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a b s t r a c t

Soil deformation modulus is an essential parameter for the analysis of behavior of substructures.

Despite its importance, little attention is paid to developing empirical models for predicting the

deformation moduli obtained from the field tests. To cope with this issue, this paper presents the

development of a new prediction model for the pressuremeter soil deformation modulus utilizing a

linear genetic programming (LGP) methodology. The LGP model relates the soil secant modulus

obtained from the pressuremeter tests to the soil index properties. The best model was selected after

developing and controlling several models with different combinations of the influencing parameters.

The experimental database used for developing the models was established upon several pressure-

meter tests conducted on different soil types at depths of 3–40 m. To verify the applicability of the

derived model, it was employed to estimate the soil moduli of portions of test results that were not

included in the analysis. Further, the generalization capability of the model was verified via several

statistical criteria. The sensitivity of the soil deformation modulus to the influencing variables was

examined and discussed. Moisture content and soil dry unit weight were found to be efficient

representatives of the initial state and consolidation history of the soil for determining its deformation

modulus. The results indicate that the LGP approach accurately characterizes the soil deformation

modulus leading to a very good prediction performance. The correlation coefficients between the

experimental and predicted soil modulus values are equal to 0.908 and 0.901 for the calibration and

testing data sets, respectively.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In general, soils undergo both elastic and plastic deformations
when subjected to loading. Elastic and plastic behaviors are
considered as soil recoverable and irrecoverable deformations,
respectively (Karmakar et al., 2004). To analyze the elasto-plastic
behavior of soils, stress–strain (load–settlement) curves of labora-
tory or field test results can be used (Briaud, 2001; Briaud et al.,
2006; Mollahasani et al., 2011). Fig. 1 presents a typical stress-
strain curve. Various soil moduli, including secant (Ep) modulus
can be defined referring to this figure. Ep can be calculated from
the secant slope (Sp) corresponding to the slope from the origin
(O) to L1.

The soil deformation moduli are usually evaluated from
laboratory or field methods. The field test results have been
found to be more reliable than those of the laboratory methods

(Reznik, 1995; Murthy, 2008; Mollahasani et al., 2011). The field
tests are very sensitive and costly. Furthermore, it is not always
possible to conduct such tests. These limitations imply the
necessity of conducting more research on the development of
prediction models for the deformation moduli through the inter-
pretation of the field test results. In this context, Reznik (1995)
proposed prediction equations describing the dependence of the
deformation moduli of collapsible soils obtained from plate load
tests on void ratio and moisture content. Recently, Mollahasani
et al. (2011) proposed empirical models to predict the plate load
soil moduli using gene expression programming. Among the field
tests, pressuremeter test is one of the well-known tests for
determining the soil deformation modulus. Despite the high
reliability of the pressuremeter test results (Murthy, 2008),
investigations on deriving prediction models for the pressure-
meter soil modulus are conspicuous by their absence.

The main purpose of this paper is to investigate the potential of
linear genetic programming (LGP) technique to obtain new empiri-
cal relationships for determining the pressuremeter soil secant
modulus. Various predictor variables employed for the analysis
were coarse and fine-grained contents, grains size characteristics,

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2011.11.008

n Corresponding author.

E-mail addresses: azade.rashed@gmail.com (A. Rashed),

bolouri@ferdowsi.um.ac.ir (J.B. Bazaz), ah_alavi@hotmail.com (A.H. Alavi).
1 Associate Professor.

Engineering Applications of Artificial Intelligence 25 (2012) 1437–1449



Author's personal copy

liquid limit, moisture content, and soil unit weight. A database of
consisting of 106 pressuremeter test results was used for the
analysis. The paper is organized as follows: Section 2 presents a
brief literature review. Section 3 provides descriptions of the
methodology used for the formulation of the soil modulus.
Section 4 outlines the model development using LGP, experimental
study and reviews the results. The detailed performance analysis of
the proposed model is discussed in Section 5. The results of the
sensitivity and parametric analyses are given in Sections 6 and 7,
respectively. Finally, concluding remarks are outlined in Section 8.

