greater numbers of roller passes. 

However, these numerical simulations of RDC were found to have several limitations 

in the form of assumptions, errors in laboratory testing and modelling methodology.  
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In addition to the field-based studies and numerical simulations described above, a 

number of other researchers have attempted to study the influence depth in relation to 

other impact roller variants, i.e. 3- and 5-sided, and these are summarised in Table 2.2. 

Table 2.2   Influence depths of different impact roller modules. 

Research Impact roller module Soil type 
Depth of 

influence 

Clifford (1978a) MK. II, IV, V 4 sided 
Hydraulic sand and 

industrial rubble 
~ 3 m 

Kelly (2000) 3 sided Landpac roller Botany sand ~  4 m 

Kelly (2000) 
Combination of 5- and 3-

sided Landpac roller 
Botany sand 4 – 5 m 

Avalle (2007b) 
12 tonne, 4 sided Broons 

roller 
Calcareous sand 1.5 – 7 m 

2.3.6 Factors Affecting the Efficacy of Rolling Dynamic Compaction 

It is evident from the RDC case studies described above, that the degree of 

densification or the extent of the influence depth in different ground conditions is 

unpredictable because it is likely to be affected by various site-specific factors and 

especially by the heterogeneous nature of the soil. In addition, the complex nature of 

the operation of the impact roller, as well as the consequent behaviour of the ground, 

has meant that the performance of RDC is complex. It has been identified that the 

degree of soil compaction depends upon key factors including: the inherent physical 

properties of the soil, such as dry density, moisture content, soil type and gradation; 

the thickness of the soil layer being compacted; and the compactive effort. These 

factors are briefly described below with the associated examples from several case 

studies. 
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2.3.6.1 Soil Type and Gradation 

Among the compaction variables that are most influential on the degree of 

densification, soil type and gradation are more prominent. Soils used for earthwork 

compaction vary considerably from project to project, particularly in terms of their 

geotechnical characteristics and particle size range. However, one of the strengths of 

RDC is that it can work with a wide range of earthworks materials (Avalle, 2004b). 

Generally, filling or in situ subgrade material may consist of large oversized particles 

such as rock or rubble, or well or poorly graded coarse- or fine-grained materials, or 

sometimes organic materials. Although, it is an obvious advantage that the impact 

roller is able to work on a variety of soil types but, the estimation of its efficacy is 

challenging (Avalle, 2004b). Nonetheless, several studies have confirmed the RDC 

behaviour and its applicability on different types of soils.  

For example, as reported by Avalle (2007b), impact rolling with the 4-sided, 12 tonne 

module, on a site consisting of a coarse-grained calcareous sand, caused significant 

improvement as measured by the CPT to a depth more than 7 m after 40 passes. In 

addition, a case study conducted by Scott and Jaksa (2012) at a mine site verified the 

efficacy of the 4-sided, 8 tonne impact roller on coarse-grained filling consisting of 

tailing materials representative of a well graded sand with some gravel (80% sand 

sized, 14% gravel sized and 6% clay sized). In situ density tests of this study verified 

the RDC performance (95% of maximum modified dry density) to be acceptable after 

6 passes on 900 mm thick lifts or 10 passes up to 1,100 mm thick lifts. Kelly (2000) 

presented another two case studies based on field trials, i.e. one employed the 3-sided 

module and the other a combination of 3- and 5-sided modules, where both sites were 

found to be comprised of coarse-grained soils; i.e. natural marine sand and a 

reclaimed sand deposit, respectively. These case studies demonstrated a uniform 

increase in soil strength to depths of more than 4 m below the surface based on CPT 

results and thus affirmed the suitability of RDC for the compaction of weak, loose 

sands.  

In addition to the above highlighted case studies on coarse-grained soils, the impact 

roller has the potential of compacting fine-grained materials, as RDC also involves, to 
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some extent, a kneading action. The applicability of impact rolling on fine-grained 

soils has been verified by several studies in the literature. For example, according to 

Avalle (2007b), 98% compaction was achieved after 15 passes of the 4-sided, 8 tonne 

module on a 700 mm thick fine-grained alluvial soil, i.e. mainly sandy clay/clayey 

sand. Another successful application of RDC on fine-grained soils was reported by 

Kelly (2000), which involved a field trial that employed the 3-sided impact roller on 

an uncontrolled, variable clay fill. In this case study, RDC was found to be effective 4 

m below the surface with a significant improvement in shear strength in the fill 

material.   

From the observations of field trials on different types of soils, it has been observed 

that RDC results in a significant increase in the in situ strength to a considerable depth 

in coarse-grained materials, more so than in fine-grained soils. This has also been 

observed in the numerical study conducted by Bierbaum et al. (2010), where a greater 

amount of stress was measured in coarser material than in fine-grained soil. This may 

be attributed to the fact that coarser materials drain better and the pore pressures 

dissipate far more rapidly than in fine-grained soils and thus, allowing the particles to 

rearrange more easily into a denser state. According to Terashi and Juran (2000) 

dynamic compaction works best on dry coarse-grained soils due to better water 

drainage than in fine-grained soils. Moreover, it has been specified that loose soils are 

susceptible to over compaction more readily in fine-grained silts and clays and thus, 

to overcome such situations, the necessary amount of impact energy (e.g. number of 

roller passes, and tamper weight and drop height) needs to be established in advance. 

2.3.6.2 Compactive Effort 

The compactive effort is also an important factor that affects the degree of soil 

compaction. Compactive effort is the amount of energy imparted to the ground, which 

can be considered as a function of lift thickness, number of roller passes, machine 

speed, weight and height of the drop. However, for a given compaction situation, most 

of these parameters are fixed for a particular module type and thus, the compactive 

effort is determined solely on the number of roller passes.  
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In a recent study conducted by Scott et al. (2012) the applicability of the standard 

Proctor compaction test (Standards Association of Australia, 2003b) and modified 

Proctor compaction test (Standards Association of Australia, 2003a) was examined 

with respect to RDC. The characteristics of these tests are compared in Table 2.3 

below.  

In this investigation, Scott et al. (2012) conducted field density tests on a site 

comprised of iron tailings (14% gravel sized, 80% sand sized and 6% clay sized 

particles) with respect to 0, 8 and 16 impact roller passes and the results were compared 

with standard and modified Proctor compaction test results. As shown in the Figure 

2.14, the resulting variation in dry density ratio, with respect to the difference between 

the field and optimum moisture content, confirmed that the actual density versus 

moisture relationship is more represented by the modified test than the standard test. 

Thus, Scott et al. (2012) concluded that compactive effort of RDC is best measured by 

the modified Proctor compaction test. For this site condition, 16 passes of the impact 

roller represented 98% compaction, with respect to maximum modified dry density.  

Table 2.3   Comparison of imparted energy for standard and modified Proctor 

compaction tests. 

Test Standard Proctor Modified Proctor 

Hammer weight 2.7 kg 4.9 kg 

Drop height 300 mm 450 mm 

Energy imparted per blow 7.94 J 21.62 J 

No. of soil layers 3 5 

No. of blows per layer 25 25 

Energy imparted per unit volume 596 kJ/m3 2703 kJ/m3 
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(a) 

(b) 

Figure 2.14   Dry density vs optimum moisture content: (a) comparison of laboratory 

standard and modified Proctor results; and (b) comparison with respect to 0, 8, 16 

roller passes [modified from Scott et al. (2012)]. 

[SMDD - standard maximum dry density, MMDD - modified maximum dry density]
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2.3.6.3 Dry Density and Moisture Content 

The moisture content and the dry density are also extremely important among the 

factors associated with compaction. It is well known that soil type, moisture content, 

compactive effort and dry density are related to one another via a series of compaction 

curves, as shown above in Figure 2.14(a). For example, as shown in Figure 2.14(b), 

the field trial conducted by Scott et al. (2012) indicated that a greater dry density can 

be achieved for lower moisture content with a higher compactive effort (represented 

by the number of roller passes) and this is beneficial in earthworks compaction.  

However, as shown in the Figure 2.15, with the increasing amount of compactive effort 

in terms of number of blows, the gain in dry density decreases and the additional blows 

begin to have little or no effect on the dry density. Thus, it is essential to maintain the 

right amount of compactive effort that is both effective and efficient in terms of the 

optimal moisture content and maximum dry density.  

Figure 2.15   Variation of dry density with number of roller passes. 
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As RDC imparts comparatively greater energy to the ground than that by conventional 

rollers, the impact roller is capable of achieving the required dry density over a wide 

range of moisture contents. Nevertheless, RDC is less effective if the soil is too dry of 

the optimum moisture level (Scott and Jaksa, 2014). Broons Hire (2016) suggests that 

2% below the laboratory tested optimal moisture content is the most effective. The 

reduced dependency of RDC on moisture content is advantageous and expands its 

applicability, especially in the agricultural sector in semi-arid areas in achieving a 

uniform subgrade. 

 

2.3.7 Current Practice of Estimating RDC Effectiveness  

To date, there exists no rational means, theoretical or empirical, for obtaining a prior 

estimation of the degree of densification or the extent of the influence depth by RDC 

in different ground conditions. Moreover, the complexity and the interrelationships of 

the factors described above, that affect the efficacy of RDC, are not yet fully 

understood. Subsequently, the performance design and application of RDC currently 

relies heavily on the geotechnical engineer’s experience-based judgement. Moreover, 

field trials are often carried out on site prior to the full-scale compaction work. 

 

2.3.7.1 Field Trials 

A detailed field trial program is usually undertaken in advance of many earthworks 

projects to ascertain the relevant operational parameters, especially the optimal 

number of impact roller passes needed to achieve the required percentage of maximum 

dry density in a site. In another words, a field trial is often carried out to define the 

method specification that stipulates the methods to be used for the earthworks 

construction at a particular site (Avalle, 2004c). A number of detailed reviews on field 

trials are available in the literature (Barrett and Wrench, 1984; Avalle and Young, 

2004; Avalle, 2007b; Nash, 2010; Scott and Jaksa, 2012). 

 

In a typical field trial, a testing pad is arranged, which is representative of the full-scale 

operation of the compaction process. For example, Figure 2.16 illustrates a typical 
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schematic diagram of the testing pad adopted for the compaction trial conducted by 

(Scott and Jaksa, 2012), which was undertaken to construct a proposed tailings dam 

embankment at the mine site. As shown, the trial pad was sufficiently large with the 

dimensions of 120 m in length and 25 m in width, including ramp areas, so that the 

impact roller could achieve its optimal speed when it reached the middle section (25 

m × 50 m) of the trial pad, where all the tests were undertaken. The test pad consisted 

of a single layer with various thicknesses, from 0.5 to 1.5 m, since one of the research 

objectives was to determine the lift thicknesses that yielded optimal compaction 

characteristics. In addition, this particular test pad accommodated 9 impact rolling 

lanes, comprising 3 separate zones of 10, 20 and 30 passes of the 4-sided impact roller.  

 

 

Figure 2.16   Schematic diagram of a trial pad  

[modified from Scott and Jaksa (2012)]. 

 

The compaction trials often involve a testing or monitoring regime, which seeks to 

verify the efficacy of RDC with respect to the required number of roller passes and lift 

thickness to achieve a performance specification of minimum dry density or maximum 

surface settlement, for example. Thus, in the field trial conducted by Scott and Jaksa 

(2012), the verification of RDC involved a combination of surface settlement surveys, 
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soil sampling and in situ tests, such as penetrometer and field density testing, that were 

undertaken after different numbers of module passes. A detailed description of the test 

methods and measurements techniques involved in RDC assessment are described in 

the next section. Based on density test results obtained from different numbers of roller 

passes (Figure 2.17), Scott and Jaksa (2012) established a relationship between the dry 

density ratio and compactive effort, in terms of the number of roller passes and lift 

thickness. Thus, it was recommended to implement a minimum of 10 impact roller 

passes on layers of up to 850 mm in thickness or a minimum of 30 passes on layers of 

up to 1,000 mm thick, in order to achieve 98% compaction with respect to maximum 

standard dry density at this particular site.  

 

 

Figure 2.17   Results of density tests after different number of impact roller passes as 

obtained by Scott and Jaksa (2012). 

 

As such, field trials are particularly useful as a technique for providing a suitable 

framework for site-specific methods for impact rolling with an appropriate validation 

strategy (Avalle and Young, 2004). Furthermore, a detailed and carefully structured 

field trial confirms the effectiveness and increases confidence in utilising RDC for a 

particular compaction project. However, field trials associated with RDC often incur 

a non-trivial cost and time, which is disadvantageous to its wider acceptance.  
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2.3.7.2 Test Methods and Measurement Techniques 

As mentioned above, unlike in conventional compaction, which employs thin soil 

layers with relatively smaller particles placed in a relatively controlled manner, RDC 

compacts thicker lifts with larger particle sizes and is able to accommodate a wide 

range of material types, including crushed rock, rocky mine spoil and waste materials. 

Although these are potential benefits of RDC, it is challenging to specify an 

appropriate and cost-effective testing regime for the verification of efficacy of RDC 

(Avalle, 2004b, 2004c, 2007b) over such a wide range of ground conditions. However, 

an appropriate testing regime for field trials is usually chosen in relation to the nature 

of project and type of application, the site location and subsurface conditions, the 

availability of test equipment and, most importantly, budgetary constraints. The test 

methods are selected in collaboration with the geotechnical engineer and client and 

mostly depends on their preferences and previous experience with impact rolling and 

ground improvement projects. These test methods can be categorised as soil 

classification, surface settlement surveys, in situ density tests and geophysical tests. 

The most commonly used test methods and their applicability are briefly described 

below.  

 

Soil classification testing 

Classification of the soil is an important task before commencing any geotechnical 

engineering application, where a detailed soil investigation is performed to assess the 

underlying soil profile, its physical characteristics and engineering behaviour. The 

particle size distribution of the soil is determined by sieve analysis and, sometimes, 

hydrometer analysis tests, whilst Atterberg limit tests evaluate the consistency limits 

of the sub-grade material. Finally, these tests are also used to classify the soils into the 

specific Unified Soil Classification System classes.  

 

Surface settlement monitoring 

There are several techniques used for surface settlement monitoring. Total stations, for 

example, have been utilised in several field trials, such as the field trial for an industrial 
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project in Banksmeadow, Sydney (Avalle and Carter, 2005), are a fast and efficient 

method for obtaining surface settlement measurements before and after compaction 

over large tracts of land. In addition, direct and simple conventional methods, such as 

string lines and automatic level measurements are also used in practise, such as was 

adopted for the Adelaide Airport development (Avalle and Grounds, 2004). Although 

surface settlement monitoring is considered to be an effective means of assessing the 

efficacy of RDC, the surface irregularities left after the impact rolling is the major 

difficulty. In addition, whist surface settlement provides an indication of in situ density 

improvement, it is not possible to determine density improvement with depth, nor 

quantify density in any respect, due to lateral spreading and surface irregularities. In 

order to account for such surface undulations, the ground is sometimes trimmed using 

a grader prior to the surface settlement monitoring. Alternatively, only low spots are 

measured in subsequent passes. Level readings are generally measured in a grid over 

the site and are averaged with respect to different number of roller passes. The rate of 

increase of overall average settlements are indicative of effective refusal, which is 

described to be the number of passes at which no further significant measurable 

settlement occurs (Avalle and McKenzie, 2005). 

In addition to these methods, Landpac technologies (Landpac International, 2016) 

utilises a proprietary technology for monitoring of compaction induced settlements. 

As described by McCann and Dix (2007), continuous induced settlement (CIS) 

technology involves a GPS and computerised based monitoring system, which collects 

the settlement measurements in a 2D plan during the impact rolling. This method 

adopts accelerometers mounted on the 3-sided module frame and the developers claim 

that it overcomes the difficulties associated with conventional methods and facilitates 

identifying localised highly compressible locations that are often available in sites with 

heterogeneous materials. However, given that the system is proprietary, extremely 

limited information is publicly available that describes the relationship between the 

CIS measurements and in situ density, nor how these measurements are influenced by 

soil type and ground conditions. The CIS system is essentially used to identify soft 

softs, as in proof rolling. 
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In situ density testing 

In order to assess density improvement with depth, in situ density tests are conducted. 

These test methods can be categorised into two groups: destructive and non-destructive 

tests, depending on whether the testing procedure disturbs the ground or not. In 

addition, these methods either provide the in situ density directly or indirectly via 

correlation relationships. 

 

Destructive test methods 

The most commonly used in situ density test methods involve the use of penetrometers, 

which provide indirect measurements. The most frequent penetrometer techniques are 

the cone penetrometer test (CPT), the dynamic cone penetrometer (DCP), the Perth 

penetrometer test (PPT) and the standard penetrometer test (SPT). Penetration 

resistance data obtained from these test methods, with respect to before and after a 

number of roller passes, can be considered as a qualitative measure of the efficacy of 

impact roller (Auzins and Southcott, 1999).  

 

The CPT in usually conducted in accordance with AS 1289.6.5.1 (Standards 

Association of Australia, 1999) and the DCP in accordance with AS 1289.6.3.2 

(Standards Association of Australia, 1997), and these are described in detail in Chapter 

4. The CPT provides a continuous profile of soil strength in terms of cone tip resistance 

(qc) and sleeve friction (fs), which together provided an indication of soil type by means 

of the friction ratio (Rf). Furthermore, the specific energy of penetration, in terms of 

the improvement index for densification (Id), that is computed from the CPT profiles, 

has been found to be useful in the evaluation of the influence depth of RDC (Avalle 

and Carter, 2005) as discussed in §2.3.5. The CPT has been successfully implemented 

many times for the verification of RDC (Kelly, 2000; Avalle and Young, 2004; Avalle 

and Carter, 2005; Avalle, 2007b; Scott and Jaksa, 2014). 

 

The DCP and PPT are the most commonly used in situ test methods, which provides 

an indication of soil strength in terms of rate of penetration (blows/mm). Both tests are 

similar in operation, however, the DCP incorporates a small conical tip at the end of 
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the testing rod, whereas the PPT employs a flat tip. However, both methods are very 

frequently implemented in RDC projects to quantify the improvement of soil strength 

with increased roller passes (Avalle and Carter, 2005; Avalle, 2007b; Scott and Suto, 

2007; Jaksa et al., 2012). 

 

The SPT is usually performed in accordance with the AS 1289.6.3.1 (Standards 

Association of Australia, 2004b) and involves driving a split sample tube into the 

ground at the base of a borehole via a series of blows from a 63.5 kg hammer dropping 

from a height of 760 mm. The total number of blows needed to penetrate the last 300 

mm of 450 mm is reported as the SPT-N value. Although, the SPT method is incapable 

of producing a continuous profile of the soil like the CPT, a sample of soil is available 

for inspection. In addition, equipment and procedural irregularities lead to significant 

uncertainties with the measured N-value, which is also the case for the DCP/PPT. 

 

In addition, each of these penetrometer tests (i.e. CPT, DCP, PPT and SPT) are 

vulnerable to disturbance and damage by the hard and large particles in the ground 

and, thus, the verification of ground improvement by RDC using these techniques is 

limited within such heterogeneous materials. For example, Avalle and Grounds (2004) 

utilised the CPT and DCP in a trial at the Adelaide Airport project, where the 

heterogeneous fill, that included rock and concrete fragments, resulted in relief drilling 

and a loss of the continuous CPT data [Figure 2.18(a)]. In addition, the required DCP 

test depth was compromised by refusal on hard particles [Figure 2.18(b)]. Avalle and 

McKenzie (2005), in another study, also experienced penetration refusal of the SPT in 

a field trial conducted in a site consisting of granular and heterogeneous refuse fill. 

 

However, all the above mentioned penetrometer tests provide indirect measurements 

of in situ density at a specific location. However, it is desirable to correlate these with 

some additional parameters to obtain the actual in situ density values. Several in situ 

density tests that provide direct measurements are sometimes used in practice to 

ascertain the degree of compaction on site, such as the sand replacement method and 

nuclear density test. Sand replacement tests, performed in accordance with the AS 

1289.5.3.1 (Standards Association of Australia, 2004a), were undertaken in a field trial 
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by Jaksa et al. (2012) to investigate the degree of compaction with respect to different 

numbers of impact roller passes. However, they experienced difficulties in conducting 

a sufficient number of tests within the available time, as this test is particularly time 

consuming and can only be carried out at the ground surface or within a trench. 

(a) 

(b) 

Figure 2.18   Effects of large soil particles on penetrometer testings: 

(a) relief drilling of CPT; and (b) limited test depth of DCP

[obtained from Avalle and Grounds (2004)]. 
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Over the last two decades, the nuclear density gauge has become popular and accepted 

among the available field density tests. The nuclear density test is performed in 

accordance with the AS 1289.5.8.1 (Standards Association of Australia, 2007) and 

involves measuring the in situ density at discrete locations within the upper 300 mm 

layer of soil using a probe fitted with a radioactive substance. Thus, it is considered 

well suited for the verification of thin layer compaction, which is usually undertaken 

by conventional compaction methods (Scott et al., 2012). Nonetheless, when nuclear 

density tests are adopted for the verification of in-depth compaction of RDC, it is often 

necessary to excavate the compacted material down to the targeted bench level (Scott 

et al., 2012). Scott and Suto (2007) reported that the nuclear density method is time 

consuming and also difficult to operate in a mixed soil, especially in the presence of 

large particles.  

 

Non-destructive test methods 

The non-destructive tests that are utilised to verify the ground improvement by RDC 

involve geophysical techniques. There are 3 main types of geophysical methods that 

have been adopted in RDC projects and they all involve surface waves and are the: (i) 

spectral analysis of surface wave (SASW) method; (ii) multichannel analysis of 

surface wave (MASW) method; and continuous surface wave system (CSWS). 

Geophysical test methods incorporate a series of geophones that capture the energy 

waves passing through the ground and enable the measurement of ground 

accelerations, which are related to the seismic shear wave velocity at a given depth. 

The resulting dispersion curves can be readily converted to velocity-depth profiles, 

which are indicative of stiffness-depth profiles and thus, facilitates an on-site 

immediate assessment of the degree of ground improvement (Bouazza and Avalle, 

2006). In many ways, the geophysical methods are found to be economical and rapid 

approaches, since a single survey can cover a wider area compared to the traditional 

methods that investigate one location at a time (Avalle and McKenzie, 2005). In 

addition, geophysical tests are found to be of value in sites that contain mixed soils 

and large oversized materials (Scott and Jaksa, 2012). However, in the same study, the 

authors described the difficulties in implementing geophysical testing in the presence 

of noise disturbances (Scott and Jaksa, 2012). Some of the documented 
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implementation of geophysical methods for the verification of RDC includes: CSWS 

by Avalle and McKenzie (2005) and Bouazza and Avalle (2006); MASW by Scott and 

Suto (2007); and SASW by Scott and Jaksa (2012). 

 

In addition to the above methods, there are several other additional techniques that can 

also be incorporated in RDC field trials depending on the specific application. In this 

regard, Avalle (2004b) presented a comprehensive list of test methods, which can be 

implemented for the purpose of monitoring and verification of RDC. However, these 

methods are not discussed further here, as they are beyond the scope of the present 

study. 

 

2.4 SUMMARY 

In this section it has been shown that the RDC is an effective and efficient technique 

for ground improvement, with many other advantages over traditional soil compaction 

methods in current use. Furthermore, RDC has proven to be suitable for many 

compaction applications. As described in detail, to date, RDC has been studied 

experimentally through a number of field-based case studies in order to investigate the 

effectiveness and zone of influence. In addition, a significant amount of data has been 

gathered through an extensive number of RDC projects conducted worldwide. 

However, there still exists a lack of knowledge for a priori estimation of the 

effectiveness of RDC in different soil profiles. Indeed, the development of a reliable, 

theoretical model for prior estimation of the effectiveness of RDC is complex due to 

the various site-specific factors that affect the ground compaction process. However, 

in this research, a reliable predictive tool will be developed based on artificial 

intelligence techniques to investigate and quantify the effectiveness of RDC in 

different ground conditions. These techniques are treated in the next chapter. 
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3.1 INTRODUCTION 

Machine learning is a sub discipline of artificial intelligence (AI) inspired by biological 

learning and involves the approaches that adaptively learn and improve by experience 

(Mitchell, 1997). As such, these methods do not require the prior understanding of 

underlying relationships in developing models and instead, they are capable of 

extracting knowledge of complex patterns and a variety of discriminants from machine 

readable data (Aminian et al., 2013). Machine learning approaches, thus, may 

considered to be alternatives for traditional approaches for solving real world problems 

(Alavi and Sadrossadat, 2016). Over the last decade, an extensive number of 

applications of machine learning techniques have been used to model geotechnical 

engineering problems associated with non-linearity and these applications are 

discussed later in this chapter.  

 

With this in mind, this research investigates the feasibility of using two machine 

learning techniques, i.e. artificial neural networks (ANNs) and genetic programming 

(GP), to develop predictive models that forecast the performance of RDC. ANNs can 

be considered as the most widely used AI technique (Aminian et al., 2013), by which 

its architecture attempts to simulate the functionality of the biological neuron system, 

i.e. the brain (Shahin et al., 2008). The other approach that is adopted in the present 

study, GP, makes use of the principle of Darwinian natural evolution (Koza, 1992). In 

comparison, GP and its variants can be considered as fairly novel among other 

modelling approaches of prediction and forecasting problems in the field of 

geotechnical engineering (Alavi et al., 2013). However, as emphasised in this chapter, 

both of these AI techniques are different and have each been shown to possess superior 

capability, when compared with traditional statistical modelling when dealing with 

geotechnical engineering systems.  

 

This chapter provides an overview of ANNs and GP, which are the focus of the 

numerical models employed in this study, followed by the details of their structure and 

operation. The classification of different ANN types and GP variants are described and 

the process of model development is also presented. Finally, the applications of both 
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these AI techniques to geotechnical engineering problems are discussed and assessed 

for their applicability in this arena. 

 

3.2 ARTIFICIAL NEURAL NETWORKS (ANNS) 

ANNs is one of the most popular AI techniques, which has gained wide acceptance in 

predictions and forecasting applications in many disciplines including engineering, 

medicine and finance. The ANN concept has become apparent from natural neural 

networks (NNNs), where it makes use of the knowledge of the functionality of a 

biological neuron system that includes the human brain and nervous system and 

mimics their assessment capabilities. ANNs learn from previous examples and obtain 

knowledge from data and, as such, the functional relationships among variables are 

captured when they are presented with a set of inputs and their corresponding outputs.  

 

ANNs belong to the statistically-based set of approaches of forecasting models that 

determine relationships from historical data sets, whereas its counterparts, i.e. 

physically-based approaches, attempt to model directly the underlying physical 

relationships (Maier and Dandy, 1996). In addition, ANNs have a relatively less 

demanding requirement for the amount of data in comparison to the physically-based 

systems, which often require an adequate amount of data to calibrate the models (Maier 

and Dandy, 1996). ANNs are of particular value in geotechnical engineering 

applications as they do not require the statistical distribution of the input dataset to be 

known (Burke, 1991), which is the case for most geotechnical data as often they are 

not normally distributed and the transformation to normality is difficult. Moreover, 

ANNs have been found to perform well even with noisy or incomplete data (Maren et 

al., 1990; Burke, 1991; Tang et al., 1991). 

 

When used for forecasting purposes, ANNs employ a similar philosophy to that of 

traditional statistically-based approaches in that both the methods use a historical data 

set to estimate the non-linearity between variables (Shahin et al., 2008). In other words, 

both these methods capture the relationships between variables by continuously 

adjusting either the connection weights, in the case of ANNs, or model parameters, in 
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the case of traditional statistical approaches (Maier and Dandy, 1996; Shahin et al., 

2000). However, ANNs are one of the data-driven techniques that do not require a 

priori knowledge of the relationships between variables (Lachtermacher and Fuller, 

1994). In spite of that, they utilise data to approximate both the optimal model structure 

as well as the unknown model parameters (Shahin, 2010). Thus, ANNs are well suited 

for modelling complex problems, where non-linear patterns among the variables exist 

with undetermined relationships (Maier and Dandy, 1996). In contrast, most of the 

conventional statistical methods are model driven and often require the structure of the 

model, i.e. order of the model, to be established prior to parameter estimation (Shahin 

et al., 2000). Another advantage that ANNs possess over traditional statistical 

modelling, is their flexibility of implementation. A simple modification to the transfer 

function or the number of nodes in a hidden layer can vary greatly the model 

complexity in ANNs (Maier and Dandy, 2000; Shahin et al., 2000). ANNs have 

become increasingly popular over the years despite the lack of governing rules in the 

modelling approach in comparison to the standard statistical modelling (Maier and 

Dandy, 2000). Additionally, a number of research studies have shown that ANNs 

overcome these limitations and outperform the traditional methods, as will be 

discussed later in this chapter. In the following subsections, the details of ANN 

structure are provided along with a treatment of their functionality and operation. 

 

3.2.1 Structure and Operation 

The structure and operation of ANNs are briefly described herein, which have already 

been widely discussed in the literature [e.g. Erzin et al. (2009)]. The primary structural 

component of an ANN is a simple processing element, which is also termed as node 

or a neuron. These nodes are usually arranged in layers and structured into a highly 

interconnected network. Essentially, the nodes in each layer are fully or partially 

interconnected with the nodes in other layers, whereas each connection is comprised 

of a particular adaptation coefficient, generally known as a weight (Maier, 1995).  

 

A typical node in the ANN structure, receives inputs from a single or several other 

nodes via the weighted connections. The summation of the weighted inputs at a 
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particular node is then combined with a threshold level. This combination then passes 

through a non-linear transfer function to produce the output of that particular node. 

This procedure is continued from layer to layer, where the output of each 

node becomes the input to another node/s. The threshold and transfer function are 

explained in detail in Chapter 8. This process for node j is shown in Figure 3.1 and 

summarised in the following equations. 

Figure 3.1   Operation of a neural network node [modified from Maier (1995)]. 

Summation: 

𝐼𝑗 = ∑ 𝑤𝑗𝑖

𝑛

𝑖=0
𝑥𝑖 + 𝜃𝑗  (3.1) 

Transfer: 

𝑦𝑗 = 𝑓(𝐼𝑗) (3.2) 

Where:   Ij is the activation level of node j; 

wji is the connection weight between nodes i and j; 

xi is the input from node i, i=0, 1,...n; 

θj is the threshold for node j; 

yj is the output of node j; and 

f(.) is the transfer function. 
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Data propagation in a neural network begins with the presentation of an input stimulus 

at the input layer. The data are then operated by nodes, as described above, and 

conveyed through the connections until an output stimulus is produced at the output 

layer. The network predicted output and the actual (desired, measured) output are then 

compared and a certain error measure is calculated. Given that, the connection weights 

of the network are adjusted in accordance with the specified learning algorithm of the 

network. With the presentation of input stimuli to the network, the connection weights 

are repeatedly updated (Maier, 1995) and this iterative process is called ‘training’ or 

‘learning’. However, the aim of the training phase is to find the optimal set of 

connection weights that enables the network to produce the output similar, or near 

similar, to the desired output giving the smallest possible error. Hence, for ANNs to 

capture the input-output mapping appropriately, it is essential to provide an adequate 

amount of training samples that represent a wide range of situations relevant to the 

particular problem domain (Najjar and Basheer, 1996).  

3.2.2 Classifications of ANN Model Architecture 

ANN model architecture can be classified in to two main categories, based on the 

direction of the information flow through the network: feed-forward networks and 

recurrent networks (Shahin et al., 2008). The feed-forward networks permit only 

forward connections, where information propagates from the input layer to the output 

layer. Conversely, nodes in a recurrent network may have connections with the 

previous layer, the succeeding layer, the same layer or even to the nodes themselves 

(Warner and Misra, 1996). Thus, recurrent networks allow information to propagate 

through the network both in the forward and backward directions.  

However, feed-forward networks are the most common model architecture used in 

forecasting applications (Maier et al., 2010). Despite the potential benefits of recurrent 

networks, there are several reasons for the popularity of feed-forward networks. As 

highlighted by Maier and Dandy (2000), some of them are: (i) feed-forward networks 

are found to outperform recurrent networks [e.g. Khotanzad et al. (1997)]; (ii) the 

processing speed is high compared to other currently available models (Masters, 
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1993); and (iii) there is no clear practical advantage for recurrent networks over the 

feed-forward networks (Hochreiter and Schmidhuber, 1997). Based on these facts, and 

the success of feed-forward networks in previous similar applications in geotechnical 

engineering, this research also adopts feed-forward networks. As illustrated in Figure 

3.2, currently, there can be found several different forms of feed-forward model 

architectures. 

Figure 3.2   Different ANN model architectures. 

3.2.3 Multi-Layer Perceptrons 

Among other different forms of feed-forward network architectures, the fully inter-

connected multi-layer perceptrons (MLPs) are the most common form used in 

prediction and forecasting applications (Maier and Dandy, 2000; Maier et al., 2010). 

A number of publications are available in the literature, which have discussed the 

topology and algorithm details of MLPs (Hecht-Nielsen, 1988; Fausett, 1994; Ripley, 

1994). A typical multi-layered structure consists of an input layer, an output layer and 

a single or several hidden layer(s) between them. MLPs are capable of capturing the 

complexity and non-linearity of the system being modelled as they use non-linear 

activation functions at the hidden and output layers (Maier et al., 2010). 
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It has been demonstrated that single, hidden layer networks with adequate connection 

weights are capable of approximating any continuous function (Cybenko, 1989; 

Hornik et al., 1989). As such, there several geotechnical engineering applications that 

have yielded reliable predictions using the simplest form of MLP that consists of 3 

layers, including one hidden layer comprised of an adequate number of hidden nodes 

(Goh, 1994; Banimahd et al., 2005; Sinha and Wang, 2008; Günaydın, 2009; Kuo et 

al., 2009; Isik and Ozden, 2013). However, several applications of MLPs in 

geotechnical engineering have found difficulties in approximating the exact functional 

relationship between the variables and a lack of robustness in the presence of a single 

hidden layer, and in these situations multi-hidden layer networks need to be adopted 

[e.g. Pooya Nejad et al. (2009)]. Nevertheless, it is emphasised that the selection of an 

optimal network structure is highly problem-dependent.  

3.2.4 Error Back-propagation Algorithm 

Once the model architecture is decided, the network can be optimised using a suitable 

optimisation algorithm. The model optimisation involves finding a global solution for 

a highly non-linear optimisation problem (White, 1989). The error back-propagation 

method (Rumelhart et al., 1986) is by far the most widely used algorithm for 

optimising feed-forward ANNs and has been successfully implemented in many 

geotechnical engineering applications (Goh, 1994; Najjar et al., 1996; Sinha and 

Wang, 2008; Günaydın, 2009; Kuo et al., 2009; Pooya Nejad et al., 2009). With the 

adequate provision of internal parameters, the back-propagation algorithm, which is 

based on the first order gradient descend rule, has the capability of escaping local 

minima (Maier and Dandy, 1998). As such, the selection of internal parameters has 

been shown to have a significant influence on the performance of the back-propagation 

algorithm (Dai and MacBeth, 1997). Therefore, in order to optimise performance, the 

majority of applications that employ MLPs trained with back-propagation algorithm 

adopt a trial-and-error approach, whereby the different combinations of internal 

parameters, including momentum term, learning rate, error and transfer functions, are 

considered (Maier and Dandy, 2000). However, the slow convergence rate can be 

considered as a drawback of the back-propagation algorithm. Nevertheless, according 
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to Breiman (1994), if the optimisation speed is not an issue, there is no other reason to 

avoid the back-propagation algorithm for optimising feed-forward ANNs.  