2. Literature review

Numerous computer-aided modeling tools have been proposed
by extending developments in computational software and hard-
ware. Genetic programming (GP; Koza, 1992) is a new approach for
behavioral modeling of engineering problems. GP is a specialization
of genetic algorithms (GA) where the solutions are computer
programs rather than binary strings. One of the main features of
GP is its ability to generate greatly simplified prediction equations
without assuming prior form of the existing relationship (Alavi et al.,
2011). For the last decade, GA, GP, variants of GP, and other well-
known soft computing techniques such as artificial neural networks
(ANNs) and support vector machines (SVM) have been pronounced
as alternative methods for simulating the behavior of engineering
problems (Cheng et al., 2002; Xie et al., 2006; Lin et al., 2006; Chau,
2006; Javadi et al., 2006; Rezania and Javadi, 2007; Muttil and Chau,
2007; Jia et al., 2008; Ciftci et al., 2009; Javadi and Rezania, 2009; Pal
et al., 2011; Rezania et al., 2011; Gandomi et al., 2011a; Gandomi
and Alavi 2011). LGP (Brameier and Banzhaf, 2007) is a new subset
of GP. LGP operates on programs that are represented as linear
sequences of instructions of an imperative programming language
(Brameier and Banzhaf, 2001, 2007). In contrast with traditional GP
and other soft computing techniques, applications of LGP in the field
of civil engineering are totally new and original (Guven, 2009;
Guven et al., 2009; Gandomi et al., 2010; Alavi and Gandomi, 2011).

3. Linear genetic programming

GP creates computer programs to solve a problem using the
principle of Darwinian natural selection (Koza, 1992). Most of the

genetic operators used in GA can also be implemented in GP with
minor changes. The main difference between GP and GA is the
representation of the solution. GA creates a string of numbers that
represent the solution. The GP solutions are computer programs
represented as tree structures and expressed in a functional
programming language (such as LISP; Koza, 1992; Alavi et al.,
2011). In other words, the programs (individuals) evolved by GP
are parse trees that can vary in length throughout the run rather
than fixed-length binary strings. GP gives the basic structure of
the approximation model together with the values of its para-
meters (Javadi and Rezania, 2009). The fitness of each program in
the population is evaluated using a fitness function. Thus, the
fitness function is the objective function GP aims to optimize
(Gandomi et al., 2011b).

In addition to classical tree-based GP, there are other types of
GP where programs are represented in different ways. These are
linear and graph-based GP (Banzhaf et al., 1998). Recently, several
linear variants of GP have been developed such as linear genetic
programming (LGP) and multi-expression programming (MEP).
The linear variants of GP make a clear distinction between the
genotype and phenotype of an individual. In these variants,
individuals are represented as linear strings (Oltean and Grosan,
2003). There are some main reasons for using linear GP. Computers
do not naturally run tree-shaped programs. Therefore, slow inter-
preters have to be used as a part of classical tree-based GP.
Conversely, by evolving the binary bit patterns, the use of an
expensive interpreter is avoided. Consequently, a linear GP system
can run several orders of magnitude faster than comparable
interpreting systems. The enhanced speed of the linear variants
of GP (e.g., LGP and MEP) permits many runs to be conducted in
realistic timeframes. This leads to derivation of consistent and
high-precision models with little customization (Francone and
Deschaine, 2004; Poli et al., 2007; Gandomi et al., 2011b).

LGP is a new subset of GP with a linear structure similar to the
deoxyribonucleic acid (DNA) molecule in biological genomes.
Similar to classical GP, the major difference between LGP and
GA pertains to the representation of the solution. A comparison of
classical GP with LGP reveals that LGP substitutes expressions of a
functional programming language (such as LISP) in GP by pro-
grams of an imperative language (such as C/Cþþ; Brameier and
Banzhaf, 2001, 2007). Fig. 2 presents a comparison of structure of
a program evolved by LGP and classical GP. Furthermore, this
figure demonstrates a typical conversion of the evolved programs
into a functional representation (y¼ f[0]¼(v[0]/1)/v[1]). The LGP
program is converted into a functional form by successive
replacements of the variables starting with the last effective
instruction (Oltean and Grosan, 2003). The translation of the
program generated by classical GP into explicit form can be
obtained by reading the tree structure from left to right. As
shown in Fig. 2a, a linear genetic program can be seen as a data
flow graph generated by multiple usage of register content. In

L1

Stress 

Strain O

Sp

Fig. 1. Definitions of soil secant modulus (Briaud, 2001).

y = f[0] = (v[0] / 1) / v[1]

f[0] = 0;
f[0] += v[0];
f[0] /= 1;
f[0]/= v[1];
return f[0];

/

v[1]/

v[0] 1

Fig. 2. A comparison of a GP program structure evolved by: (a) LGP (b) Classical

tree-based GP (Gandomi et al., 2011b).
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classical tree-based GP, the data flow is more rigidly determined
by the tree structure of the program (Brameier and Banzhaf, 2001;
Gandomi et al., 2011b).

In the LGP system described here, a program is interpreted as a
variable-length sequence of simple C instructions. The instruction
set or function set of LGP contains arithmetic operations, condi-
tional branches, and function calls. The terminal set of the system
is composed of variables and constants. The instructions are
restricted to operations that accept a minimum number of
constants or memory variables, called registers (r), and assign
the result to a destination register, e.g., r0:¼r1þ1. A part of a
linear genetic program in C code is represented in Fig. 3. In this
figure, register r[0] holds the final program output (Gandomi
et al., 2010).