As described earlier, during the model learning phase, a certain error between the 

actual and model predicted outputs is being reduced. Accordingly, the set of 

connection weights of the network is adjusted into an optimal setting that enables the 

network, with a given functional form, to effectively map the preferred input-output 

relationship (Maier et al., 2010). The mean squared error (MSE) is the global error 

function that is frequently used (Warner and Misra, 1996), which has certain benefits 

including: ease of calculation, penalises larger errors, as well as the simplicity of 

subsequent derivatives (Masters, 1993). However, when the back-propagation error 

algorithm is adopted for model optimisation, the error between the actual and model 

predicted output is propagated backward so that connection weights are optimised 

layer-by-layer in the backward direction during the training phase. As outlined by 

Maier and Dandy (1998), the basic steps of the training process of MLPs with the back-

propagation algorithm are as follows: 

 Initially, small, arbitrary values are assigned to the connection weights;

 A training sample is presented to the network and accordingly, the network

output is produced at the output layer;

 The global error is calculated with respect to the actual output and network

predicted output. For example, the error function, for node j, can be estimated

by:

𝐸 =
1

2
∑(𝑑𝑗 − 𝑦𝑗)2 (3.3) 

Where: E is the global error function; 

𝑑𝑗 is the desired (actual or measured) output; and 

𝑦𝑗 is the predicted output of the network. 

 The connection weights (𝑤𝑗𝑖) are adjusted as per the gradient descent rule;
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∆𝑤𝑗𝑖(𝑡 + 1) = −𝜂
𝜕𝐸

𝜕𝑤𝑗𝑖
+  𝜇 △ 𝑤𝑗𝑖(𝑡)    (3.4) 

𝑤𝑗𝑖(𝑡 + 1) = 𝑤𝑗𝑖(𝑡) + △ 𝑤𝑗𝑖(𝑡 + 1)    (3.5) 

Where:  𝑤𝑗𝑖(𝑡) is the value of the connection weight at tth iteration; 

𝜂  is the learning rate; and 

   𝜇  is the momentum term. 

 

 The next input/output combination is presented and above steps are repeated. 

 

This process is continued until a certain stopping criterion is met. For an instance, 

training can be ceased either after a certain fixed number of training samples are 

presented to the network or when the global error diminishes to an acceptable value. 

 

3.2.5 Process Involved in ANN Model Development 

In order to achieve better model performance, ANN model development needs to be 

carried out in a systematic manner. Therefore, special consideration needs to be given 

to the selection of the model inputs and outputs, and other essential steps including 

data division, pre-processing, determination of model architecture, model 

optimisation, stopping criteria and model validation. These major steps in ANN model 

development as discussed by Maier et al. (2010) are illustrated in the flowchart below 

(Figure 3.3). These steps are described in detail in later chapters. 

 

3.2.6 Limitations of ANN Modelling 

Despite the success of ANN applications in geotechnical engineering, several 

limitations have been observed. As highlighted by Shahin et al. (2009), some of the 

key concerns that require further attention, when implementing ANNs for prediction 

applications are the: necessity of ensuring model robustness, increased model 

transparency, ability to extract knowledge from the trained ANNs, ability to 

extrapolate data, and the uncertainty in the model predictions.  
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Figure 3.3   ANN model development process as presented by Maier et al. (2010). 

Essentially, ANNs require the network structure and the parameters to be 

predetermined, i.e. number of hidden layers, hidden nodes, learning rate, momentum 

term, which usually entails the implementation of somewhat ad-hoc, trial-and-error 

methods. In addition, it is important to ensure the robustness of the model predictions. 

Model robustness involves the evaluation of the generalisation ability of the ANN 

model and confirms the validity and the accuracy of model predictions. In an attempt 

to predict the settlement of shallow foundations using ANNs, Shahin et al. (2005b) 

observed that good network performance with respect to the training and validation 

data does not guarantee that the model has the capability to generalise over the range 
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of the data used in ANN model calibration. For this reason, they proposed a method 

of sensitivity analysis that tests the robustness of the predictive ability of the ANNs by 

examining how consistent the model predictions are with the underlying physical 

behaviour of the system. In addition, they recommended the examination of the 

optimal set of connection weights by using methods, such as that suggested by Garson 

(1991), that quantifies the relative importance of the input variables used in the ANN 

models. Such methods are also adopted in the present study and the details are given 

in later chapters. 

Moreover, a common criticism levelled at ANNs is their lack of transparency and 

knowledge extraction. This is because the set of connection weights, where the ANN 

knowledge is stored, is associated with difficulties in interpretation. Nevertheless, 

some researchers (Kuo et al., 2009; Shahin, 2010) expressed the resulting optimal 

ANNs in the form of a numerical equation, that can be easily utilised in practice, but 

in all these cases, the networks are relatively simple, i.e. single hidden layer networks. 

However, it is difficult to produce straightforward and practical prediction equations, 

especially when the network includes more than one hidden layer and/or many hidden 

layer nodes. A limitation of ANNs that inhibits their applicability is the lack of 

transparency of ANN models, in that they often fail to explain explicitly the underlying 

physical processes associated with the phenomenon under investigation. In addition to 

these limitations, the uncertainty associated with ANN model predictions are rarely 

quantified (Shahin et al., 2009). However, several researchers including Goh et al. 

(2005) have emphasised that implementing Bayesian techniques overcomes model 

uncertainty and provides an assessment of the confidence of model predictions.  

In addition to ANNs, the present study investigates the applicability of another, 

relatively new AI technique, genetic programming (GP), that is reported to overcome 

many of the shortcomings associated with ANNs and other conventional forecasting 

applications. 
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3.3 GENETIC PROGRAMMING (GP) 

Genetic programming (GP) is one of the subsets of evolutionary algorithms and was 

first introduced by Koza (1992). This supervised machine learning technique is based 

on the principles of Darwinian theory and mimics the aspects of genetics and natural 

selection. In recent years, GP has emerged to be a promising approach for non-linear 

modelling of different aspects in civil engineering. 

Similar to ANNs, GP can be considered as another alternative approach to 

conventional methods, because of its ability to approximate any linear/non-linear 

relationship among a set of observed input and output data in the absence of prior 

knowledge of the underlying mechanisms of the system. However, ANNs require the 

network structure to be known in advance, but conversely, GP is capable of self-

parameterisation and builds the structure itself without any user involvement (Mehr et 

al., 2014). In general, GP is considered as an extension to genetic algorithms (GAs). 

As a result, GP utilises the majority of the genetic operators used in GAs, with slight 

modifications (Alavi et al., 2013). Moreover, both GA and GP approaches are similar 

in that they both involve a multi-directional, simultaneous search for an optimal 

solution, from a pool of many potential solutions, which is collectively known as a 

population. The fact that these methods operate from a population enables them 

to escape local minima in the error surface and are thus able to find optimal/near 

optimal solutions (Selle and Muttil, 2011). However, GAs and GP have differences in 

their solution representation. GAs are often recognised by individuals represented as 

fixed-length binary strings (Holland, 1975), which require post-processing prior to 

execution. Conversely, in GP, the individuals are the computer programs whose size, 

shape and complexity is dynamically varied during evolution (Koza, 1992) and are 

usually executable without post-processing. In addition, GAs and other conventional 

statistical methods are merely involved in determining the optimal values of a pre-

specified form of a function. Conversely, GP evolves the program structure of the 

approximation model along with the values of its parameter setting (Torres et al., 2009; 

Mousavi et al., 2011; Alavi et al., 2013).  
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3.3.1 Classifications of Genetic Programming 

As mentioned above, GP involves a population of randomly created individuals, each 

of which represent a possible solution to the system being modelled. As far as GP is 

concerned, the individuals or the solutions are represented by computer programs. 

These individuals are comprised of two basic elements, i.e. functions and terminals. 

The function set can be composed of arithmetic functions (+, –, ×, /), mathematical 

functions (sin, cos, ln), logical expressions (IF or THEN), Boolean logic operators 

(AND, OR, NOT), iterative functions (DO, CONTINUE, UNTIL) and/or other user-

defined functions (Sette and Boullart, 2001). The terminal set typically comprises 

input variables attached to the problem domain and pre-specified or randomly 

generated numeric constants. 

 

In the traditional GP approach, which is also known as tree-based genetic 

programming (TGP), the computer programs (individuals) have a symbolic 

representation of a rooted tree-like structure. The tree architecture is composed of 

several links and nodes, where the internal nodes are called functional nodes, as they 

accommodate the functions, whilst external nodes are the terminals that hold the input 

variables or constants (Koza, 1992). In more advanced levels, several subtrees are 

hierarchically grouped under a root node to form the architecture of the TGP 

individual. 

 

Although all the GP approaches follow a similar theoretical foundation with respect to 

the automatic evolution of computer programs, there are differences in the 

representation of individuals. As such, 3 distinguishing forms of representation in GP 

individuals (computer programs) can be found. Besides the traditional tree-based GP 

approach, these can be either a linear or graphical representation (Banzhaf et al., 1998; 

Poli et al., 2007). In linear-based GP variants, there is a clear difference between the 

genotype and phenotype of an individual (Alavi and Gandomi, 2012). Moreover, the 

individuals have a linear string representation, which is decoded and expressed like 

nonlinear entities (Oltean and Grosan, 2003). In the recent past, several linear-based 

variants of GP have been utilised in civil engineering applications, i.e. linear genetic 

programming (LGP), multi-expression programming (MEP), Cartesian genetic 
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programming (CGP), gene-expression programming (GEP) and grammatical 

evolution (GE) (Oltean and Grosan, 2003). In the present study, the LGP approach is 

adopted. The major benefit of LGP utilisation is the ability of implementing native 

binary machine code that may be immediately executable by the processor, which in 

turn speeds up the process significantly. Moreover, several numerical studies have 

shown that LGP outperforms several other linear-based GP variants [e.g. Oltean and 

Grosan (2003)] and is also capable of outperforming the traditional tree-based 

approach [e.g. Brameier and Banzhaf (2007)]. These are described in detail in the next 

section. 

 

3.3.2 Linear Genetic Programming 

In LGP, the evolved programs are represented as a sequence of instructions, either 

from an imperative language (e.g. C, C++ or Java) (Brameier and Banzhaf, 2001; 

Brameier and Banzhaf, 2007) or from a machine language (Nordin, 1994). In contrast 

to the rigidly determined, tree-structured, data flow of TGP, LGP has a more general, 

specially directed graphical structure in the functional level resulting from multiple 

usages of register contents (Brameier and Banzhaf, 2007; Alavi et al., 2013; Gandomi 

et al., 2014), as can be seen in Figure 3.4. Moreover, the existence of ineffective code 

segments, which are also referred to as introns in LGP makes them different from their 

traditional tree-based counterparts. As such, these structurally ineffective codes denote 

the instructions, which manipulate the registers that have no influence on the output 

calculation (Gandomi et al., 2010a). Although these ineffective code segments coexist 

with the effective code, they are not connected to the data flow, unlike in TGP, where 

the structural introns do not exist because all the program components have a 

connection with the root node (Brameier and Banzhaf, 2007). However, the structural 

introns in LGP can be detected efficiently and completely due to its imperative 

program structure (Francone and Deschaine, 2004; Alavi et al., 2013).  

 

There is a special variant of LGP, known as automatic induction of machine code by 

genetic programming (AIMGP), where the individuals are represented and 

manipulated as native binary machine code (Nordin, 1994; Banzhaf et al., 1998). 
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During fitness evaluation in GP, the programs are executed multiple times or at least 

once, which is considered to be the most time-critical step in evolutionary algorithms 

(Brameier and Banzhaf, 2007). In this context, program execution implies the 

interpretation of internal program representation. However, in AIMGP, the individuals 

are directly executable by the processor and this avoids the use of an expensive 

interpreter (Francone and Deschaine, 2004; Brameier and Banzhaf, 2007). As a result, 

AIMGP is found to be significantly faster and more memory efficient when compared 

with other interpreting GP variants (Nordin, 1994; Brameier and Banzhaf, 2001). 

Given these advantages, AIMGP is also utilised in this study. 

 

     

(a)     (b) 

Figure 3.4   Comparison of the GP structures: (a) TGP; and (b) LGP [modified from 

Alavi and Gandomi (2012)]. 

 

3.3.3 Steps in Genetic Programming 

As described earlier, each individual in a population that is made up of functions and 

terminals represents a possible solution for the problem being considered. However, 

these individuals in a population compete with each other, such that the fittest 

individuals survive and are subsequently modified and subjected to several genetic 

operations to form a new population. This process is continued, such that the 

individuals are eventually evolved through a series of generations to perform well in 

the given environment. 
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However, in this process, evolutionary algorithms like GP, require less user input 

because they are capable of solving problems automatically, starting with a high-level 

statement of what needs to be done (Poli et al., 2008). Therefore, as described by Koza 

and Poli (2005), it is necessary to implement certain, well defined preparatory steps, 

through which the user communicates with the high-level statement of the problem of 

the GP algorithm. The major preparatory steps (Koza and Poli, 2005) are: 

1. Specification of the set of terminals;

2. Specification of the set of primitive functions;

3. Definition of the fitness measure that estimates the fitness of individuals in a

population;

4. Allocation of certain parameters for controlling the GP run (e.g. population

size, maximum size of program, probabilities of genetic operations); and

5. Specification of the termination criterion and the method for designating the

results of the run.

After implementing the above preparatory steps, a GP run is executed through a well-

defined systematic approach. Therefore, as described by Brameier and Banzhaf 

(2007), the basic execution steps of the LGP evolutionary algorithm are as follows: 

1. Initialising a population of randomly generated programs and evaluating their

fitness;

2. Performing two fitness tournaments with randomly selected programs from the

population and selecting the winning programs;

3. Making temporary copies of the two winning programs;

4. Transforming the two winning programs into offsprings subjected to genetic

operations, i.e. crossover and mutation with certain probabilities;

5. Replacing the two tournament losing programs with the temporary copies of

the winning programs; and

6. Repeating Steps 2 to 5 until the termination or convergence criteria are

satisfied.
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The above specified, preparatory steps and execution steps of the LGP algorithm are 

described in greater detail later in Chpaters 6, 7 and 8.  

 

3.4 APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS 

AND GENETIC PROGRAMMING IN COMPACTION OF 

THE GROUND 

AI techniques, especially ANNs and GP, have shown much better success in modelling 

complex problems than traditional approaches due to its superior predictive ability. As 

a result, these techniques have shown increased use in many areas of geotechnical 

engineering for predicting soil properties and behaviour. In this section, several 

geotechnical engineering applications are examined and discussed briefly. However, 

since the scope of the present study is to apply ANNs and GP techniques to predict the 

ground improvement due to rolling dynamic compaction (RDC), the applications 

discussed herein are limited to aspects related to soil compaction. Therefore, in the 

following section, the applications of ANNs and GP for the prediction of compaction 

characteristics and the permeability of compacted soils are described in detail, whilst 

several other applications, such as predictions of soil properties, settlements and 

structural stability are examined briefly. It is, however, beyond the scope of this work 

to review every AI application available in the literature in detail. 

 

3.4.1 Predictions of Compaction Characteristics of Soil 

The maximum dry density (MDD) and optimum moisture content (OMC) are the key 

parameters used to represent compaction characteristics of soil. These parameters have 

attracted much research activity in relation to the application of AI techniques. Najjar 

et al. (1996) developed ANNs trained using the back-propagation algorithm to predict 

both MDD and OMC. Two separate models were developed incorporating two datasets 

from previous research, i.e. synthetic soil (Wang and Huang, 1984) and natural soil 

(Jeng and Strohm, 1976). The parameters that are considered to be most influential to 

compaction, such as specific gravity, consistency parameters and soil composition 
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percentages, were selected as the inputs for the networks that enable multiple outputs, 

i.e. MDD and OMC. The authors developed several ANNs with a number of different 

combinations of input variables and numbers of hidden nodes. When the models were 

examined with the associated mean absolute relative error (MARE), lower values were 

observed with an increasing number of hidden nodes and also with many input 

variables. However, having considered the practical application, the models with a 

smaller number of nodes were selected and recommended, although the lowest MARE 

was observed with complex networks, i.e. those with a greater number of hidden 

nodes. Their work further compared the resulting ANN models with the available 

regression equations, and found that ANNs produce better predictions than the 

regression equations. In addition, they highlighted the benefits of utilising ANNs over 

correlation equations. In the ANN modelling, they used a separate set of testing data 

that was never utilised during the model calibration phase, whilst in previous work 

(Wang and Huang, 1984), all data sets were used to obtain the correlation equations. 

 

Another research study was carried out by Günaydın (2009) to predict the compaction 

parameters of soil. The author employed feed-forward MLPs, trained using the back 

propagation algorithm. The number of input variables, number of hidden nodes and 

transfer function were varied in the networks that adopted multiple outputs, i.e. MDD 

and OMC. In selecting the optimum network, several statistical parameters, i.e. 

coefficient of determination (R2), standard deviation (σ), standard error (SE) and mean 

value were evaluated. In addition, the compaction parameters were also determined 

using two other statistical approaches, simple regression analysis (SRA) and 

multivariate linear regression (MLR). All of these 3 approaches demonstrated strong 

correlations with the estimations. However, with SRA, the regression equations 

incorporated only a single independent variable at a time, whilst in MLR, it became 

possible to use several independent variables simultaneously in developing the linear 

equations for predicting the compaction parameters. Conversely, in ANN modelling, 

highly non-linear relationships were obtained with the weights and biases relevant to 

the optimal network, as given by Günaydın (2009).  
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Naderi et al. (2012) conducted research, which was more or less an extension of the 

above described study by Günaydın (2009), where the compaction characteristics were 

estimated based on the soil classification properties. In this study, GP was employed 

for the non-linear modelling and, in addition, the MLR approach was used to develop 

linear numerical correlations. In this research, the database reported by Günaydın 

(2009) was used and data were divided into statistically consistent subsets, such that 

80% of the data were used for model calibration, while the remainder was allocated 

for validation. The evaluation criteria employed in this study included the correlation 

coefficient (R), root mean square error (RMSE) and mean absolute percentage error 

(MAPE) and the results are presented in Table 3.1.  

Table 3.1   Comparison of compaction model parameters. 

Reference Method 
R RMSE MAPE 

OMC MDD OMC MDD OMC MDD 

Günaydın (2009)
SRA 0.82 0.76 2.29 0.85 0.13 0.04 

ANN 0.89 0.84 – – – – 

Naderi et al. (2012)
MLR 0.88 0.87 1.62 0.60 0.08 0.03 

GP 0.94 0.94 1.19 0.41 0.06 0.02 

As it was evident from the comparison of the results that the ANN models slightly 

outperform both the SRA and MLR approaches with respect to the OMC predictions, 

but conversely, with the MDD predictions, the MLR approach was found to have 

superior performance over ANN, with respect to correlation value. However, this 

could not be confirmed further due to the lack of results. Nonetheless, the statistical 

analysis indicated that GP based formulae are capable of producing the highest 

correlation and the lowest regression errors and, in the sensitivity analysis, the model 

predictions have also conformed with the expected physical behaviour. Given that, the 

authors (Naderi et al., 2012) concluded that the GP-based formulae presented in their 

study are accurate and reliable for the estimation of compaction characteristics to be 

employed in practical situations, where time and cost are major concerns.  
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Sulewska (2010a) explored the possibility of using ANNs to predict the compaction 

characteristics (MDD and/or OMC) of coarse-grained soil by using the parameters 

used in soil grain size distribution. In this study, MLPs were developed using the test 

results obtained from the laboratory tests of 6 soil groups and both the one and two 

output situations were considered (either MDD or OMC were predicted separately or 

simultaneously). The networks were optimised for the number of input nodes by 

considering different combinations of input variables, while several network 

architectures, with different numbers of hidden layer nodes, were also considered for 

each scenario. In addition, the input variables that had no influence on the outputs were 

identified as they received zero connection weights. With regards to the single output 

networks, the prediction accuracy of the optimal ANN model (R2 = 0.73 and 0.89, for 

MDD and OMC respectively) was observed to be slightly higher than that obtained 

from the statistical analysis (R2 = 0.64 and 0.85, respectively). As a result, the study 

emphasised the applicability of ANNs for analysing relationships in geotechnics to 

solve practical engineering problems. The models were proposed to be used for quick 

estimations of compaction parameters in lieu of time-consuming laboratory tests. 

 

Another similar neural network model was introduced by Abdel-Rahman (2008) to 

predict the compaction characteristics for coarse-grained soil. Separate networks were 

developed to predict OMC and MDD, and found to have good prediction accuracy (R 

= 0.99 for MDD and 0.89 for OMC). From the results of the ANN models, empirical 

equations were derived to estimate the compaction parameters. 

 

In another study, Sulewska (2010b) examined the density index, which is used as an 

index of the mechanical properties of coarse-grained soils. In estimating the density 

index, this study utilised statistical and ANN methods for the predictions of maximum 

and minimum dry density on the basis of grain size and distribution parameters of 

coarse-grained soils. The resulting optimal ANN models yielded a higher prediction 

accuracy than that obtained from the statistical linear regression analysis, when 

compared the performance measures in terms of relative error (RE) and R.  
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Basheer (2001) used neural networks to model compaction curves for natural fine-

grained soils empirically by using soil index properties and compaction energy. The 

developed models were found to yield highly accurate predictions, as indicated by the 

higher correlation coefficient value, R2 = 0.98. Two other research studies by Sinha 

and Wang (2008) and Al-saffar et al. (2013) also developed ANN models for the 

prediction of compaction parameters. Their results were also found to be encouraging 

and the non-linear ANN approach again resulted in better predictions than those from 

other correlation models. 

Recently, Noor and Singh (2012) developed predictive models for the estimation of 

compaction parameters (MDD and OMC) by means of GP. The models were 

developed correlating the compaction characteristics with the index and physical 

properties, i.e. plastic limit, liquid limit, plasticity index and specific gravity of fine-

grained soils. The developed GP model results were compared with the actual test 

results, as well as with the available models in the literature. They found that the 

predictive model proposed in their study yielded better predications than those 

obtained from the other available models based on statistical regression. In addition, 

Noor and Singh (2012) emphasised a benefit of utilising GP for non-linear modelling 

as it incorporates several input parameters, unlike most of the empirical correlations 

existing in the literature, that use only a single input variable, i.e. either the liquid limit 

or plastic limit, for the prediction of the compaction characteristics of soils.   

However, most of the above described prediction models used common soil index 

properties and incorporated homogenous data sets, either fine- or coarse-grained soil, 

in estimating the compaction parameters and thus, their applicability to practical 

situations is very limited. To overcome this limitation to some extent, recently, Isik 

and Ozden (2013) presented ANN models to estimate the compaction parameters for 

both coarse- and fine-grained soils. In this study, a MLP using the back propagation 

training algorithm was used. The basic soil index parameters were used as the input 

parameters of the ANNs, along with the transition fine content ratio (TFR), to predict 

MDD and OMC in separate models. The resulting model predictions yielded very good 

accuracy (R = 0.951 for MDD and 0.952 for OMC) when tested against the 
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independent validation dataset. Furthermore, in this study, a sensitivity analysis as 

proposed by Shahin (2010), was carried out to evaluate the generalisation ability of 

the optimum network and the results were found to be in a good agreement with the 

expected physical behaviour of compacted soil and thus, confirmed the reliability of 

the model predictions. 

 

3.4.2 Predicting the Permeability in Compacted Soil 

The compaction of soils also affects other soil parameters. Therefore, the prediction of 

engineering properties of compacted soils, particularly the permeability or hydraulic 

conductivity of compacted soils, have been examined by means of AI techniques by 

several researchers.  

 

Najjar and Basheer (1996) introduced computational neural network models (CNNs) 

based on the back-propagation algorithm for the prediction of the permeability of 

compacted clay liners. Two separate CNNs (CNN1 and CNN2) were developed with 

differing numbers of input parameters that account for both the soils’ physical 

properties and their compaction characteristics. However, later, Boroumand and 

Baziar (2005), addressed the issues involved in their earlier models and proposed 

another ANN for the prediction of the permeability of clay liners. As such, they sought 

to reduce the number of input variables and, at the same time, increase prediction 

performance. The resulting prediction performance, in terms of R2 and MARE, of these 

models are summarised in Table 3.2. 

 

Table 3.2   Comparison of prediction performance of different models. 

Reference Model 
No. of nodes 

(In-Hidden-Out) 

Training  Testing 

R2 MARE  R2 MARE 

Najjar and 

Basheer (1996) 

CNN1 11-3-1 0.923 1.31% 
 

0.281 4.90% 

CNN2 5-3-1 – 1.19%  – 4.07% 

        

Boroumand and 

Baziar (2005) 

Fine6 5-4-1 0.791 – 
 

0.544 – 
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As can be seen, CNN1 shows a significant difference between the correlation factors 

for the training and testing sets. The testing set measures the generalisation ability of 

the network, as the data were not incorporated in the model calibration, which is 

referred to as a validation set by most other researchers, and this terminology will be 

adopted in the present study, as outlined in later chapters. Thus, the optimality of the 

developed models is usually judged based on the testing set data. As a consequence, 

the validity of the CNN1 model is highly questionable. However, the inconsistency 

may be due to the poor calibration of the model, causing over fitting, or sometimes the 

testing and training data sets may not be statistically consistent to represent the same 

population. In addition, as can be seen in the table, CNN2 used only 5 input nodes, 

whilst in CNN1, 11 input variables were used. However, some of the input variables 

in CNN1 were found to be interdependent, so that they were subsequently omitted in 

the study by Boroumand and Baziar (2005), which included a smaller number of input 

variables in their model (Fine6). In their case, the inputs related to compaction 

properties were replaced by the dry density of the soil after compaction. However, 

comparing the performance of the Fine6 model with that of CNN1, a slight reduction 

in R2 for the training set was observed, whilst it was increased nearly two times for the 

testing dataset. In addition, the results obtained from CNN2 were also compared with 

the regression equation, which was derived for the same input variables as adopted by 

Benson et al. (1994), and they found that CNN2 yielded superior performance and 

hence the effectiveness of the neural network predictions was confirmed. Another 

successful application of ANNs for the prediction of the hydraulic conductivity of clay 

liners is reported by Das and Basudhar (2007).  

Erzin et al. (2009) employed ANNs for the prediction of the hydraulic conductivity of 

compacted fine-grained soils. In this study, feed-forward MLPs were trained using the 

back propagation algorithm. The ANN model results were compared with 

experimental results and found to have a good agreement (R2 was closed to unity), 

whilst multiple regression analysis yielded poor prediction accuracy (R2 = 0.30 to 

0.55). The research indicated that the developed ANN models were successful in 

modelling the non-linear relationships and therefore, recommended for future 

applications. 



Chapter 3. Literature Review: Artificial Intelligence Techniques 71 

3.4.3 Other Applications 

Besides the fact that ANNs have been successfully applied to many geotechnical 

engineering problems, the use of other AI techniques, including GP, is relatively 

limited. For example, the GP approach was applied by Johari et al. (2006) to the 

prediction of soil-water characteristics curves, which are necessary to describe 

unsaturated soil behaviour. The proposed GP simulations were found to be very 

promising, as they outperformed the currently available conventional methods. In 

addition to the traditional GP approach used by Johari et al. (2006), other sophisticated 

GP variants have also been applied to several geotechnical engineering problems. For 

example, Heshmati et al. (2008) used LGP to model soil classification, whilst Alavi et 

al. (2010) used the MEP approach for the same purpose. 

Taskiran (2010) explored the applicability of AI methods in the form of ANNs and 

gene expression programming (GEP) to predict the California bearing ratio (CBR) of 

fine-grained soil. Feed-forward type MLPs, trained using the back propagation 

algorithm, and GEP, which is an algorithm based on the combination of GA and GP, 

were employed. As with ANNs, the GEP approach was basically used for the 

development of a mathematical function that best fits a set of presented data. However, 

in this study, different numbers of inputs and different parameters (number of genes, 

head size) were used in selecting the optimal GEP model. When the performance 

statistics of the predictions from the developed ANN and GEP models were compared, 

it was found that both model predictions were in good agreement with the actual results 

(R2 > 0.8). This study concluded that both the ANN and GEP approaches were capable 

of capturing the relationship between the basic soil properties and CBR and thus, were 

recommended as useful tools for preliminary forecasting of CBR values, which might 

replace time consuming and costly soil testing.  

In Table 3.3, several other applications of GP variants are summarised, as well as 

the highlights of these research studies.  
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Table 3.3   Various AI applications in geotechnical engineering. 

Application Reference Method Comments 

Liquefaction 

resistance of Sandy 

soil 

Alavi and 

Gandomi 

(2012) 

TGP, 

LGP, 

MEP 

 GP models outperformed 

conventional (MLR) methods. 

 LGP and MEP models were superior

to TGP.

Liquefaction induced 

lateral displacements 

Javadi et 

al. (2006)
TGP 

 TGP outperformed the traditional

MLR model.

 Design equations were developed

based on optimal TGP model and

overcame the shortcomings of ANN

method.

Estimation of ultimate 

bearing capacity of 

shallow foundations 

resting on rock masses 

Alavi and 

Sadrossadat
 (2016)

LGP 

 LGP models showed satisfactory

performance, as indicated by R > 0.9

for all data subsets.

 Derived LGP model outperformed

traditional methods.

 The LGP made it possible to

incorporate the effects of both

qualitative and quantitative

parameters.

Settlement of shallow 

foundations on 

cohesionless soil 

Rezania 

and Javadi 

(2007) 

TGP 

 TGP model had superior

performance to the traditional

empirical methods.

 TGP outperformed ANN-based 

formula.

Formulation of soil 

classification 

Heshmati 

et al. 

(2008) 

LGP 

 LGP model predictions had higher

accuracy (R > 0.99) and slightly

outperformed the ANN.

 Numerical equations were proposed.

Formulation of soil 

classification 

Alavi et 

al. (2010)
MEP 

 MEP model predictions had higher

accuracy (R > 0.99) and slightly

outperformed the ANN.

 Quite short and very simple formulae

were proposed based on the optimal

MEP models.
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3.5 SUMMARY 

In this chapter, background knowledge of two AI techniques, in the form of ANNs and 

GP, has been provided, both of which mimic aspects of biological neuron systems and 

natural genetic evolution, respectively. It is evident from the detailed description of 

their function and behaviour, that these techniques are capable of extracting knowledge 

of complex patterns and the non-linearity of the submitted data. This is particularly 

valuable in studies associated with spatial variability of soil properties. Thus, it has 

been confirmed that both ANNs and GP facilitate a promising approach for quantifying 

and estimating the effectiveness of RDC in different ground conditions. It has also 

been demonstrated that both these AI techniques have the potential to provide accurate 

predictions and are relevant to a wide range of geotechnical engineering applications, 

including those related to soil compaction. In the vast majority of these applications of 

ANNs and GP, the performance statistics demonstrated that these techniques possess 

obvious superiority over traditional statistical modelling when dealing with complex, 

non-linear functional relationships. In the remaining chapters of this thesis, ANN and 

GP models are developed in order to predict the amount of ground improvement 

resulting from the use of RDC. 
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ABSTRACT 

Rolling Dynamic Compaction (RDC), which is a ground improvement technique 

involving non-circular modules drawn behind a tractor, has provided the construction 

industry with an improved ground compaction capability, especially with respect to a 

greater influence depth and a higher speed of compaction, resulting in increased 

productivity. However, to date, there is no reliable method to predict the effectiveness 

of RDC in a range of ground conditions. This paper presents a novel and unique 

predictive tool developed by means of artificial neural networks (ANNs) that permits 

a priori prediction of density improvement resulting from a range of ground 

improvement projects that employed 4-sided RDC modules; commercially known as 

'impact rollers.' The strong coefficient of correlation (i.e. R > 0.86) and the parametric 

behaviour achieved in this study indicate that the model is successful in providing 

reliable predictions of the effectiveness of RDC in various ground conditions.  

Keywords: Rolling dynamic compaction, artificial neural networks, cone penetration 

test ground improvement 
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4.1 INTRODUCTION 

Compaction is the method of densification of soil by means of mechanically applied 

energy. A rapid volume reduction takes place during the compaction process due to 

pore air expulsion, which results in particle rearrangement and sometimes crushing. A 

number of methods are widely used in ground compaction, such as vibration, impact, 

kneading and static pressure. These different types of compaction techniques are 

essentially subdivided into two categories; static and dynamic compaction. Static 

compaction is the application of a downward force on the ground surface by the self-

weight of the equipment, such as circular rollers, which usually employ drums, pad 

foots and pneumatic multi-tires. Dynamic compaction methods, on the other hand, 

apply a kinetically-driven downward force, in addition to the equipment’s self-weight. 

Dynamic compaction makes use of heavy tamping, vibratory drums and plates, 

rammers, vibroflotation and rolling dynamic compaction (Hausmann, 1990). 

Rolling dynamic compaction (RDC) has increasingly become popular over the past 

few decades in the global construction industry and provides an alternative to the 

traditional approaches of soil compaction (Pinard, 1999). RDC was originally 

developed by Aubrey Berrangé in South Africa in the late 1940s, but its value was not 

fully realised until the mid-1980s. It involves towing heavy (6-12 tonnes) non-circular 

modules (3-, 4- and 5-sided), which rotate about their corners and fall to impact the 

ground (Avalle, 2004d). When the impact roller module is drawn forward and begins 

to rotate about its corners due to friction, a series of high amplitude impact blows are 

delivered onto the ground at a low frequency of 90 to 130 blows per minute (Pinard 

and Ookeditse, 1988). Thus, the compactive effort is derived from the energy of the 

mass falling from a corner to the adjacent compacting face of the polygonal shaped 

mass. This results in deep compaction and a greater influence depth – more than 1 m 

beneath the ground surface and sometimes as deep as 3 m in some soils (Avalle and 

Carter, 2005) – compared to the conventional static and vibratory compaction (Clegg 

and Berrangé, 1971; Clifford, 1976, 1978b), which generally influences depths less 

than 0.5 m below the ground. As a result, thicker lifts, in excess of 0.5 m can be 

employed as compared to traditional compaction lifts of approximately 0.15 m 

(Avalle, 2004d, 2006). Furthermore, RDC is particularly efficient when employed in 
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large and open sites, as it traverses the ground at speeds of 9–12 km/h compared to 

traditional vibratory roller, which travels at 4 km/h (Pinard, 1999). As a consequence, 

RDC has been applied: (1) to the in situ densification of existing fills, such as on 

brownfield sites, landfills, earth embankments and sub grade proof-rolling (Avalle, 

2004a); (2) in the agricultural sector (Avalle, 2004d), mainly for the improvement of 

existing water storages, channels and embankments; and (3) in the mining industry for 

the construction of tailing dams (Avalle, 2006), rock demolition in open cut mine 

waste tips, compaction of the capping over waste rocks (Scott and Jaksa, 2012), 

compaction of bulk earthworks of mine spoil materials and to induce fracturing on 

surface layers in rock quarries in lieu of drilling and blasting (Avalle, 2006).  

  

To date a number of field and case studies have assessed the efficacy of RDC. As a 

result, RDC is often adopted based on experience from previous work undertaken in 

similar soils and site conditions. In most cases, in order to determine the optimal 

number of RDC passes to achieve the design specifications, a field trial is undertaken, 

where measurements of various soil characteristics are obtained before and after 

compaction. 

 

This study aims to develop a robust predictive model to forecast the performance of 

RDC by means of the artificial intelligence (AI) technique known as artificial neural 

networks (ANNs). It is intended that the model will provide additional, a priori 

information to supplement field trials undertaken on site prior to ground improvement. 

Attention is focused on the 4-sided, 8 tonne 'impact roller' (BH-1300). ANN models 

have been developed based on the cone penetration test (CPT) data, which are 

collected from previous ground improvement projects in Australia that employed 

RDC. Design equations are developed based on model parameters, and a parametric 

study is carried out to assess the robustness of the model. It is important to note that 

no such predictive model exists for RDC, neither empirical, theoretical nor numerical.  
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4.2 DATABASE AND DATA ANALYSIS 

The data used in this study have been obtained from the results of several field trials 

undertaken by Broons SA Hire, an Australian company marketing a range of ground 

improvement technologies, including RDC. The database is comprised of in situ 

strength data in the form of cone penetration test (CPT) results with respect to the 

number of roller passes. CPT measurements provide continuous soil profiles that 

express variations of soil strength in terms of cone tip resistance (qc) and sleeve friction 

(fs). The CPT is often used as a profiling tool employing the friction ratio, which is the 

ratio, expressed as a percentage, of sleeve friction to cone tip resistance, measured at 

the same depth. The literature contains several soil classification charts based on the 

friction ratio as a function of cone tip resistance (Robertson, 1990). 

 

The CPT (Standards Association of Australia, 1999) has been widely used for 

monitoring and evaluating the effectiveness of deep compaction methods because of 

the continuous, reliable and repeatable nature of the measurements (Lunne et al., 

1997). Avalle and Carter (2005) investigated the depth of influence of RDC in sandy 

soils using CPT profiles of prior to and after impact rolling, where a noticeable 

improvement was evident between depths of approximately 0.5 – 3 m below the 

ground surface. Moreover, research by Kelly (2000) presented the results from CPTs 

where a significant depth of influence of RDC was evident to depths of 4 m in natural 

sand and un-compacted/un-controlled variable clay fill, and in the reclaimed sand 

deposit to the depths of 5 m below the surface. Another recent case study conducted 

by Scott and Jaksa (2014) reported on the verification of RDC, both vertically and 

laterally, in a sand fill having quantified the differences in cone tip resistance between 

a series of closely-spaced CPT locations.  

 

The database used for ANN modelling is summarised in Table 4.1 and the data were 

acquired from Broons’ records of previous projects. Figure 4.1 shows typical plots of 

cone tip resistance and sleeve friction measurements which are obtained at essentially 

the same location prior to (0 passes) and after (10 passes and 20 passes) of RDC. As 

can be seen, there is a noticeable variation in cone tip resistance and sleeve friction 

measurements with respect to the number of roller passes. The differences between 
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these individual measurements quantify the variation of soil strength and density, as 

well as a minor degree of spatial variation, resulting from RDC at the test location. 

 

Table 4.1   Summary of CPT plots. 

No Project name 

Max. 

depth 

(m) 

No. of 

CPT 

locations 

Soil type 
No. of roller passes 

at the time of test 

1 Port Botany 9.8 64 

Sandy/silty sandy fill 

overlying marine 

deposits of sand and 

peaty clay deposits 

0 10 20 30 40 

          

2 Potts Hill 8.8 19 
Shale fill overlying 

residual soil and 

sandstone bedrock 

0 10 20 30 40 

          

3 Outer Harbor 3.8 8 
Uncontrolled fill 

overlying St. Kilda 

formation soils 

0 24    

          

4 Banksmeadow 6.2 3 
Silty sandy filling 

overlying natural 

sands 

0 5 20   

          

5 Cairns 4.9 9 

Uncontrolled fill 

underlain by silty 

clay/clayey silt/sandy 

silt 

0 20 30 40  

 

 

However, the CPT measurements are influenced by large, hard particles present in the 

compaction material and may not be representative of the subsurface condition, 

particularly at sites with uncontrolled fill. As a result, some localised peaks are visible 

in the CPT measurements, predominantly in the cone tip resistance measurements. 

However, in the data pre-processing, these anomalies are filtered from the dataset, 

otherwise the derived ANN models will be vulnerable to learning these random and 

unrepresentative irregularities. In that case, a number of CPT plots from adjacent CPT 

soundings are superimposed to highlight the localised peaks present due to the spatial 

variability of the compacted material. 
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(a)     (b) 

Figure 4.1   Variation with number of roller passes of CPT parameters: (a) cone tip 

resistance; and (b) sleeve friction. 

 

In this study, CPT measurements are considered for the depth range of 0.1 m to 4 m. 

It is well established in RDC, that a significant reduction in the soil strength in the 

upper 0.1 m is always evident due to the surface disturbance caused by the RDC 

module (Avalle, 2006). For this reason, the near-surface CPT records (< 0.1 m) have 

been removed from the dataset. However, below this depth (0.1 m onwards), cone tip 

resistance is expected to increase with increasing number of roller passes, with a steady 

decrease down to the depth of influence, which is dependent on the subsurface 

material. It has been demonstrated by several researchers that RDC influences the 

ground to depths of 3 m and beyond depending on the soil type and ground conditions 

(Kelly, 2000; Avalle and Carter, 2005; Jaksa et al., 2012). Hence, CPT measurements 

are considered to a depth of 4 m for each of the RDC project sites considered. Although 

the CPT readings from the RDC projects are available at 20 mm depth intervals, the 

values are averaged over 0.2 m depth intervals for each CPT sounding when 

incorporated in the ANN modelling in order to obtain a compromise between model 

parsimony and predictive accuracy. Figure 4.2 shows an example of this arithmetic 

averaging process with respect to cone tip resistance and sleeve friction. 
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(a)     (b) 

Figure 4.2   Example arithmetic average plots of: (a) cone tip resistance; and (b) 

sleeve friction measurements.  

 

4.3 DEVELOPMENT OF ARTIFICIAL NEURAL NETWORKS 

(ANNS) 

In this study, CPT-based ANNs are developed for the prediction of the effectiveness 

of RDC. ANN modelling is carried out using the PC-based software, NEUFRAME 

version 4.0 (Neusciences, 2000). The process adopted in the ANN model development 

is well established in the literature (Maier et al., 2010) and involves the determination 

of model input(s)/output(s), data division, selection of model architecture, 

optimisation of network structure, model validation and performance evaluation.  

 

Prior to model development, the database is divided into two subsets: 

 

a. Modelling dataset – This is used to train and validate the ANN models and consists 

of 1,755 records from 91 CPT soundings in total. This dataset is further divided into 

three subsets: training, testing and validation. Their statistics and applicability are 

discussed later in this paper. 
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b. Verification dataset – Further verification of the developed ANN model is carried 

out by introducing a new unseen data set, which is not a part of the modelling stage 

in any capacity. The dataset comprises several CPT soundings randomly chosen 

from each of the RDC projects included in Table 4.1 and accounts for different 

numbers of roller passes. It is important to note that this particular dataset functions 

the same as the validation subset, but differs in that it contains the entire data record 

of each CPT sounding over the full depth (from 0.1 m to 4 m) and is not mixed with 

several other CPT soundings. A total of 222 records are used in the verification 

dataset taken from 12 CPT soundings. 

 

In the present study, appropriate model inputs and outputs are defined based on the 

prior knowledge of the fundamental factors that influence ground density 

improvement by means of soil compaction. It is understood that the degree of soil 

compaction depends upon key factors including: the inherent physical properties of 

the soil, such as initial density, moisture content, soil type; and the amount of energy 

imparted to the ground. Therefore, 4 parameters, the depth of measurement (D), cone 

tip resistance (qci) and sleeve friction (fsi) prior to compaction, and the number of roller 

passes (P), are selected as potential input variables for the ANN models. In order to 

predict the level of ground improvement, the models include a single output variable, 

the cone tip resistance after compaction (qcf). The inclusion of sleeve friction, together 

with cone tip resistance, provides an indirect and useful representation of soil type in 

the ANN models through the friction ratio. The number of roller passes effectively 

expresses the amount of energy imparted to the soil, as the ANN model is unique to a 

specific RDC module; in this case the 4-sided, 8 tonne impact roller. The statistics of 

model variables are graphically represented in Figure 4.3 and summarised in Table 

4.2. 

 

Since the widely adopted cross validation technique Stone (1974) is used as the 

stopping criterion in the ANN model development, it requires the dataset to be divided 

into three subsets: training, testing and validation, as mentioned above. The training 

set is used to train and calibrate the model and it is with this data subset that the model’s 

connection weights are optimised. While the training progresses, model performance 
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is assessed periodically with respect to the testing set. When the testing error begins to 

increase, even though the error obtained using the training set might continue to 

decrease, training is terminated to avoid overfitting and hence preserve its 

generalisation ability. After model calibration, the validation data are used to validate 

the performance of the model using data unseen during model development.  

 

    

(a)     (b) 

    

(c)     (d) 

 

(e) 

Figure 4.3   Histograms of the data used in the ANN model development: (a) D;  

(b) qci; (c) fsi; (d) P; and (e) qcf. 
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Table 4.2   Statistical properties of the data used in the ANN model development. 

Model variable Minimum Maximum Mean Standard deviation 

Depth, D (m) 0.20 4.00 1.98 1.12 

Cone tip resistance prior to 

compaction, qci (MPa) 
0.19 50.65 9.34 8.16 

Sleeve friction prior to 

compaction, fsi (kPa) 
1.67 473.86 102.78 71.37 

No. of Roller Passes, P 5.00 40.00 26.69 9.97 

Cone tip resistance after 

compaction, qcf (MPa) 
0.17 50.36 10.44 8.29 

 

However, as described in the literature (Tokar and Johnson, 1999; Shahin et al., 2004) 

the method used to divide the data into their subsets may adversely affect ANN model 

performance and thus in this study data division is carried out using self-organizing 

maps (SOMs) (Bowden et al., 2002). The SOM method is beneficial since it involves 

dividing the dataset in such a way that the subsets are statistically consistent and 

effectively represent the same population. The statistical properties considered in this 

study include the mean, standard deviation, minimum, maximum and range. ANNs are 

considered as an interpolation technique and models are expected to perform well 

when they do not extrapolate beyond the set limits of the training set (Flood and 

Kartam, 1994; Minns and Hall, 1996). Therefore, it is essential during data division to 

ensure that the training set contains all the possible patterns included in the dataset so 

that the final ANN model is as general as possible. The data division is carried out in 

such a way that the training set contains 80% of the data and the remaining 20% is 

used for validation purposes. The training set is further divided into two subsets; 80% 

for training and 20% for testing. However, when using the SOM method there is no 

absolute rule when selecting the most favourable map size and, for that reason, several 

map sizes (e.g. 5 × 5, 10 × 10) are examined and the map size which ensures the 

maximum number of clusters is considered to be optimal. The datasets of each RDC 

project mentioned in Table 4.1 are individually subjected to SOM data division, rather 

than introducing the entire dataset into a single SOM. This ensures an even distribution 
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of variables that represent the site specific characteristics among the three subsets. The 

selected optimal map sizes for the Port Botany and Potts Hill projects are 20 × 20 and 

10 × 10, respectively, while 5 × 5 is optimal for the Outer Harbor, Banksmeadow and 

Cairns projects. Thereafter, the individually divided datasets are combined to form the 

three major subsets: training, testing and validation, and their statistics are shown in 

Table 4.3. 

Table 4.3   ANN input-output summary statistics for the training, testing and 

validation data. 

Statistical 

parameters 

Model variables 

D (m) qci (MPa) fsi (kPa) P qcf (MPa) 

Mean 

Training 1.95 9.33 103.36 26.59 10.42 

Testing 2.03 9.32 99.23 27.21 10.50 

Validation 2.03 9.39 103.54 26.62 10.43 

Standard Deviation 

Training 1.11 8.23 71.76 9.94 8.30 

Testing 1.14 8.37 71.29 9.64 8.66 

Validation 1.14 7.83 70.37 10.30 8.03 

Minimum 

Training 0.20 0.19 1.67 5.00 0.17 

Testing 0.20 0.30 8.70 5.00 0.29 

Validation 0.20 0.32 7.08 5.00 0.39 

Maximum 

Training 4.00 50.65 473.86 40.00 50.36 

Testing 4.00 47.39 441.04 40.00 45.12 

Validation 4.00 47.94 470.29 40.00 46.20 

Range 

Training 3.80 50.46 472.19 35.00 50.19 

Testing 3.80 47.09 432.34 35.00 44.83 

Validation 3.80 47.63 463.21 35.00 45.81 
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Once the available data are divided into the three subsets, data pre-processing is carried 

out using the min-max normalisation method. In data normalisation, all model 

variables are scaled into a single range that is commensurate with the limits of the 

activation function used in the output layer (Minns and Hall, 1996). This can expedite 

the model training rate and ensures that all the variables receive equal attention during 

the model training phase. For the ANN modelling undertaken in the present work, the 

logistic transfer function is used in the output layer and therefore the model variables 

are scaled between 0.1 and 0.9. Following the model calibration phase, it is necessary 

to de-normalise the network output by reverse scaling. In this work, multi-layer 

perceptron (MLP) models are developed with the use of the error back-propagation 

method. The feed forward type MLP is the most common network architecture used 

for prediction and forecasting applications (Maier et al., 2010) whereas, the error back-

propagation method (Rumelhart et al., 1986) is by far the most widely used algorithm 

for optimising feed forward ANNs. A comprehensive description of the MLPs trained 

with the error back-propagation algorithm is beyond the scope of the paper but is well 

documented in the literature [e.g. Fausett (1994)]. 

The selected MLP network architecture is comprised of three layers: the input layer, 

one hidden layer and the output layer. It has been demonstrated that one hidden layer 

can approximate any continuous function by providing a sufficient number of 

connection weights (Cybenko, 1989; Hornik et al., 1989). The number of nodes in the 

input and output layers represent the number of model inputs and outputs and thus the 

models consist of 4 nodes in the input layer: depth (D), cone tip resistance (qci) and 

sleeve friction (fsi) prior to compaction and the number of RDC module passes (P). 

Since the models have a single output variable, i.e. cone tip resistance at depth (D) 

after the P module passes (qcf), the output layer consists of a single output node. 

Optimisation of the number of hidden nodes is a crucial aspect of ANN model 

development and it is essential to achieve a structure that is neither too complex nor 

too simple but adequately captures the nuances contained in the training data. 

Therefore, to identify the optimal network architecture/topology a stepwise trial-and-

error procedure is used, as is usual practice in ANN model development (Maier et al., 

2010). On this regard, several ANN models are trained, starting from the smallest 
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possible network involving a single hidden node and successively increasing the 

number of hidden nodes to a maximum of 9. As suggested by Caudill (1988), 2I+1 is 

the upper limit of hidden nodes for a network to map any continuous function, with I 

being the number of input nodes, and accordingly 9 nodes are considered to be the 

maximum number of hidden nodes required for the models. 

In order to obtain the optimal model, ANN parameters, such as learning rate, 

momentum and transfer function, are sequentially varied. ANN models are initially 

trained with the default software parameters (i.e. learning rate = 0.2, momentum term 

= 0.8 and the sigmoidal transfer function) are used for both the hidden and output 

layers. After determining the best topology, the network with the optimal number of 

hidden nodes is subjected to different combinations of learning rates and momentum 

terms. In addition, as the backpropagation algorithm is based on the steepest descent 

method, the obtained network results may be sensitive to the initial weight conditions 

(Maier and Dandy, 2000). Therefore, the selected ANN model is retrained several 

times after randomising the initial weight allocations to ensure that model training does 

not cease at sub-optimal levels.  

Upon the completion of ANN model calibration, the networks undergo model 

validation using the validation dataset. As mentioned earlier, this dataset is not used in 

the training process in any capacity and therefore, it is able to provide a rigorous 

assessment of the network’s predictive and generalisation ability. The criteria used to 

evaluate the performance of the trained network include the root mean square error 

(RMSE), mean absolute error (MAE) and coefficient of correlation (R). The prediction 

accuracy of a well-trained ANN model is represented by the smaller error values and 

an R value close to unity (Smith, 1993). 

4.4 RESULTS AND DISCUSSION 

This section presents the results of the ANN optimisation process and assessment of 

the predictive ability and robustness of the optimal model. 
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4.4.1 Results of ANN Model Optimisation 

The performance statistics of the developed models in terms of RMSE, MAE and R 

value are summarised in Table 4.4, where the model architecture, i.e. the number of 

hidden nodes, is varied. These performance measures are compared in order to select 

the optimum model topology which yields the best predictions. 

Table 4.4   Performance results of ANN models with different numbers of hidden 

nodes. 

H
id

d
en

 n
o
d

es
 Training set Testing set Validation set 

R 
RMSE 

(MPa) 

MAE 

(MPa) 
R 

RMSE 

(MPa) 

MAE 

(MPa) 
R 

RMSE 

(MPa) 

MAE 

(MPa) 

1 0.844 4.59 3.11 0.860 4.61 3.11 0.850 4.38 3.07 

2 0.861 4.27 2.87 0.860 4.48 2.99 0.859 4.14 2.82 

3 0.861 4.26 2.87 0.861 4.45 2.98 0.859 4.13 2.82 

4 0.866 4.19 2.89 0.867 4.33 3.03 0.860 4.16 2.93 

5 0.872 4.13 2.89 0.868 4.34 3.09 0.853 4.29 3.06 

6 0.872 4.14 2.90 0.869 4.33 3.07 0.853 4.29 3.07 

7 0.865 4.21 2.91 0.866 4.35 3.04 0.860 4.17 2.94 

8 0.866 4.17 2.85 0.867 4.32 2.97 0.860 4.13 2.87 

9 0.862 4.23 2.84 0.863 4.41 2.95 0.859 4.12 2.79 

As can be observed, good consistency is obtained with respect to the RMSE, MAE and 

R values among the three data sets: training, testing and validation. This implies that 

the model performance with respect to each of these three subsets is very similar, 

which in turn, indicates the given subsets represent the same population and that the 

SOM method for data division is effective. In order to select the optimal ANN model, 

as mentioned previously, a compromise between predictive accuracy and model 

parsimony is sought. As a consequence, the model with 4 hidden nodes, as shown in 
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bold in Table 4.4, is deemed to be optimal due to its comparatively low prediction 

error (RMSE = 4.16 MPa and MAE = 2.93 MPa for the validation data subset). 

However, additionally, the multiple hidden layer (i.e. 2 and 3 hidden layers) models 

are also investigated but, a significant improvement in model performance over the 

selected optimal single layer model is not experienced. Therefore, in the interest of 

selecting a more parsimonious model, a single hidden layer, 4 hidden node network is 

considered to be optimal, which also facilitates the development of a tractable and 

useable form of the ANN model, as will be discussed later. In order to refine further 

the model with 4 hidden layer nodes, the learning rate and the momentum terms are 

varied, as summarised in Table 4.5. From this analysis, it is observed that the model 

with a learning rate of 0.2 and momentum of 0.8 performs best. 

Figure 4.4 presents a plot of predicted and measured cone tip resistance after 

compaction (qcf) with respect to the data in the testing and validation sets, in which the 

solid lines represent the linear trend line fitted to the predicted values and the dotted 

line indicates perfect prediction. It can be clearly seen that there is minimal scatter, the 

solid and dotted lines are in relatively close agreement, and hence the model performs 

well. 

(a)   (b) 

Figure 4.4   Actual versus predicted qcf for the optimum ANN model with respect to: 

(a) testing set data; and (b) validation set data.
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Table 4.5   Effect of varying momentum terms and learning rates on the optimum 

model. 

L
ea

rn
in

g
 

ra
te

 

M
o

m
en

tu
m

 

te
rm

 

Training set Testing set Validation set 

R 
RMSE 

(MPa) 

MAE 

(MPa) 
R 

RMSE 

(MPa) 

MAE 

(MPa) 
R 

RMSE 

(MPa) 

MAE 

(MPa) 

0.2 0.1 0.861 4.22 2.88 0.862 4.39 2.99 0.860 4.10 2.85 

0.2 0.2 0.861 4.22 2.90 0.862 4.39 3.01 0.860 4.11 2.87 

0.2 0.4 0.862 4.21 2.88 0.862 4.39 3.00 0.860 4.11 2.87 

0.2 0.5 0.862 4.26 2.86 0.861 4.47 2.98 0.859 4.13 2.82 

0.2 0.6 0.862 4.20 2.85 0.863 4.37 2.98 0.861 4.10 2.84 

0.2 0.7 0.862 4.20 2.85 0.861 4.39 2.99 0.858 4.12 2.84 

0.2 0.8 0.866 4.19 2.89 0.867 4.33 3.03 0.860 4.16 2.93 

0.2 0.9 0.868 4.26 3.04 0.868 4.40 3.20 0.860 4.28 3.13 

0.05 0.6 0.860 4.23 2.88 0.861 4.40 2.99 0.860 4.10 2.85 

0.1 0.6 0.865 4.17 2.84 0.865 4.35 2.98 0.861 4.11 2.85 

0.3 0.6 0.871 4.13 2.79 0.866 4.39 2.96 0.858 4.16 2.83 

0.4 0.6 0.864 4.18 2.84 0.865 4.35 2.97 0.861 4.10 2.83 

0.5 0.6 0.871 4.07 2.76 0.865 4.35 2.98 0.856 4.14 2.87 

0.6 0.6 0.873 4.14 2.79 0.864 4.48 2.98 0.855 4.24 2.87 

0.7 0.6 0.872 4.50 3.11 0.866 4.80 3.28 0.852 4.59 3.23 

0.8 0.6 0.873 4.59 3.53 0.865 4.79 3.74 0.854 4.78 3.78 

0.05 0.8 0.865 4.17 2.84 0.865 4.34 2.98 0.861 4.11 2.84 

0.1 0.8 0.862 4.21 2.87 0.862 4.39 2.99 0.860 4.10 2.85 

0.3 0.8 0.867 4.35 2.92 0.866 4.57 3.04 0.861 4.27 2.92 

0.4 0.8 0.870 5.30 4.26 0.864 5.38 4.44 0.849 5.49 4.54 

0.5 0.8 0.873 4.29 3.13 0.865 4.52 3.34 0.855 4.45 3.35 

0.6 0.8 0.870 5.54 4.47 0.870 5.54 4.59 0.854 5.76 4.85 

0.7 0.8 0.874 4.05 2.73 0.864 4.38 2.91 0.856 4.16 2.81 

0.8 0.8 0.875 4.28 3.12 0.868 4.49 3.32 0.858 4.43 3.33 
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4.4.2 Further Verification of Selected Optimum ANN Model 

The capabilities of the optimal ANN model are further evaluated by introducing a 

series of unseen complete CPTs to the model. Details of this dataset were discussed 

earlier and the performance of the model with respect to these additional CPTs is 

summarised in Table 4.6 and Figure 4.5. As is evident, the model performs very 

favourably. 

Table 4.6   Model performance on the verification data set. 

CPT location R RMSE (MPa) MAE (MPa) 

Port Botany - 30 0.955 3.63 3.39 

Port Botany - 11 0.840 3.65 2.86 

Port Botany - 45 0.971 6.06 5.30 

Port Botany - 35 0.723 3.75 2.51 

Potts Hill - 37/44 0.422 3.15 2.12 

Potts Hill - 27/54 0.436 2.23 1.93 

Potts Hill - 24/57 0.530 2.88 2.17 

Outer Harbor - EFC 5 0.838 3.15 2.84 

Banksmeadow - C3 0.141 2.49 1.90 

Cairns-CPT 2 0.613 4.26 2.95 

Cairns-CPT 5 0.794 2.83 2.31 

Cairns-CPT 8 0.943 2.55 2.27 

Figure 4.5   Plots of actual and model predicted CPT results (continued overleaf). 
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Figure 4.5   Plots of actual and model predicted CPT results 

(continued from previous page). 
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4.4.3 Robustness of the Optimum ANN Model 

Finally, the validity and the accuracy of the optimal model are tested by examining 

how well the model predicts outputs that are consistent with the underlying physical 

behaviour of the system. Therefore, to assess the generalisation ability and the 

robustness of the selected optimal ANN model, a parametric study is carried out as 

recommended by Shahin et al. (2005a). This involves investigating the response of the 

model output using a synthetic input data set, where the input variables are varied one 

at a time, while all other input variables remain at a pre-specified value. For this study, 

the output, qcf, is examined while the input variables are varied in turn as follows: qci 

= 2, 5, 8, 15, 20 MPa, fsi = 50, 100, 150, 200 kPa and P = 10, 20, 30, 40. However, as 

mentioned earlier, ANNs perform best when they are used to interpolate (Flood and 

Kartam, 1994). Thus, the generated, hypothetical input variables are specified so that 

they lie within the ranges of the data used in the ANN model development. The 

resulting model predictions are presented in Figures 4.6 – 4.9. 

 

It is observed that the model predictions from the parametric study are in a good 

agreement with the expected behaviour of RDC compaction. For instance, as 

illustrated in Figure 4.6(a), there is a consistent increase in qcf as the number of roller 

passes, P, increase from 10 to 40, while qci and fsi remain constant at 2 MPa and 50 

kPa, respectively. These model predictions clearly demonstrate the improvement in 

strength resulting from the increasing number of roller passes at the same given 

location. Similarly, as shown in Figures 4.6(b) – (d), increasing trends of qcf with 

increasing P are also observed at different fsi values varying between 100 and 200 kPa 

while qci remains constant at 2 MPa. In addition, Figures 4.6 – 4.8 indicate that qcf is 

less affected by fsi, resulting in only modest changes in the predicted qcf. Nevertheless, 

it is evident from the parametric study that the distinct non-linear relationship between 

qcf and P has been appropriately captured by the developed ANN model.  
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(a) (b) 

(c)     (d) 

Figure 4.6   Variation of qcf with different number of roller passes at qci = 2 MPa and: 

(a) fsi = 50 kPa; (b) fsi = 100 kPa; (c) fsi = 150 kPa; and (d) fsi = 200 kPa.
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(a)     (b) 

 

    

(c)     (d) 

Figure 4.7   Variation of qcf with different number of roller passes at qci = 5 MPa and: 

(a) fsi = 50 kPa; (b) fsi = 100 kPa; (c) fsi = 150 kPa; and (d) fsi = 200 kPa. 
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(a)     (b) 

 

    

(c)     (d) 

Figure 4.8   Variation of qcf with different number of roller passes at qci = 8 MPa and: 

(a) fsi = 50 kPa; (b) fsi = 100 kPa; (c) fsi = 150 kPa; and (d) fsi = 200 kPa. 
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(a)     (b) 

 

    

(c)     (d) 

Figure 4.9   Variation of qcf with different number of roller passes at (a) qci = 15 MPa 

and fsi = 50 kPa, (b) qci = 15 MPa and fsi = 100 kPa, (c) qci = 20 MPa and fsi = 50 kPa, 

(d) qci = 20 MPa and fsi = 100 kPa. 
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It is noted, from Figures 4.6 – 4.8, that the predictions of qcf yield appropriate trends 

with increasing numbers of roller passes and depth. In contrast, however, Figure 4.9 

displays less satisfactory predictions when the qci values are relatively large, e.g. 15 

and 20 MPa, when the ground is initially quite dense. This may be attributed to the 

fact that the ANN model has been calibrated successfully mostly for lower values of 

qci. Figure 4.10 shows the histograms of both the qci and qcf records included in the 

training dataset and which have been used in the model calibration. The dotted vertical 

lines indicate the mean values of qci and qcf values in the training subset, which are 

9.33 and 10.42, respectively. As indicated, the histograms for the qc records contain a 

higher proportion in the lower range with respect to the mean values. Moreover, the 

data distributions are skewed to the left-hand side and exhibit sharp peaks rather than 

being normally distributed around the mean. Hence, as a result of this, it is likely that 

the model predictions are less satisfactory with regards to soil with high qci values 

because of the paucity of such data available from previous RDC projects. This is 

likely due to the fact that RDC is normally applied to ground which is initially loose 

and not dense. Hence, it is suggested that the optimal ANN model can be used with 

confidence when the qci values are below 10 MPa. 

 

 

Figure 4.10   Data distribution of cone tip resistance values in training data set.  
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4.4.4 MLP-based Equation 

Having finalised the optimal MLP model, in order to facilitate its adoption in practice, 

it is disseminated as a series of simplified equations. The optimal model structure is 

shown in Figure 4.11 and the associated weights and biases are presented in Table 4.7. 

These weights are utilised in the development of the equation resulting from the ANN 

model.  

 

Figure 4.11   The structure of the optimum four hidden nodes network. 

 

Table 4.7   Weights and threshold levels of the optimum ANN model.  

Hidden  

nodes 

Weight from node i in the input layer to node j in the 

hidden layer (𝒘𝒋𝒊 ) Hidden layer 

threshold (𝜽𝒋) 
i =1 i =2 i =3 i =4 

j = 5 1.190 –8.585 0.754 –0.128 –1.200 

j = 6 –1.677 –1.592 0.310 –1.300 0.224 

j = 7 –0.709 –1.474 0.157 –0.369 –0.232 

j = 8 0.123 3.546 1.211 –2.277 –3.149 

Output  

nodes 

 

Weight from node j in the hidden layer to node k in the 

output layer (𝒘𝒌𝒋 ) Output layer 

threshold (𝜽𝒌) 
j = 5 j = 6 j = 7 j = 8 

k = 9 –6.172 –1.819 –0.916 3.820 –0.113 
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The equation, which relates the input and output variables (Das et al., 2011) can be 

written as follow: 

𝑦𝑘=9 = 𝑓𝑠𝑖𝑔 { 𝜃𝑘 + ∑ [𝑤𝑘𝑗 × 𝑓𝑠𝑖𝑔 (𝜃𝑗 + ∑ (𝑤𝑗𝑖  𝑥𝑖)
4

𝑖=1
 )]

8

𝑗=5

}  (4.1) 

 

Where, yk is the single output variable, θk is the threshold value of the kth output node 

in the output layer and wkj is the connection weight between the jth node in the hidden 

layer and the kth node in the output layer. Similarly, θj is the threshold value of the jth 

hidden node and wji is the connection weight between the ith input node and the jth 

hidden node. The parameter xi is the ith input variable and fsig is the sigmoid transfer 

function.  

 

Equation 4.1 can be simplified as follows: 

𝑦𝑘=9 =
1

1+𝑒
−[ 𝜃𝑘+∑ (𝑤𝑘𝑗  𝑇𝑗)

8

𝑗=5
]

        (4.2) 

and 

𝑇𝑗=5,…,8 =
1

1+𝑒
−[ 𝜃𝑗 + ∑ (𝑤𝑗𝑖  𝑥𝑖)

4

𝑖=1
]

      (4.3) 

 

The variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4 represent the depth below the ground surface (m), qci 

(MPa), fsi (kPa) and the number of roller passes, P, respectively. However, it should 

be noted, as mentioned above, that the input variables are required to be scaled down 

prior to them being used in Equations (4.2) and (4.3). Therefore, the actual input 

variables (xunscaled) are scaled between 0.1 and 0.9 using Equation (4.4) in accordance 

with the given extremes of the training dataset which has been shown in Table 4.3. 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑎 +
(𝑥 𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑− 𝐴)(𝑏−𝑎)

(𝐵−𝐴)
       (4.4) 
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Where, A and B are the minimum and maximum values of the unscaled dataset, 

respectively. Similarly, the minimum and maximum values of the scaled dataset are 

denoted by a and b, which are equal to 0.1 and 0.9 in this study. 

 

With reference to Figure 4.11 and according to the connection weights in Table 4.7, 

the mathematical equation for the optimal ANN model containing 4 hidden nodes can 

be re-written as follows: 

 

𝑞𝑐𝑓 =
62.738

1 + exp(6.172 𝑇5 +  1.819 𝑇6 + 0.916𝑇7 −  3.82 𝑇8 + 0.113)
−  6.104 

 

And, 

𝑇5 = [1 + exp(−0.251 𝑥1 + 0.137𝑥2 − 0.002𝑥3 + 0.003𝑥4 + 1.889)]−1  

𝑇6 = [1 + exp (0.354𝑥1 + 0.025𝑥2 − 0.001𝑥3 + 0.03𝑥4 − 0.023)]−1  

𝑇7 = [1 + exp (0.15𝑥1 + 0.024𝑥2 − 0.0003𝑥3 + 0.008𝑥4 + 0.395)]−1  

𝑇8 = [1 + exp(−0.026 𝑥1 − 0.057𝑥2 − 0.002 𝑥3 + 0.052𝑥4 + 2.647)]−1  

        (4.5) 

 

4.5 SUMMARY AND CONCLUSIONS 

This paper presents a new and unique model to predict the performance of rolling 

dynamic compaction (RDC) based on the artificial intelligence technique known as 

artificial neural networks (ANNs). The model is developed using a database consisting 

of cone penetration test (CPT) results obtained from several ground improvement 

projects which employed the 4-sided, 8 tonne ‘impact roller’. The model utilises 4 

input variables, including depth (m), cone tip resistance prior to compaction (MPa), 

sleeve friction prior to compaction (kPa) and the number of roller passes to obtain the 

cone tip resistance after compaction (MPa), as the sole output. 

 

The resulting optimal ANN model yields relatively accurate predictions with a 

coefficient of correlation (R) of 0.86 and a root mean square error (RMSE) of 4.16 

MPa, when validated against a set of unseen data. The performance of the optimal 
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ANN model has been further verified by introducing a series of complete and unseen 

CPT soundings. The resulting model predictions are in very good agreement with the 

actual CPT records. The robustness of the optimal model is further investigated by 

conducting a parametric study and it is observed that the predicted model outputs agree 

well with the underlying physical behaviour of the system. It is concluded that the 

selected optimal network is robust and reliable for values of initial cone resistance (qci) 

less than or equal to 10 MPa. In order to disseminate the model and to facilitate its use 

in practice, it is expressed as a series of tractable equations which can be incorporated 

into a spreadsheet or calculated by hand. As with all ANN models, they perform best 

when interpolating within the data ranges used in the model’s development. These are 

given in the body of the paper.  

 

The model is intended to provide initial predictions for planning purposes and not to 

replace field trials, which will yield more accurate and site-specific conclusions. As 

with all ANN models, its accuracy can be improved by incorporating data from 

additional RDC-related projects. 
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ABSTRACT 

 

Rolling dynamic compaction (RDC), which involves the towing of a non-circular 

module, is now widespread and accepted among many other soil compaction methods. 