Here are the steps which the LGP system follows for a single
run (Brameier and Banzhaf, 2007; Gandomi et al., 2010):

I. Initializing a population of randomly generated programs and
calculating their fitness values.

II. Running a Tournament. In this step four programs are selected
from the population randomly. They are compared based on
their fitness. Two programs are then picked as the winners
and two as the losers.

III. Transforming the winner programs. After that, two winner
programs are copied and transformed probabilistically into
two new programs via crossover and mutation operators.

IV. Replacing the loser programs in the tournament with the
transformed winner programs. The winners of the tourna-
ment remain unchanged.

V. Repeating steps two through four until termination or con-
vergence conditions are satisfied.

Crossover occurs between instruction blocks. Fig. 4 demon-
strates a two-point linear crossover used in LGP for recombining
two tournament winners. As it is seen, a segment of random
position and arbitrary length is selected in each of the two
parents and exchanged. If one of the two children would exceed
the maximum length, crossover is aborted and restarted with
exchanging equally sized segments (Brameier and Banzhaf, 2001;
Gandomi et al., 2011b). The mutation operation occurs on a single
instruction. Two commonly used types of standard LGP mutations
are micro- and macro-mutation. The micro-mutation changes an
operand or an operator of an instruction. The macro-mutation
operation inserts or deletes a random instruction (Brameier and
Banzhaf, 2001; Gandomi et al., 2011b).

4. Numerical simulation of soil deformation modulus

The significant influence of the soil physical properties such as
particle size distribution, dry unit weight, moisture content, and
plasticity on its mechanical properties is well understood (Briaud,
2001; Reznik, 2007; Mollahasani et al., 2011). For instance, dry

unit weight is an indicator of compressibility of a soil. If the
soil particles are closely packed, the modulus tends to be high.
The moisture content also has a major influence on the soil
modulus. At very low water contents, the compaction of coarse-
grained soils is not as efficient as it is at higher moisture con-
tents since the lubrication effect of water is not sufficient. In this
case, very low moisture content results in low modulus (Briaud,
2001; Mollahasani et al., 2011). Herein, the LGP approach was
employed to develop a new prediction equation for the soil secant
modulus (Ep). The most important factors representing the
behavior of the soil deformation modulus were detected on the
basis of a literature review (Briaud, 2001; Briaud et al., 2006;
Reznik, 1995, 2007; Mollahasani et al., 2011). Ep (kg/cm2) was
considered to be a function of the following parameters:

Ep ¼ f FC,CC,D10,D30,D60,Cu,Cc,LL,o,g,gd

� �
ð1Þ

where

FC (%): Fine-grained content,
CC (%): Coarse-grained content,
D10 (mm): Grain size for which 10 percentage of the sample
is finer,
D30 (mm): Grain size for which 30 percentage of the sample
is finer,
D60 (mm): Grain size for which 60 percentage of the sample
is finer,
Cu: Coefficient of uniformity (D60/D10),
Cc: Coefficient of curvature ((D30)2/(D60�D10)),
LL (%): Liquid limit,
o (%): Moisture content,
g (kN/m3): Soil unit weight,
gd (kN/m3): Soil dry unit weight.

FC, CC, D10, D30, D60, Cu, Cc, and LL represent the intrinsic
soil properties. o, gd, and g carry information on the state
of the soil and its compressibility and previous history. Over-
consolidation ratio (OCR) could have been included in the
analysis. However, it was not included herein as it should be
obtained from time-consuming laboratory tests. On the other
hand, g and gd can be easily calculated for a soil (Mollahasani
et al., 2011).

4.1. Experimental study and test results

The experimental program consisted of laboratory and field
tests. The field activities included the pressuremeter tests. Var-
ious aspects of the pressuremeter test, including test setup and
test procedure, are described below. For the laboratory testing
purposes, several disturbed and undisturbed soil samples were
taken from the sites. A soil sample is called ‘‘disturbed’’ if the testsFig. 3. An excerpt of a linear genetic program.

Parent 1

Parent 2

Child 1

Child 2

Fig. 4. Crossover in LGP (Brameier and Banzhaf, 2001).
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of its structural properties are not representatives of in-situ
conditions. In other words, the structure of a disturbed soil is
sufficiently changed during the sampling process. Otherwise, the
soil sample is called ‘‘undisturbed’’. The undisturbed soil samples
are obtained by methods in which disturbance to the sample is
minimized. After extracting, the cores were carefully taken to the
geotechnical laboratory and maintained in a wet chamber to
avoid loosing of water content.