However, to date, there is no accurate method for reliable prediction of the 

densification of soil and the extent of ground improvement by means of RDC. This 

study presents the application of artificial neural networks (ANNs) for a priori 

prediction of the effectiveness of RDC. The models are trained with in situ dynamic 

cone penetration (DCP) test data obtained from previous civil projects associated with 

the 4-sided ‘impact roller’. The predictions from the ANN models are in good 

agreement with the measured field data, as indicated by the model correlation 

coefficient of approximately 0.8. It is concluded that the ANN models developed in 

this study can be successfully employed to provide more accurate prediction of the 

performance of the RDC on a range of soil types. 

 

Keywords: Rolling dynamic compaction, ground improvement, artificial neural 

network, dynamic cone penetration test 
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5.1 INTRODUCTION 

Soil compaction is one of the major activities in geotechnical engineering applications. 

Among many other soil compaction methods, rolling dynamic compaction (RDC) is 

now becoming more widespread and accepted internationally. The RDC technology 

emerged with the first full-sized impact roller from South Africa for the purpose of 

improving sites underlain by collapsible sands in 1955 (Avalle, 2004d). Over the years, 

the RDC concept has been refined with updated and improved mechanisms. Since the 

mid-1980s, impact rollers have been commercially available and are now adopted 

internationally using module designs incorporating 3, 4 and 5 sides. 

 

The 4-sided impact roller module consists of a steel shell filled with concrete to 

produce a heavy, solid mass (6–12 tonnes), which is towed within its frame by a four-

wheeled tractor (Figure 5.1). When the impact roller traverses the ground, the module 

rotates eccentrically about its corners and derives its energy from three sources: (1) 

potential energy from the static self-weight of the module; (2) additional potential 

energy from being lifted about its corners; and (3) kinetic energy developed from being 

drawn along the ground at a speed of 9–12 km/h. As a result, the impact roller is 

capable of imparting a greater amount of compactive effort to the soil, which often 

leads to a deeper influence depth; i.e. in excess of 3 m below the ground surface in 

some soils (Avalle, 2006; Jaksa et al., 2012), which is much deeper than the 0.3 m to 

0.5 m generally achieved using traditional vibratory and static rollers (Clegg and 

Berrangé, 1971; Clifford, 1976, 1978b). Furthermore, it is able to compact thicker lifts, 

in excess of 500 mm, which is considerably greater than the usual layer thicknesses of 

between 200 mm and 500 mm (Avalle, 2006) and can also operate with larger particle 

sizes. 

 

Moreover, RDC is more efficient since the module traverses the ground at a higher 

speed; about 9–12 km/h compared with traditional vibratory rollers which operate at 

around 4 km/h (Pinard, 1999). This creates approximately two module impacts over 

the ground each second (Avalle, 2004d). Thus, the faster operating speed and deeper 

compactive effort make this method very effective for bulk earthworks. In addition, it 

also appears that prudent use of RDC can provide significant cost savings in the civil 
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construction sector. Due to these inherent characteristics of RDC, modern ground 

improvement specifications often replace or provide an alternative to traditional 

compaction equipment. It has been demonstrated to be successful in many applications 

worldwide, particularly in civil and mining projects, pavement rehabilitation and in 

the agricultural sector (Avalle, 2004d, 2006; Jaksa et al., 2012). 

 

 

Figure 5.1   The 4-sided ‘impact roller’ and tractor. 

 

To date, a significant amount of data has been gathered from RDC projects through an 

extensive number of field and case studies in a variety of ground conditions. However, 

these data have yet to be examined holistically and there currently exists no method, 

theoretical or empirical, for determining the improvement in in situ density of the 

ground at depth as a result of RDC using dynamic cone penetrometer (DCP) test data. 

The complex nature of the operation of the 4-sided impact roller, as well as the 

consequent behaviour of the ground, has meant that the development of an accurate 

theoretical model remains elusive. However, recent work by the authors (Ranasinghe 

et al., 2016c) in relation to RDC, as well as by others in the broader geotechnical 

engineering context (Shahin and Jaksa, 2006; Günaydın, 2009; Kuo et al., 2009; Pooya 

Nejad et al., 2009; Isik and Ozden, 2013), have demonstrated that artificial intelligence 

(AI) techniques, such as artificial neural networks (ANNs), show great promise in this 

regard. 
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In a recent and separate study by the authors (Ranasinghe et al., 2016c), ANNs have 

been applied to predict the effectiveness of RDC using cone penetration test (CPT) 

data in relation to the 4-sided impact roller. The model, based on a multi-layer 

perceptron (MLP), incorporates 4 input parameters, the depth of measurement (D), the 

CPT cone tip resistance (qci) and sleeve friction (fsi) prior to compaction, and the 

number of roller passes (P). The model predicts a single output variable, namely the 

cone tip resistance (qcf) at depth, D, after the application of P roller passes. The ANN 

model architecture, hence, consists of 4 input nodes, a single output node, and the 

optimal model incorporates a single hidden layer with 4 hidden nodes. The authors 

also translated the ANN model into a tractable equation, which was shown to yield 

reliable predictions with respect to the validation data set.  

 

This paper aims to develop an accurate tool for predicting the performance of RDC in 

a range of ground conditions. Specifically, the tool is based on ANNs using dynamic 

cone penetrometer (DCP) test data (Standards Association of Australia, 1997) obtained 

from a range of projects associated with the Broons BH-1300, 8 tonne, 4-sided impact 

roller, shown previously in Figure 5.1. Whilst the DCP is a less reliable test than the 

CPT, it is nevertheless used widely in geotechnical engineering practice and a model 

which provides reliable predictions of RDC performance based on DCP data is likely 

to be extremely valuable to industry. 

 

5.2 ANN MODEL DEVELOPMENT 

In recent years, ANNs have been extensively used in modelling a wide range of 

engineering problems associated with non-linearity and have demonstrated extremely 

reliable predictive capability. Unlike statistical modelling, ANNs is a data-driven 

approach and hence does not require prior knowledge of the underlying relationships 

of the variables (Shahin et al., 2002). Moreover, these non-linear parametric models 

are capable of approximating any continuous input-output relationship (Onoda, 1995). 

A comprehensive description of ANN theory, structure and operation is beyond the 

scope of the paper, but is readily available in the literature (Hecht-Nielsen, 1989; 

Fausett, 1994; Ripley, 1994; Shahin, 2016). 
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In this study, the ANN models for predicting the effectiveness of RDC are developed 

using the PC-based software NEUFRAME version 4.0 (2000). As mentioned above, 

the data used for ANN model calibration and validation incorporate DCP test results 

obtained from several ground improvement projects using the Broons BH-1300, 4-

sided impact roller, which has a static mass of 8 tonnes. The data used in this study are 

summarised in Table 5.1. 

 

Table 5.1   Summary of the database of DCP records. 

No. Project No. of DCP 

soundings 

Soil type 
No. of roller passes 

Primary Secondary 

1 Arndell Park 23 Clay Silt 0, 5, 10, 20, 25, 30 

2 Banyo 2 Clay Silt 4, 8, 16 

3 Banksmeadow 10 Sand None 0, 10, 20 

4 Ferguson 7 Clay Silt 5, 10, 15 

5 Kununurra 5 Sand None 
0, 5, 10, 20, 25, 30, 40, 

50, 60 

6 Monarto 6 Sand Gravel 0, 5, 10, 30 

7 Outer Harbor 9 
Clay Silt 

0, 6, 12, 18, 24 
Sand Gravel 

8 Pelican Point 8 Clay Silt 0, 6, 12, 18 

9 Penrith 39 Sand Clay 0, 2, 4, 6, 10, 20 

10 Potts Hill 4 Clay Silt 
0, 10, 20, 30, 40 

11 Revesby 4 

Clay Silt 

0, 5, 10, 15 Sand Clay 

Sand None 

12 Whyalla 12 Sand Gravel 0, 8, 16 

 

 



116  Chapter 5. Applications of ANN for Predicting the Effectiveness of RDC Using DCP 

 

It is important to note that the DCP data are obtained at effectively the same location 

prior to RDC (i.e. 0 pass) and after several passes of the module (e.g. 10, 20 passes), 

since it is essential to include both pre- and post-compaction conditions in the ANN 

model simulations. In total, the database contains 2,048 DCP records from 12 projects. 

 

ANN model development is carried out using the process outlined by (Maier et al., 

2010), including determination of appropriate model inputs/outputs, data division, 

selection of model architecture, model optimisation, validation and measures of 

performance. This methodology is briefly discussed and contextualised below. 

 

5.2.1 Selection of Appropriate Model Inputs and Outputs 

The most common approach for the selection of data inputs in geotechnical 

engineering is based on the prior knowledge of the system in question and this is also 

adopted in the present study. Therefore, the input/output variables of the ANN models 

are chosen in such a manner that they address the main factors that influence RDC 

behaviour. It is identified that the degree of soil compaction depends upon a number 

of key parameters, including: the geotechnical properties at the time of compaction, 

such as ground density, moisture content, soil type; and the amount of energy imparted 

to the ground during compaction. 

 

As mentioned previously, in this study the ANN model is based on DCP test results 

collected from a range of ground improvement projects involving the 4-sided impact 

roller. The DCP (Standards Association of Australia, 1997) is one of the most 

commonly used in situ test methods available, which provides an indication of soil 

strength in terms of rate of penetration (blows/mm). In this study, the average DCP 

blow count per 300 mm is used as a measure of the average density improvement with 

depth as a result of RDC. 

 

Moisture content is not routinely measured in ground improvement projects in 

practice. Nevertheless, moisture content is considered to be implicitly included in the 

DCP data, as the number of blows per 300 mm is affected by moisture content. In 
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addition, whilst the natural ground is often characterised as part of site investigations 

associated with earthworks projects, soil characterisation during the process of filling 

and compacting is not. However, in order to include the soil type in the ANN model, 

a generalised soil type is defined at each DCP location by adopting primary (dominant) 

and secondary soil types. The ground improvement projects included in the database 

can each be characterised into one of 4 distinct soil types: (i) Sand–Clay; (ii) Clay–

Silt; (iii) Sand–None and (iv) Sand–Gravel. As NEUFRAME requires the allocation of 

one input node for every text parameter, therefore in this model, the soil type variable 

represents 4 input nodes. 

 

Hence, in summary, the ANN prediction models developed in this study each have a 

total of 5 input variables consisting of 8 nodes, together representing: (1) Soil type: (a) 

Sand–Clay, (b) Clay–Silt, (c) Sand–None, (d) Sand–Gravel; (2) Average depth below 

the ground surface, D (m); (3) Initial number of roller passes; (4) Initial DCP count 

(blows/300 mm); and (5) Final number of roller passes. The single output variable is 

the Final DCP count (blows/300 mm) at depth D after compaction.  

 

5.2.2 Data Division and Pre-processing 

In this study, the commonly adopted cross-validation technique (Stone, 1974) is used 

as the stopping criterion, which requires the entire data set to be divided into 3 subsets: 

(1) a training set, (2) a testing set, and (3) a validation set. The training set contains 

80% of the data (1,629 records), whereas the remaining 20% (419 records) is allocated 

to the validation set. The training set is further subdivided into the training and testing 

sets in the proportion of 80% (1,310 records) and 20% (319 records), respectively. The 

application of these 3 individual subsets is discussed later. 

 

The distribution of data among the 3 subsets may have a significant impact on model 

performance (Shahin et al., 2004). Therefore, it is necessary to divide the data into 3 

subsets in such a way that they represent the same statistical population exhibiting 

similar statistical properties (Masters, 1993). The statistical properties considered in 

this study include the mean, standard deviation, minimum, maximum and range. The 
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present study uses the method of self-organizing maps (SOMs) (Bowden et al., 2002), 

a detailed explanation of which is given by Kohonen (1982). However, the 

determination of the optimal map size is an iterative process as there is no absolute 

rule to select the most favourable map size and thus several map sizes (e.g. 10×10, 

20×20, 30×30) are investigated. Once the clusters are generated, samples are randomly 

selected from each cluster and assigned to each of the 3 data subsets. 

 

Prior to model calibration, data are pre-processed in the form of scaling which ensures 

that each model variable receives equal attention during model training. Therefore, the 

output variables are scaled so that they are commensurate with the limits of the sigmoid 

transfer function that is used in the output layer. Although scaling of the input variables 

is not necessarily important, as recommended by Masters (1993), in this study, they 

are also subjected to scaling similar to that for the output variable. In such a way, all 

the variables are scaled into the selected range of 0.1 to 0.9 by using Equation 5.1. 

However, subsequent to model training, the model outputs undergo reverse scaling. 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑎 +
(𝑥𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑− 𝐴)(𝑏−𝑎)

(𝐵−𝐴)
      (5.1) 

 

Where, A and B are the minimum and maximum values of the unscaled dataset, 

respectively, and similarly, a and b are the minimum and maximum values of the scaled 

data set. 

 

5.2.3 Determination of Network Architecture 

The determination of network architecture includes the selection of model geometry 

and the manner in which information flows through the network. Among many other 

different types of network architectures, the fully inter-connected, feed forward type, 

multi-layer perceptrons (MLPs) are the most common form used in prediction and 

forecasting applications (Maier and Dandy, 2000). To date, feed forward networks 

have been successfully applied to many and varied geotechnical engineering problems 

(Günaydın, 2009; Kuo et al., 2009; Pooya Nejad et al., 2009). 
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Network geometry requires the determination of the number of hidden layers and the 

number of nodes incorporated in each layer. The simplest form of MLP, which is used 

in this study, consists of 3 layers, including a single hidden layer between the input 

and output layers. It has been shown that single, hidden layer networks with sufficient 

connection weights are capable of approximating any continuous function (Cybenko, 

1989; Hornik et al., 1989). The ability to use non-linear activation functions in the 

hidden and output layers allows the MLP to capture the complexity and non-linearity 

of the system in question. 

 

The number of nodes in the input and output layers is restricted by the number of 

model input and output variables. As mentioned above, this model consists of 8 nodes 

in the input layer and a single node in the output layer. Selection of the optimal number 

of hidden layer nodes is again an iterative process. If too few nodes are adopted, the 

predictive performance to the model is compromised, whereas, if too many nodes are 

used, the model may be overfitted and thus lack the ability to generalise. The stepwise 

approach (Shahin et al., 2002) is adopted in this study to obtain the optimal architecture 

where several ANN models are trained, starting from the simplest form with a single 

hidden layer node model and successively increasing the number of nodes to 11. 

According to Caudill (1988), the upper limit of hidden nodes which are needed to map 

any continuous function for a network with I input nodes is equal to (2I + 1). 

 

5.2.4 Model Optimisation 

In this study, model optimisation, which involves evaluating the optimum weight 

combination for the ANN, is carried out using the back-propagation algorithm 

(Rumelhart et al., 1986). It is the most widely used optimisation algorithm in feed-

forward neural networks and has been successfully implemented in many geotechnical 

engineering applications (Shahin and Jaksa, 2006; Günaydın, 2009; Pooya Nejad et 

al., 2009). The back-propagation algorithm is based on the first-order gradient descent 

rule and has the capability of escaping local minima having appropriately defined the 

ANNs’ internal parameters (Maier and Dandy, 1998). The approach adopted in this 

study involves the models, consisting of each trial number of hidden nodes, first being 
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trained with the default parameter values (i.e. learning rate = 0.2, momentum term = 

0.8) assigned to a random initial weight configuration. The models are then retrained 

with different combinations of learning rates and momentum terms and the network 

performance is assessed with respect to the validation set. However, the networks are 

vulnerable to being trapped in local minima if training is initiated from an 

unfavourable position in the weight space (Shahin et al., 2003). Therefore, the selected 

network with optimal parameters is retrained several times and allowed to randomise 

the initial weight configuration to ensure that model training does not cease at a sub-

optimal level. 

 

5.2.5 Stopping Criteria 

The stopping criterion is used to determine when to cease the ANN model training 

phase. Since overfitting is a possibility during model training, the cross validation 

technique is used which, as discussed earlier, requires data division into 3 subsets: 

training, testing and validation. The training data are used in the model training phase 

where the connection weights are estimated. The models are considered to achieve the 

optimal generalisation ability when the error measure, with respect to the testing set, 

is a minimum, having ensured that the training and testing sets are representative of 

the same statistical population. Although the testing set error shows a reduction at the 

beginning, it starts to increase when overfitting occurs. Therefore, the optimal network 

is obtained at the onset of the increase in test data error, assuming the error surface 

converges at the global minimum. However, model training is continued for some 

time, even after the testing error starts to increase initially, to ensure that the model is 

not trapped in local minima (Maier and Dandy, 2000). 

 

5.2.6 Model Validation and Performance Measures 

Once the model has been optimised, the network is validated against the independent 

validation set, which provides a rigorous check of the model’s generalisation 

capability. The network is expected to generate non-linear relationships between the 

input and output variables rather than simply memorising the patterns that are 
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contained in the training data (Shahin et al., 2002). Since the model is assessed with 

respect to an unseen data set, the results are significant for the evaluation of network 

performance. 

The measures used in this study in evaluating the networks’ predictive performance 

are the often used root mean squared error (RMSE), mean absolute error (MAE) and 

coefficient of correlation (R). When using the RMSE, larger errors receive much 

greater attention than smaller errors (Hecht-Nielsen, 1989), whereas MAE provides 

information on the magnitude of the error. The coefficient of correlation is used to 

determine the goodness of fit and it describes the relative correlation between the 

predicted and actual results. The guide proposed by Smith (1993) is used as follows: 

|𝑅| ≥ 0.8 strong correlation exists between two sets of variables; 

0.2 < |𝑅| < 0.8 correlation exists between two sets of variables; and 

|𝑅| ≤ 0.2 weak correlation exists between two sets of variables. 

5.3 RESULTS AND DISCUSSION 

In the following subsections, the results of data division and model optimisation are 

presented followed by the behaviour of the optimal network when assessed for 

robustness using a parametric study. 

5.3.1 Results of Data Division 

The SOM size of 25×25 is found to be optimal. The statistics of the 3 subsets are 

presented in Table 5.2. As expected, in general, the statistics are in a good agreement, 

apart from slight inconsistencies that result from the appearance of singular and rare 

events in the data, which cannot be replicated in all 3 subsets. It is accepted that ANNs 

are best used to interpolate within the limits of the data included in the ANN model 

development process and are best not used for extrapolation. 
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Table 5.2   ANN input and output statistics. 

Model variables 

and data sets 

Statistical parameters 

Mean *SD Minimum Maximum Range 

Average depth (m) 

Training set 0.81 0.51 0.15 1.95 1.80 

Testing set 0.82 0.51 0.15 1.95 1.80 

Validation set 0.83 0.52 0.15 1.95 1.80 

Initial number of roller passes 

Training set 7.69 10.61 0.00 50.00 50.00 

Testing set 7.65 10.44 0.00 50.00 50.00 

Validation set 8.71 10.93 0.00 50.00 50.00 

Initial DCP count (blows/300 mm) 

Training set 16.57 10.86 3.00 65.00 62.00 

Testing set 15.88 10.64 3.00 59.00 56.00 

Validation set 16.31 10.20 3.00 61.00 58.00 

Final number of roller passes 

Training set 21.14 16.25 2.00 60.00 58.00 

Testing set 21.16 16.49 2.00 60.00 58.00 

Validation set 21.08 16.11 2.00 60.00 58.00 

Final DCP count (blows/300 mm) 

Training set 18.30 11.29 2.00 84.00 82.00 

Testing set 17.80 10.81 2.00 73.00 71.00 

Validation set 17.93 11.47 3.00 75.00 72.00 

      *SD ‒ Standard Deviation 

 

5.3.2 Results of the Optimal ANN Model 

In selecting the optimal model, several models with a single hidden layer consisting of 

different numbers of hidden nodes are compared with respect to R, RMSE and MAE. 

However, with the parallel aim of parsimony, a model with a smaller number of hidden 

nodes that performs well, with respect to the validation set and with a consistent 

performance with the training and testing data is considered to be optimal. From this 

perspective, it is observed that the model with 4 hidden nodes yields the best 

performance with respect to the single hidden layer ANNs. 
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With the intention of improving prediction accuracy, networks are examined with an 

additional hidden layer. Similar to the single hidden layer model optimisation, several 

models with different numbers of nodes in the 2 hidden layers are trained and 

validated. Consequently, the model with 4 and 6 hidden nodes in the first and second 

hidden layers respectively, is deemed to be optimal among the 2 hidden layer ANNs. 

The performance statistics of the selected optimal networks for single and two hidden 

layer networks are summarised in Table 5.3. 

 

Table 5.3   Performance statistics of the optimal networks with single and two hidden 

layers. 

Data set 
RMSE 

(blows/300 mm) 

MAE 

(blows/300 mm) 
R 

Single hidden layer model  

Training 6.45 4.88 0.85 

Testing 6.52 4.74 0.83 

Validation 7.54 5.59 0.79 

Two hidden layer model  

Training 5.72 3.97 0.86 

Testing 5.67 3.88 0.85 

Validation 6.81 4.85 0.81 

 

The optimal single hidden layer model is compared with the optimal two hidden layer 

model in terms of model accuracy and model parsimony. It is evident that the 

prediction accuracy of the two hidden layer model is only marginally better than that 

of the network with a single hidden layer, given the error difference with respect to the 

validation set: RMSE = 0.73, MAE = 0.74; and with the difference in correlation: R = 

0.02. Given that the two hidden layer model sacrifices model parsimony for only 

marginal improvement in performance, it is decided to proceed with the single hidden 

layer model. This is advantageous, as will be discussed later, as this model facilitates 

the development of a simple numerical equation which expresses the relationship 

between the model inputs and output. 
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As produced by the optimal, single hidden layer ANN model, the plot of predicted 

versus measured DCP count with respect to the data in the testing and validation sets 

is shown in Figure 5.2, where the solid line indicates equality. According to the guide 

proposed by Smith (1993), it can be concluded that there exists very good correlation 

between the model predictions and the measured values of the Final DCP count. 

However, it is expected that the random errors associated with the input data, as a 

result of testing uncertainties [operator, procedural, equipment] (Orchant et al., 1988) 

have adversely affected model performance. 

 

    

Figure 5.2   Measured versus predicted final DCP count (blows/300 mm) for the 

optimal ANN model with respect to: (a) testing set; and (b) validation set. 

 

5.3.3 Robustness of the Optimal ANN Model 

It is essential to conduct a parametric study in order to further confirm the validity, 

accuracy and generalisation ability of the optimal model. It is crucial that the model 

behaviour conforms to the known underlying physical behaviour of the system. 

Therefore, the network’s generalisation ability is investigated with respect to a set of 

synthetic input data generated within the limits of the training data set. Each input 

variable is varied in succession, with all other input variables remaining constant at a 

pre-specified value. 
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The post-compaction condition of the ground, represented by the Final DCP count, is 

predicted from the optimal ANN model for a given initial DCP count (i.e. 5, 10, 15, 

20 blows/300 mm) in each of the different soil types (i.e. Sand–Clay, Clay–Silt, Sand–

None and Sand–Gravel) for several, different numbers of roller passes (i.e. 5, 10, 15, 

20, 30, 40 passes). The resulting model predictions are presented in Figure 5.3. 
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(c) 

 

 

(d) 

 

Figure 5.3   Variation of final DCP count with respect to initial DCP count and final 

number of roller passes in: (a) Sand‒Clay; (b) Clay‒Silt; (c) Sand‒None; and  

(d) Sand‒Gravel. 
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It is evident that the final DCP count increases with increasing numbers of roller 

passes, for a given initial DCP in each soil type, which confirms that the ground is 

significantly improved with RDC. As such, the graphs verify that the optimal ANN 

model predictions agree well with the expected behaviour based on the impact of RDC. 

In addition, there are no irregularities in behaviour, with respect to each of these 

variables.  As a result, it is concluded that the optimal ANN model is robust when 

predicting the effectiveness of RDC and can be used with confidence. 

 

Furthermore, the final DCP count is analysed over average depths between 0.45 m and 

1.95 m for each soil type as a function of the number of roller passes, and the results 

are summarised in Figures 5.4(a) to (f). It is noted that upper 300 mm soil layer is 

disturbed by the action of RDC module and therefore, for this analysis, model 

predictions at the average depth of 0.15 m are neglected. However, in all cases, it can 

be seen that the final DCP count increases as the number of roller passes grows. It can 

be further observed that the coarse-grained soils undergo greater compaction when 

fine particles are present in the material. For example, in Figures 5.4(a) to (f), it is 

evident that, for a given initial DCP count, the final DCP count reaches higher values 

as the number of roller passes increases in the Sand‒None and Sand–Clay soils as 

compared with Sand–Gravel. In addition, the final DCP count curves exhibit a higher 

gradient with respect to Sand‒None and Sand–Clay soils than that to the Sand–Gravel. 

This suggests that, when sand is mixed with some fine particles, the compaction 

characteristics are improved when compared with sand mixed with gravel. This is 

consistent with conventional wisdom that some fine particles added to coarse-grained 

materials enhance the soil’s compaction characteristics. In contrast, it can be seen that 

the fine-grained soils are more difficult to compact when compared with coarse-

grained materials, as indicated by the relatively lower values of final DCP count for 

the Clay–Silt soil when compared with the Sand‒None and Sand–Clay materials. 

Again, this is consistent with conventional wisdom. 
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(a)           (b) 

       

(c)           (d) 

     

(e)           (f) 

 

Figure 5.4   Variation of final DCP count with final number of roller passes when 

initial DCP count = 15 and initial passes = 0 in different soil types at depth of:  

(a) 0.45 m; (b) 0.75 m; (c) 1.05 m; (d) 1.35 m; (e) 1.65 m; and (f) 1.95 m. 
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5.3.4 MLP-based Numerical Equation 

In order to facilitate the dissemination and deployment of the optimal MLP model, a 

relatively simple equation is developed to predict the level of ground improvement 

derived from RDC. The optimal model structure is shown in Figure 5.5 and the 

associated weights and biases are presented in Table 5.4. 

 

 

Figure 5.5   The structure of the optimal MLP model. 

 

The numerical equation, which relates the input and output variables, can be written 

as: 

𝑦𝑘=13 = 𝑓𝑠𝑖𝑔 { 𝜃𝑘 + ∑ [𝑤𝑘𝑗 × 𝑓𝑠𝑖𝑔 (𝜃𝑗 + ∑ (𝑤𝑗𝑖  𝑥𝑖)
8

𝑖=1
 )]

12

𝑗=9

}  (5.2) 

Where, 𝑦𝑘 is the single output variable, i.e. the Final DCP count (blows/300 mm) at 

average depth D below the ground, θk is the threshold value of the kth output node in 

the output layer and 𝑤𝑘𝑗 is the connection weight between the jth node in the hidden 

layer and the kth node in the output layer. Similarly, θj is the threshold value of the jth 

hidden node and 𝑤𝑗𝑖 is the connection weight between the ith input node and the jth 

hidden node, xi is the ith input variable and fsig is the sigmoid transfer function.  



130  Chapter 5. Applications of ANN for Predicting the Effectiveness of RDC Using DCP 

 

Table 5.4   Weights and threshold levels for the optimal ANN model. 

Input layer nodes 

Weight from node i in the input layer to node j in the 

hidden layer (𝒘𝒋𝒊 ) 

j = 9 j = 10 j = 11 j = 12 

i = 1 ‒3.128 ‒2.291 0.082 1.486 

i = 2 ‒5.257 ‒2.225 1.678 ‒0.743 

i = 3 1.216 ‒3.206 ‒0.014 1.482 

i = 4 ‒0.973 7.350 ‒1.869 ‒3.939 

i = 5 ‒2.230 ‒2.218 2.932 ‒3.939 

i = 6 ‒2.481 1.760 1.961 ‒1.450 

i = 7 13.630 ‒12.704 ‒1.286 ‒4.115 

i = 8 0.419 3.431 ‒0.888 ‒0.164 

Hidden layer threshold (𝜽𝒋) ‒7.963 0.366 ‒0.908 1.055 

Hidden layer nodes 

Weight from node j in the hidden layer to node k in 

the output layer (𝒘𝒌𝒋 ) 

k = 13    

j = 9 ‒2.113    

j = 10 ‒2.307    

j = 11 ‒3.725    

j = 12 ‒3.163    

Output layer threshold (𝜽𝒌) 2.269    

 

Equation 5.2 can be further simplified as follows:  

 

𝑦𝑘=13 =
1

1+𝑒
−[𝜃𝑘+∑ (𝑤𝑘𝑗  𝑇𝑗)

12

𝑗=9
 ]

      (5.3) 

and, 

𝑇𝑗=9,…,12 =
1

1+𝑒
−[ 𝜃𝑗 +∑ (𝑤𝑗𝑖  𝑥𝑖)

8

𝑖=1
]

      (5.4) 

 

The variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4 represent the soil types Sand–Clay, Clay–Silt, Sand–

None and Sand–Gravel, respectively. These 4 input variables use the binary 
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representation, where the units 1 and 0 are simply used to indicate their presence or 

absence, respectively. For instance, when the numerical equation (Equation 5.2) is 

used for the soil type Sand–Clay, the following is applied: 𝑥1= 1, 𝑥2 = 0, 𝑥3 = 0 and 

𝑥4 = 0. The remaining input variables, given by 𝑥5, 𝑥6, 𝑥7 and 𝑥8 represent the average 

depth, D (m), the initial of number roller passes, the initial DCP count (blows/300 mm) 

and the final number of roller passes, respectively. 

 

However, it is noted that the input and output variables are required to be scaled down 

before using the above equations, as mentioned earlier. Therefore, the input variables 

are scaled between 0.1 and 0.9, by means of Equation 5.1, according to the data 

extremes incorporated in the training set (Table 5.2), and scaled values are substituted 

into Equations 5.3 and 5.4. In addition, the connection weights (𝑤𝑗𝑖 and 𝑤𝑘𝑗), as well 

as the threshold levels (𝜃𝑗  and 𝜃𝑘), are substituted into Equations 5.3 and 5.4 using the 

values given in Table 5.4. As a consequence, the mathematical relationship for the 

optimal ANN model incorporating 4 hidden nodes is simplified as follows: 

 

𝐹𝑖𝑛𝑎𝑙 𝐷𝐶𝑃 =
102.5

1+ 𝑒𝑥𝑝 (2.113 𝑇9+ 2.307 𝑇10+ 3.725 𝑇11+ 3.163 𝑇12−2.269)
−  8.25  (5.5) 

 

Where, 

 

𝑇9 = [1 + 𝑒𝑥𝑝 (3.128𝑥1 +  5.257𝑥2 − 1.216𝑥3 + 0.973𝑥4 + 0.99𝑥5 + 0.04𝑥6 − 0.177𝑥7

− 0.006𝑥8 + 7.424)]−1 

 

𝑇10 = [1 + exp(2.291𝑥1 + 2.225𝑥2 + 3.206𝑥3 − 7.35𝑥4 + 0.985𝑥5 − 0.028𝑥6 + 0.165𝑥7

− 0.048𝑥8 + 0.059)]−1 

 

𝑇11 = [1 + 𝑒𝑥𝑝 (−0.082𝑥1 − 1.678𝑥2 + 0.014𝑥3 + 1.869𝑥4 − 1.302𝑥5 − 0.031𝑥6

+ 0.017𝑥7 + 0.012𝑥8 + 0.757)]−1 

 

𝑇12 = [1 + 𝑒𝑥𝑝 (−1.486𝑥1 + 0.743𝑥2 − 1.482𝑥3 + 0.301𝑥4 + 1.749𝑥5 + 0.023𝑥6

+ 0.053𝑥7 + 0.002𝑥8 − 0.517)]−1 
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5.3.5 Sensitivity Analysis – Selection of Important Input Parameters 

The relative importance of the factors that are significant to ground improvement 

predictions is identified by carrying out a sensitivity analysis of the selected optimal 

network. Garson’s algorithm (Garson, 1991) is used in this study, which partitions the 

network’s connection weights to determine the relative importance of each input 

variable. This method has been used by many researchers (Shahin et al., 2002; Pooya 

Nejad et al., 2009). The sensitivity analysis is repeated 4 times with the connection 

weights obtained from the optimal ANN model trained with 4 different initial random 

weight configurations. The average of the relative importance is adopted to rank the 

input variables and the results are summarised in Table 5.5. As one would expect, the 

input variables of soil type and initial DCP count are found to be the most important. 

The relative importance of the input variables appears to be highly sensitive to the 

initial starting position in the weight space, however the ranks of the input variables 

are found to be consistent with each trial. 

 

Table 5.5   Sensitivity analysis of the relative importance of ANN input variables. 

Input variable 

Relative importance (%) 

Average Rank 
Trial 1 Trial 2 Trial 3 Trial 4 

Soil type 35.55 47.38 35.40 31.90 37.56 1 

Average depth, D 17.52 11.81 18.73 17.86 16.48 3 

Initial no. of roller passes  10.59 9.71 9.89 11.33 10.38 4 

Initial DCP count 31.16 24.09 31.13 25.96 28.09 2 

Final no. of roller passes 5.17 7.01 4.85 12.94 7.49 5 

 

5.4 SUMMARY AND CONCLUSIONS 

The work presented in this paper investigates the effectiveness of rolling dynamic 

compaction (RDC) on different soil types and seeks to establish a predictive tool by 

means of the often applied artificial intelligence technique, artificial neural networks 
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(ANNs). The ANN models incorporate a database of ground density data involving 

dynamic cone penetrometer (DCP) test results associated with RDC using the 4-sided, 

8 tonne ‘impact roller’. ANNs in the form of multi-layer perceptrons are trained with 

the back-propagation algorithm, where the model input variables are: soil type, 

average depth, D (m), initial number of roller passes, initial DCP count (blows/300 

mm) and the final number of roller passes, with the sole output being the final DCP 

count (blows/300 mm) at depth D after compaction. It is found that the selected 

optimal model, with a single hidden layer incorporating 4 nodes, is capable of 

effectively capturing the density development with respect to the number of impact 

roller passes and the associated subsurface conditions. The resulting optimal ANN 

model demonstrates very good accuracy, with a coefficient of correlation (R) of 0.79, 

root mean square error (RMSE) of 7.54 and mean absolute error (MAE) of 5.59, when 

validated against a set of unseen data. In addition, a parametric study is carried out to 

assess the generalisation ability and robustness of the optimal model, where the results 

emphasise that the model’s responses agree well with the expected physical 

relationships among the parameters. Therefore, the model is recommended as a 

reliable tool to predict ground improvement as a result of RDC. 

 

A sensitivity analysis is also carried out where the relative importance of the 

parameters affecting ground improvement is investigated. It is identified that the soil 

type and the initial DCP count (blows/300 mm) are the dominant parameters. 

Subsequently, based on the optimal model characteristics, a simplified numerical 

equation that defines the functional form of the relationship between the model inputs 

and output is formulated to assist with hand calculations in practice.  
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ABSTRACT 

 

Rolling dynamic compaction (RDC) is a soil compaction method which involves 

impacting the ground with a non-circular roller. This technique is currently in 

widespread use internationally and has proven to be suitable for many compaction 

applications with improved capabilities over traditional compaction equipment. 

However, there is nevertheless a lack of knowledge for a priori estimation of the 

effectiveness of RDC on different soil profiles. To this end, the aim of this paper is to 

develop a reliable predictive tool based on a machine learning approach, linear genetic 

programming (LGP). The models are developed from a database of cone penetration 

test (CPT) based case histories. It is shown that the developed LGP-based correlations 

yield accurate predictions for unseen data and, in addition, the results of a parametric 

study demonstrate its generalisation capabilities. Furthermore, the selected optimal 

LGP-based model is found to yield superior performance when compared with an 

artificial neural network (ANN) model recently developed by the authors. It is 

concluded that the LGP-based model developed in this study is capable of providing 

reliable predictions of the effectiveness of RDC in various ground conditions. 

 

Keywords: Rolling dynamic compaction, linear genetic programming, cone 

penetration test 
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6.1 INTRODUCTION 

Rolling dynamic compaction (RDC) is now a well-established method of ground 

improvement where soil densification is achieved by means of high-energy impact 

blows. RDC employs heavy (6 to 12 tonnes), non-circular modules (3-, 4- and 5-sided), 

which rotate about their corners as it drawn forward towed behind a tractor (Avalle, 

2004d). Thereby, a combination of potential and kinetic energy is derived from the 

impact mechanism, which provides a series of impact blows as the roller traverses the 

ground. Consequently, the soil beneath the surface is densified into a state of lower 

void ratio by expelling the pore air and fluid. However, the major benefit of RDC is 

its capability of influencing the ground to a greater depth, when compared to 

conventional static and vibratory compaction, which is more than 1 m beneath the 

ground surface and sometimes as deep as 3 m in some soils (Clegg and Berrangé, 1971; 

Clifford, 1976, 1978b; Avalle and Carter, 2005; Jaksa et al., 2012). In addition to the 

greater depth of compaction, RDC is capable of achieving the required density in 

thicker lifts, which are generally in excess of 500 mm, as compared with traditional 

layer thicknesses of 200 to 500 mm (Avalle, 2004d, 2006). Moreover, RDC can 

operate with larger particle sizes and the surface corrugations produced as a result of 

its operation provide a measure of interlocking between the adjacent soil layers, which 

helps to overcome lateral shearing effects. The economics of the use of RDC has also 

been found to be favourable because of its speed of operation, i.e. 9 to 12 km/h, which 

is substantially greater than the traditional vibratory roller which travels at 

approximately 4 km/h (Pinard, 1999). These inherent characteristics of RDC make it 

very effective for many civil, mining and agricultural applications, including pavement 

rehabilitation; in situ densification of existing fills, such as on brownfield sites and 

landfills; subgrade proof-rolling (Avalle, 2004a); construction of tailing dams at mine 

sites (Avalle, 2006); rock demolition in open cut mine waste tips (Scott and Jaksa, 

2012); and improvements of existing water storages, channels and embankments 

(Avalle, 2004d). 

 

To date, RDC has been studied experimentally through a number of field-based and 

case studies. However, until recently, as a result of work undertaken by the authors, 

which is discussed below, no rational means for obtaining a priori estimation of the 
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degree of densification or the extent of the influence depth by RDC in different ground 

conditions. Indeed, development of such a reliable theoretical model for prior 

estimation of the effectiveness of RDC is complex due to the heterogeneous nature of 

soil and of the various site-specific factors that can potentially affect the improvement 

process. Subsequently, the performance design and application of RDC currently relies 

heavily on the geotechnical engineer’s experience and judgment. Field trials are often 

carried out on site to ascertain the operational parameters, especially the optimal 

number of impact roller passes required to achieve the required percentage of 

maximum dry density. 

 

However, to address this problem, recent studies conducted by the authors in relation 

to RDC have proposed models by means of the artificial intelligence (AI) technique 

known as artificial neural networks (ANNs) (Ranasinghe et al., 2016c, 2016a). Two 

distinct ANN models have been developed based on cone penetration test (CPT) 

(Ranasinghe et al., 2016c), and dynamic cone penetration (DCP) test (Ranasinghe et 

al., 2016a), data and results obtained from previous ground improvement projects 

associated with the Broons 4-sided ‘impact roller’. Except for a few restrictions 

imposed on the model utilisation, they have been shown to be successful in providing 

reliable predictions of the effectiveness of RDC in various ground conditions. Despite 

the fact that ANNs provide acceptable performance in many geotechnical engineering 

applications, they suffer from a few shortcomings. Essentially, ANNs require the 

network structure and the parameters to be recognised in advance, which usually entail 

the implementation of somewhat ad-hoc, trial-and-error methods. Moreover, a 

common criticism levelled at ANNs is their lack of transparency, in that they often fail 

to explain the underlying physical processes associated with the phenomenon under 

investigation; in this case, compaction. 

 

This paper investigates the applicability of a relatively new, machine learning 

technique called genetic programming (GP), that is reported to overcome many of the 

shortcomings associated with ANNs and other conventional modelling approaches for 

the prediction of the effectiveness of RDC. The GP models are developed using a 

reliable dataset of CPT results that have also been utilised previously for ANN model 
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development by the authors (Ranasinghe et al., 2016c). Explicit formulae based on the 

optimal GP model are presented. In addition, a comparative study is conducted where 

the GP- and ANN-based models are compared in terms of a range of performance 

measures. 

 

6.2 GENETIC PROGRAMMING (GP) 

Genetic Programming (GP) (Koza, 1992) is one of a number of approaches based upon 

evolutionary algorithms (EAs) that mimic the concept of Darwin’s evolution theory in 

relation to optimising a solution to a predefined problem. Similar to ANNs, GP is part 

of the AI class of modelling techniques, which can be considered as an alternative to 

conventional methods, such as for example, statistical and finite element modelling, 

because of its ability to approximate any linear/non-linear relationship among a set of 

observed input and output data in the absence of former knowledge on the underlying 

mechanisms of the system. However, GP is still considered a relatively new evolution-

based optimisation technique in the field of geotechnical engineering. Nonetheless, 

several applications of GP can be found in the literature (Javadi et al., 2006; Johari et 

al., 2006; Heshmati et al., 2008; Taskiran, 2010; Alavi and Gandomi, 2012; Alavi et 

al., 2013). 

 

GP was first introduced by Koza (1992) in the early 1990s and it is often considered 

as a generalisation/extension of genetic algorithms (GAs). However, GAs are 

essentially recognised as individuals represented by fixed-length binary strings 

(Holland, 1975) whilst, GP represents the individuals as computer programs of 

variable size and shape (Koza, 1992). The individuals in a GP population are 

hierarchically composed of a set of functions and terminals fitted to a particular 

problem domain. The function set may consist of arithmetic functions (+, –, ×, /), 

mathematical functions (sin, cos, ln), Boolean logic operators (AND, OR, NOT), 

logical expressions (IF or THEN), iterative functions (DO, CONTINUE, UNTIL) 

and/or other user-defined functions (Sette and Boullart, 2001). The terminal set 

typically comprises of input variables attached to the problem domain and pre-

specified or randomly generated numeric constants. 
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The earliest Koza style of GP is now widely known as a tree-based GP (TGP), where 

the programs are represented as tree structures. In addition to the traditional TGP, there 

are several distinguished variants of GP, where programs are represented in different 

forms: i.e. linear GP and graph-based GP (Banzhaf et al., 1998; Poli et al., 2007). The 

emphasis of the present study is placed on the linear GP technique. 

 

6.2.1 Linear Genetic Programming 

Linear genetic programming (LGP) (Brameier and Banzhaf, 2007) is a subset of GP, 

where the individuals are represented in a linear format. The main distinguishing 

feature of LGP over TGP is that LGP evolves programs of an imperative language 

(e.g. C, C++ or Java) or machine language instead of the standard TGP expressions in 

a functional programming language (i.e. Lisp) (Brameier and Banzhaf, 2001; Brameier 

and Banzhaf, 2007). Moreover, the data flow of evolved programs in LGP has a more 

general register-based graphical representation at the functional level, compared to the 

rigidly determined tree representation of traditional TGP. A comparison of the typical 

program structures giving the same end result, produced by LGP and TGP, is presented 

in Figure 6.1.  

 

       

(a)        (b) 

Figure 6.1   Comparison of the GP structures: (a) LGP (b) TGP  

[modified from Alavi et al. (2013)]. 
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As described earlier, the LGP individuals are evolved either from an imperative 

programming language (e.g. C, C++ or Java) (Brameier and Banzhaf, 2001; Brameier 

and Banzhaf, 2007) or a direct machine language (Nordin, 1994). The latter variant is 

also known as automatic induction of machine code by genetic programming 

(AIMGP), where the evolved programs are stored as linear strings of native binary 

machine code (Nordin et al., 1999). In contrast, the individuals in AIMGP are directly 

executable by the processor (Francone and Deschaine, 2004). AIMGP is found to be 

more memory efficient and significantly faster than other GP variants because there is 

no need for an interpreter for the evaluation of individuals (Nordin et al., 1999; Alavi 

and Gandomi, 2012). As a consequence of these advantages, this study makes use of 

AIMGP.  

 

6.2.2 LGP Evolutionary Algorithm 

LGP performs a multi-directional simultaneous search for an optimal solution from a 

pool of many potential solutions, collectively known as a ‘population’. The individuals 

in the population compete with each other, such that the fittest individuals survive and 

eventually evolve to do well in the given environment. In general, the basic steps of 

the LGP evolutionary algorithm (Brameier and Banzhaf, 2007) can be summarised as 

follows: 

 

1. Initialising a population of randomly generated programs and evaluating their 

fitness; 

2. Performing two fitness tournaments with randomly selected programs from the 

population and selecting the winning programs; 

3. Making temporary copies of the two winning programs; 

4. Transforming the two winning programs into offsprings subjected to genetic 

operations, i.e. crossover and mutation with certain probabilities; 

5. Replacing the two tournaments losing programs with the temporary copies of 

the winning programs; and 

6. Repeating Steps 2 to 5 until the termination or convergence criteria are 

satisfied. 
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6.3 LGP-BASED MODELLING APPROACH 

The following section provides an overview of the data used in the modelling process, 

followed by a detailed assessment of the methodology adopted in developing the LGP-

based models.  

 

6.3.1 Database and Data Pre-processing 

A comprehensive database containing the results of several field trials undertaken by 

Broons, as presented in the authors’ recent work (Ranasinghe et al., 2016c), is again 

utilised in the present study. The database is comprised of in situ soil strength data in 

the form of cone penetration test (CPT) results with respect to a varying number of 

roller passes. CPT results are presented in terms of cone tip resistance (qc) and sleeve 

friction (fs) measurements. It is considered that the differences between the individual 

measurements obtained at essentially the same location prior to compaction (0 roller 

passes) and after compaction (10, 20 roller passes), effectively quantify the variation 

in soil strength and density resulting from RDC. In total, 1,977 data records are 

available after averaging the CPT values over 0.2 m depth intervals from 103 CPT 

soundings. Further details of the CPT data are given by Ranasinghe et al. (2016c).  

 

This study takes into account the fundamental factors that influence ground density 

improvement by means of soil compaction when deciding the appropriate model inputs 

and outputs. The input variables used to develop the prediction correlations are: the 

depth of measurement (D), cone tip resistance (qci) and sleeve friction (fsi) prior to 

compaction and the number of roller passes (P), whilst the single output variable is 

cone tip resistance after compaction (qcf). It is considered that these input variables, 

either individually or collectively, address the key factors that are most influential to 

the degree of soil compaction, including the inherent physical properties of the soil, 

such as initial density, moisture content and soil type, which are accounted for in the 

CPT data, and the amount of energy imparted to the ground, which is accounted for 

with the parameter P. The ranges of the input and output variables involved in model 

development are presented in Table 6.1. 
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Prior to LGP modelling, the available dataset is divided into a series of subsets. In 

order to conduct a fair comparison between the results obtained herein and those from 

the previous ANN model (Ranasinghe et al., 2016c), this study utilises the same data 

subsets employed in the previous ANN model development by the authors. In 

summary, the entire dataset has been divided into two sets: a modelling dataset 

(consisting of 1,755 records from 91 CPT soundings); and a verification dataset 

(consisting of 222 records from 12 CPT soundings). The modelling dataset is used to 

train and validate the LGP models and is adopted in the modelling phase. However, 

the verification dataset is not a part of the modelling phase in any capacity but is 

introduced to the selected optimal LGP model in order to further verify its capabilities. 

 

Table 6.1   Input/output variable ranges used in model development. 

Variables Range 

Input 

Depth of measurement, D (m) 0.2 – 4.0 

Cone tip resistance prior to compaction, qci (MPa) 0.19 – 50.65 

Sleeve friction prior to compaction, fsi (kPa) 1.67 – 473.86 

No. of Roller Passes, P 5 – 40  

Output  

Cone tip resistance after compaction, qcf (MPa) 0.17 – 50.36  

 

For the LGP analysis, it is necessary to divide the modelling dataset into 3 subsets: 

training, testing and validation. The learning subset incorporates 80% of the entire 

dataset and consists of the training and testing subsets. The programs are genetically 

evolved and optimised to learn the input/output relationships with respect to the 

training subset, whilst the model’s generalisation capability is evaluated periodically 

using the testing subset. Upon the completion of the LGP model calibration, the 

remaining 20% of the data, included in the validation subset, is presented to the optimal 

program as a set of unseen data to assess its performance. However, it is important to 

ensure that these 3 subsets are statistically consistent so that they effectively represent 

the same population, which is the ideal form of data division. It can be seen in Table 

6.2, that the subsets used in this study effectively represent the same population as 
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evidenced by the similar values of mean, standard deviation, minimum, maximum and 

range. 

 

Table 6.2   Statistical properties of the data used in the LGP model development. 

Variable 
Data 

subset 

Statistical parameters 

Mean *SD Minimum Maximum Range 

Inputs  

Depth, D (m) 

Training 1.95 1.11 0.20 4.00 3.80 

Testing 2.03 1.14 0.20 4.00 3.80 

Validation 2.03 1.14 0.20 4.00 3.80 

       

Cone tip 

resistance prior 

to compaction, 

qci (MPa) 

Training 9.33 8.23 0.19 50.65 50.46 

Testing 9.32 8.37 0.30 47.39 47.09 

Validation 9.39 7.83 0.32 47.94 47.63 

       

Sleeve friction 

prior to 

compaction,  

fsi (kPa) 

Training 103.36 71.76 1.67 473.86 472.19 

Testing 99.23 71.29 8.70 441.04 432.34 

Validation 103.54 70.37 7.08 470.29 463.21 

       

No. of Roller 

Passes, P 

Training 26.59 9.94 5.00 40.00 35.00 

Testing 27.21 9.64 5.00 40.00 35.00 

Validation 26.62 10.30 5.00 40.00 35.00 

Output             

Cone tip 

resistance after 

compaction, qcf 

(MPa) 

Training 10.42 8.30 0.17 50.36 50.20 

Testing 10.50 8.66 0.29 45.12 44.83 

Validation 10.43 8.03 0.39 46.20 45.81 

 

The entire dataset is rescaled using the min-max normalisation method. Although such 

data transformation is not strictly necessary, it is usually recommended as it often 

improves the effectiveness and the performance of the algorithm (Alavi and Gandomi, 

2012). Thus, prior to model development, both the input and output variables are 

rescaled into the range of 0 to 1 using the following Equation: 
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
(𝑥𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑− 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
        (6.1) 

 

Where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are, respectively, the minimum and maximum values of the x 

variable with respect to the training dataset, as given in Table 6.2. 

 

6.3.2 Model Development Using LGP 

In this study, the commercially available software Discipulus version 5.2 (Francone, 

2010) is used for the LGP-based model development. It is a supervised learning 

system, which operates on the basis of the AIMGP platform. It can be considered to 

be an efficient modelling tool for complex problems, but requires careful consideration 

in terms of parameter selection. 

 

It has been identified from the literature, that the selection of control parameters affects 

the model’s generalisation ability. Therefore, different parameter settings, in terms of 

population size, crossover rate and mutation rate, are investigated in this study. Most 

of the other minor parameters are maintained at the values recommended from similar 

applications (Baykasoğlu et al., 2008; Heshmati et al., 2008; Gandomi et al., 2010b; 

Alavi and Gandomi, 2012). Furthermore, the preliminary modelling observations are 

used when selecting the parameters, as listed in Table 6.3. 

 

In this study, a relatively large number of LGP projects are carried out with the 

different parameter combinations discussed above. Furthermore, each parameter 

combination is tested for 5 replications to permit different random initial conditions. 

It is worth mentioning that a LGP project consists of a successively generated series 

of runs which may begin with short runs and be permitted to increase the length of the 

runs as the project continues. This study makes use of MSE as the fitness function, as 

discussed above, and thus the evolved programs are monitored for minimum error. 

Each of the LGP projects is given a reasonable time (ranging from few minutes to 20+ 

hours) to evolve and the project is terminated when no further improvement in model 

performance is likely to occur. 
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Table 6.3   Parameter settings for the LGP algorithm. 

Parameter Settings 

Function set 
+, –, ×, /, Absolute, Square Root, 

Trigonometric (sin, cos), Exponential 

Population size 500, 1,000, 2,000, 5,000, 7,500, 10,000 

Number of demes 10, 20 

Initial program size 80 bytes 

Maximum program size 512 bytes 

Mutation frequency 50%, 90% 

Block mutation frequency 40% 

Instruction mutation frequency 30% 

Instruction data mutation frequency 30% 

Crossover frequency 50%, 95% 

Homologous crossover frequency 95% 

 

The resulting LGP models are evaluated using several performance measures with 

respect to each of the 3 data subsets and compared. The criteria used to evaluate the 

performance of the evolved program models include the coefficient of correlation (R), 

root mean square error (RMSE) and mean absolute error (MAE), which are determined 

as follows: 

 

𝑅 =
∑ (𝑑𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑑𝑖−�̅�)2 ∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

𝑛
𝑖=1

        (6.2) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑑𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
        (6.3) 
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𝑀𝐴𝐸 =
∑ |𝑑𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
(6.4) 

Where 𝑑𝑖 and 𝑦𝑖 are respectively the actual and model predicted output values for the 

ith sample; �̅� and �̅� are the averages of the actual and model predicted output values, 

respectively, over n number of samples. 

6.4 OPTIMAL MODEL RESULTS 

In this section, the details of the optimal LGP-based model are presented along with 

the performance analysis results. The robustness of the optimal model is investigated 

using a parametric study, followed by the explicit formulation of an LGP-based 

numerical equation. In addition, the selected optimal LGP model for predicting the 

cone tip resistance after compaction (MPa), is presented in computing code in the C 

language in Appendix A. 

6.4.1 Performance Analysis 

In selecting the optimal model, the program models generated from the LGP projects 

are compared based on the performance measures in terms of R, RMSE and MAE, as 

discussed above. The model yielding the lowest error and highest R with respect to the 

validation data subset is considered to be optimal and Table 6.4 presents the statistical 

performance of the selected optimal LGP model.  

Table 6.4   Performance statistics of the optimal LGP model. 

Data subset 

Performance criteria 

R RMSE (MPa) MAE (MPa) 

Training 0.87 4.05 2.72 

Testing 0.88 4.08 2.73 

Validation 0.87 4.03 2.71 
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It is evident, that the selected optimal model is able to predict accurately the target 

values as evidenced by the high values of R and low prediction errors indicated by 

RMSE and MAE. According to Smith (1986), when R > 0.8 and the errors are relatively 

small, there exists a strong correlation between the measured and predicted values. 

Thus, it can be considered that the optimal LGP model yields reliable estimates of the 

ground’s cone tip resistance due to RDC. 

 

Figure 6.2 compares the measured and predicted qcf values with respect to the testing 

and validation set data. It is apparent that the model has learnt the input/output 

mapping very effectively, demonstrated by the very good estimates when presented 

with a new set of unseen data. The optimal model predictions are scattered within an 

envelope of 0.5 to 2 times the measured values, which can be considered as a 

reasonable band of accuracy for the ground improvement predictions given the 

uncertainties involved.  

 

   

(a)     (b) 

Figure 6.2   Measured versus predicted qcf for the optimum LGP model with respect 

to: (a) testing; and (b) validation data sets. 
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6.4.2 Parametric Study 

In order to assess the generalisation ability and the robustness of the selected optimal 

LGP-based model, a parametric study is conducted, which evaluates the sensitivity of 

the model output; i.e. qcf to the variations in the input parameters D, qci, fsi and P. This 

involves investigating the model’s response to a hypothetical input dataset, where the 

input variables are varied one at a time, whilst all other input variables remain constant 

at a pre-defined value. It is important to ensure that the variables fluctuate only within 

the range fixed by the training dataset since the model performs best as an interpolation 

predictor rather than by extrapolation beyond the calibrated range. In this study, the 

output, qcf is examined while the input variables adopt the following values: qci = 2, 5, 

8, 10, 15, 20 MPa; fsi = 50, 100, 150, 200 kPa and the number of roller passes, P = 10, 

20, 30, 40. Figures 6.3 to 6.8 present the optimal model predictions of qcf with respect 

to the variations in the input variables.   

 

The results of the parametric study indicate that the soil strength continuously 

improves with increasing numbers of roller passes at a given location. For instance, in 

Figure 6.3(a), it can be observed that qcf consistently rises when the number of roller 

passes increases systematically from 10 to 40 passes while qci and fsi remain constant 

at the pre-defined values of 2 MPa and 50 kPa, respectively. A similar trend is also 

observed when fsi is varied between 50 to 200 kPa, while qci remains constant at 2 MPa 

[Figures 6.3(b)–(d)]. Furthermore, the effect of varying qci is also investigated as 

illustrated in Figures 6.3 to 6.6. It is evident, when qci increases from 2 to 10 MPa, at 

a given depth, qcf always improves to a value higher than qci, consistently indicating 

some level of ground improvement. However, from Figures 6.3 to 6.6, it is also evident 

that qcf is less sensitive to variations in fsi, as indicated by the modest changes in qcf 

when fsi increases from 50 to 200 kPa, whilst the other variables remain constant. 

Nevertheless, it can be concluded that the model predictions are reliable in the sense 

that the model replicates the expected underlying physical behaviour of RDC 

compaction and can be considered to be robust.  
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(a)     (b) 

 

    

(c)     (d) 

Figure 6.3   Variation of qcf with different number of roller passes at qci = 2 MPa and: 

(a) fsi = 50 kPa; (b) fsi = 100 kPa; (c) fsi = 150 kPa; and (d) fsi = 200 kPa. 
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(a)     (b) 

Figure 6.4   Variation of qcf with different number of roller passes at qci = 5 MPa and: 

(a) fsi = 100 kPa; and (b) fsi = 200 kPa. 

 

    

(a)      (b) 

Figure 6.5   Variation of qcf with different number of roller passes at qci = 8 MPa and 

(a) fsi = 100 kPa; and (b) fsi = 200 kPa. 
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(a)     (b) 

Figure 6.6   Variation of qcf with different number of roller passes at qci = 10 MPa 

and (a) fsi = 100 kPa; and (b) fsi = 200 kPa. 

 

    

(a)     (b) 

Figure 6.7   Variation of qcf with different number of roller passes at qci = 15 MPa 

and: (a) fsi = 100 kPa; and (b) fsi = 200 kPa. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16

D
 (

m
)

qcf (MPa)

fs = 100 kPa

10 Passes 20 Passes

30 Passes 40 Passes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16

D
 (

m
)

qcf (MPa)

fs = 200 kPa

10 Passes 20 Passes

30 Passes 40 Passes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 4 8 12 16 20 24

D
 (

m
)

qcf (MPa)

fs = 100 kPa

10 Passes 20 Passes

30 Passes 40 Passes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 4 8 12 16 20 24

D
 (

m
)

qcf (MPa)

fs = 200 kPa

10 Passes 20 Passes

30 Passes 40 Passes



156  Chapter 6. Predicting the Effectiveness of RDC Using GP and CPT Data 

 

    

(a)     (b) 

Figure 6.8   Variation of qcf with different number of roller passes at qci = 20 MPa 

and: (a) fsi = 100 kPa; and (b) fsi = 200 kPa. 
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the frequency of each input variable appearing in the 30 best selected programs 

(Francone, 2010). In this LGP-based modelling process, the frequency obtained for all 

the input variables; i.e. D, qci, fsi and P, is equal to 1, which indicates that these 

variables have been appeared in all of the 30 best programs evolved using LGP. 

Nonetheless, the average and maximum effect of removing the corresponding variable 

from the 30 best programs is calculated relative to each input variable and the results 

are presented in Figure 6.9. As can be observed, all the input variables have an almost 

identical effect on the output if they are removed and therefore, it is considered that all 

the selected input variables are highly significant with respect to the qcf predictions. 

However, as indicated by the average impact measure, qci has the greatest effect when 

compared to the other input parameters. 

 

 

Figure 6.9   Impact of the input variables on optimal model predictions. 

 

6.4.4 LGP-based Numerical Equation 

Once the model has been developed, Discipulus (Francone, 2010) provides the facility 

to translate the evolved optimal LGP program into a C code computer program as 

presented in Appendix A. In order to facilitate its use in practice, the obtained code is 

converted into a series of tractable equations as follows: 
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𝑞𝑐𝑓 = 50.19𝑋(1 − 𝑌) + 1.004𝑞𝑐𝑖 − 0.371       (6.5) 

 

Where: 

 

𝑋 = −0.085 × (0.02𝑞𝑐𝑖 + 0.0006𝑓𝑠𝑖 + 𝐶 − 0.0924𝐷 + 2sin (0.0032(𝑞𝑐𝑖 − 0.19))

− 1.296𝑠𝑖𝑛2(−𝐴) − 0.716) 

𝑌 = 𝐶 − 0.04𝑞𝑐𝑖 + 0.008 + [1 − 0.592𝐴]𝑠𝑖𝑛2(−𝐴) + sin(𝐴) + 0.0012𝐴(𝑓𝑠𝑖 − 2)

+ [𝑍 + 0.478 cos(𝑍)][0.251 − 0.092𝐷][2𝑛 − 1] 

 

and 

 

𝐴 = [0.02𝑞𝑐𝑖 − 0.092𝐷 + 0.247]

× [0.004𝑓𝑠𝑖 − 0.135𝑃 − 0.263𝐷 − 1.182sin (0.0032𝑞𝑐𝑖 − 0.0006) + 3.121] 

 

𝐵 = [𝐴(0.311𝐷 − 0.063) + 1.296]𝑠𝑖𝑛2(−𝐴) − 2𝑠𝑖𝑛(0.0032𝑞𝑐𝑖 − 0.0006) + (0.02𝑞𝑐𝑖

− 0.004)[1.578𝐷 − 1.318] + 0.092𝐷 − 0.251 − [𝐴(0.311𝐷 − 0.063)

+ 0.296](0.002𝑓𝑠𝑖 − 0.004) 

 

𝐶 = |(0.029𝑃 − 0.143). 𝑠𝑖𝑛 (
𝐵2 + (0.02𝑞𝑐𝑖 − 0.004)

0.87
) + (0.029𝑃 + 1.857)(0.02𝑞𝑐𝑖 − 0.004)

− 0.263𝐷 − 0.002𝑓𝑠𝑖 + 0.057| 

 

𝑍 = |0.002𝑓𝑠𝑖 − 0.068𝑃 − 1.182 sin[0.0032𝑞𝑐𝑖 − 0.0006] + 0.738| 

 

𝑛 = [0.02𝑞𝑐𝑖 − 0.092𝐷 + 0.247]2

× [3.092 − 0.129𝑃 + 0.004𝑓𝑠𝑖 − 0.263𝐷 − 1.182 sin(0.0032𝑞𝑐𝑖 − 0.0006)]

+ 2 sin(0.0032𝑞𝑐𝑖 − 0.0006) − 0.092𝐷 + 0.02𝑞𝑐𝑖 + 0.247 

 

Where D is the depth of measurement (m); qci and fsi are the initial cone tip resistance 

(MPa) and sleeve friction (kPa) prior to compaction, respectively; P is the number of 

roller passes and qcf is the cone tip resistance after compaction (MPa), as detailed 

previously.  
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6.5 COMPARATIVE STUDY 

In this section, the results obtained from the LGP simulations are compared with those 

obtained from the ANN-based model recently developed by the authors (Ranasinghe 

et al., 2016c) using several measures. Firstly, the performances of both models are 

again evaluated using R, RMSE and MAE and the results are presented in Table 6.5. It 

is observed that, overall, both models exhibit similar performance. Therefore, it can be 

considered that both models are capable of predicting the target values to a high degree 

of accuracy, as indicated by the strong correlation coefficients; i.e. R > 0.8 (Smith, 

1986), together with the relatively low error values with respect to each of the datasets. 

However, it is evident that the LGP model yields slightly better R values and lower 

error values compared to the ANN model and thus, the LGP-based model marginally 

outperforms the ANN model. 

 

Table 6.5   Comparison of the performance statistics of optimal LGP- and ANN-

based models. 

Data 

subset 

Performance criteria 

R  RMSE (MPa)  MAE (MPa) 

LGP ANN  LGP ANN  LGP ANN 

Training 0.87 0.87  4.05 4.19  2.72 2.89 

Testing 0.88 0.87  4.08 4.33  2.73 3.03 

Validation 0.87 0.86  4.03 4.16  2.71 2.93 

 

Figure 6.10 compares the measured and predicted qcf values of optimal LGP and ANN 

model with respect to the validation set data. It can be clearly seen that there is a 

minimal scatter given the measured and predicted values are in relatively close 

agreement. Thus, it is evident that both the models perform very favourably. 
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(a)     (b) 

Figure 6.10   Measured versus predicted qcf with respect to validation data set for:  

(a) LGP model predictions; and (b) ANN model predictions. 

 

In order to assess more extensively the relative performance of both models additional 

measures, as suggested in literature, are examined. The validation criteria and the 

results obtained from both of the model predictions are presented in Table 6.6. It is 

evident from these results that all performance measures confirm the above conclusion 

that the LGP and ANN models provide accurate predictive capability and that the LGP 

model slightly outperforms the ANN model.  

 

As a further measure, the distribution properties of the optimal LGP and ANN model 

predictions are compared with measured data with respect to the testing and validation 

data sets. The distribution properties considered here include the mean, standard 

deviation (SD), coefficient of variation (CV), skewness, minimum, maximum and 

range. The statistics are summarised in the Table 6.7 and represented graphically in 

Figure 6.11. It is evident that the distributions of the LGP and ANN model predictions 

are very similar to the measured data distribution and, in essence, the distribution 

properties are in very close agreement. However, the LGP model again yields slightly 

superior distribution properties and more closely matches the measured data 

distribution. 
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Table 6.6   Additional performance measures of the LGP and ANN models for the 

validation data set. 

Item Formula Reference Condition LGP ANN 

1 𝑘 =  
∑ (𝑑𝑖 × 𝑦𝑖)𝑛

𝑖=1

∑ 𝑑𝑖
2𝑛

𝑖=1

 
Golbraikh and 

Tropsha (2002) 
0.85 < k < 1.15 0.91 0.95 

2 𝑘′ =  
∑ (𝑑𝑖 × 𝑦𝑖)𝑛

𝑖=1

∑ 𝑦𝑖
2𝑛

𝑖=1

 
Golbraikh and 

Tropsha (2002) 
0.85 < k' < 1.15 0.99 0.95 

3 
𝑅0

2 = 1 −
∑ (𝑦𝑖 − 𝑑𝑖

0)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

 

Where; 𝑑𝑖
0 = 𝑘 × 𝑦𝑖  

Roy and Roy 

(2008) 

Should be close 

to 1 
0.98 0.99 

4 
𝑅0

′2
= 1 −

∑ (𝑑𝑖 − 𝑦𝑖
0)2𝑛

𝑖=1

∑ (𝑑𝑖 − 𝑑�̅�)
2𝑛

𝑖=1

 

Where; 𝑦𝑖
0 = 𝑘′ × 𝑑𝑖 

Roy and Roy 

(2008) 

Should be close 

to 1 
1.00 0.99 

5 𝑚 =
𝑅2 − 𝑅0

2

𝑅2
 

Golbraikh and 

Tropsha (2002) 
m < 0.1 –0.30 –0.34 

6 𝑛 =
𝑅2 − 𝑅0

′2

𝑅2
 

Golbraikh and 

Tropsha (2002) 
n < 0.1 –0.34 –0.34 

 

  

(a)      (b) 

Figure 6.11   Data distribution of predicted qcf for the LGP and ANN models with 

respect to the: (a) testing; and (b) validation data sets. 
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Table 6.7   Distribution properties of LGP and ANN model predictions with respect 

to the validation set. 

Parameter 

Testing data  Validation data 

Measured LGP ANN  Measured LGP ANN 

Mean 10.50 10.34 11.02  10.43 10.49 11.20 

Standard Deviation 8.66 7.54 7.34  8.03 7.03 6.96 

Coefficient of Variation 0.82 0.73 0.67  0.77 0.67 0.62 

Skewness 1.34 1.47 1.50  1.23 1.11 1.22 

Minimum 0.29 0.40 1.04  0.39 0.59 0.82 

Maximum 45.12 47.24 45.88  46.20 47.61 46.78 

Range 44.83 46.84 44.84  45.81 47.02 45.96 

 

Finally, further verification of the LGP-based model’s predictive capability is carried 

out using a completely new, additional dataset, unseen by the model that lies within 

the data limits of the LGP model, as explained earlier. The verification dataset was 

discussed previously in §6.1 and further details are given there. The results are 

summarised in Table 6.8, together with the corresponding statistics obtained from the 

ANN model for comparison purposes. It is clear that both models perform very 

favourably with respect to this series of unseen CPT data, although the results in 

relation to R, RMSE and MAE present a somewhat inconsistent picture, as compared 

with those obtained thus far. Nevertheless, it can be concluded that the LGP-based 

model yields marginally superior performance to that of the ANN-based model. 
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Table 6.8   Performance statistics of LGP and ANN models with respect to 

verification data. 

CPT location 

R  RMSE (MPa)  MAE (MPa) 

LGP ANN  LGP ANN  LGP ANN 

Port Botany – 30 0.96 0.96  4.21 3.63  3.74 3.39 

Port Botany – 11 0.86 0.84  3.37 3.65  2.65 2.86 

Port Botany – 45 0.96 0.97  7.11 6.06  5.97 5.30 

Port Botany – 35 0.71 0.72  3.96 3.75  3.15 2.51 

Potts Hill – 37/44 0.27 0.42  2.86 3.15  1.79 2.12 

Potts Hill – 27/54 0.51 0.44  1.60 2.23  1.27 1.93 

Potts Hill – 24/57 0.58 0.53  2.89 2.88  2.29 2.17 

Outer Harbor – EFC 5 0.85 0.84  2.31 3.15  1.89 2.84 

Banksmeadow – C 3 0.20 0.14  2.47 2.49  1.97 1.90 

Cairns – CPT 2 0.54 0.61  4.68 4.26  3.32 2.95 

Cairns – CPT 5 0.78 0.79  2.61 2.83  1.53 2.31 

Cairns – CPT 8 0.96 0.94  2.02 2.55  1.59 2.27 

 

6.6 SUMMARY AND CONCLUSIONS 

This paper presents a unique approach for the prediction of the effectiveness of rolling 

dynamic compaction (RDC) based on genetic programming (GP). A reliable database 

consisting of cone penetration test (CPT) results obtained from several ground 

improvement projects, associated with the Broons 4-sided, 8 tonne ‘impact roller’, is 

utilised for the model development. The emphasis of the present study is placed on a 

particular variant of GP, namely linear-based genetic programming (LGP), which has 

significant benefits over most other modelling approaches. The models incorporate 4 

input variables; depth (m), cone tip resistance (MPa) and sleeve friction (kPa) prior to 

compaction, and the number of roller passes, which together, are considered to be the 
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most effective in predicting the cone tip resistance after compaction (MPa) as the 

single model output. 