4.1.1. Basic geotechnical characterization tests

Extensive geotechnical laboratory tests were carried out for
determining the physical and plastic characteristics of soil. The
tests included measuring the water (or moisture) content (o),
defined as the ratio between the mass of water and the mass of
dry soil; natural unit weight (g), which is obtained by measuring
the relationship between the weight and volume of an undis-
turbed soil sample, Atterberg limits (plastic and liquid limit),
specific gravity, and grain size distribution. Fig. 5 illustrates the
range of grain size distribution of the samples tested. Different
soil types tested were silty clay with sand (CL–ML), gravelly lean
clay with sand (CL), silty, clayey sand (SC–SM), gravelly silt with
sand (ML), and silty gravel with sand (GM), silty sand (SM), and
silty, clayey gravel (GC–GM).

4.1.2. Pressuremeter tests

The pressuremeter test is a traditional in-situ method for
estimating the stress–strain response of the soil. Within the scope
of this study, 106 pressuremeter tests were performed to inves-
tigate the pressure–volume deformation characteristics of soils at
some locations in Khorasan Province, Iran. These tests were
conducted by Menard pressuremeter. This apparatus consists of
three parts, namely probe, control unit and tubing. The pressure-
meter tests conducted in the present study followed the proce-
dures described in ASTM D4719-87 (1987). The following
technique was employed to perform the pressuremeter tests.
Before beginning the pressuremeter tests, the pressuremeter
was calibrated for pressure loss and volume loss. The pressure
loss, Pc, occurs due to the rigidity of the probe membranes. For
determining the Pc, the probe was placed in the open air and
inflated step by step with increasing the pressure. Volume loss, Vc,
occurs due to the expansion of the tubing system and the
compressibility of any part of the testing equipment. Vc was
determined by putting the probe in a steel tube and inflating the
tube by application of water pressure. Diameter of the probe used
in this study was 58 mm and the diameters of the holes drilled for
conducting the tests were 101, 116, and 125 mm. The probe was
lowered to the hole soon after boring to the desired elevation.
Then the test was started by opening the valves for admitting
water and gas to the measuring cell and guard cells, respectively.

The pressure within the measuring cell was held constant for
approximately 60 s. Then, the increase in volume required to
maintain the constant pressure was recorded. Steps were con-
tinued until yielding in the soil became disproportionate. Finally,
a corrected pressure–volume (P–V) curve was plotted. The cor-
rected pressure (P) and volume (V) were obtained using the
following equations:

P¼ PrþPw�Pc ð2Þ

V ¼ V r�Vc ð3Þ

where Pr and Vr are the actual pressure and volume read from the
control unit, respectively. Pc and Vc are the pressure and volume
loss, respectively. Pw¼gw�Hw in which Hw is the difference in
head between the center of the measuring cell in the bore hole
and the pressure gage in central unit, and gw is the unit weight of
water. A typical corrected pressuremeter curve is shown in Fig. 6.
The initial part of the curve (OA) represents the recompression of
the relaxed soil around the borehole. At the end of this part, Po is
the pressure which corresponds to the volume V0 at the start of
the straight line where the yielded wall of the hole is pushed to its
original position. The second part (AB) indicates the elastic
deformation of the soil. It is also called the pseudo-elastic phase
of the test. Pf is known as the creep pressure. The curve BC marks
the plastic phase that becomes eventually asymptotic at limit
pressure PI at which the soil is deemed to have failed. The
formulation used for determining the pressuremeter modulus is
as follow (Murthy, 2008):

EP ¼ 2ð1þuÞðVoþVmÞ
DP

DV
ð4Þ

where

Ep (kPa): Pressuremeter modulus,
n: Poisson ration,
V0: Volume of the uninflated probe at ground surface,
DP: Corrected pressure increase in the center part of the
straight line portion of the pressure–volume curve,
DV: Corrected volume increase in the center part of the
straight line portion of the pressure–volume curve, corre-
sponding to DP pressure increase,
Vm: Corrected volume reading in the center portion of the DV

volume increase.

The complete list of the data is presented in Table 1. The
information cited in this table includes FC, D10, D30, D60, Cu, Cc, LL,
o, and gd. Ep is the measured soil deformation modulus. A major
part of the database comprises the test results on fine-grained soil

Fig. 5. Lower and upper limits of the grain size distribution of the soil samples. Fig. 6. A typical corrected pressuremeter curve.
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samples. The descriptive statistics of the test results is given in
Table 2. To visualize the distribution of the samples, the data are
presented by frequency histograms (Fig. 7).