The selected optimal LGP model yields high accuracy in model predictions with a 

coefficient of correlation (R) of 0.87, a root mean square error (RMSE) of 4.03 MPa, 

and a mean absolute error (MAE) of 2.71 MPa, when assessed using a set of unseen 

data. The optimal model is evaluated by means of a parametric study and it is apparent 

that the model is robust and has appropriately captured the input/output non-linear 

relationships. However, the investigation has revealed that the model performs best 

with initial cone tip resistance (qci) values less than or equal to 10 MPa. Moreover, the 

contributions of the each of the input variables with respect to model predictions are 

investigated in a sensitivity analysis and it is observed that each of the input variables 

are highly relevant to the prediction of cone tip resistance after compaction (qcf). 

Furthermore, a series of numerical equations is formulated based on the optimal model 

parameters, which can readily be adopted in practice. Finally, the LGP simulations are 

compared with the existing ANN model subjected to several criteria suggested in the 

literature and both models are compared using a series of unseen CPT data. The results 

indicate that the LGP-based model marginally outperforms the ANN model and 

overall produces slightly more accurate predictions.  

The LGP approach presented in this paper is considered to be valuable during the pre-

planning and pre-design phases. However, it is not expected to replace or undervalue 

the importance of field trials but, nevertheless, it is a worthwhile additional tool for 

ground improvement projects involving RDC. 
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ABSTRACT 

 

Rolling dynamic compaction (RDC), which employs non-circular module towed 

behind a tractor, is an innovative soil compaction method that has proven to be 

successful in many ground improvement applications. RDC involves repeatedly 

delivering high-energy impact blows onto the ground surface, which improves soil 

density and thus soil strength and stiffness. However, there exists a lack of methods to 

predict the effectiveness of RDC in different ground conditions, which has become a 

major obstacle to its adoption. This study develops a prediction model based on linear 

genetic programming (LGP), one of the common approaches in the application of 

artificial intelligence for non-linear forecasting. The models are based on in situ 

density-related data in terms of dynamic cone penetrometer (DCP) results obtained 

from several projects that have employed 4-sided RDC modules. It has been shown 

that the model is accurate and reliable over a range of soil types. Furthermore, a series 

of parametric studies confirms its robustness in generalising data. In addition, the 

results of the comparative study have indicated that the optimal LGP model has a better 

predictive performance than the existing artificial neural network (ANN) model 

developed earlier by the authors.  

 

Keywords: Ground improvement, rolling dynamic compaction, linear genetic 

programming, dynamic cone penetrometer test 
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7.1 INTRODUCTION 

Rapid urban and industrial growth has created a demand for construction on ground 

which has previously been considered unsuitable, such as collapsible and loose natural 

soils, former landfills, fill from mine workings and sites with prior uncontrolled filling. 

Rolling dynamic compaction (RDC) has found to be useful to improve such 

problematic soils and is now in widespread use globally in the construction industry. 

This technique involves towing a heavy (6 to 12 tonnes), non-circular (3-, 4- and 5-

sided) module behind a tractor, where the module rotates about its corners as it is 

drawn forward (Avalle, 2004d). As a result, a series of high-energy impacts is imposed 

repeatedly onto the ground surface (Pinard, 1999) by which the soil is densified into a 

state of lower void ratio due to pore air expulsion. The high energy waves generated 

by the impact blows penetrate deeply into the ground resulting a greater influence 

depth, which is more than 1 m beneath the ground surface and sometimes in excess of 

3 m in some soils (Avalle and Carter, 2005). This deep compaction effect is beneficial 

when compared to conventional static and vibratory compaction (Clegg and Berrangé, 

1971; Clifford, 1976; Avalle and Carter, 2005; Jaksa et al., 2012), where the influence 

depth is limited to depths less than 0.5 m below the ground. In addition, it is efficient 

to employ RDC in large and open sites as the modules are drawn at the comparatively 

higher optimal speed of 9 to 12 km/h, whereas the traditional compaction rollers travel 

at 4 km/h speed (Pinard, 1999). Furthermore, RDC can also compact thicker lifts, i.e. 

in excess of 0.5 m whilst, with the conventional compaction, the lift thickness is 

usually limited between 0.2 and 0.5 m (Avalle, 2006). Thus, the improved ground 

compaction capability of RDC, especially with respect to a greater influence depth and 

a higher speed of compaction, results in increased productivity. In addition, the prudent 

use of RDC can also provide significant cost savings, reduced infrastructure costs and 

environmental benefits. Given these significant advantages over the traditional 

approaches of soil compaction, RDC applications are found to be successful in a 

variety of fields, including earthworks and pavement construction (Avalle, 2006); the 

agricultural sector (Avalle, 2004d); and in mining applications (Scott and Jaksa, 2012).  

 

The estimation of the influence depth of RDC is of prime importance, in particular, if 

multi-layered soil profiles are encountered. Although RDC has been studied 
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experimentally through a number of field-based case studies, until recently as a result 

of work undertaken by the authors, there has been no rational means available for the 

prior estimation of the effectiveness of RDC in different ground conditions. 

Subsequently, current practice associated with estimating site-specific operational 

parameters relies heavily on the judgment of geotechnical engineering practitioners. 

In addition, field trials are often carried out, where a testing pad is arranged, which is 

representative of a large-scale operation of the compaction procedure. The efficacy of 

RDC is verified using a combination of surface settlement surveys, soil sampling and 

in situ tests, such as penetrometer, field density and geophysical testing, that are 

undertaken after different numbers of module passes. As such, field trials are valuable 

for ascertaining the relevant operational parameters, especially the optimal number of 

impact roller passes needed to achieve the required percentage of maximum dry 

density, but incurs a non-trivial cost and time commitment. 

 

Until recently, as described below, no method was available to predict, a priori, the 

density improvement at a specified depth below ground due to RDC, based on 

subsurface conditions and the number of roller passes. With this in mind, this research 

investigates the feasibility of using linear genetic programming (LGP), which is one 

of the well-known machine learning techniques available to develop predictive 

models. Recently, the authors have also suggested an approach based on artificial 

neural networks (ANN) (Ranasinghe et al., 2016c, 2016a), in which two distinct 

models have been developed based on in situ soil test data in terms of cone penetration 

test (CPT) and dynamic cone penetrometer (DCP) test results obtained from projects 

that have employed the Broons 4-sided ‘impact roller’. Whilst the developed ANN 

models were demonstrated to be accurate and reliable, it has been suggested in the 

literature (Rezania and Javadi, 2007; Alavi and Gandomi, 2012; Alavi and 

Sadrossadat, 2016) that evolutionary computation, such as LGP, offers a number of 

advantages over ANNs and thus, may yield improved predictive capability with 

respect to RDC. Furthermore, many of the applications related to geotechnical 

engineering, including the recent study by the authors in relation to RDC (Ranasinghe 

et al., 2016b), where LGP models were developed using CPT data, have suggested that 

LGP outperforms ANNs, in addition to other benefits. 
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The developed LGP-based model in this study utilises a reliable database consisting 

of DCP results obtained from several ground improvement projects, associated with 

the Broons 4-sided, 8 tonne ‘impact roller’.  Since this dataset has also been employed 

previously in the ANN model developed recently by the authors (Ranasinghe et al., 

2016a), a comparative study is conducted between the results obtained herein and with 

those obtained from the existing ANN model. In addition, a parametric study is 

conducted, by which the reliability of the developed model is further verified. 

 

7.2 LINEAR GENETIC PROGRAMMING (LGP) 

Genetic programming (GP) is an evolutionary computational approach of non-linear 

modelling, where the computer programs evolve automatically to optimise a solution 

towards a pre-defined goal. This supervised machine learning technique aligns with 

the theory of Darwinian natural selection and was first introduced by Koza (1992). 

Generally, GP is considered as an extension to genetic algorithms (GAs), in which 

most of the genetic operators used in GAs are also applicable, albeit with slight 

modifications (Alavi et al., 2013). However, the main differences between GP and 

GAs lie in the representation of the solution. GAs are often recognised by individuals 

represented by fixed-length binary strings (Holland, 1975) and the solutions require 

post-processing prior to execution. In contrast, GP represents the individuals as 

computer programs whose size, shape and complexity is dynamically varied during 

evolution and are usually executable without post-processing (Koza, 1992). Moreover, 

GAs are generally used for parameter optimisation, where the best values are evolved 

for a pre-defined set of model parameters, whilst GP, on the other hand, evolves the 

program structure of the approximation model together with the values of its parameter 

setting (Torres et al., 2009; Mousavi et al., 2011; Alavi et al., 2013). However, as with 

GAs, GP performs a multi-directional simultaneous search for an optimal solution 

from a pool of many potential solutions, collectively known as a ‘population’. The fact 

that these methods operate from a population enables them to escape local minima in 

the error surface and are thus able to find optimal or near optimal solutions (Selle and 

Muttil, 2011). 
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In the traditional GP approach, which is also referred to as tree-based genetic 

programming (TGP), the computer programs (individuals) have a symbolic 

representation of a rooted tree-like structure with ordered branches in which the root 

node and internal nodes are comprised of functions whereas, external nodes (leaves) 

contain the input values or constants (Koza, 1992). Thus, they are often expressed in 

a functional programming language like LISP (Koza, 1992). However, in addition to 

the traditional TGP, there are several other distinguished subsets of GP that have a 

different form of program structure representation, i.e. linear GP and graph-based GP 

(Banzhaf et al., 1998; Poli et al., 2007; Alavi et al., 2013). In the present study, 

emphasis is placed on linear genetic programming (LGP). In this particular variant, the 

evolved programs are represented by a sequence of instructions, either from an 

imperative language (e.g. C, C++ or Java) (Brameier and Banzhaf, 2001; Brameier and 

Banzhaf, 2007) or from a machine language (Nordin, 1994). In contrast to the rigidly 

determined, tree-structured data flow in TGP, LGP has a more general, specifically-

directed graphical structure at the functional level resulting from multiple usage of 

register contents (Brameier and Banzhaf, 2007; Alavi et al., 2013; Gandomi et al., 

2014). Moreover, the existence of noneffective code segments, which are also referred 

as introns in LGP, makes them different from their traditional tree-based counterparts. 

As such, these structurally noneffective codes denote the instructions, which 

manipulate the registers that have no influence on the output calculation (Gandomi et 

al., 2010a). Although these noneffective code segments coexist with the effective code, 

they are not connected to the data flow unlike in TGP, where the structural introns do 

not exist because all the program components have a connection with the root node 

(Brameier and Banzhaf, 2007). However, because of the imperative program structure 

in LGP, the structural introns can be detected efficiently and completely (Francone 

and Deschaine, 2004; Alavi et al., 2013). 

 

There is a special variant of LGP, named automatic induction of machine code by 

genetic programming (AIMGP), where the individuals are represented and 

manipulated as native binary machine code (Nordin, 1994; Banzhaf et al., 1998). 

During fitness evaluation in GP, the programs are executed multiple times or at least 

once, which is considered to be the most time-critical step in evolutionary algorithms 
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(Brameier and Banzhaf, 2007). Program execution refers to the interpretation of 

internal program representation. However, in AIMGP the individuals are directly 

executable by the processor and that avoids the use of an expensive interpreter 

(Francone and Deschaine, 2004; Brameier and Banzhaf, 2007). As a result, AIMGP is 

found to be significantly faster and more memory efficient when compared with other 

interpreting GP variants (Nordin, 1994; Brameier and Banzhaf, 2001). Given these 

advantages, AIMGP is also utilised in this study. 

 

In general, the basic steps of the LGP evolutionary algorithm (Brameier and Banzhaf, 

2007) can be summarised as follows: 

 

1. Initialising a population of randomly generated programs and evaluating their 

fitness; 

2. Performing two fitness tournaments with randomly selected programs from the 

population and selecting the winning programs; 

3. Making temporary copies of the two winning programs; 

4. Transforming the two winning programs into offsprings subjected to genetic 

operations, i.e. crossover and mutation with certain probabilities; 

5. Replacing the two tournaments losing programs with the temporary copies of 

the winning programs; and 

6. Repeating Steps 2 to 5 until the termination or convergence criteria are 

satisfied. 

 

7.3 METHODOLOGY 

The details of the database that is used to develop the LGP-based model, as well as the 

methodology adopted for model development, are discussed separately below. 

 

7.3.1 Database, Data Analysis and Data Pre-processing 

This study utilises a comprehensive database that comprises in situ strength data in the 

form of dynamic cone penetrometer (DCP) test results. The DCP (Standards 
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Association of Australia, 1997) is one of the most commonly used in situ test methods, 

which provides an indication of soil strength in terms of rate of penetration 

(blows/mm). The database contains the results of DCP tests with respect to the number 

of roller passes obtained from various sites and soil types. The relevant data have been 

extracted from the results of several field trials undertaken using the 4-sided, 8 tonne 

‘impact roller’ (BH-1300), which is operated by the Australian company Broons (SA) 

Hire. In total, the database contains 2,048 DCP records from 12 separate projects. 

 

Given the problem at hand, the model is established to predict the degree of soil 

improvement of the ground with respect to the number of roller passes. Thus, the single 

model output should necessarily define the ground density at a particular location 

resulting after several passes of the impact roller. However, in selecting the model 

input variables, it is essential to incorporate the factors that are most influential on the 

model output variable. There are several fundamental parameters that significantly 

affect soil compaction: the geotechnical properties at the time of compaction, such as 

ground density, moisture content, soil type; and the amount of energy imparted to the 

ground during compaction. Consequently, the model input variables are defined so that 

they effectively address each of the aforementioned factors that influence soil 

behaviour upon the application of RDC.  

 

Whilst the standard DCP procedure involves recording the number of blows for each 

50 mm of penetration, a compromise must be achieved between model parsimony and 

predictive accuracy. In this study, the average DCP blow count per 300 mm is used to 

indicate the average density with depth. Therefore, the initial density at the point of 

interest is selected to be described by the input variable of initial DCP count 

(blows/300 mm), whilst the single output variable is described by the final DCP count 

(blows/300 mm). In addition, the amount of energy imparted to the ground during RDC 

is described in terms of the number of roller passes so that two input variables are 

specified: the initial; and the final number of roller passes corresponding to the initial 

and final density at a particular location, respectively. The average depth (m) is 

established as another input variable, whilst the soil type is also adopted. The soil type 

is defined in a generalised form at each DCP location by implementing a primary 
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(dominant) and a secondary soil type. With the availability of project data in the DCP 

database, 4 distinct soil types are characterised as: (i) Sand–Clay; (ii) Clay–Silt; (iii) 

Sand–None; and (iv) Sand–Gravel. However, it is worth noting that soil moisture 

content is not included as a model input due to the paucity of data, as it is usually not 

measured routinely in practice in ground improvement projects. However, the 

moisture content is considered to be described implicitly by the DCP data, given that 

penetrometer test results, including those from the DCP, are affected by soil moisture. 

The input and output variables involved in LGP-based model development and their 

statistics are presented in Table 7.1, with Figure 7.1 summarising the histograms of 

the model input and output variables. 

Table 7.1   Descriptive statistics of the dataset used in LGP model development. 

Non-numerical input 

Soil type Sand–Clay, Clay–Silt, Sand–None, Sand–Gravel 

Numerical input+ and output# 

Variables Mean *SD Minimum Maximum Skewness Kurtosis 

Average depth, 

D (m) + 
0.82 0.52 0.15 1.95 0.33 –0.74

Initial no. of roller 

passes+ 
7.89 10.65 0.00 50.00 1.63 2.06 

Initial DCP 

(blows/300 mm) + 
16.41 10.69 3.00 65.00 1.51 2.64 

Final no. of roller 

passes+ 
21.13 16.25 2.00 60.00 1.01 –0.03

Final DCP 

(blows/300 mm) # 
18.14 11.25 2.00 84.00 1.42 2.94 

* SD – Standard Deviation
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(a) (b) 

(c) (d) 

(e)     (f) 

Figure 7.1   Histograms of the model variables used in LGP model development: 

(a) soil type; (b) average depth; (c) initial number of roller passes; (d) initial DCP;

(e) final number of roller passes; and (f) final DCP.
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Prior to model development, the entire dataset is subdivided into 2 subsets, calibration 

and validation data. The calibration dataset is further subdivided into training and 

testing sets, by which the models are respectively trained and the best program is 

selected by testing. The testing set provides an estimate of the prediction error for a set 

of unseen data during the model calibration phase and this information is useful when 

selecting the optimal program model. The validation dataset is not used during model 

development, and thus, it is optional to provide this separate and additional dataset. 

However, it is with the validation dataset that the selected optimal model is assessed 

for its generalisation capabilities. Since the optimal model is evaluated with respect to 

an unseen data set, the results are significant for the evaluation of model performance. 

 

In order to allow a fair comparison between the results obtained from the proposed 

LGP-based model and those from the existing ANN model (Ranasinghe et al., 2016a), 

the same 3 data subsets are employed in the present study as was undertaken by the 

authors in the earlier ANN model study. In summary, 80% of the data are used for 

training and testing (1,310 and 319 records, respectively), whilst the remaining 20% 

of the data (419 records) are used for model validation. However, it is important to 

maintain similar statistics between these 3 subsets, which ensures that they belong to 

the same population, which is the ideal form of data division. As can be observed from 

the summary statistics in Table 7.2, the subsets effectively represent the same 

population by the similar values of mean, standard deviation, minimum, maximum and 

range. 

 

7.3.2 LGP-based Modelling Approach 

In this study, the commercially available software Discipulus version 5.2 (Francone, 

2010) is used for the LGP-based model development. It is a supervised learning 

system, which operates on the basis of the AIMGP platform. The selection of control 

parameters is considered to be vital in LGP modelling, since it has a direct impact on 

the model’s generalisation capacity. Therefore, in this study, the control parameters 

are defined in accordance with the suggested values from similar LGP applications 

(Gandomi et al., 2010a; Rashed et al., 2012; Alavi et al., 2013; Babanajad et al., 2013; 
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Gandomi et al., 2014; Alavi and Sadrossadat, 2016) and also from observations 

obtained from preliminary runs. As presented in Table 7.3, several different parameter 

settings, including population size, probabilities of genetic operations and program 

size, are investigated, whilst most of the other minor parameters are defined by the 

software default values. 

 

Table 7.2   Statistical properties of the data subsets. 

Model 

variables 
Subset 

Statistical parameters 

Mean *SD Minimum Maximum Range 

Input  

Average depth 

(m) 

Training 0.81 0.51 0.15 1.95 1.80 

Testing 0.82 0.51 0.15 1.95 1.80 

Validation 0.83 0.52 0.15 1.95 1.80 

  

Initial no. of 

roller passes 

Training 7.69 10.61 0.00 50.00 50.00 

Testing 7.65 10.44 0.00 50.00 50.00 

Validation 8.71 10.93 0.00 50.00 50.00 

  

Initial DCP 

(blows/300 mm) 

Training 16.57 10.86 3.00 65.00 62.00 

Testing 15.88 10.64 3.00 59.00 56.00 

Validation 16.31 10.20 3.00 61.00 58.00 

  

Final no. of 

roller passes 

Training 21.14 16.25 2.00 60.00 58.00 

Testing 21.16 16.49 2.00 60.00 58.00 

Validation 21.08 16.11 2.00 60.00 58.00 

Output  

Final DCP 

(blows/300 mm) 

Training 18.30 11.29 2.00 84.00 82.00 

Testing 17.80 10.81 2.00 73.00 71.00 

Validation 17.93 11.47 3.00 75.00 72.00 

    * SD – Standard Deviation 

 



180  Chapter 7. Use of GP for the Predictions of the Effectiveness of RDC Using DCP Data 

 

Table 7.3   Parameter setting used in LGP modeling. 

Parameter Settings 

Function set 
+, –, ×, /, Absolute, Square Root, 

Trigonometric (sin, cos), Exponential 

Population size 500, 1,000, 2,000, 5,000 

Initial program size 80 bytes 

Maximum program size 128, 256 bytes 

Mutation frequency 50%, 95% 

Block mutation frequency 40% 

Instruction mutation frequency 30% 

Instruction data mutation frequency 30% 

Crossover frequency 50%, 95% 

Homologous crossover frequency 95% 

 

In this study, several LGP projects are carried out including only the arithmetic 

functions (+, –, ×, /). Furthermore, in order to permit the evolution of highly non-linear 

models, inclusion of mathematical functions (sin, cos, exponential, absolute and 

square root), in addition to basic arithmetic operators, is also considered. This study 

applies the mean square error (MSE) as the fitness measure. Equation 7.1 defines the 

MSE, where di and yi are respectively the actual and the model predicted output values 

for the ith sample and n denotes the number of samples. 

 

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑑𝑖 − 𝑦𝑖)2𝑛

𝑖=1         (7.1) 

 

The population size parameter is regulated at several different levels; i.e. 500; 1,000; 

2,000 and 5,000. However, it has been found that the evolutionary process converges 

faster in semi-isolated sub-populations, named ‘demes’ than in a single population of 

equal size (Brameier and Banzhaf, 2007; Alavi and Sadrossadat, 2016). Thus, the 

parameter that determines the number of demes into which the population is 

subdivided is set at 20 (Alavi and Gandomi, 2012; Alavi and Sadrossadat, 2016). As 
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discussed earlier, in LGP essentially two genetic operations, crossover and mutation, 

are used. In this study, the frequencies of these genetic operations are considered at 

two levels 50% and 95%. These frequencies are the overall probabilities of genetic 

operations applied to the tournament winning programs (Koza, 1992). It has been 

suggested in the literature, that the success of the LGP algorithm usually rises with the 

increasing program size parameter (Rashed et al., 2012; Alavi et al., 2013). However, 

at the same time, as the complexity of the evolved programs increases the convergence 

speed decreases. Considering these trade-offs, the initial program size is set to 80 

bytes, whilst the maximum program size is tested at two optimal levels, 128 and 256 

bytes. 

 

Likewise, in this study, many numbers of LGP projects are carried out, where all of 

the above described combinations of parameters are tested. Each LGP project is made 

up of a series of runs, which progressively increases in length during the course of a 

project. Each run is allowed to evolve in generations, while MSE is being monitored 

continuously. However, the projects are terminated manually, given a reasonable time 

(ranging from a few minutes to more than 20 hours on a standard PC) to evolve into 

an accurate model and when no further improvement in model performance is likely 

to occur. Finally, the resulting LGP models are evaluated using several performance 

measures with respect to each of the 3 data subsets and compared to select the optimal 

program. The criteria used to evaluate the performance of the evolved program models 

include the coefficient of correlation (R), root mean square error (RMSE) and mean 

absolute error (MAE).  

 

7.4 RESULTS AND DISCUSSION 

The following sections summarise the results of the optimal LGP model along with a 

comparison with those obtained from the existing ANN model. Moreover, the details 

of parametric study and sensitivity analysis are also discussed. In addition, the selected 

optimal LGP model for predicting the final DCP (blows/300 mm) is presented in 

computing code in the C language in Appendix B. 
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7.4.1 Performance Analysis 

The performance statistics in terms of R, RMSE and MAE associated with the selected 

optimal LGP-based model, with respect to the 3 data subsets (training, testing and 

validation), are presented in Table 7.4. The selected model’s performance and 

reliability is assessed based on the criteria suggested by Smith (1986), as in the 

following: 

 

Given that the error values (e.g. RMSE and MAE) are minimum, when: 

 |R| ≥ 0.8, there exists a strong correlation; 

 0.2 < |R| < 0.8, there exists a correlation; and 

 |R| ≤ 0.2, there exists a weak correlation between the two variables. 

 

Table 7.4   Performance statistics of the selected optimal LGP model. 

Data subset 

Performance criteria 

R RMSE (blows/300 mm) MAE (blows/300 mm) 

Training 0.84 6.22 4.18 

Testing 0.87 5.35 3.70 

Validation 0.81 6.80 4.74 

 

Accordingly, it can be concluded that there exists a strong correlation between the 

model’s predicted results and the measured data since R ≥ 0.8 and measures of error 

(i.e. RMSE and MAE) are relatively small. It is also evident that the above criterion is 

valid and not limited to the data subsets that were used during the model calibration 

phase (i.e. training and testing sets), but also the new unseen data in the validation set 

as well. This implies that the model predicts the target values accurately and also 

incorporates a generalisation capability. 

 

Figure 7.2 presents scatter plots of the final DCP count predicted from the LGP model 

and compared against the measured values in the testing and validation sets. It can be 

observed that the results are scattered around the solid line that indicates the line of 
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equality and the spread exhibits classic heteroscedasticity. The spread is confined to 2 

standard error (SE) envelops of 0.5 to 2 times the measured values. These SE bands 

can be considered reasonable for such a model that yields predictions based on DCP 

results given the uncertainties associated with the dataset and the method itself. 

 

  

   (a)     (b) 

Figure 7.2   Measured versus LGP predicted final DCP count with respect to: (a) 

testing data set; and (b) validation data set. 

 

In order to investigate further the model’s performance, the LGP predictions and the 

measured data, with respect to the validation data set, are assessed subject to several 

additional measures, as suggested in literature. Table 7.5 presents the validation 

criteria along with the results obtained from the LGP model. It is evident that 

satisfactory results are obtained from each of the criteria. This provides further 

evidence that the optimal LGP model yields accurate predictions. 

 

A comparative study is conducted between the results obtained from the LGP-based 

model and with those obtained from the ANN-based model recently developed by the 

authors (Ranasinghe et al., 2016a).  The performance indices in terms of R, RMSE and 

MAE are again adopted and the results are presented in Table 7.6. As can be seen, the 

results for both models are very promising, as indicated by the strong correlation 

coefficient (R ≥ 0.8), along with the relatively low error values with respect to all 3 
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data subsets. However, it is also evident that the LGP predictions are slightly superior 

to those from the ANN model. 

 

Table 7.5   Additional performance measures of the LGP model for validation data. 

Item Formula Reference Condition Result 

1 𝑘 =  
∑ (𝑑𝑖 × 𝑦𝑖)𝑛

𝑖=1

∑ 𝑑𝑖
2𝑛

𝑖=1

 Golbraikh and 

Tropsha (2002) 
0.85 < k < 1.15 0.92 

2 𝑘′ =  
∑ (𝑑𝑖 × 𝑦𝑖)𝑛

𝑖=1

∑ 𝑦𝑖
2𝑛

𝑖=1

 
Golbraikh and 

Tropsha (2002) 
0.85 < k' < 1.15 0.98 

3 
𝑅0

2 = 1 −
∑ (𝑦𝑖 − 𝑑𝑖

0)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

 

Where; 𝑑𝑖
0 = 𝑘 × 𝑦𝑖  

Roy and Roy 

(2008) 

Should be close to 

1 
0.97 

4 
𝑅0

′2
= 1 −

∑ (𝑑𝑖 − 𝑦𝑖
0)2𝑛

𝑖=1

∑ (𝑑𝑖 − 𝑑�̅�)
2𝑛

𝑖=1

 

Where; 𝑦𝑖
0 = 𝑘′ × 𝑑𝑖 

Roy and Roy 

(2008) 

Should be close to 

1 
1.00 

5 𝑚 =
𝑅2 − 𝑅0

2

𝑅2
 

Golbraikh and 

Tropsha (2002) 
m < 0.1 –0.49 

6 𝑛 =
𝑅2 − 𝑅0

′2

𝑅2
 

Golbraikh and 

Tropsha (2002) 
n < 0.1 –0.54 

 

Table 7.6   Comparison of the performance statistics of LGP and ANN model. 

Data subset 

Performance criteria 

R  
RMSE 

(blows/300 mm) 
 

MAE 

(blows/300 mm) 

LGP ANN  LGP ANN  LGP ANN 

Training 0.84 0.85  6.22 6.45  4.18 4.88 

Testing 0.87 0.83  5.35 6.52  3.70 4.74 

Validation 0.81 0.79  6.80 7.54  4.74 5.59 

 

Further to the above assessment, the predictions of final DCP from the LGP and ANN 

models are compared graphically with the measured final DCP values, with respect to 

the testing and validation datasets, and the resulting histograms are shown in Figure 

7.3. The x-axis indicates the ratio of the predicted data to measured values, with ideal 
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performance being indicted by a ratio of unity. As can be seen, both the LGP and ANN 

model predictions from the testing and validation data suggest that they have strong 

predictive abilities and generalisation performance, as given by the high frequencies 

around the ratio of 1. In addition, it can be clearly seen that the LGP model slightly 

outperforms the ANN model. 

 

  

(a)      (b) 

Figure 7.3   Frequency histograms for model predicted to measured final DCP with 

respect to: (a) testing data; and (b) validation data. 

 

7.4.2 Parametric Study 

Although the LGP model yields satisfactory performance in terms of the measures 

discussed above, it is essential to investigate the model’s behaviour in a parametric 

study to further test its robustness. To this end, the LGP model is implemented to 

predict the output for a synthetic input data set that lies within the range that model is 

trained against, in order to examine whether the results conform to the known physical 

behaviour of the system. Each of the model input variables is varied successively, 

while maintaining all other input variables at a pre-defined value. In this case, the 

model output of final DCP count (blows/300 mm), which expresses the post 

compaction condition, is examined given the different initial conditions as described 

by initial DCP count (i.e. 5, 10, 15, 20 blows/300 mm), soil types (i.e. Sand–Clay, 

Clay–Silt, Sand–None and Sand–Gravel) and final numbers of roller passes (i.e. 5, 10, 

15, 20, 30, 40 passes), while the initial number of roller passes is set at zero. 
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The results of the parametric study are shown in Figure 7.4 and indicate that the final 

DCP count continuously increases when the final number of roller passes is increased 

for a given initial DCP value in each soil type. This parametric behaviour demonstrates 

that the ground is significantly improved with the application of RDC, as evidenced 

by the increasing DCP count, which is consistent with the behaviour observed from 

field trials. Therefore, it can be concluded that the optimal LGP model developed in 

this study is robust, accurate and reliable within the specified range of the input 

variables (i.e. data ranges in training set).  
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(c) 

 

(d) 

 

Figure 7.4   Variation of final DCP with respect to initial DCP and final number of 

roller passes in: (a) Sand‒Clay; (b) Clay‒Silt; (c) Sand‒None; and (d) Sand‒Gravel. 
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7.4.3 Sensitivity Analysis 

It is informative to conduct a sensitivity analysis to evaluate the contribution of each 

input variable in predicting the target output. This is a common approach and has been 

utilised in number of applications (Gandomi et al., 2010a; Rashed et al., 2012; Alavi 

et al., 2013; Alavi and Sadrossadat, 2016). At the end of each LGP project, the software 

Discipulus calculates the frequencies, average and maximum impacts of each of the 

input variables, with reference to the 30 best selected programs (Francone, 2010). The 

frequency indicates the proportion of times (expressed as a percentage) that each input 

variable appears, in the best 30 evolved programs, in a way that contributes to the 

fitness of the programs that contain them. In this particular project, a frequency of 

100% was obtained for each of the specified input variables (i.e. soil type, average 

depth, initial number of roller passes, initial DCP count and final number of roller 

passes), indicating that they are all important. In addition, the average and maximum 

impact values with respect to each of the input variables, which describes the average 

and maximum effect that results from the removal of each corresponding input variable 

from the 30 best programs, are also calculated and the resulting histogram is presented 

in Figure 7.5. It is again evident that all the input variables are significant, with respect 

to the predictions of the final DCP count, and the initial DCP count and the final 

number of roller passes are the most significant. 

 

 

Figure 7.5   Contribution of the input variables on optimal LGP model predictions. 
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7.5 SUMMARY AND CONCLUSIONS 

This paper presents a new approach based on genetic programming (GP) for the 

predictions of the efficacy of rolling dynamic compaction (RDC), which is considered 

to be an alternative to conventional soil compaction technology. A particular variant 

of GP, namely linear genetic programming (LGP), is used to develop the model. A 

comprehensive database consisting of in situ density data in terms of dynamic cone 

penetrometer (DCP) test results, associated with various ground improvement project 

records involving the Broons’ 4-sided, 8 tonne ‘impact roller’ is utilised. In model 

development, 5 input variables [soil type, average depth (m), initial number of roller 

passes, initial DCP count (blows/300 mm) and the final number of roller passes] are 

considered to be the most influential with respect to predictions of the final DCP count 

(blows/300 mm), which is the sole output of the predictive models.  

 

The selected optimal LGP model is found to yield accurate estimates of the final DCP 

count, with a coefficient of correlation (R) of 0.81, a root mean square error (RMSE) 

of 6.80 (blows/300 mm), and a mean absolute error (MAE) of 4.74 (blows/300 mm), 

when assessed against unseen data in the validation set. These outcomes confirm that 

the LGP model yields accurate predictions and demonstrates very good generalisation 

capability. Moreover, when the selected optimal LGP model results are compared with 

those obtained from the ANN model developed by the authors in a previous study, the 

LGP model demonstrates superior performance. In addition, a parametric study has 

been carried out for further verification of the LGP model and it is evident that the 

model predictions are accurate and robust. In addition, a sensitivity analysis has been 

conducted that examines the contribution of each input variable on the final model 

predictions. The results indicate that the input variables utilised in this study are highly 

significant with respect to the predictions of the final DCP count resulting from the 

application of RDC. The optimal LGP program is provided in a C code in order to 

disseminate the model and facilitate its use in practice. 

 

The LGP model presented in this study it is expected to provide initial estimates of the 

effectiveness of RDC in different ground conditions, which are likely to be of 

particular value in the pre-design phase. It is, nevertheless, recommended that the 
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model predictions be validated on site using a traditional field trial, as the data upon 

which the model is based incorporates a limited number of soil types.  
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8.1 INTRODUCTION 

As described in Chapters 4 – 7, two sets of AI models have been developed by means 

of ANNs and LGP incorporating two distinct databases that consisted of CPT and DCP 

test results obtained from RDC using the 4-sided, 8-tonne impact roller. In this chapter, 

these optimal models are synthesised and compared with each other to select the most 

feasible approach for predicting the effectiveness of RDC in different ground 

conditions with respect to CPT and DCP test data. This comparison is followed by a 

section presenting a comprehensive set of guidelines for each of the AI techniques 

employed in this research, i.e. ANN and LGP. With that, it is intended to provide 

guidance for potential and current users of these techniques, specifically the feed-

forward type MLPs trained with error backpropagation algorithm and the LGP method, 

to facilitate the development of such AI models. In addition, treatment is given to the 

currently available approaches, areas that require consideration during model 

development, challenges encountered during the research, as well as means by which 

to address these challenges.  