4.2. Data preprocessing

For the analysis, the available data sets were randomly divided
into learning, validation and testing subsets. The learning data
were used for the training process (genetic evolution). The
validation data were used to specify the generalization capability
of the evolved programs on data they did not train on (model
selection). In other words, the learning and validation data sets
were used to select the best evolved programs and included in the
training process. Thus, they were categorized into one group
referred to as ‘‘training data’’. The testing data were finally used to
measure the performance of the models obtained by LGP on data
that played no role in building the models (Gandomi et al.,
2011b). A trial study was conducted to find a consistent data
division. The selection was such that the statistical properties (e.g.
mean and standard deviation) of the training and testing subsets
were similar. Out of the 106 data, 79 data were used as the
training data (70 sets as the learning data and 9 sets as the
validation data). The remaining 27 data sets were taken for the
testing of the generalization capability of the models.

4.3. Parameters for measuring performance

The parameters used to evaluate the performance of the
models were correlation coefficient (R), root mean squared error
(RMSE) and mean absolute error (MAE). These parameters were
calculated using the following equations:

R¼

Pn
i ¼ 1ðhi�hi Þðti�ti ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 ðhi�hi Þ
2Pn

i ¼ 1 ðti�ti Þ
2

q ð5Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 ðhi�tiÞ

2
q

n
� 100 ð6Þ

MAE¼
1

n

Xn

i ¼ 1

9hi�ti9

" #
ð7Þ

where hi and ti are the actual and predicted output values for the
ith output, respectively. hi and ti are, respectively, the average of
the actual and predicted outputs, and n is the number of samples.

4.4. LGP-based prediction model for soil deformation modulus

The available database was used for establishing the LGP
prediction model relating Ep to FC, CC, D10, D30, D60, Cu, Cc, LL, o,
g, and gd. GP and its variants such as LGP are able to find the global

solution without difficulties using the crossover and mutation
operations (Galvan-Lopez et al., 2008). This ability to find the very
best, or global solution, cannot be guaranteed mathematically as
nature does not guarantee perfection either. In this study, several
runs were conducted to obtain a parameterization of LGP that
provided enough robustness and generalization to solve the pro-
blem. The LGP parameters were changed for different runs to find
the global solution. The parameters were selected on the basis of
both previously suggested values (Francone, 2001; Baykasoglu et al.,
2008; Gandomi et al., 2010; Alavi and Gandomi, 2011) and making
several preliminary runs and observing the performance behavior.
Three optimal levels were set for the population size (500, 1500, and
3000) and two optimal levels were considered for the crossover rate
(50% and 95%) and mutation rate (50% and 90%). The success of the
LGP algorithm usually increases with increasing the initial and
maximum program size parameters. In this case, the complexity of
the evolved functions increases and the speed of the algorithm
decreases. The initial and maximum program sizes were, respec-
tively, set to optimal values of 80 and 256 bytes as tradeoffs
between the running time and the complexity of the evolved
solutions. The number of demes was set to 20. This parameter is
related to the way that the population of programs is divided. Note
that demes are semi-isolated subpopulations that evolution pro-
ceeds faster in them in comparison to a single population of equal
size (Brameier and Banzhaf, 2007). In this study, four basic arith-
metic operators (þ , � , � , /) and basic mathematical functions (O,
sin, cos) were utilized to get the optimum LGP models. There are 3
(optimal population size levels)�2 (optimal crossover rate
levels)�2 (optimal mutation rate levels)¼12 different combina-
tions of the parameters of the LGP algorithm. All of these parameter
combinations were tested and 5 replications for each were carried
out. Therefore, the overall number of runs was equal to 12�5¼60
for each of the input combinations. A fairly large number of
tournaments (900,000) were tested on each run to find models
with minimum error. For each case, the program was run until there
was no longer significant improvement in the performance of the
models or the run terminated automatically. Each run was observed
while in progress for overfitting. For this aim, situations were
checked in which the fitness of the samples for the learning of
LGP was negatively correlated with the fitness on the validation data
sets. To evaluate the fitness of the evolved program, the average of
the squared raw errors was used. For the runs showing signs of
overfitting, the LGP parameters were progressively changed so as to
reduce the computational power available to the LGP algorithm
until the observed overfitting was minimized. The resulting run was
then accepted as the production run. For the LGP-based analysis, the
Discipulus software (Conrads et al., 2004) was used.

An extensive trial study was performed to select the most
relevant input parameters for the LGP models. Several LGP models
were developed using different combinations of the input para-
meters. The best model was chosen on the basis of a multi-
objective strategy as follows:

i. Finding the simplest model, although this was not a predomi-
nant factor. This item was considered for the cases where the
models evolved by LGP had the same input variables and a
similar performance. In such cases, the structurally simpler
model was kept as the optimal one.

ii. Providing the best fitness value on the training (learning and
validation) set of data.