 

8.2 SYNTHESIS OF THE OPTIMAL AI MODELS 

As discussed previously, two comprehensive databases, consisting of CPT and DCP 

test data, divided into 3 subsets (training, testing and validation), were employed for 

the development of ANN and LGP models for predicting the effectiveness of RDC in 

different ground conditions. Each of the selected optimal models of these two 

techniques was tested in a parametric study to assess generalisation ability and model 

robustness. Moreover, optimal model predictions were further examined by using 

several other means such as analysing performance measures and distribution 

properties. In addition, the performance of the optimal ANN and LGP-based models, 

as well as other aspects, were compared with one another. The results of these analyses 

and evaluations are summarised below. A more detailed review was included in an 

international, peer-reviewed conference paper given in Appendix C. 
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8.2.1 Optimal AI Models based on CPT Data 

The CPT data analysis, model development and optimal model results were detailed 

previously in Chapters 4 and 6 in regards to the ANN and LGP techniques, 

respectively. However, overall, the following results and conclusions are obtained: 

 

o These AI models utilised 4 input variables: depth (m); cone tip 

resistance prior to compaction (MPa); sleeve friction prior to 

compaction (kPa); and the number of roller passes, along with a single 

output of cone tip resistance after compaction (MPa).  

 

o The resulting optimal ANN- and LGP-based models were found to be 

capable of predicting the target values to a high degree of accuracy, 

with a high coefficient of correlation (R > 0.8) and with low prediction 

error values, i.e. RMSE and MAE, when validated against a set of 

unseen data. Specifically, the optimal ANN and LGP models yielded 

values of R of 0.86, 0.87; RMSE of 4.16, 4.03 MPa; and MAE of 2.93, 

2.71 MPa, respectively, when assessed against the validation set data. 

Overall, both models were found to have similar performance but it was 

also evident that the LGP-based model marginally outperforms the 

ANN model. 

 

o By means of a set of additional performance measures, the relative 

performance of both models was further examined, by which it was 

again confirmed that the ANN and LGP models provide accurate 

predictive capabilities. 

 

o It was observed that the distributions of the ANN and LGP model 

predictions with respect to the testing and validation set data are very 

similar to the measured data distribution. Nonetheless, it was also 

observed that the LGP model predictions more closely match the 
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measured data distribution and yields slightly superior distribution 

properties than those of the ANN model predictions. 

 

o It was observed that both the optimal AI models provide very good 

estimates of qcf, when presented with a completely new, additional 

series of unseen CPT datasets. The model predictions were found to 

have a strong correlation with the measured data. However, it was 

observed that the results in relation to R, RMSE and MAE are somewhat 

inconsistent with those of the previous observations, given that in some 

cases, the ANN-based model outperforms the optimal LGP model.  

 

o By all these means, it was confirmed that both the optimal ANN- and 

LGP-based models yield reliable estimates of cone tip resistance 

relative to different numbers of impact roller passes.  

 

o When the optimal models were evaluated in a parametric study, it was 

observed that the model predictions essentially replicate the expected 

underlying physical behaviour of RDC compaction. It was observed 

that the distinct non-linear relationship between parameters was 

appropriately captured by the optimal models and thus, the optimal 

model predictions are considered to be robust and reliable. 

 

o In contrast, it was found that the model predictions are less likely to be 

satisfactory when forecast with respect to high values of initial cone 

resistance, specifically, when the qci is greater than 10 MPa. It was 

assumed that both the ANN and LGP models have been calibrated more 

appropriately for lower values of qci due to the lack of data in the CPT 

database in relation to higher values of qci. Therefore, both these 

optimal AI models are recommended to be used with confidence when 

the qci values are less than or equal to 10 MPa. 
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o By means of a sensitivity analysis on the optimal LGP-based model, 

the contributions of each of the input variables with respect to model 

predictions were investigated. It was confirmed that all the selected 

input variables have a substantial effect on the model predictions of qcf. 

 

o Finally, the optimal AI models were translated into a series of 

numerical equations to facilitate their adoption in practice. Formulation 

of explicit formulae employed the optimal weight combination of the 

ANN model, whilst the LGP model was translated into C code by the 

Discipulus software.  

 

8.2.2 Optimal AI Models based on DCP Data 

The details of model development by utilising DCP data and the optimal model results 

were described previously in Chapters 5 and 7 in relation to the ANN and LGP 

techniques, respectively. Chapter 7 also provided a comparison between the results 

obtained from both of these AI techniques. In summary, the following results and 

conclusions are obtained: 

 

o The AI models using DCP data consisted of 5 input variables: soil type; 

average depth, D (m); initial number of roller passes; initial DCP count 

(blows/300 mm); and the final number of roller passes, whilst the sole 

output was the final DCP count (blows/300 mm) at depth D after 

compaction.  

 

o As with the AI models based on CPT data summarised above, AI 

models developed by utilising the DCP dataset were found to be 

effective when predicting the density development of the ground with 

respect to the number of impact roller passes and the associated 

subsurface conditions. 
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o The model predictions were found to be accurate as evidenced by the 

high correlation coefficients and relatively lower error values, when 

validated against a set of unseen data. More specifically, the ANN- and 

LGP-based models yielded: R of 0.79, 0.81; RMSE of 7.54, 6.80 

(blows/300 mm); and MAE of 5.59, 4.74 (blows/300 mm), respectively. 

However, it was also observed that the LGP predictions were slightly 

superior to those from the ANN model. 

 

o It was further verified that the optimal LGP model yielded accurate 

predictions when subjected to several additional measures 

recommended in literature: 

 

o By means of the scatter plots of model predictions versus the measured 

DCP values with respect to the data in the testing and validation sets, it 

was found that the results are modestly scattered about the line of 

equality. The dispersion was considered to be classic heteroscedastic 

and reasonable given the uncertainties associated with the input DCP 

dataset and the method itself. 

 

o The optimal model predictions were also graphically compared by 

means of frequency histograms with the measured final DCP values 

with respect to the testing and validation datasets. It was observed that 

both these models have a strong predictive capability and generalisation 

performance. However, it was also observed that the LGP model was 

slightly superior to the ANN model. 

 

o In addition to the above assessments of the accuracy of the optimal 

models, their validity and generalisation capability were further 

confirmed by means of a parametric study. The model predictions were 

found to be consistent with the known underlying physical behaviour, 

as observed from field trials and thus, it was confirmed that the 
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predictions of these optimal AI models are robust and reliable within 

the specified ranges of the input variables.  

 

o By analysing the parametric study results given by the optimal ANN 

model, the effect of different soil types on the model predicted output, 

i.e. final DCP count (blows/300 mm), was investigated. It was observed 

that the conclusions drawn from the optimal model predictions are 

consistent with conventional wisdom. 

 

o By means of a sensitivity analysis, the contribution of each input 

variable on the final model predictions was examined and it was 

observed that the input variables utilised in this study are highly 

significant with respect to the predictions of the final DCP count 

resulting from the application of RDC. In addition, both the ANN and 

LGP models confirmed that the contribution made by the initial DCP 

count is more significant than the other input variables on the model 

predictions. 

 

o Finally, the optimal models were again presented in a format that 

facilitates their application in practice. In particular, the optimal ANN 

model was translated into a series of numerical equations and the 

optimal LGP program was provided in C code format. 

 

8.2.3 Recommended Optimal Models  

From this study, the applicability of ANN and LGP techniques for predicting the 

effectiveness of RDC in different ground conditions with respect to CPT and DCP data 

has been investigated. Both these AI techniques possess several merits over other 

conventional approaches. As discussed in Chapter 3, several research studies have 

already demonstrated that they outperform the most commonly used traditional 

methods. The work presented in this thesis has also demonstrated that the application 
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of ANNs and LGP in relation to RDC is entirely appropriate and useful, given that no 

other predictive tools, conventional or AI-based, are available. The developed models 

are considered to be valuable additional tools for the necessary prior estimations during 

the pre-planning and pre-design phases in ground improvement projects involving 

RDC. However, as with all AI-based models, their accuracy can be improved by 

incorporating more data from additional RDC-related projects. This can be readily 

undertaken as additional data become available in the future. 

 

Whilst the developed ANN models were demonstrated to be accurate and reliable, 

comparatively, the LGP-based models yielded marginally superior predictive 

capability. In terms of transparency, the ANN model provides comparatively a more 

transparent numerical formulation than that of the LGP-based model, which is 

translated into C code, which is more difficult to interpret. This could be attributed to 

the fact that LGP penalises complex models to a greater extent. However, in this study, 

it has been demonstrated that ANNs, particularly backpropagation MLPs, provide 

information on the functional relationship between input and outputs in the form of a 

numerical equation. Hence, this emphasises that ANNs need not be treated as black 

box models, which is a criticism that they often receive. In addition to these 

conclusions, it has been reported in literature that LGP approach overcomes many of 

the shortcomings associated with ANNs and other conventional modelling approaches. 

Given the slightly superior performance of the LGP-based models, it is recommended 

that they be adopted in preference to their ANN-based counterparts.  

 

8.3 GUIDELINES FOR ANN MODEL DEVELOPMENT 

The ANN model development considered in this research employed the feed forward 

type MLPs trained with the back-propagation algorithm, which is also the most 

common form used in prediction and forecasting applications. According to the results 

discussed above, the optimal models were found to be both accurate and robust. The 

feasibility of the ANN approach was further confirmed, particularly the MLPs trained 

with the back-propagation algorithm for predictions of geotechnical engineering 

variables. Nonetheless, the potential of ANNs for modelling different aspects of 
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geotechnical engineering has already been demonstrated by several researchers, as 

discussed earlier in Chapter 3. However, based on the success and superior 

performance of ANNs in comparison to most of traditional methods, ANNs are highly 

suitable for modelling complex systems and likely to see greater application in the 

future.  

 

This section provides a comprehensive set of guidelines to assist in developing ANN 

models. In particular, the methods presented below are applicable for modelling the 

feed forward type of MLPs using the error back-propagation algorithm. The major 

steps in ANN model development outlined by Maier et al. (2010), as illustrated 

previously in Figure 3.3, are presented and re-examined with respect to the currently 

available approaches. However, it is not the intention to review all the available 

options in detail in this regard, but to highlight the most common approaches that are 

currently available. Finally, a discussion of the appropriateness and limitations of these 

methods is presented. 

 

8.3.1 Selection of Model Inputs 

The selection of an appropriate set of model input variables is the initial stage of the 

ANN model development process and is considered to be one of the most important 

steps. Essentially, appropriate data representation has a direct impact in developing 

successful ANN models (Basheer and Hajmeer, 2000). Unlike statistical modelling, 

ANNs, which are data driven, does not require a priori rationalisation about the 

input/output mapping (Lachtermacher and Fuller, 1994) and instead, it has the 

capability to determine the critical inputs (Maier and Dandy, 2000). However, both the 

inclusion of too many variables and the exclusion of significant model variables from 

the input set have undesirable effects on model performance. As such, the presence of 

too many variables in the input set sometimes provides redundant information, as these 

variables are generally correlated with one another. Moreover, the network becomes 

complex with an increase in the network size resulting in a decrease in processing 

speed. At the same time, the number of connection weights in the network increases 

and consequently, the networks with redundant inputs become susceptible to 
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overfitting of the training data. Moreover, inclusion of too many variables in the input 

set introduces additional local minima in the error surface in weight space, which in 

turn makes it difficult to reach the global minimum (Maier et al., 2010). On the other 

hand, use of fewer input parameters may be preferable since it effectively reduces the 

network size. However, omission of significant variables from the input set causes the 

inadequacy of knowledge presented to ANNs, which makes it difficult to capture the 

exact input-output relationship. Subsequently, the selection of an appropriate and 

adequate set of input variables is of prime importance. 

 

The currently available techniques used for selecting an appropriate set of input 

variables can be categorised as model-based and model free approaches. One of the 

model based approaches is the selection of model inputs in an ad-hoc manner, where 

the modeller chooses several combinations of input parameters to be tested. A number 

of models are developed with these different input combinations and the results are 

compared when selecting the network with the best performance. This approach has 

already been employed in ANN modelling of several geotechnical engineering aspects 

by researchers [e.g. Goh (1994), Najjar et al. (1996)]. Another model-based approach 

is to identify the optimal combination of input variables in a stepwise manner, which 

could be either a constructive or pruning process (Maier and Dandy, 2000). If the 

constructive stepwise approach is used, several networks are developed, each using 

only a single potential input variable. The best performing network is selected and then 

retrained by combining another additional input variable. This process is repeated until 

no further significant improvement in model performance results from the addition of 

any extra variables. In addition to this stepwise method, there is another model-based 

approach for input selection, where a model is developed with a relatively large 

number of input variables. Later, the relative importance of the variables is 

investigated by means of a sensitivity analysis to determine the insignificant variables. 

Apart from the methods discussed above, global optimisation algorithms, such as 

genetic algorithms, can also be used for the selection of the input set that optimises the 

ANN model performance. 
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The use of the model-based approaches discussed above has several drawbacks. They 

have been found to be time consuming as they require the development of a number 

of ANNs with different combinations of potential input variables in order to determine 

the optimal combination. Moreover, as the name suggests, model-based approaches 

are influenced by the ANN model itself. As such, they are affected by the ANN model 

structure (i.e. number of hidden nodes) and also by the optimisation method, which is 

a function of several internal parameters, such as learning rate and the momentum 

term. Consequently, identification and isolation of the effect of the different input 

combinations is difficult (Maier et al., 2010).  

 

Conversely, several model free methods are also available for the selection of the 

appropriate input set. In model free approaches, the input selection does not depend 

upon the performance of the developed ANN model. These methods are based either 

on analytical approaches or ad-hoc methods. When analytical methods are employed, 

a statistical measure of the significance of the input variables, such as correlation or 

mutual information, is used to assess the model input-output relationship, whereby the 

most appropriate set of input variables is then determined (Maier et al., 2010). 

However, the most common approach of selection of data inputs in the geotechnical 

engineering discipline is simply the ad-hoc method based on the prior knowledge on 

system. In this case a set of parameters is selected in advance and assumed to be the 

most influential on the desired model output (Maier and Dandy, 2000). 

 

The present study has also employed the ad-hoc, model free approach. Here, the factors 

affecting ground improvement resulting from RDC was considered to be well 

understood and thus, the model input variables were defined in such a way that they 

include these parameters. It has been considered that during impact rolling, the degree 

of soil compaction depends upon a number of factors, including the inherent physical 

properties of soil, the number of times the module passes over the site, the weight and 

characteristics of the machinery, and the soil moisture at the time of compaction. 

Therefore, this knowledge has been incorporated in defining the model input variables. 

In general, it can be considered that the effective parameters are relatively few in 

number in the case of this geotechnical engineering application and therefore, the 
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model input variables can be defined in advance. Given that, it is recommended to 

explore the literature, which has contributed significantly to the understanding of the 

important factors that control the problem at hand and thereby, to identify the most 

significant parameters in advance.   

 

8.3.2 Data Division 

Having determined the appropriate model inputs and output variables, the ANN model 

development process requires partitioning the dataset into subsets. However, the 

method used for data division is usually affected by the amount of records available in 

the data set. It is a common practice to divide the dataset into 2 subsets, i.e. training 

set and the validation set. The training set is used to train and calibrate the model and 

it is with this data subset that the model’s connection weights are optimised. 

Subsequent to the model calibration phase, the validation dataset is used to validate 

the performance of the model, whereby its performance is assessed with respect to an 

unseen data set (Twomey and Smith, 1997). Usually, two thirds of the overall data set 

is allocated to training and the remaining data are used for validation (Hammerstrom, 

1993). However, in the presence of a limited dataset, the implementation of data in the 

form of subsets might be difficult. As such, it would not be possible to assemble a 

comprehensive validation set aside from the training set. In such instances, several 

approaches can be used to maximise the utilisation of the available data as follows: 

 

o Use the holdout method (Masters, 1993), where the model should be 

trained withholding a small subset for validation. Once the model is 

validated, another different subset of data should be held back and the 

model trained again. This process should be repeated until the 

generalisation ability has been tested for the whole set of available data;  

or 

 

o implementation of another synthetic dataset for model validation, 

which possesses similar statistical properties to the training dataset 

(Lachtermacher and Fuller, 1994); or 
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o as suggested by Maier (1995), a trial should be conducted by using a 

small data subset as a testing set, whereby the time duration required 

by the model to achieve an acceptable generalisation ability is 

determined. Thereafter, the network should be retrained with the whole 

dataset for the predefined period. 

However, the modeller should consider using the cross-validation technique, whenever 

possible in ANN modelling. Cross-validation (Stone, 1974) is a frequently used 

technique, which greatly affects the way the available data are divided. However, this 

approach is only a modification of the above discussed data division method that 

partitions the dataset into only 2 subsets. As such, in cross-validation, the training 

subset should be subjected to a further partitioning, so as to construct 3 data subsets; 

i.e. training, testing and validation. The model performance should be assessed

periodically with validation. In such a way, the testing set is used to determine the 

termination of model calibration and to ensure that the model does not become 

overtrained. Although, cross-validation is a more efficient data division method, it 

should be acknowledged that this method is very data intensive since the dataset needs 

to be divided into 3 comprehensive subsets. In the case studies presented in this thesis, 

data division has been carried out in such a way that the training set contains 80% of 

the data and the remaining 20% are used for validation purposes. The training set has 

been further subdivided into two subsets; 80% for training and 20% for testing. 

As with empirical models, ANNs are considered to be an interpolation technique and 

do not perform well when they are used to extrapolate beyond the boundaries of 

training data set (Flood and Kartam, 1994; Minns and Hall, 1996). Consequently, the 

training dataset, that is used for model calibration, should essentially include all the 

available patterns contained in the parent database. On the other hand, as the testing 

subset is used for determining the termination of model training, and/or for selecting 

the optimal network geometry, it needs to be distinct but should also contain all the 

available patterns of the parent dataset. Therefore, the testing set should be 

representative of the training subset. In addition, the most challenging assessment of 

the generalisation ability of the ANN model could be possible only if the validation 
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subset contains all the patterns that constitute the training subset. Consequently, it is 

recommended that the 3 subsets should represent the same statistical population, which 

is evidenced by similar statistical parameters, i.e. mean, standard deviation, minimum, 

maximum and range (Masters, 1993). Several studies [e.g. Shahin et al. (2002)], 

including the present study, have confirmed that there is a direct relationship between 

the statistical consistency of the subsets and the model performance with respect to 

each of those subsets, which in turn ensures that the best possible network has been 

developed given the available data. Based on these considerations, it is recommended 

to employ a systematic approach for data division that ensures statistical consistency 

between the subsets. Some of the approaches that can be used are:  

o the SOM method, as proposed by Bowden et al. (2002), which should

be used for data clustering to identify the similarities associated with

the available raw dataset. The data records from each cluster should be

allocated to each of the training, testing and validation subsets so that

these 3 subsets are similar to each other, whilst statistical consistency

is ensured. However, the determination of the optimal SOM size is a

challenge since there is no precise rule to select the most favourable

map size. Therefore, as conducted in this research, it is suggested to

explore several map sizes, such as 8×8 and 10×10, in order to ensure

that the optimal map size is neither too large nor too small; or

o the trial-and-error approach, where statistical consistency between the

subsets is achieved by manual adjustments to the composition of the

subsets. This approach has been commonly employed in geotechnical

engineering aspects [e.g. Pooya Nejad et al. (2009)]; or

o by using a formal optimisation approach, such as genetic algorithms, to

optimise the similarity of the statistical parameters between subsets; or
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o by using the fuzzy clustering method. A detailed procedure of this 

approach is given by Shahin (2003). 

 

8.3.3 Data Normalisation 

It is essential to pre-process the data prior to presenting them to the ANN model. Data 

normalisation, or scaling, is the most common form of pre-processing, whereas other 

forms, such as data transformation, are not necessarily required. Thus, scaling the data 

into a range that is appropriate to the transfer function used at the output layer is 

recommended. For an example, if a sigmoidal type transfer function, such as the 

logistic or hyperbolic tangent, is adopted at the output layer, the scaled data should be 

commensurate within the limits of 0 to 1 and –1 to 1, respectively. However, it is 

further recommended to normalise the data slightly offset from these actual limits. For 

instance, the range of 0.1 to 0.9 or 0.2 to 0.8, is often used when the logistic sigmoidal 

transfer function is adopted because otherwise the weight updates may be too small 

during training and may slow down the training speed (Masters, 1993; Hassoun, 1995; 

Maier and Dandy, 2001). Scaling the data to a uniform range emphasises that each 

variable receives similar attention during the training process and prevents larger 

numbers from overriding smaller values (Basheer and Hajmeer, 2000; Maier and 

Dandy, 2000). The following equation has been used to scale the data in the case 

studies presented in this thesis: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑎 + (𝑥𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 − 𝐴)
(𝑏−𝑎)

(𝐵−𝐴)
       (8.1) 

 

Where, A and B are the minimum and maximum values of the unscaled dataset, 

respectively. Similarly, a and b are the minimum and maximum values of the scaled 

dataset, respectively. 

 

In addition to the linear normalisation approach presented above, several other studies 

[e.g. Masters (1993), Dowla and Rogers (1995) and Swingler (1996)] have proposed 

other techniques for data normalisation. However, these techniques are 
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computationally intensive and on the other hand, Masters (1993) indicated that they 

do not produce substantially better results than the linear normalisation approach.  

8.3.4 Selection of Model Structure 

The following treatment relates to the feed forward type MLP, which is the ANN 

architecture employed in the present study, which is the most popular architecture 

adopted by researchers, and has also been found to be successful in a large number of 

geotechnical engineering applications. A more detailed description on MLPs was 

provided earlier in Chapter 3. 

Having selected the ANN architecture, i.e. MLP, the next step is to define the network 

structure. The combined form of network architecture and its structure defines the 

functional relationship between the input and output variables (Maier et al., 2010). 

However, the optimisation of the network structure is a crucial aspect of ANN 

modelling, which involves the selection of the number of layers and the appropriate 

number of nodes contained in each layer. The number of nodes in the input and output 

layers of the network are restricted by the number of model input and output variables, 

respectively, as specified by the modeller. Thus, the model structure selection reduces 

to the selection of the number of hidden layers and the number of hidden nodes in each 

layer, which also defines the number of connection weights incorporated in the 

network. 

It is essential that the intermediate hidden layer(s) contain a sufficient number of 

hidden nodes to capture the complexity and non-linearity of the system. However, it 

is considered that the optimal ANN structure generally strikes a balance between 

network complexity and its generalisation capabilities (Maier et al., 2010). It is 

important that the structure is neither too complex nor too simple but adequately 

captures the nuances included in the training data. When the network structure is too 

simple, the network might not be able to represent the relationship between variables 

adequately and thus, predictive performance is compromised (Maier et al., 2010). On 

the other hand, an excessively complex network with too many hidden nodes may 
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overfit the data and thus lack the ability to generalise (Maren et al., 1990; Masters, 

1993; Rojas, 1996) and also may have a decreased processing speed and diminished 

transparency (Shahin et al., 2008). 

Determination of number of layers 

A single hidden layer network with sufficient connection weights will be capable of 

approximating any continuous function (Cybenko, 1989; Hornik et al., 1989). As 

discussed in Chapter 3, several geotechnical engineering applications, including the 

present study, have yielded reliable predictions using the simplest form of MLP that 

consists of 3 layers, including one hidden layer comprised of an adequate number of 

hidden nodes. Conversely, there have been suggestions to use more than a single 

hidden layer to provide more flexibility to the network to capture complex functions 

(Flood and Kartam, 1994; Ripley, 1994; Sarle, 1994). Masters (1993) stated, however, 

that multi-hidden layer networks often possess a slow training speed and are also more 

susceptible to getting trapped in some local minima. Nevertheless, it is emphasised 

that the selection of an optimal network structure is highly problem-dependent. 

Therefore, it is recommended to begin the modelling process by using a single hidden 

layer, which incorporates an adequate number of hidden nodes. However, it will also 

be useful to examine the networks with multi-hidden layers with the intention of 

improving prediction accuracy. On the other hand, it is also important to note that 

several previous MLP applications have experienced difficulties in approximating the 

exact functional relationship between the variables, as well as a lack of robustness, in 

the presence of a single hidden layer, and in these situations multi-hidden layer 

networks need to be adopted [e.g. Pooya Nejad et al. (2009)]. Thus, the selected 

optimal model should always be tested using a parametric study to ensure robustness. 

If model performance is unsatisfactory, further modelling should be conducted to 

determine whether multi-hidden layers provides a solution. 

Determination of number of nodes 

The number of nodes in the input and output layers is again defined by the number of 

input and output variables used in the model. Hence, the most critical aspect is the 

selection of optimum size of the hidden layer that relates to the number of connection 
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weights in the network. Several guidelines are provided in the literature to assist with 

determining the optimum number of nodes in the hidden layers. For networks 

consisting of a single hidden layer, Salchenberger et al. (1992) suggested that the 

number of hidden nodes should be 75% of the number of input nodes, whilst Berke 

and Hajela (1993) suggested that it should be between the average and sum of the input 

and output nodes. In addition to these suggestions, Caudill (1988) proposed an upper 

bound to the number of hidden nodes of (2I+1), for a network with I number of input 

nodes. Apart from that, several empirical relationships between the number of 

connection weights and the number of training samples have also been suggested by 

several researchers [e.g. Rogers and Dowla (1994)] to ensure the development of a 

model with good generalisation capability. As such, it has been proposed to maintain 

the number of connection weights below the number of training records. Additionally, 

the ratio of the number of training records to the number of connection weights in the 

network has been suggested to be 2:1 (Masters, 1993) or 10:1 [e.g. Weigend et al. 

(1990)]. Furthermore, Amari et al. (1997) stated that the networks trained with a 

number of samples of at least 30 times of the number of connection weights do not 

tend to have an issue of overfitting. However, apart from the above guidelines, it 

should be noted that the network structure is generally highly problem-dependent. 

Therefore, it is recommended not to restrict modelling in accordance with the above 

guidelines but to consider exploring the optimal network structure, which is defined 

by the smallest possible network that adequately captures the relationship in the 

training data (Maier and Dandy, 2000). 

For identifying the optimal network structure, stepwise approaches, which could be 

either a constructive or pruning method, can be used. If the constructive method is 

used, modelling should be started with a small network, to which nodes and 

connections should be added successively. The resulting models should be calibrated 

and the process should be continued until no further improvement in model 

performance is likely to occur. With the pruning algorithm, the same procedure should 

be applied in the converse direction, where one begins with a sufficiently large network 

and unnecessary nodes and connection weights are removed successively. Other 

approaches of determination of number of nodes in ANN models include global 
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methods, such as genetic algorithms, and simulated annealing, which have been rarely 

adopted in geotechnical engineering applications. However, the usual practice of 

identifying the optimal network structure is to employ an ad-hoc trial-and-error 

approach. Therefore, several models should be tested with different numbers of hidden 

nodes to develop a network yielding satisfactory performance. However, it is 

important whenever possible to execute the guidelines discussed above, especially 

with regards to the upper limit of the number of hidden nodes and also the relationships 

between the number of training samples and the size of the hidden layer. For instance, 

in the case study of ANN modelling with CPT data, several ANN models were trained, 

starting with the smallest possible network involving a single hidden node and 

successively increasing the number of hidden nodes to a maximum of 9, where 9 nodes 

were considered to be the maximum number required for the models with 4 input 

nodes, as suggested by Caudill (1988). 

 

8.3.5 Model Calibration 

The objective of model calibration is to investigate the optimal set of connection 

weights that permits the ANN model in the given functional form to best represent the 

desired input/output mapping (Maier et al., 2010). During model calibration, a suitable 

error measure between the actual and predicted output is minimised and accordingly, 

the set of connection weights are adjusted so that the network can efficiently produce 

the best fit to the training set data. However, the determination of the optimal weight 

combination that minimises the error function is difficult. The different connection 

weight combinations produce different error surfaces. Unlike a smooth error surface, 

more rugged error surfaces are complex with many local minima and thus, achieving 

the global optimum might be difficult. However, the degree of ruggedness of the error 

surface is again problem-dependent and may affected by many factors including the 

number of connection weights. Consequently, for ANN model calibration, it is 

important to follow a systematic approach that strikes a balance between computation 

cost and model performance (Parisi et al., 1996; Maier and Dandy, 2000). 
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There are many approaches available for model calibration, as discussed by Maier et 

al. (2010). However, in the present study, the MLPs were trained using the back-

propagation algorithm (Rumelhart et al., 1986). It is by far the most frequently used 

approach for optimising feed-forward ANNs and a detailed description of its operation 

was provided earlier in Chapter 3. The back-propagation algorithm is a deterministic, 

local optimisation approach that operates based on first-order gradient information 

(Minns and Hall, 1996). However, model optimisation with the back-propagation 

algorithm is affected by the size of the steps taken in the weight space, which is 

generally fixed throughout training (Maier and Dandy, 2000). If the step size is too 

small, networks tend to reach the local minimum slowly and steadily but also become 

vulnerable to being trapped in a local minimum. On the other hand, if the step size is 

too large, the networks reach local minima quickly but at the same time they are likely 

to fall into oscillatory traps (Rojas, 1996; Maier and Dandy, 1998; Maier and Dandy, 

2000) or to diverge completely. Therefore, it is essential to optimise the size of the 

steps and the common approach is to use a trial-and-error method. 

 

The step size taken during model calibration is a function of the internal parameters, 

including the transfer function, epoch size, error function, learning rate and momentum 

term (Maier and Dandy, 1998; Maier and Dandy, 2001). Thus, the choice of internal 

parameters has an adverse effect on the performance of the back-propagation 

algorithm (Dai and MacBeth, 1997). Therefore, the modeller needs to have a good 

understanding of the impact of different internal parameters. In order to assist with 

this, a brief overview of each parameter is given below. 

 

Transfer function 

Any transfer function can be employed in ANNs trained using the back-propagation 

algorithm as far as they possess the distinctive properties of continuity and 

differentiability on (–∞, ∞) (Basheer and Hajmeer, 2000). However, the majority of 

the applications use sigmoid type transfer functions, such as the logistic sigmoid and 

hyperbolic tangent transfer functions (Maier and Dandy, 2000). The logistic sigmoid 

function transforms the values into the range of 0 to 1, or –1 to 1 by the tangent 
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hyperbolic function. Usually, the same transfer function is used for all nodes in a 

particular layer.  

 

Epoch size 

The number of training records presented to the network prior to each weight update 

is called the epoch. Depending on the epoch size, the network can be trained either in 

an online mode or in a batch mode. If the network is trained with the online mode, 

weights are updated immediately after the presentation of each training pattern, which 

in the case of epoch size, is equal to one. Conversely, in the batch mode, the weight 

updates take place after a certain number of training samples, or the entire training set, 

is presented to the network. In comparison, the online mode requires less storage for 

the weights and adopts a stochastic search path that prevents entrapment in local 

minima in the error surface (Hassoun, 1995). On the other hand, the batch mode is 

advantageous in that it can estimate the error gradient vector better (Basheer and 

Hajmeer, 2000). Moreover, when the epoch size is equal to the size of the training set, 

it forces the steps taken in the weight space to move in the direction of the true gradient 

at each weight update (Maier and Dandy, 2001). However, the effectiveness of both 

these training methods is again problem-dependent (Basheer and Hajmeer, 2000). 

 

Error function 

The error function, which accounts for the deviation of the model predictions from the 

corresponding target values is progressively reduced to a desired minimum during the 

training phase. The common approach is to employ the MSE, which is the mean of the 

squares of deviations. In addition, other error functions such as sum of squared errors 

(SSE), coefficient of determination (R2) can also be used. Employing the MSE as the 

error function has several advantages, such as simplicity of calculations, that it 

penalises large errors, easy calculation of subsequent derivatives with respect to the 

weights and that it lies close to the heart of the normal distribution (Masters, 1993). 

 

Learning rate 

The learning rate is one of the parameters that affects the size of the steps taken in the 

weight space during model calibration. As a result, the learning rate affects the training 
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speed. If the learning rate is set too high, the resulting larger steps accelerate the 

training speed but also can result in large oscillations or even a complete divergence 

from the desired minimum (Basheer and Hajmeer, 2000). On the other hand, if the 

learning rate is set too small, the training speed becomes slow, however, this may result 

in a steady search in the direction of the global minimum. In general, the learning rate 

is allowed to remain constant during model calibration (Warner and Misra, 1996), 

whereas the optimal value of the learning rate is usually obtained from a trial-and-error 

procedure. Several heuristics are also available that suggest the optimal range of the 

learning rate; i.e. according to Wythoff (1993) it should be between 0.1 to 10, Zupan 

and Gasteiger (1993) suggest between 0.3 to 0.6, whereas Fu (2003) recommends the 

range of 0 to 1.  

 

Momentum term 

The momentum term determines the fraction of the weight update from the previous 

stage to the current stage of weight update. It enables the search to escape the local 

minima and also reduces the likelihood of search instability (Zupan and Gasteiger, 

1993; Basheer and Hajmeer, 2000). As with the high values of learning rate, a high 

momentum can accelerate the training process by several orders of magnitude 

(Masters, 1993) but at the same time, it increases the risk of overshooting a near 

optimal weight vector (Basheer and Hajmeer, 2000). Conversely, an extremely low 

momentum reduces the convergence speed. Thus, an optimal level of momentum 

should be utilised in model calibration and a trial-and-error approach is normally 

preferable. However, it must be always less than 1 for the convergence (Dai and 

MacBeth, 1997). Wythoff (1993) recommends the momentum term to be between 0.4 

to 0.9, whereas Hassoun (1995), as well as Fu (2003), suggest to adopt a value between 

0 to 1.  

 

Initial connection weights 

The initial weight distribution is also a major concern in model calibration. Since the 

back-propagation algorithm employs a gradient descend rule to adjust the connection 

weights, the results are sensitive to the initial conditions. As such, it has the possibility 

of getting trapped in a local minimum if training is commenced from an unfavourable 
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position in the weight space. In general, the weights are uniformly initialised to zero-

mean random numbers (Rumelhart et al., 1986; Maier and Dandy, 2000). However, 

the weights initialised in an extremely smaller range may cause the training to be 

paralysed, whereas a too large region causes premature saturation of the nodes that 

results in cessation of training at sub-optimal levels (Maier and Dandy, 2000). 

According to empirical studies, it is considered that there is no exact optimal range for 

which similar performance can be obtained. Therefore, it is recommended to calibrate 

the network several times having started at different random initial conditions and to 

examine whether the network performance is consistent.  

 

8.3.6 Stopping Criteria 

ANN model calibration should be terminated by using an appropriate stopping 

criterion, by which it is decided whether the network has been trained optimally or 

sub-optimally. Stopping criteria can be defined based on an error measure between the 

actual and predicted output, either with respect to the training set or testing set. 

However, when selecting the stopping criterion, it is important to consider whether 

overfitting is a possibility. Depending upon the available number of training records 

and the number of connection weights in the network, sometimes overfitting might be 

an issue and requires the modeller’s attention for necessary precautions. Therefore, it 

is important to reconsider the guidelines that examines the possibility of overfitting in 

advance. Especially, the empirical relationship provided by Amari et al. (1997), who 

recommended that networks do not tend to overfit the data if the ratio of the number 

of training records to the number of connection weights is more than 30. 