The best LGP model for predicting Ep was built using FC, Cu, o,
and gd. The best LGP program obtained at the end of training
in C is given in Appendix A. This program can be run in
Cþþ environment. The resulting code may be linked to the
optimizer and compiled or it may be called from the optimization

Table 2
Descriptive statistics of the variables used for the model development.

Parameter Minimum Maximum Mean Standard deviation

FC (%) 12.28 100 71.35 25.3

D10 (mm) 0.0001 0.02 0.0021 0.0032

D30 (mm) 0.0001 0.9 0.04 0.11

D60 (mm) 0.01 9.7 0.59 1.58

Cu 5.67 70000 473.61 1102/38

Cc 0.003 50.2 4.06 7.93

LL (%) 16 41.9 26.02 6.28

o (%) 5.9 27 16.07 4.26

gd (kN/m3) 14 20.5 17.05 1.46

g (kN/m3) 15.4614 22.6083 19.72715 1.193521

EP (kg/cm2) 24.15 1077.65 305.66 201.8
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routines (Deschaine, 2000). To facilitate the use of the derived
code, it was converted into a functional representation following
a typical procedure shown in Fig. 2. The optimal LGP-based
formulation of Ep is as follows:

EP ðkg=cm2Þ ¼ 28�4FCþ4gd 7þ

288
o�gd

3

12
ffiffiffiffi
Cu

p
þ12FC

gd
þ7

� �2

þ60

FC

0
BBB@

1
CCCA ð8Þ

The population size, crossover rate, and maximum number
of tournaments for the optimal run were equal to 1500,
95% and 780,000, respectively. This run took 6 min and
33 s on a Pentium 4 personal computer with 3.00 GHz of
processor speed and 1 Gb of memory. The above model was
selected among a total of 504,138,427 programs evolved and
evaluated by the LGP method during the conducted runs.
Fig. 8 shows a comparison between the experimental and
predicted Ep values.
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Fig. 7. Histograms of the variables used for the model development.
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5. Discussion of model validity

Based on a rational hypothesis, Smith (1986) suggested the
following criteria for judging performance of a model:

� if a model gives 9R940.8, a strong correlation exists between
the predicted and measured values.
� if a model gives 0.2o9R9o0.8 a correlation exists between the

predicted and measured values.

� if a model gives 9R9o0.2, a weak correlation exists between
the predicted and measured values.

In all cases, the error values (e.g., RMSE and MAE) should be at
the minimum. It can be observed from Fig. 8 that the LGP model
with high R and low RMSE and MAE values is able to predict the
target values with an acceptable degree of accuracy. The perfor-
mance of the model on the training and testing data suggests that
it has both good predictive ability and generalization performance.

Fig. 7. (continued)

Fig. 8. Experimental versus predicted soil modulus values using the LGP model. (Note: 1.0 kg/cm2
¼0.1 MPa.)
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The reliability of the models created by LGP is notably dependant
on the amount of data used for the training process (Alavi et al.,
2011). In this context, Frank and Todeschini (1994) argue that the
minimum ratio of the number of objects over the number of
selected variables for model acceptability is 3. Also, they suggest
that considering a higher ratio equal to 5 is safer. In the present
study, this ratio is higher and is equal to 106/4¼26.5.

No rational model to predict soil secant modulus has been
developed yet that would encompass the influencing variables
considered in this study. Therefore, it was not possible to conduct a
comparative study between the results obtained herein and those
provided by any existing models. Instead, new criteria recommended
by Golbraikh and Tropsha (2002) were checked for external validation
of the models on the testing data sets. It is suggested that at least one
slope of regression lines (k or k0) through the origin should be close
to 1. k is the slope of the regression line in plot of actual (hi) against
predicted (ti) values. k0 is the slope of the regression line in plot of ti

against hi values (Golbraikh and Tropsha, 2002). Also, the perfor-
mance indexes of m and n should be lower than 0.1. Either the
squared correlation coefficient (through the origin) between pre-
dicted and experimental values (Ro2), or the coefficient between
experimental and predicted values (Ro02) should be close to 1. The
considered validation criteria and the relevant results obtained by the
models are presented in Table 3. As it is seen, the derived model
satisfies the required conditions. The validation phase ensures the
derived LGP model is strongly valid and it is not established by
chance. Note that the proposed model was developed using the basic
soil physical properties (FC, Cu, o, gd) and, therefore, can easily be
used for prediction purposes via hand calculations.