 

If overfitting is unlikely, model calibration can be stopped when the error function 

with respect to the training set data has been minimised. As such, model training 

should be terminated either after the training error has reduced to a sufficiently small 

value or when the changes in training error become negligible. On the other hand, if 

overfitting might be a problem, the best option is to employ the cross-validation 

approach (Stone, 1974), whereby model calibration can be stopped using the error with 

respect to testing set data. As discussed in §8.3.2, in cross-validation, the testing subset 
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evaluates the generalisation ability of the network from time-to-time, whilst the 

network is being calibrated against the training dataset. At the initial stage, the testing 

error will decrease similar to the training error, but when the model overfits the training 

data there will be an increase in the error for testing set data, as the network begins to 

memorise rather generalise. Therefore, model calibration should be terminated at the 

onset of an increase in the test data error. However, as discussed in some studies [e.g. 

Masters (1993), Ripley (1994)], there is no guarantee that the error will reach its lowest 

value just before the testing error starts to increase for the first time and it might 

achieve some further lower value with continued training. Therefore, it is always 

recommended to continue training for some time, even after the testing error starts 

increase for the first time (Maier and Dandy, 2000).  

 

8.3.7 Performance Evaluation 

The evaluation of network performance is required at different stages during the ANN 

model development process, such as for the selection of the optimal set of input 

variables by using the model-based approaches (as discussed in §8.3.1) and more 

importantly, for the selection of the optimal network structure (as discussed in §8.3.4). 

The performance of ANN models can be evaluated based on several factors, including 

prediction accuracy, training speed and the processing speed (Maier and Dandy, 2000). 

However, most commonly, ANNs are evaluated by using one or more measures that 

assess the prediction accuracy of the network. 

 

A number of measures of prediction accuracy are available to use, as suggested in the 

literature. For instance, a list of commonly employed metrics has been given by Maier 

et al. (2010) and that includes the functions of squared errors, absolute errors, relative 

errors and product differences. In the case studies presented in this thesis, the 

networks’ prediction accuracy is evaluated by using RMSE, MAE and R. When using 

the squared error functions, such as RMSE, the errors with high magnitude receive 

much greater attention than the smaller errors (Maier et al., 2010). On the other hand, 

the absolute errors, such as MAE, provide information on the magnitude of the error, 

but they are incapable of providing information regarding the performance of the 
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model in the form of overall under- or over-prediction (Maier et al., 2010). In addition, 

by using the product difference statistics, such as the R value, the relative correlation 

between the predicted and actual results can be effectively measured.  

 

8.3.8 Model Validation 

It is the good practice to validate the performance of the trained network once model 

calibration has been completed. At this stage, the generalisation capability of the 

network is assessed with an independent validation set, which should not have been 

used in any capacity during model calibration. The performance of the network with 

respect to the validation set data can be evaluated again using the above selected 

criteria (as discussed in §8.3.7). The network is expected to generate non-linear 

relationships between the inputs and output(s) rather than simply memorising the 

patterns. Since the model is assessed by an unseen data set, the results are significant 

for the evaluation of network performance. However, it is expected that the results 

obtained with respect to the validation dataset to have general consistency with respect 

to those obtained from the training and testing subsets. If it is not, it can be either 

because of the model is overfitting to the training data or sometimes the data subsets 

may not represent the same population (Masters, 1993). In addition, poor validation 

can resulted from inadequate or a lack of data pre-processing and data normalisation, 

or else it could be due to the selected network architecture (Maier and Dandy, 2000).  

 

8.3.9 Parametric Study 

In several previous applications of ANNs, it has been demonstrated that good ANN 

network performance with respect to the validation set does not guarantee robust 

model predictions [e.g. Pooya Nejad et al. (2009)]. Therefore, it is important to ensure 

the generalisation ability of the selected optimal ANN model having tested it using a 

parametric study that examines the conformity of the model predictions with the 

known physical behaviour of the modelled system. For this purpose, the approach 

outlined by Shahin et al. (2000) can be employed. This method investigates the 

response of the optimal model to variations in the input variables. If this method is 
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used for parametric study, the model output should be examined over a given set of 

synthetic input data by varying the input variables one at a time, whilst all other input 

variables are kept constant at a pre-defined value, i.e. the mean value of training set 

data. However, it is essential to vary the input variables only within the range over 

which the model is calibrated, as ANNs should be utilised only as an interpolation, 

rather an extrapolation, technique.   

 

The results of the parametric study are critical in assessing model performance. If the 

selected optimal network is robust and possesses adequate generalisation capability, 

the model can be implemented for future predictions with confidence. On the other 

hand, if the model response does not conform to the underlying physical behaviour of 

the problem, the model predictions should not have considered to be reliable. In that 

case, the possible scenarios, such as model overfitting, should be investigated further.  

 

8.4 GUIDELINES FOR LGP MODEL DEVELOPMENT 

The development of a predictive model to forecast the effectiveness of RDC in 

different ground conditions presented in this thesis employed another particular variant 

of AI, namely LGP. It is evident from the results analysed in Chapters 6 and 7 that the 

LGP models provide accurate predictive capability and also slightly outperform the 

ANN models. Thereby, the feasibility of LGP approach for modelling the complex 

non-linear relationships between many parameters has been confirmed. In addition, it 

has been highlighted in the discussion that GP techniques overcome most of the 

difficulties associated with conventional approaches and with the ANN modelling. For 

instance, it is difficult to produce straightforward and practical prediction equations in 

ANNs, especially when the network is less parsimonious. As such, despite the fact that 

ANNs perform adequately in the vast majority of applications, the lack of transparency 

of ANN models that fails to explain the underlying physical processes of the system 

in question, in many cases limits the applicability of ANNs, whereas the GP-based 

techniques often overcome such limitations. Nonetheless, GP has already emerged as 

a promising approach for non-linear modelling, which further encourages future 

applications in the broader geotechnical engineering context. 



Chapter 8. Optimal AI Models and Model Development   217 

 

Therefore, with the intention of providing a basic understanding and guidance for 

readers interested in LGP, the following discusses briefly the fundamental theory of 

the evolutionary algorithm of LGP. It is considered that the knowledge of the 

underlying algorithm facilitates improved modelling capability. Later in this section, 

a description is provided of the primary steps involved in developing LGP models. 

Details are provided regarding the measures and the control parameters that the 

modeller should specify prior to a GP run. However, it is beyond the scope of this 

treatment to address all aspects of LGP.  

 

8.4.1 Executional Steps of LGP Algorithm 

The essential executional steps of the LGP evolutionary algorithm have been 

summarised previously in Chapter 3, whereas a comprehensive description is readily 

available in the literature [e.g. Brameier and Banzhaf (2007), Koza and Poli (2005), 

Alavi et al. (2013)]. However, in the following treatment, a series of well-defined, 

problem-independent executional steps of the LGP algorithm is presented. 

 

In GP, a potential solution (computer program) to the problem in question is referred 

to as an individual. GP performs a multi-directional simultaneous search for the 

optimal solution from a pool of many individuals, collectively known as a 

‘population’. However, during the LGP evolutionary process, having been subjected 

to a fitness evaluation, each individual in a population is assessed from time-to-time 

in terms of its capability of performing in the particular problem environment. The 

fitness measure specifies the desired goal of the search process (Poli et al., 2007) and 

typically depends on the nature of the problem. More details about the fitness measure 

is discussed later in this chapter.  

 

LGP begins with an initial population of individuals (computer programs) that are 

composed of randomly chosen functions and terminals appropriate to the problem 

domain. Typically, these individual programs in the initial population emerge with a 

diversity in fitness, and as such some of the individuals inherit an exceedingly poor 

fitness, whilst other individuals appear to be much fitter. Therefore, the creation of the 
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initial population is considered to be a blind random search for a possible solution in 

the search space of the problem in question (Koza, 1994). Nonetheless, the initial 

population yields the baseline for judging future search efforts (Koza, 1994). However, 

the differences in the fitness of the individuals are exploited in the course of program 

evolution.  

 

After the fitness of each individual in the population is ascertained, several individuals 

are probabilistically selected in order to be subjected to the genetic operations. The 

selection methods are fitness based, such that the individuals that are relatively higher 

in fitness are more likely to be selected (Selle and Muttil, 2011). Among the several 

different methods of selecting the individuals, tournament selection and fitness-

proportionate selection methods are the most common. In both these methods, it is 

considered that the selection is not greedy, where the individuals that are considered 

to be inferior are also selected to a certain degree (Koza and Poli, 2005). Moreover, it 

cannot be guaranteed that the individual with the highest fitness is also necessarily 

selected and on the other hand, the individual having the worst fitness is excluded. 

Throughout the case studies presented in this thesis, the tournament selection method 

has been employed.  

 

In the standard LGP evolutionary algorithm discussed here, two tournaments take 

place in parallel, where the most fit individual is selected as the winner of each 

tournament. The resulting two winning programs turn out to be the parental programs 

that undergo the genetic operations. Nevertheless, prior to the transformation of the 

selected winning programs, they reproduce within the population at a certain 

probability and thereby, the copies of tournament winning programs replace the 

corresponding tournament losing programs. Therefore, with the full reproduction of 

the winning programs, it can be ensured that the fittest individuals, i.e. better solutions, 

always survive within the population (Brameier and Banzhaf, 2007).  

 

In the next executional step in the LGP algorithm, the selected individual programs 

are modified subject to the variation operators, again with certain probabilities. The 

variation operators change the contents and the size of the individuals (Aminian et al., 
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2013; Gandomi et al., 2014) and thereby, the chosen parental programs are 

transformed into new offspring programs that are more effective in solving the 

problem. The variation operators used for the LGP evolution include crossover and 

mutation. 

 

Crossover operates by exchanging sequences of instructions between two selected 

parent programs and creates two new offspring programs. Crossover can be either 

homologous or non-homologous according to the selection of the position and the 

length of the instruction blocks to be exchanged (Gandomi et al., 2010a). In 

homologous crossover, a segment of a parent program with an arbitrary length is 

selected at a random position and swapped with an equally sized segment starting from 

the same position in the other parent program (Francone, 2010). In contrast, non-

homologous crossover exchanges program segments in the two parent programs with 

no reference to the length or position (Rashed et al., 2012). As such, segments of 

random position and arbitrary length in each of the parent programs are exchanged and 

thereby, non-homologous crossover can change the length of either or both of the 

parent programs (Francone, 2010). However, when either of the resulting offspring 

programs exceeds the maximum allowable length, the crossover operation is 

terminated abruptly but resumed with swapping equally sized segments (Brameier and 

Banzhaf, 2001; Alavi and Sadrossadat, 2016). 

 

Crossover is the standard macro-operator since it can alter the length of programs only 

at the level of instructions but not inside the instructions (Brameier and Banzhaf, 

2007). Conversely, the variation operation of mutation causes random changes in the 

selected parent programs in 3 different ways, i.e. block mutation, instruction mutation 

or data mutation (Gandomi et al., 2010a). In block mutation, an entire instruction block 

in a program is replaced by a new randomly generated instruction block. In instruction 

mutation, an existing instruction in a program is replaced with a new, randomly chosen 

instruction of the same length whereas, data mutation modifies an existing instruction 

by replacing one of the terminals with a new randomly selected terminal (Francone, 

2010). 
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Once, after the above described operations of selection, reproduction and variation are 

applied to the individuals in the current population, a new population is created with 

the offspring programs. In a steady-state LGP algorithm that constitutes the 

executional steps described so far, the newly created offspring programs replace the 

existing individuals in the same population, unlike a generational evolutionary 

algorithm, where the offspring programs migrate to a separate pool of population 

(Brameier and Banzhaf, 2007). However, each new individual is measured for fitness, 

and these steps are repeated many times until a run termination criterion is satisfied. 

In a multiple-run system, a number of runs are executed iteratively and the best 

individual ever encountered within the LGP project is typically designated as the 

optimal or near optimal solution for the problem in question. 

 

8.4.2 Preparatory Steps 

As discussed in earlier chapters, an evolutionary algorithm like LGP, requires minimal 

user input – only to specify the problem requirements – whereas, subsequently, the 

computer programs automatically evolve to an optimal/near optimal solution for the 

problem in question in accordance with the executional steps discussed above. 

Therefore, as described by Koza and Poli (2005), it is important that the modeller 

implements certain, well defined steps in preparing to use GP, through which the high-

level statement of the problem is communicated to the algorithm. These major 

preparatory steps have been summarised previously in Chapter 3. Briefly, prior to the 

evolutionary process, the modeller should specify: the function and terminal set; the 

fitness measure; certain parameters that control a GP run; and lastly the termination 

criterion. Below, these preparatory steps are discussed in detail with the aim of 

assisting the modeller develop robust LGP models. 

 

The configuration of the GP system fundamentally requires the modeller to specify the 

function and terminal set appropriate to the particular problem domain (Koza, 1994). 

An individual program in LGP, which is generally interpreted as a sequence of 

instructions, is formed by the combination of function and terminal set. The function 

set (instruction set) of the system may consist of arithmetic functions (+, –, ×, /), any 
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mathematical function (e.g. sin, cos, exponential, square root), Boolean logic 

operators (AND, OR, NOT), conditionals (IF, THEN, ELSE), iterative functions (DO, 

CONTINUE, UNTIL) and/or any other user-defined functions. Typically, the 

composition of the function set is driven by the nature of the problem domain (Koza 

and Poli, 2005) and the choice of the function set has a significant effect on the 

complexity of the evolved program (Gandomi et al., 2010a).  For instance, the function 

set that consists merely of arithmetic functions may solve simple numerical problems, 

whereas inclusion of mathematical functions permits the evolution of highly non-

linear models (Mehr et al., 2014). In fact, the assignment of the function set requires 

careful attention since the capability of GP to find an optimal solution depends heavily 

on the composition of the function set that determines the expressiveness of the GP 

(Brameier and Banzhaf, 2007). On the other hand, the choice of terminal set is 

straightforward to the problem. Terminals contain the arguments for the functions, 

such that the model independent variables (external inputs) and numerical constants 

together form the terminal set  (Brameier and Banzhaf, 2001; Gandomi et al., 2011).  

 

As with the above two preparatory steps, the modeller specifies the primitive set for 

LGP, by which the search space of the problem is indirectly defined for the GP system 

to explore (Mehr et al., 2013). The search space may consist of possible solutions 

composed of random combinations of the primitive set. However, at this stage, there 

remains a lack of information regarding which individuals or regions in the search 

space are more appropriate in solving or approximately solving the problem. Thus, it 

is necessary to assign the fitness measure that specifies the desired goal of the search. 

 

The fitness measure is often considered as the sole mechanism of communicating the 

problem requirements to the GP system (Poli et al., 2007). The measurement of the 

fitness of programs depends on the nature of the problem (Koza, 1994). Usual practice 

is to derive the fitness measure based on a mapping error between the predicted and 

the desired output. In that case, the closer the fitness value is to zero, the better the 

program. On the other hand, in a problem of optimal control, the fitness can be derived 

by the amount of time, or any other suitable quantity required to bring the system to a 

desired state. As such, the lower the amount or quantity, the higher the fitness.  
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However, when it is required to recognise patterns or to classify the samples, the fitness 

can be measured in terms of the number of correct instances. In such cases, the higher 

the number of instances that correctly recognise or classify the samples, the better the 

program. In addition to the above, the fitness measure can be multi-objective so that it 

accounts for a combination of factors, such as model correctness, parsimony or 

efficiency (Koza, 1994). Likewise, depending on the problem, the modeller should 

specify a suitable fitness measure that evaluates the individuals in a population in terms 

of the capability of performing the task at hand.   

 

Typically, throughout the LGP run, the individual programs in a population are 

evaluated over a number of different fitness cases, with the fitness being measured as 

the sum or an average over a set of different input-output pairs. For example, this study 

has utilised the MSE as the fitness function, which calculates the squared difference 

between the predicted output and the actual output averaged over a number of training 

samples.  

 

The fourth major step in developing a GP model entails the specification of control 

parameters. In the LGP algorithm, several different parameters, such as population 

size, number of demes, program size and frequencies of genetic operations, are 

involved. Details regarding these parameters and their influence on the subsequent 

model, are discussed briefly below. However, it is considered that the parameter 

selection affects the generalisation capability of the model (Alavi and Gandomi, 2012; 

Gandomi et al., 2014) and thus, careful attention should be given to the selection. It is 

recommended that the modeller conduct several runs with different parameter 

combinations to obtain the parameterisation of the LGP that provides satisfactory 

robustness and generalisation capability.  

 

Population size 

The LGP individuals evolve through a series of generations, where the number of 

individual programs in a generation is defined by the population size. As the initial 

population consists of randomly generated individuals, some of the programs may 

have exceedingly poor fitness, whilst others will be fitter. However, as the evolution 
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progresses, new offspring populations emerge with an increased chance of evolving 

an acceptable solution. Therefore, it is important to permit an appropriate size for the 

population and that allows a sufficient search in the problem space. However, a proper 

population size is dependent upon the number of possible solutions and the complexity 

of the problem (Gandomi et al., 2014). Although the population size parameter has no 

upper limit, the run time will be longer for a large population. However, on the other 

hand, a larger population expands the exploration of the search space and increases the 

likelihood of evolving to the solution (Walker, 2001). Nonetheless, it is necessary to 

assign an adequate size for the population in order to capture the complexity of the 

problem. However, the practical limitations of the available computer capacity should 

also be considered when specifying the population size. In the case studies conducted 

in this thesis, several population sizes were attempted ranging from 500 to 10,000 

individuals.  

 

Demes 

Brameier and Banzhaf (2007) stated that tournament selection together with the 

steady-state LGP evolutionary algorithm is well suited for parallelisation. Thus, it is 

usually recommended to subdivide the population of individuals into multiple 

subpopulations, named demes. Therefore, the individuals could migrate between 

subpopulations causing evolution to occur in the population as a whole (Gandomi et 

al., 2010a). The allocation of demes is always beneficial, since it has been found that 

evolution progresses faster in these semi-isolated subpopulations in comparison to an 

equally sized single population (Alavi and Gandomi, 2012; Rashed et al., 2012). This 

may be attributed to the fact that the multiple subpopulations with restricted migration 

may enhance genetic diversity (Brameier and Banzhaf, 2001).  However, when 

specifying the number of demes, it is important that each deme is allocated enough 

programs to engage in useful evolution.  

 

Program size 

As discussed earlier, in LGP, the initial population is composed of randomly generated 

individuals. However, it is important that the sizes of these individuals are controlled. 

The lower bound of the program length may be assigned to be equal to the absolute 
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minimum length of a program, i.e. one instruction. In addition, it is necessary to 

specify the maximum size of the initial program length. As such, the upper limit of the 

length of a program evolved in the initial population is defined by the initial program 

size parameter. Accordingly, the individuals in the initial population are generated 

with the sizes chosen within this predefined range with a uniform probability. 

However, when specifying the sizes for the initial program length, there is a trade-off.  

Initialising an exceedingly lengthy program is not recommended since this may reduce 

the variability of the programs during evolution. Conversely, initialising smaller size 

programs allows a better exploration of the search space at the initial stage (Brameier 

and Banzhaf, 2007). 

 

As the evolutionary process continues, the programs are likely to evolve in different 

sizes, as non-homologous crossover is allowed in LGP, which permits the programs to 

change their length. However, it is necessary to specify an upper bound for the program 

length to avoid unnecessary growths (Azamathulla et al., 2011). Therefore, the upper 

limit of the program length in any other population, except the initial population, is 

specified by the maximum program size parameter (Aminian et al., 2013). 

 

It is apparent from other previous LGP applications, that the LGP algorithm is more 

likely to find the optimal solution with increased program sizes (Alavi and Gandomi, 

2012; Rashed et al., 2012; Aminian et al., 2013). However, at the same time, 

exceedingly lengthy programs are more susceptible to becoming complex and thus, 

decreases the convergence speed. Thus, the trade-off between running time and the 

complexity of the evolved programs should be taken into consideration when 

specifying the program size parameters (Gandomi et al., 2014). For example, in this 

study, the initial program size was tested at 80 bytes, whilst the maximum program 

size was tested at two optimal levels of 256 and 512 bytes. 

 

Crossover and mutation rate 

As discussed, in the LGP algorithm, new offspring populations are created having the 

selected programs from the current population and are subjected to the genetic 

operations, i.e. crossover and mutation. The frequency parameters of crossover and 
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mutation define the overall probabilities of the corresponding genetic operations that 

take place with the tournament winning programs (Koza, 1992; Aminian et al., 2013). 

It can be commonly seen in many LGP applications that both these frequencies are 

regulated and tested at two different levels, such as 50% and 95%. Although the 

mutation frequency of 95% may seem high, an improved generalisation capability has 

been observed in several applications (Banzhaf et al., 1996; Brameier and Banzhaf, 

2001; Gandomi et al., 2010a). This may be attributed to the fact that variable 

exchanges resulting from the mutation operator could have a significant effect on data 

flow and its fitness (Brameier and Banzhaf, 2001). 

 

The final preparatory step requires the modeller to specify the criterion for terminating 

a LGP run, along with the method for designating the result of a run. The run 

termination criterion can be defined based on the number of generations. For instance, 

a run can be terminated either after a predefined sufficient number of generations have 

evolved without any improvement in fitness or otherwise after a pre-specified 

maximum number of generations have evolved since the beginning. On the other hand, 

run termination can be defined based on a problem specific success measure (Koza 

and Poli, 2005). As such, when the fitness measure achieves a predefined satisfactory 

level, a run can be terminated, given that the individuals have evolved sufficiently. 

Finally, the best individual ever encountered during a run is designated as the ‘winner’ 

of that run.  

 

However, during a LGP run, it is important that the generalisation ability of the 

individual solutions is continuously monitored with the intention of avoiding 

overfitting, which is a common problem for machine learning methods. As mentioned 

previously, model overfitting can be observed when the individuals perform well on 

the training data but have a comparatively poor performance in the presence of a new 

dataset. Thus, to prevent overfitting, it is necessary to employ a suitable data division 

approach, similar to that adopted in ANN modelling, which involves the division of 

the available dataset into 3 subsets: training, testing and validation.  The training 

process, or genetic evolution, is conducted with respect to the training dataset, whilst 

the generalisation capability of the evolved programs is examined during the model 
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training phase with respect to the testing subset. Thereby, the program with the best 

performance, with respect to both the training and testing data subsets, should be 

selected as the best evolved program. After evolution, the selected program is validated 

against the independent validation set, which plays no role in developing the LGP 

model. However, it is recommended that the modeller employs a statistically 

consistent data division approach for the similar reasons discussed previously in ANN 

modelling.  

 

8.5 SUMMARY 

This chapter has summarised the details of the optimal AI models developed in this 

thesis. It is evident that the two distinct sets of optimal models: two involving ANNs 

– one for the CPT and the other for the DCP; and two LGP models – again, one for the 

CPT and the other for the DCP – are successful in providing reliable predictions of the 

effectiveness of RDC in various ground conditions. In addition, it has been 

demonstrated that the LGP-based models slightly outperform their ANN counterparts 

and overall produce slightly more accurate predictions. Thus, considering many other 

factors when compared to ANNs, the value of the LGP-based models has been 

emphasised over ANNs in relation to RDC. 

 

Furthermore, based on the success and usefulness of these two AI applications in 

relation to RDC, similar future applications are recommended. Therefore, in this 

chapter, a set of guidelines were provided in regards to each the AI techniques, i.e. 

ANN and LGP, in order to assist modellers. Step-by-step guidance of the modelling 

methodology, along with the currently available approaches and their feasibility, has 

also been presented.  
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8.6 RECOMMENDATIONS FOR FUTURE WORK 

The research presented in this thesis has focused on predicting the effectiveness of 

RDC by means of two AI techniques in the form of ANNs and LGP. It is important to 

note that no such predictive models exist for RDC, neither empirical, theoretical nor 

numerical. This study is therefore the first to investigate the applicability of AI 

methods for the prediction of the effectiveness of RDC. As discussed above, the results 

of the selected optimal models are pleasing. Nevertheless, there remains room for 

improvement and modifications, which could potentially provide fruitful research 

opportunities in the future. Several recommendations for future work are described 

below. 

 

As with all other empirical methods, the applicability of the ANN- and LGP-based 

models are constrained to the range of the input variables used during the model 

calibration phase. For instance, the DCP database consists of measurements where the 

input variable of average depth is limited to 1.95 m, so that the optimal DCP models 

are restricted to the predictions above depths of 1.95 m. On the other hand, when the 

CPT models are considered, the model predictions are satisfactory only with regards 

to soils with values of qci < 10 MPa. This is because the models are not well calibrated 

for the higher values of qci due to the paucity of such data in the existing CPT database. 

However, the applicability and the accuracy of the developed models can be further 

enhanced by incorporating more data from additional RDC-related projects that may 

become available in the future. Consequently, it is desirable to include a dataset, where 

the input parameters span a wider range than the existing dataset. 

 

Furthermore, in relation to the development of DCP models, the soil type has been 

defined in a more generalised manner using a primary (dominant) and secondary soil 

type for each DCP record. With the availability of project data in the DCP database, 4 

distinct soil types are characterised as: (i) Sand–Clay; (ii) Clay–Silt; (iii) Sand–None 

and (iv) Sand–Gravel. Therefore, other variations of soil types have yet to be applied 

to the DCP models developed in this thesis.  In addition, these models can be further 

enhanced by defining a more specific form of soil type rather including a generalised 

form, perhaps by incorporating particle size distribution data and Atterberg limits 
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measurements, for example, which were not available in any great quantity to allow 

them to be included in the present database. 

 

Moreover, it is important to note that soil moisture content is not included as an input 

in the developed models, again due to the paucity of data. As such, the moisture content 

was considered to be described implicitly by the CPT and DCP measurements, given 

that penetrometer test results are affected by soil moisture. Nevertheless, efforts could 

be made in the future to incorporate the moisture content at the time of compaction 

directly as an input variable in the models to enhance the models’ accuracy.  

 

Therefore, it is of great value to produce a database with an extensive set of CPT and 

DCP data in relation to RDC. It is important that the testing uncertainties in the form 

of operator, procedural and equipment, that could have associated with random errors 

in the dataset, are minimised. Consequently, more flexible and reliable predictive 

models, having a wide range of applicability, can be obtained. However, these would 

only be possible when the appropriate set of data are readily available to form a 

comprehensive database, which is very difficult at present with the currently available 

resources.  

 

Overall, the application of AI techniques, particularly ANNs and LGP, for prediction 

purposes, in relation to RDC was shown to be promising. It was evident that these 

techniques have the ability to model complex interactions between many parameters 

and are also capable of producing tractable equations and/or computer codes 

facilitating their use in practice. Thus, it is recommended that consideration be given 

to these AI techniques as being useful means of forecasting other aspects of RDC, such 

as ground vibrations associated with impact rolling. Moreover, the research presented 

in this thesis has solely focused on the 4-sided, 8 tonne impact roller (BH-1300), 

whereas other module variants having different shapes and weights are also required 

to be assessed in terms of their performance and the effectiveness in different ground 

conditions.  
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In addition, research effort is needed in regards the theoretical enhancements of these 

AI techniques, such as ANN model transparency, knowledge extraction and model 

uncertainty (Shahin, 2016), that may improve their usefulness and applicability. As it 

was evident in this research, as well as in other previous applications in the literature 

[e.g. Pooya Nejad et al. (2009)], ANNs can possibly produce more accurate predictions 

with multi-hidden layers, but at the same time, they become less transparent resulting 

in difficulties in knowledge extraction. In this regard, alternative methods, such as 

neurofuzzy networks (Shahin et al., 2009) could also be explored in terms of model 

transparency.  Although, LGP is also considered to be an alternative approach, in the 

RDC case studies presented in this thesis, some difficulties have been experienced in 

terms of producing relatively simple formulae. However, this could be attributed to the 

fact that LGP penalises complex models to a greater extent and also due to the spatial 

variability associated with the parameters, which may include sudden fluctuations, 

discontinuities and uncertainties. In this regard, further modelling with LGP may be 

beneficial. It is suggested to incorporate a dataset of carefully controlled measurements 

with the intention of producing a relatively simple formula based on LGP.  
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C Code for the Selected Optimal Linear Genetic 
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The selected optimal LGP program based on CPT data is represented in C code as 

follows: 

 

Note that input 000, 001, 002 and 003 represent the depth of measurement (m), initial 

cone tip resistance (MPa) and sleeve friction (kPa) prior to compaction and the number 

of roller passes, respectively.  

     

 float DiscipulusCFunction(float v[]) 

{ 

long double f[8]; 

long double tmp = 0; 

int cflag = 0; 

f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

 

L0: f[0]+=Input001; 

L1: f[0]*=0.1595308780670166f; 

L2: f[0]=sin(f[0]); 

L3: f[1]+=f[0]; 

L4: f[1]+=f[0]; 

L5: f[0]-=f[0]; 

L6: f[0]=cos(f[0]); 

L7: f[2]-=f[0]; 

L8: f[0]/=0.6593866348266602f; 

L9: f[0]-=-0.8144187927246094f; 

L10: f[0]*=Input003; 

L11: f[0]-=Input002; 

L12: f[0]+=f[2]; 

L13: f[2]*=f[0]; 

L14: f[0]/=f[0]; 

L15: f[0]+=f[1]; 

L16: f[0]*=-0.5910544395446777f; 

L17: f[0]+=f[2]; 

L18: f[2]+=f[0]; 

L19: f[0]=fabs(f[0]); 

L20: f[3]+=f[0]; 

L21: f[0]=cos(f[0]); 

L22: f[0]*=0.4784109592437744f; 

L23: f[3]+=f[0]; 

L24: f[0]/=f[0]; 

L25: f[2]+=f[0]; 

L26: f[0]*=Input000; 

L27: f[2]-=f[0]; 

L28: f[0]+=-0.6615190505981445f; 

L29: f[0]*=-0.3511595726013184f; 

L30: f[3]*=f[0]; 

L31: f[0]+=Input001; 

L32: f[1]+=f[0]; 

L33: f[2]*=f[0]; 

L34: f[0]*=f[2]; 

L35: f[0]+=f[1]; 

L36: f[0]=C_F2XM1; 

L37: f[3]*=f[0]; 

L38: f[0]-=f[0]; 

L39: f[0]-=f[2]; 
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L40: f[0]=sin(f[0]); 

L41: f[3]-=f[0]; 

L42: f[0]*=f[0]; 

L43: f[3]+=f[0]; 

L44: f[1]-=f[0]; 

L45: f[0]-=Input002; 

L46: f[0]*=0.2955143451690674f; 

L47: f[1]-=f[0]; 

L48: f[0]*=f[2]; 

L49: f[0]+=Input001; 

L50: f[0]+=f[0]; 

L51: f[3]-=f[0]; 

L52: f[0]+=Input001; 

L53: f[0]+=f[0]; 

L54: f[0]*=Input000; 

L55: f[0]-=f[1]; 

L56: f[0]=sin(f[0]); 

L57: f[0]*=f[0]; 

L58: f[0]+=Input001; 

L59: f[0]/=0.8695814609527588f; 

L60: f[0]+=Input001; 

L61: f[0]*=Input003; 

L62: f[0]+=Input001; 

L63: f[0]-=Input000; 

L64: f[0]+=Input001; 

L65: f[0]-=Input002; 

L66: f[0]=fabs(f[0]); 

L67: f[3]+=f[0]; 

L68: f[0]-=0.2995789051055908f; 

L69: f[0]+=f[1]; 

L70: f[0]+=-0.6615190505981445f; 

L71: f[0]*=-0.3288925886154175f; 

L72: f[0]*=0.2570122480392456f; 

L73: f[3]*=f[0]; 

L74: f[0]-=f[3]; 

L75: f[0]+=Input001; 

L76: 

if (!_finite(f[0])) f[0]=0; 

return f[0]; 

} 

  



 

254 

INTENTIONALLY BLANK 

 



 

 

Appendix B  

 

C Code for the Selected Optimal Linear Genetic 

Programming Model Based on Dynamic Cone 

Penetrometer Test Data 

  



256  Appendix B 

 

The selected optimal LGP program based on DCP data is represented in C code as 

follows: 

 

Note that input 000, 001, 002, 003 and 004 represent the soil type, average depth (m), 

initial number of roller passes, initial DCP (blows/300 mm) and final number of roller 

passes, respectively. The soil type variable uses a numerical representation, where 1, 

2, 3 and 4 are assigned to Sand–Clay, Clay–Silt, Sand–None and Sand–Gravel, 

respectively. 

 

float DiscipulusCFunction(float v[]) 

{ 

long double f[8]; 

long double tmp = 0; 

int cflag = 0; 

f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

 

L0: f[0]-=Input003; 

L1: f[0]+=Input000; 

L2: f[0]/=-0.0910041332244873f; 

L3: f[0]=fabs(f[0]); 

L4: f[0]-=1.048232078552246f; 

L5: f[0]=fabs(f[0]); 

L6: f[0]*=Input001; 

L7: f[0]=sqrt(f[0]); 

L8: f[0]=sin(f[0]); 

L9: f[0]/=-0.7297487258911133f; 

L10: f[0]*=-0.2360081672668457f; 

L11: f[0]+=0.1756083965301514f; 

L12: f[0]-=Input002; 

L13: f[1]-=f[0]; 

L14: f[0]*=f[0]; 

L15: f[0]+=f[0]; 

L16: f[0]+=Input002; 

L17: f[0]=cos(f[0]); 

L18: f[0]=cos(f[0]); 

L19: f[0]+=1.501374244689941f; 

L20: f[0]+=Input003; 

L21: f[0]/=0.00262165069580078f; 

L22: f[0]=sin(f[0]); 

L23: f[0]=fabs(f[0]); 

L24: f[0]+=1.987620830535889f; 

L25: f[1]*=f[0]; 

L26: f[0]-=f[0]; 

L27: f[0]-=0.4281637668609619f; 

L28: f[0]/=-1.427085638046265f; 

L29: f[0]*=Input004; 

L30: f[1]-=f[0]; 

L31: f[0]-=f[1]; 

L32: f[0]/=f[0]; 

L33: f[0]+=Input003; 
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L34: f[1]/=f[0]; 

L35: f[0]+=f[0]; 

L36: f[0]+=Input000; 

L37: f[0]*=Input004; 

L38: f[0]+=-0.5786151885986328f; 

L39: f[1]-=f[0]; 

L40: f[0]+=f[0]; 

L41: f[0]-=Input004; 

L42: f[0]*=Input003; 

L43: f[0]+=f[1]; 

L44: f[1]+=f[0]; 

L45: f[0]+=Input001; 

L46: f[0]-=Input002; 

L47: f[0]*=f[1]; 

L48: f[0]*=Input003; 

L49: f[0]-=Input004; 

L50: f[0]+=f[0]; 

L51: f[1]-=f[0]; 

L52: f[0]*=Input003; 

L53: f[0]*=-1.427085638046265f; 

L54: f[0]-=Input000; 

L55: f[0]=sin(f[0]); 

L56: f[1]+=f[0]; 

L57: f[0]+=Input000; 

L58: f[1]+=f[0]; 

L59: f[0]-=Input002; 

L60: f[1]+=f[0]; 

L61: f[0]-=f[0]; 

L62: f[0]+=0.1756083965301514f; 

L63: f[0]*=f[0]; 

L64: f[1]*=f[0]; 

L65: f[0]-=f[1]; 

L66: f[0]+=Input003; 

L67: f[0]*=0.7790718078613281f; 

L68: f[0]=sin(f[0]); 

L69: f[0]*=0.9177978038787842f; 

L70: f[0]*=0.9177978038787842f; 

L71: 

return f[0]; 

} 
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