Furthermore, the predictions made by the LGP model were
compared with those provided by an ANN model developed in
this study. The ANN model was established using the training and
testing data considered for the LGP-based modeling process. The
ANN architecture that gave the best results for the prediction of
the pressuremeter soil modulus was found to contain:

� One invariant input layer, with 4 (FC, Cu, o, and gd) arguments;
� One invariant output layer with 1 node providing the value of Ep.
� One hidden layer having 4 (m¼4) nodes.

The results obtained by the LGP and ANN models are presented in
Table 4. It can be observed from this table that the ANN model
outperforms the LGP model. GP and its branches (e.g., LGP) directly
learn from raw experimental data presented to them in order to
extract the subtle functional relationships among the data. This is the
same task followed by ANNs and other soft computing techniques.
Although LGP does not provide better results than ANN for the
investigated problem, it possesses a notable advantage over ANN. LGP
has a great capability in generating a transparent and structured
representation of the system being studied. Due to the large complex-
ity of the network structure, ANNs do not give a transparent function

relating the inputs to the corresponding outputs. Contrary to the LGP
and ANN methods, most conventional methods (like regression and
finite element method) need prior knowledge about the nature of the
relationships among the data. Classical constitutive models rely on
assuming the structure of the model in advance, which may be
suboptimal. On the other hand, the best solutions generated by the
GP-based techniques are determined after controlling numerous
preliminary models, even millions of linear and nonlinear models.
Thus, they can efficiently consider the interactions between the
dependent and independent variables (Alavi et al., 2011). It is worth
mentioning that the LGP algorithm is parameter sensitive, especially
when difficult experimental training data sets like the one used in
this paper are employed. The performance of LGP can be improved by
using any form of optimally controlling the parameters of the run
(Dimopoulos and Zalzala, 2001). In this context, further research can
be focused on hybridizing LGP with other optimization algorithms
such as GAs, Simulated Annealing, Ant Colony, or Tabu Search.

However, one of the main aims of introducing the GP-based
approaches into the design processes is better handling of the
information in the pre-design phase (Alavi et al., 2011). It is idealistic
to have some initial estimates of the outcome before performing any
extensive laboratory or field work. The LGP approach employed in
this research is based on the data alone to determine the structure
and parameters of the model. Thus, the derived model is considered
to be mostly valid for use in preliminary design stages and should
cautiously be used for final decision-making. The proposed LGP
model is suggested to be used to check the general validity of the
laboratory test results. Further, this solution is a good alternative to
determine the soil modulus when testing is not possible.

6. Sensitivity analysis

The contributions of the final predictor variables (FC, Cu, o, gd)
in the best LGP model were evaluated through a sensitivity
analysis. These variables were identified after developing and
controlling several models with different combinations of the soil
physical properties. To perform the sensitivity analysis, frequency
values of the input parameters were obtained. A frequency value
equal to 100% for an input indicates that this variable has been
appeared in 100% of the best thirty programs evolved by LGP. This
is a common approach in the GP-based analyses (Gandomi et al.,
2011c). The frequency values of the predictor variables are
presented in Fig. 9. In addition to frequencies, this figure presents
the average impact of removing all instances of each input from
the best thirty programs of the project. A value of 100% represents
the largest impact value possible. The greater the value, the more
impact removal had. It should be noted that the frequency and
average impact values do not necessarily reflect the contributions
of the final predictor variables in the best model presented herein
(Eq. (8)). It can be observed from Fig. 9 that the contributions of
all of the final predictor variables to the prediction of Ep are high.
According to this figure, Ep is less sensitive to Cu than other soil
properties. As it is seen, the contributions of FC, o and gd to the
prediction of Ep are fairly similar. However, the average impact of
removing FC is higher than other predictor variables.

Table 3
Statistical parameters of the LGP model for the external validation.

Item Formula Condition The proposed

model

1 R 0.8oR 0.901

2
k¼

Pn

i ¼ 1
ðhi�ti Þ

h2
i

0.85oKo1.15 0.993

3
k0 ¼

Pn

i ¼ 1
ðhi�ti Þ

t2
i

0.85oK0o1.15 0.963

where
Ro2 ¼ 1�

Pn

i ¼ 1
ðti�ho

i ÞPn

i ¼ 1
ðti�ti Þ

2 ho
i ¼ k� ti ,

should be close

to 1

1.000

Ro02 ¼ 1�

Pn

i ¼ 1
ðhi�to

i
ÞPn

i ¼ 1
ðhi�hi Þ

2 to
i ¼ k0 � hi ,

should be close

to 1

0.994

Table 4
The prediction performance of the LGP and ANN models.

Item Training data Testing data

R RMSE MAE R RMSE MAE

ANN 0.947 67.80 45.25 0.928 63.48 45.32

LGP 0.908 88.64 64.30 0.901 72.14 49.58
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7. Parametric analysis

For further verification of the LGP-based prediction model, a
parametric analysis was performed in this study. The parametric
analysis investigates the response of the predicted soil deforma-
tion modulus from the LGP model to a set of predictor variables.
The robustness of a design equation is determined by examining
how well the predicted target values agree with the underlying
physical behavior of the investigated system (Kuo et al., 2009).
Fig. 10 presents the tendency of the Ep predictions to the
variations of the soil physical properties, i.e., FC, Cu, o, and gd.

The results of the parametric analysis indicate that Ep decreases
with increasing FC and o. It can also be observed that Ep con-
tinuously increases with increasing Cu and gd. The parametric

analysis results for CC, LL, and g in the proposed models are
generally expected cases from a geotechnical engineering viewpoint
(Murthy, 2008). The results confirm that the proposed design
equation is capable of capturing the important characteristics of
the soil deformation modulus.

8. Conclusion

This paper presents a new approach to derive new prediction
equations for the soil deformation moduli utilizing the LGP paradigm.
The proposed relationship was developed based on several pressure-
meter tests performed in this research. The developed model gives
precise estimations of the Ep values. The validation phases confirm
the accuracy of the model for its general application to the soil moduli
estimation. The developed model is mostly suitable for fine-grained
soils with physical properties similar to the soil samples used in this
study. Although LGP does not outperform ANN, it provides a simple
and straightforward equation that can readily be employed for pre-
design purposes or may be used as a quick check on solutions
developed by more in-depth deterministic analyses. The optimal
model takes into account the role of several important parameters
representing the soil moduli behavior. The results indicate that o and
gd efficiently represent the initial state and consolidation history of
the soil for determining the soil moduli. The predictive capabilities of
the derived model are limited to the range of the data used in the
training process. To deal with this limitation, the LGP model can be
easily retrained and improved to make more accurate predictions for
a wider range by including the data for other soil types and testFig. 9. Contributions of the predictor variables in the LGP analysis.

E
p 

(k
g/

cm
2 )

250

270

290

310

330

350

370

E
p 

(k
g/

cm
2 )

0

200

400

600

800

1000

0

0

0

0

0

0

0 5

FC (%)

10 15

ω (%)

20 25

E
p 

(k
g/

cm
2 )

E
p 

(k
g/

cm
2 )

0 20 40 60 80 1100

30

280

290

300

310

320

330

340

350

360

1 10 1000 1000

Cu

10000

200

250

300

350

400

10 15 20 25

γd (kN/m3)

Fig. 10. Parametric analysis of Ep in the LGP model.

A. Rashed et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1437–1449 1447



Author's personal copy

conditions. The constitutive model derived using LGP is basically
different from the conventional constitutive models based on first
principles (e.g., elasticity and plasticity theories). One of the distinc-
tive features of the LGP-based model is that it is based on the
experimental data rather than on assumptions made in developing
the conventional models. The present study shows that LGP is very
practical for nonlinear system modeling. However, the underlying
assumption that the input parameters are reliable is not always the
case. Fuzzy logic can provide a systematic method to deal with
imprecise and incomplete information. Hence, the process of devel-
oping hybrid fuzzy-LGP prediction models can be a suitable topic for
further studies.

Appendix A

The optimum LGP program for the prediction of Ep.
The following LGP programs can be run in the Discipulus

interactive evaluator mode or can be compiled in Cþþ environ-
ment. (Note: v[0], y, v[3] represent FC, Cu, o, and gd, respec-
tively. f[0] holds the output.)

float DiscipulusCFunction(float v[0], v[1], v[2], v[3])
{long double f[8];
long double tmp¼0;
int cflag¼0;
f[0]¼ f[1]¼ f[2]¼ f[3]¼ f[4]¼ f[5]¼ f[6]¼ f[7]¼0;

L0: f0þ¼v[1];
L1: f0¼sqrt(f0);
L2: f0þ¼v[0];
L3: f0*

¼6;
L4: f0þ¼ f0;
L5: f0/¼v3;
L6: f0�¼�7;
L7: f0/¼v[3];
L8: f0*

¼ f0;
L9: f0þ¼ f0;
L10: f[0]/¼v[2];
L11: f[0]*¼6;
L12: f[0]þ¼ f[0];
L13: f[0]/¼v[3];
L14: f[0]�¼2;
L15: f0�¼�7;
L16: f0/¼v[0];
L17: f0*¼6;
L18: f0þ¼ f0;
L19: f0�¼�7;
L20: f0*

¼v3;
L21: f0�¼�7;
L22: f0�¼v[0];
L23: f0þ¼ f0;
L24: f0þ¼ f0;

L25:
return f[0];}
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